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Variation in prognosis and treatment outcome 
in juvenile myoclonic epilepsy: a Biology of 
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proposal for a practical definition and stratified 
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Reliable definitions, classifications and prognostic models are the cornerstones of stratified medicine, but none of the current classi
fications systems in epilepsy address prognostic or outcome issues. Although heterogeneity is widely acknowledged within epilepsy 
syndromes, the significance of variation in electroclinical features, comorbidities and treatment response, as they relate to diagnostic 
and prognostic purposes, has not been explored. In this paper, we aim to provide an evidence-based definition of juvenile myoclonic 
epilepsy showing that with a predefined and limited set of mandatory features, variation in juvenile myoclonic epilepsy phenotype can 
be exploited for prognostic purposes. Our study is based on clinical data collected by the Biology of Juvenile Myoclonic Epilepsy 
Consortium augmented by literature data. We review prognosis research on mortality and seizure remission, predictors of antiseizure 
medication resistance and selected adverse drug events to valproate, levetiracetam and lamotrigine. Based on our analysis, a simplified 
set of diagnostic criteria for juvenile myoclonic epilepsy includes the following: (i) myoclonic jerks as mandatory seizure type; (ii) a 
circadian timing for myoclonia not mandatory for the diagnosis of juvenile myoclonic epilepsy; (iii) age of onset ranging from 6 to 
40 years; (iv) generalized EEG abnormalities; and (v) intelligence conforming to population distribution. We find sufficient evidence 
to propose a predictive model of antiseizure medication resistance that emphasises (i) absence seizures as the strongest stratifying fac
tor with regard to antiseizure medication resistance or seizure freedom for both sexes and (ii) sex as a major stratifying factor, reveal
ing elevated odds of antiseizure medication resistance that correlates to self-report of catamenial and stress-related factors including 
sleep deprivation. In women, there are reduced odds of antiseizure medication resistance associated with EEG-measured or self-re
ported photosensitivity. In conclusion, by applying a simplified set of criteria to define phenotypic variations of juvenile myoclonic 
epilepsy, our paper proposes an evidence-based definition and prognostic stratification of juvenile myoclonic epilepsy. Further studies 
in existing data sets of individual patient data would be helpful to replicate our findings, and prospective studies in inception cohorts 
will contribute to validate them in real-world practice for juvenile myoclonic epilepsy management.
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Graphical Abstract

Introduction
Few diseases in medicine benefit from a prognostic model, 
and the epilepsies are no exception. Prognostic models are vi
tal for the mission of stratified medicine, which can be sum
marized as identifying individuals with a condition who may 
profit from, or be harmed by, specific interventions.1

Accurate stratification is efficient at an individual and at a 
group level, permitting both personalization of treatment 
and smarter clinical trials design. Large-scale primary data 
sets and secondary meta-analyses of clinical trials and cohort 
studies offer the possibility of generating such models, test
able for their utility in clinical practice (Figure 1).

Juvenile myoclonic epilepsy (JME), a common and arche
typal idiopathic generalized epilepsy (IGE) syndrome, has 
proven challenging to define, thus rendering prognostic 
and outcome measures also difficult to delineate. None of 
the current epilepsy classification systems is focused on prog
nosis or outcome. A commonly used coding system like 
Systematized Nomenclature of Medicine–Clinical Terms 
(SNOMED-CT)2 denotes the syndrome of JME by the single 
code 62040001. In International Classification of Diseases 
10th Revision (ICD-10),3 the JME code G40.B09 is subdi
vided into intractable versus not intractable (not defined) 
and then further subdivided by occurrence of status 
epilepticus (which is so rare as to be atypical in JME). 

Confusingly, the outcomes (intractability; status epilepticus) 
are comingled with the disease definitions. This system of 
coding is clearly inadequate and highlights the need for spe
cificity of subclassification by epilepsy syndromes that goes 
beyond nosological purposes but that bears also diagnostic 
and prognostic significance. In 2011, an expert meeting4

nicknamed after its venue in Avignon failed to reach a con
sensus on the diagnosis and management of JME. Instead 
two separate classifications were proposed with limited clin
ical implications and without outlining possible prognostic 
indicators.4 That paper clearly highlights the variation in 
how the term JME was used globally, such as whether an ab
normal MRI was acceptable and whether generalized abnor
malities on the EEG were obligatory. In 2022, the 
International League Against Epilepsy (ILAE) Task Force 
on Nosology and Definitions released a position statement 
on definition of the IGE syndromes, including JME.5 The cri
teria for the definition of each syndrome relied on literature 
review until 2019, the most recent edition of the book 
‘Epileptic Syndromes of Infancy, Childhood and 
Adolescence’,6 criteria listed in the ILAE website www. 
EpilepsyDiagnosis.org,7 and expert opinion from Task 
Force members. The consensus on the definition of each syn
drome was achieved by a modified Delphi process.8 For JME, 
mandatory diagnostic criteria were myoclonic seizures and 
3- to 5.5-Hz generalized spike wave (GSW) or generalized 
polyspike wave on EEG (even as retrieved historical data). 

http://www.EpilepsyDiagnosis.org,
http://www.EpilepsyDiagnosis.org,
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As possible prognostic markers, the paper recognizes that a 
number of individuals and seizure-specific factors are asso
ciated with a tendency towards drug resistance, including 
the presence of absence seizures, psychiatric comorbidities, 
a prior history of childhood absence epilepsy (CAE), 
praxis-induced seizures and younger age at epilepsy onset.5

Progress on prognosis has been made through subclassifi
cation of JME.9,10 Although heterogeneity is widely recog
nized within epilepsy syndromes, confusion remains over 
the significance of variation in electroclinical features, co
morbidities and treatment response.11,12

Here, we aim to show that with a predefined and limited 
set of mandatory features, variation in JME phenotype can 
be exploited for prognostic purposes. Our study was based 
on real clinical data collected by the Biology of Juvenile 
Myoclonic Epilepsy (BIOJUME) Consortium in concert 
with data from the published literature. The BIOJUME 
Consortium is a clinical genetic research project that includes 
the world’s largest cohort of subjects with JME, encompass
ing >900 cases.13,14 This cohort provides the possibility of 
gaining insights from an unprecedented large collection of 
clinical, EEG, behavioural and treatment data. For our ana
lysis, we selected potential predictor variables that likely 
underlie clinical heterogeneity, and we focus specifically on 
easily measured stratifying variables associated with clinical
ly relevant influence on prognosis, treatment outcome or ad
verse drug effects.

Materials and methods
We approached this task by separately evaluating diagnostic 
criteria, prognosis, predictors of drug resistance and adverse 
events.

Diagnostic criteria for definition
We took the diagnostic criteria of the Avignon meeting as 
our starting point: these included myoclonic jerks and their 
timing, age of seizure onset and intelligence.4 We reviewed 
relevant literature using search terms (‘juvenile myoclonic 
epilepsy’ OR ‘Janz syndrome’ OR ‘idiopathic generalized 
epilepsy’ OR ‘genetic generalized epilepsy’) AND (‘late on
set’). For intelligence, we performed a systematic search in 
the PubMed database (search string: ((epilepsy, juvenile 
myoclonic[MeSH Terms]) OR (juvenile myoclonic 
epilepsy[Title/Abstract])) AND ((intell*[Title/Abstract]) 
OR (neuropsych*[Title/Abstract]))). We also analysed pri
mary data in the BIOJUME data set concerning morning pre
dominance of myoclonic seizures. We questioned accepted 
generalizations eventually leading to restrictive thinking 
about JME diagnosis. In the field of logic, a ‘fallacy of defect
ive induction’ is a conclusion based on weak (biased or insuf
ficient) premises; e.g. all swans are white, ergo black swans 
cannot be swans. We also tested some of the prevailing as
sumptions about phenotype in JME by examining 

Figure 1 Identification of clinical biomarkers by stratified medicine can pave the way to targeted treatments. Stratified medicine 
adds a step to empirical medicine to associate a patient with a specific therapy that is more likely to be effective and/or safe. Central to the process 
is the identification of clinical biomarkers that differentiate subgroups of patients with differential treatment response, e.g. response or adverse 
effects. Based on Trusheim et al.1
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‘counterfactual’ arguments. A counterfactual argument asks 
what would be the logical conclusion if the opposite was 
true; e.g. if black swans are not swans, what are they?

The BIOJUME Consortium recruited >900 participants 
from 58 sites across nine countries.14 Briefly, BIOJUME eli
gibility criteria were based on Avignon Class II (Table 1), and 
all phenotypes were reviewed by a panel of seven expert clin
icians (C.P.B., K.H., D.K.P., M.R., G.R., M.S., and RHT). 
To explore the importance of a circadian entrainment of sei
zures, we compared participants with predominant morning 
seizures with those who reported no morning predominance 
for distribution of sex, age of onset, absence seizure history, 
history of triggered seizures, antiseizure medication (ASM) 
resistance, generalized and polyspike wave EEG features, 
photoparoxysmal response (PPR) and impulsivity score 
[measured with Barratt Impulsiveness Scale (BIS), versions 
BIS-Brief and BIS-11].13 We then generated a multivariable 
model of morning predominance incorporating sex and sig
nificant variables from univariate comparison, calculating 
odds ratios with 95% confidence intervals and exact 
P-values. Five authors (G.R., C.P.B., K.K.S., M.R.S., and 
D.K.P.) then summarized the overall evidence on diagnostic 
criteria and presented conclusions to the wider authorship.

Prognosis and predictors of ASM 
resistance
For prognosis, we evaluated predictors of the specific outcomes 
of mortality and seizure remission; where JME-specific infor
mation was lacking, we imputed findings from the IGEs or 
epilepsy in general. We reviewed relevant literature, including 
a recent comprehensive publication of the BIOJUME 
Consortium14 and a meta-analysis,15 regarding potential pre
dictors of ASM resistance: sex, age of onset, absence seizures, 
morning predominance of myoclonic seizures, stress-related 
seizures, PPR and EEG features. We used combinations of 
MeSH search terms in the PubMed database, unrestricted 
by year of publication or language: (‘juvenile myoclonic epi
lepsy’ OR ‘Janz syndrome’) AND humans AND (prognos* 
OR predict* OR biomarker OR outcome OR mortality OR 
epidemiology OR remission) AND ((antiseizure OR antiepi
leptic) AND (drug OR medication)) AND (*resistan* OR re
fractory OR intractable); sudden unexpected death in epilepsy 
(SUDEP): (‘generalized epilepsy’) AND (SUDEP) NOT (‘ba
boon’ OR ‘mouse’). Abstracts were then screened for 
relevance.

Predictors of adverse drug events
We evaluated predictors of selected serious adverse drug events 
associated with the three most commonly prescribed ASMs in 
JME: valproate, weight gain; lamotrigine, rash; and levetirace
tam, psychiatric adverse events. Because these drugs are not lim
ited in their use to epilepsy, we did not specify a disease. We first 
searched PubMed using MeSH search terms: (levetiracetam 
[tiab] AND (adverse OR safety OR tolerability) [tiab] AND 
(psych* OR behav*)) OR f(valpro* [tiab]) AND (‘weight 

gain’ OR obesity OR overweight OR BMI OR metabolic) 
OR (lamotrigine AND (rash OR exanthema OR 
‘Stevens-Johnson syndrome’ OR toxic epidermal necrolysis 
OR ‘drug rash with eosinophilia and systemic symptoms’)).

We then analysed data on impulsivity in JME for associ
ation with self-reported adverse psychiatric events to levetir
acetam,13 calculating the predictive properties of a BIS-Brief 
cut-off score of ≥21. We also conducted a multiple logistic 
regression analysis in the same data set of self-reported val
proate associated excessive weight gain with the following 
variables in the model: sex, absence seizure frequency, myo
clonic seizure frequency, morning predominant seizures, 
BIS-Brief score and log of body mass index (BMI).

Statistical analysis
Statistical analysis was carried out on SPSS statistics (version 
25). Data on statistical analysis reported in Tables 3 and 4
are reproduced from Shakeshaft et al.13

Results
Diagnostic criteria for definition
Myoclonic jerks
In Dieter Janz’s description of JME in 1957,16 the defining 
seizure type was myoclonic seizures, which he called ‘impul
sive petit mal’, referring to the sudden, impulse-like move
ment, usually proximally in the upper extremities. The two 
papers introducing JME to the English-speaking world also 
included it as part of the definition in 1984 and 1989 as 
did the 1989 ILAE Proposal.16-18 However, at the 2011 
Avignon meeting, two of 14 experts stated that they did 
not consider myoclonic jerks mandatory for the diagnosis 
of JME4; the report did not elaborate further.

We could find no evidence in the literature to justify a 
change from the first definitions specifying myoclonic seizures 
as a critical feature for diagnosis. We speculate that concerns 
about misclassification might have been an issue at the 
Avignon meeting: patients who have poor recall of subtle jerks 
or who have been treated after a first generalized tonic–clonic 
seizure (GTCS) may be diagnosed as epilepsy with generalized 
tonic–clonic seizures alone (EGTCSA). Misclassification 
might occur also in patients in whom absence seizures predate 
myoclonus; therefore, in teenaged years, myoclonus is not the 
main seizure type, or in patients in whom myoclonus responds 
well to ASMs, and so there is a time where only occasional 
convulsive seizures, but no myoclonus, are reported. These 
concerns are not a reason to exclude myoclonic jerks from 
the definition of JME. Here, we align with the ILAE position 
statement5 that a history of myoclonic seizures is in fact man
datory for the diagnosis of JME.

Age of seizure onset
One major operational challenge remains the definition of 
the ‘age of onset’. It could be defined as the time of diagnosis, 
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which is usually after the first GTCS. Given that myoclonic 
seizures precede GTCS by an average of 1–3.3 years,13,19

the age at first motor seizure may be more appropriate20,21

but then does not account for the subgroup of patients 
with CAE later developing JME.22 Sometimes the ‘age of on
set’ of epilepsy might be difficult to determine in older pa
tients with a single GTCS who do not recall myoclonus in 
adolescence.23 On the assumption that JME is a neurodeve
lopmental disorder, an upper maximal age of onset appears 
plausible.24 Conversely, as a polygenic disease25 with vari
able penetrance and a high incidence of generalized EEG 
changes amongst asymptomatic relatives,26 one may assume 
a variability in both genetic liability and environmental 
(seizure-provoking) factors allowing for the possibility of 
late (>25 years) first-time seizures.

The Avignon meeting proposed an age of onset between 
10 and 25 years as Class I criterion or between 6 and 25 years 
as Class II criterion for the diagnosis of JME.4 The ILAE pos
ition statement permits an onset between 8 and 40 years, 
with a warning that an age of onset before 8–9 years or be
tween 25 and 40 years should prompt one to reconsider 
the diagnosis (Table 1).5 There is broad consensus in the lit
erature about the typical age of first GTCS in JME, which lies 
between 12 and 18 years in ∼75% of patients.13,19,27-29

However, evidence for exclusionary upper and lower age 
limits is sparse, and many cohorts included patients with 
an age of myoclonus onset below 6 or above 25.27-29

The existence of late-onset IGE and IGE with phantom ab
sences as distinct entities remains controversial.21,23,30,31

Suffice to say, late-onset JME is extremely rare. 
Reichsoellner et al.31 showed that 28/429 IGE patients 
(5.7%) had late seizure onset, including two with JME 
(0.5%). JME mimics, including progressive myoclonus epi
lepsies, in adults are usually accompanied by additional 
neurological symptoms like dementia or ataxia12,32

(Supplementary Table 1), and true misdiagnosis is uncom
mon. The same applies to patients with debut before the 
age of 6. Although there is a broad range of genetic condi
tions associated with myoclonic epilepsy in children <6 
years, progression of neurological/cognitive deficits and seiz
ure severity33 usually exclude the diagnosis of JME. In the 
BIOJUME data set, the lower age of onset was constrained 
at 6 years, but the phenotyping committee diagnosed JME 

in participants with age of onset 6–37 years in females and 
9–40 years in males.13

Intelligence
The observation of an impaired cognition and intelligence 
was not explicitly included in the early definitions, nor as a 
diagnostic criterion for JME in early papers or the ILAE def
inition of 1989.17 In the Avignon paper,4 intelligence was in
cluded as a criterion in both the proposed classes of 
diagnostic criteria (Table 1): in Class I, the criterion was 
‘normal intelligence’ and in Class II ‘no mental retardation 
or deterioration’. Although not specifically discussed in the 
paper, the basis for proposing these criteria was that eight 
out of the 14 experts believed that ‘abnormal cognition’ 
was not allowed as part of the JME diagnosis. The recent 
ILAE position statement admits that ‘mild intellectual dis
ability’ is observed in some patients; however, this clinical 
feature is considered an alert that should lead to consider al
ternative diagnoses.5

The question of whether intelligence needs to be normal in 
JME, and the scientific basis for having normal intelligence 
as an inclusion criterion, is not well addressed in the existing 
literature, and it is not further elaborated in the recent ILAE 
Position Paper.5 A review by Ratcliffe et al.32 addressing cog
nitive function in IGEs finds that the intelligence quotient 
(IQ) in JME is consistently reported to be within normal 
range and only slightly lower than IQ in healthy controls. 
None of the identified 124 papers in our literature search in
cluded patients below an IQ of 70. Thus, these results exem
plify the inductive fallacy: namely, most people with JME 
have normal intelligence ergo normal intelligence defines 
JME. If we examine the counterfactual argument, then we 
have to ask first, whether not only those below the normal 
(95%) range of intelligence are excluded from the diagnosis 
but also those above the normal range; and second, if indivi
duals with the typical features of JME in the context of intel
lectual disability do not have JME, then what do they have? 
This fallacy is likely to have been amplified by studies that fo
cus on the initial diagnosis and concerns about missing pro
gressive myoclonus epilepsies, without a commensurate 
attention on mature longitudinal studies. Intellectual disabil
ity, impaired neurocognitive functions, affected behavioural 
phenotypes and psychiatric symptoms are often reported and 

Table 1 Avignon and ILAE draft criteria versus proposed BIOJUME criteria

Avignon Class I Avignon Class II ILAE Task Force BIOJUME

Mandatory 
criteria

Myoclonic jerks without loss of 
consciousness

Myoclonic jerks without loss of 
consciousness

Myoclonic seizures Myoclonic jerks

Myoclonic jerks exclusively on 
or after awakening

Myoclonic jerks predominantly on 
or after awakening

Myoclonic jerks timing variable

Generalized EEG abnormalities Generalized EEG abnormalities Generalized EEG 
abnormalities

Generalized EEG abnormalities

Age of onset 10–25 years Age of onset 6–25 years Age of onset 8–40 years Age of onset ≥6 years increases 
probability of JME

Normal intelligence No mental retardation or 
deterioration

Exclude moderate to 
profound ID

Intelligence conforms to 
population distribution

Bold characters highlight distinct features of the BIOJUME diagnostic criteria as compared with previous diagnostic proposals.

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad182#supplementary-data
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discussed as overlapping features; however, they might re
present endophenotypes with shared aetiological factors. 
Several of the identified genetic susceptibility variants of 
JME are located in genes or regions inferring susceptibility 
also to other neurodevelopmental disorders (e.g. GABRA1, 
EFHC1, and BRD2),34 suggesting common pathological 
mechanisms. Recently, copy number variants contributing 
to both intellectual impairment and IGE have been identified 
(such as microdeletions at 15q13.3, 15q11.2, and 
16p13.11),35 supporting the concept that it is possible to 
diagnose an IGE syndrome in patients with intellectual dis
ability. In addition, recent studies applied advanced MRI 
technology to reveal subtle brain developmental abnormal
ities in JME, leading to pathophysiological hypotheses po
tentially explaining a range of clinical symptoms of JME, 
including impaired cognitive functions.25,36 As such, the 
view of JME as a disorder where inherent neurodevelopmen
tal factors may also contribute to the phenotype and where 
JME is part of a much wider disease spectrum than the trad
itional inclusion criteria embrace may uncover key patho
logical mechanisms of JME. Such an expanded phenotypic 
view would certainly bring some challenges to both clinical 
and research classifications and perhaps prompt a subclassi
fication of endophenotypes to enable clinical studies of well- 
defined and homogeneous entities. However, it may also 
enable the revelation of other hitherto unknown aspects of 
JME, which have remained concealed due to the limitations 
of the existing diagnostic criteria.

Morning predominance of myoclonic seizures
Diurnal variability in cortical excitability in individuals with 
IGE, with cyclic increases in the morning, has been elegantly 
demonstrated using transcranial magnetic stimulation–elec
troencephalography (TMS-EEG) methods.37,38 The broader 
amplitude of the paroxysms in the frontal regions in JME39

suggests a role of the frontal cortex in leading generalized 
discharges.40 Interestingly, some thalamic nuclei known to 
modulate functional states such as sleep and wakefulness 
(e.g. intralaminar nuclei and the reticular nucleus) are direct
ly connected to the frontal cortex. Since the time of awaken
ing is a critical condition for the activation of the epileptic 
discharges, the evidence that these nuclei play a role in spike- 
wave generation in experimental models of generalized epi
lepsies41 may suggest their involvement also in provoking 
myoclonus in JME. In addition, animal studies suggest that 
feedback loops of Clock proteins, amongst several other fac
tors, influence this circadian variability as, in their absence, 
fluctuations in cortical excitability are diminished.42 In the 
other direction, epilepsy (and many other neuropsychiatric 
disorders), stress, inflammation, xenobiotics and genetic/epi
genetic factors may alter the temporal expression and ampli
tude of Clock genes, leading to disrupted circadian rhythms 
in sleep and cortisol,42 possibly explaining the failure to ex
hibit morning peaks in cortical excitability in some patients 
with IGE.

The Avignon paper4 emphasizes the exclusive (narrow 
classification) or predominant (broad) timing of myoclonic 

seizures on awakening. It is difficult to find data on true cir
cadian seizure distribution in JME because most studies since 
1989 use this feature as an inclusion criterion, possibly lead
ing to a circular reinforcement of the definition. This may be 
an example of the ‘inductive fallacy’, assuming that because 
the majority of individuals show awakening seizures, and ‘ig
noring’ those who do not, that it is an invariant feature and 
therefore a mandatory diagnostic criterion. However, 
amongst the earliest descriptions of JME, Janz20 cites two 
studies in which an awakening predominance varied be
tween 52% and 74%, and his own work acknowledges 
that such a pattern is not always seen. Subsequent studies re
port >80% awakening myoclonic seizures, and slightly less 
for tonic–clonic seizures, even when explicitly using ‘awa
kening’ seizures as an inclusion criterion (Table 1). In the re
cent ILAE position statement, myoclonic seizures are 
reported to occur ‘most commonly’ within the first hour after 
awakening.5 One study suggested that the lack of the awa
kening pattern was associated with praxis induction43; and 
it has also been suggested that awakening myoclonic and 
‘grand-mal’ seizures may be differently inherited from those 
occurring at random times of day.44 When we look at the 
counterfactual argument, then clearly when myoclonic sei
zures are the predominant seizure type but not predominant
ly on awakening and other features (age of onset and EEG) 
are typical, there is no other diagnostic possibility than 
JME (Tables 2 and 3).

In the BIOJUME data set, 537/663 (81%) exhibited morn
ing predominant myoclonic jerks. We investigated whether 
individuals with and without this feature differed significant
ly in demographic, clinical or prognostic features, i.e. 
whether awakening versus non-awakening predominant sei
zures represented a disease different to JME. We found no 
difference in sex or age distribution, but those lacking morn
ing predominance were more likely to experience absence 
seizures; there was no difference in photosensitivity 
(Table 3), no association with triggers and importantly no 
difference in ASM resistance. In a multiple logistic regression 
model including sex, age of onset, absence seizures and EEG 
patterns, we confirmed that morning predominance is inde
pendently negatively associated with absence seizures [odds 
ratio (OR) 0.65; 95% confidence interval (CI) 0.43–0.99] 
and lack of GSW on EEG (Table 3). We found that indivi
duals lacking morning predominance reported higher trait 
impulsivity, which may have been confounded by absence 
seizure frequency.13

The best evidence from these data is that absence seizures 
and EEG patterns are the most important influences on awa
kening patterns of seizures in JME. What we do not know is 
whether patients change in their circadian seizure patterns 
over time or whether a pattern of morning predominance 
is established from the onset—this would require a prospect
ive longitudinal study.

Conclusion. We confirm myoclonic seizures as a manda
tory diagnostic criterion for JME because of the lack of con
trary evidence (Table 1). It is difficult to set age of onset 



8 | BRAIN COMMUNICATIONS 2023: Page 8 of 18                                                                                                             G. Rubboli et al.

criteria. However, definite cases with onset between the ages 
of 6 and 40 years have been agreed upon in our BIOJUME 
data set, thus slightly deviating from the ILAE position state
ment that admits a lower age limit not inferior to 8 years.5

We do not specify an intelligence range in our proposed def
inition, admitting an intelligence range conforming to popu
lation distribution. Future studies addressing the true IQ 
distribution of JME may reveal whether the degree of cogni
tive affection in JME harbours a prognostic value, also in 
terms of response to treatment, which should be included 
in a prognostic classification. Last, taking neurobiological, 
historical and empirical evidence together, we propose that 
morning predominance be considered a variable, not 

mandatory, feature in the definition of JME that is irrelevant 
to prognostic classification.

Prognosis
Mortality
Premature mortality is recognized across epilepsy in general 
and varies by aetiology and between high- and low-income 
countries.49 A systematic review of 56 population and 
hospital-based epilepsy cohorts show that intractable epi
lepsy, symptomatic epilepsy, generalized seizures, brain tu
mours and ischaemic heart disease as causal factors and 
later studies accord with these findings.50,51 Comorbidity, 

Table 2 Previous observations of awakening predominant seizures in JME

Authors Inclusion criteria Awakening MCJ
Awakening 

GTC

Simonsen 1975, cited in Janz20 Not stated 52% NA
Van Heycop ten Ham 1982, 

cited in Janz20
Not stated 74% NA

Janz20 Not stated 95% NA
Clement et al. 45 Not stated 8/10 (80%) 6/9 (67%)
Panayiotopoulos46 ‘Unequivocal clinical evidence of generalized seizures with myoclonic jerks 

mainly on awakening’
56/66 (88%) 11/16 (69%)

Murthy47 ‘Clinical evidence of generalized seizures with myoclonic jerks mainly on waking’ 112/120 (93.3%) 87/120 (78.4%)
Dhanuka48 ‘Unequivocal clinical evidence of generalized seizures with myoclonic jerks on 

awakening’
24/24 (100%) NA

Uchida43 All had unequivocal diagnosis of JME based on ‘electroclinical characteristics, 
including normal physical and neurological examinations, brain imaging and 
generalized 4- to 6-Hz spike or polyspike-wave complexes.’7,42

No Photic Induction 
23/25 (92%) 

Photic induction 12/20 
(60%)

Bold characters highlight seizures occurrence in relation to the sleep-wake cycle. 
MCJ, myoclonic jerks; GTC, generalized tonic–clinic seizures.

Table 3 Demographic and clinical differences in 588 JME patients with and without morning predominant myoclonic 
seizures in the BIOJUME data set

Feature comparison in morning entrainment patterns

Variable Morning predominant Not morning predominant P-value

Sex female 348/537 (64.8%) 74/126 (58.7%) 0.202
Age JME onset years (95% CI) 16.66 (15.99–17.86) 16.93 (16.33–17.07) 0.588
Absence seizures history 214/525 (40.8%) 65/124 (52.4%) 0.018
Triggered seizures 274/500 (54.8%) 69/118 (58.5%) 0.470
ASM resistance 119/371 (32.1%) 33/100 (33%) 0.861
EEG gen spike wave 254/537 (47.3%) 82/126 (65.1%) <0.001
EEG polyspike wave 358/537 (66.7%) 72/126 (57.1%) 0.044
EEG photoparoxysmal response 165/450 (36.7%) 40/110 (36.3%) 0.953
BIS-Brief score (95% CI) 17.47 (17.02–17.92) 18.76 (17.77–19.75) 0.012

Logistic regression of morning predominant seizures

Variable Odds ratio (95% CI) Z P-value

Absence seizures 0.65 (0.43–0.99) −1.99 0.047
EEG gen spike wave 0.42 (0.24–0.72) −3.12 0.002
EEG polyspike wave 0.88 (0.51–1.51) −0.48 0.634
Sex female 1.50 (0.97–2.31) 1.82 0.069
Age JME onset 1.04 (0.98–1.12) 1.33 0.184

Values in bold are statistically significant at the 5% level.
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especially neurological, male sex and race/ethnicity were as
sociated with premature mortality amongst US Medicare pa
tients52; demographic and clinical codes also accurately 
predicted risk of death in epilepsy patients from US insurance 
data.53 UK data confirm the importance of social deprivation 
as a risk factor not only for premature mortality in epilepsy 
but also for intellectual disability.54 The North American 
SUDEP Registry (NASR) suggested a risk higher than ex
pected in patients with IGE (IGE accounted for one fourth 
of SUDEP cases in NASR), an association that awaits inde
pendent confirmation given the low number of events.55

Premature death or SUDEP seems to be rare in JME. Out 
of a series of 170 consecutive JME, only two patients with 
possible or probable SUDEP were reported, both cases suf
fering from severe mental disorders.56 Few other cases who 
died probably of SUDEP have been described, either in sub
jects not taking antiepileptic treatment or with well- 
controlled epilepsy.57,58

Seizure remission
IGEs in general have a better treatment outcome than symp
tomatic epilepsies,15,59 but the difference is not stark. The 
1-year seizure freedom rate for people aged 9–33 years 
with IGE was 68.1%, compared with 62.5% for focal epilep
sies,60 with some authors reporting much lower rates.61 It is 
often repeated that ‘80% of people with IGE respond to 
ASM’,5 but is that still the case when women of child-bearing 
potential are not to be prescribed valproate?59 There are very 
few studies either of people with untreated IGE or with a pro
spective design. Retrospective studies in limited patients ser
ies show that seizure remission is possible for many.62,63

Febrile seizures and epileptiform runs >3 s are suggested pre
dictors of poorer long-term outcome in JME,60,64 whilst 
treatment with valproate and longer seizure freedom prior 
to ASM withdrawal are associated with higher chance of re
mission in treated cohorts.65-67 In the JME subclassification 
of Martinez-Juarez et al.,9 58% of ‘classic JME’ (‘patients 
with adolescent onset of myoclonic, tonic–clonic and clon
ic–tonic–clonic seizures with or without rare-to-infrequent 
absences’) achieve seizure freedom on ASM therapy and 
5% off medication, whilst in the group of CAE evolving to 

JME, only 7% were seizure free. Baykan et al.57 reported a 
benign course in about two-thirds of a cohort of 48 JME pa
tients, with remission or marked alleviation of myoclonia for 
>8 years after patients achieved the age of ∼33 years, sug
gesting that in a significant proportion of patients, myoclonic 
seizures have a tendency towards remitting or becoming 
milder with age. Similar results were observed in a retro
spective study on 61 JME patients who were followed for a 
mean duration of ∼29 years; 65% of patients had a 5-year 
remission with a mean age at the last seizure of 27.4 years.68

One-third of the seizure-free patients attempted ASM with
drawal and ∼50% of them relapsed. In contrast with these 
findings, another study61 reported a 2-year remission rate 
only in 22% of subjects in a cohort of 145 JME patients, 
with twice as high relapse rates in patients attempting drug 
withdrawal as compared with those who continued their 
ASM regimen. Finally, a recent study69 investigated in a 
JME cohort the 4-year remission for all seizure types starting 
within 2 years (early sustained remission) or after 2 years (de
layed sustained remission) since the initiation of ASM intake. 
Four-year seizure remission was observed in 67.3% subjects, 
in line with previous studies.57,68 Early sustained remission 
was achieved by 59.2% patients. Spontaneous seizure re
lapse after 4-year remission occurred in 15.7% of patients 
with early sustained remission and in 35.5% of those with 
delayed sustained remission. Catamenial seizures and earlier 
age at epilepsy onset significantly predicted delayed sus
tained remission. These findings suggest that a positive re
sponse to the first ASM that leads to an early seizure 
remission can predict a favourable long-term seizure 
outcome.

Predictors of drug response
ASM resistance
The literature search yielded 923 studies (search date 11 
February 2022), but only two relevant recent papers had 
not been included in the 2019 meta-analysis of Stevelink 
et al.15

Age of onset. Data from the BIOJUME consortium show 
that myoclonus onset before the age of 12 years was asso
ciated with drug resistance only in females; the age stratifica
tion accords with other studies.15

Sex. In the BIOJUME data set, there are significant treat
ment outcome differences between males and females with 
JME, necessitating sex stratification in management.14

Absence seizures strongly predict ASM resistance in both 
sexes, but, in females only, stress-precipitated seizures and 
catamenial seizures are associated with ASM resistance and 
PPR with seizure freedom. Females with both absence sei
zures and ‘stress-related’ precipitants (defined as physio
logical states that influence neurobiological stress circuits, 
including stress itself, sleep deprivation, menstrual cycle 
and concentration efforts, discussed in Shakeshaft et al.14) 
constitute the prognostic subgroup in JME with highest 

Table 4 Multivariate analysis of excessive weight gain in 
134 JME patients ever exposed to valproate

Logistic regression of excessive weight gain in valproate 
exposed JME patients

Variable
Odds ratio (95% 

CI) Z P-value

Absence seizure freq 1.45 (0.91–2.32) 1.56 0.118
Myoclonic seizure freq 0.83 (0.52–1.32) −0.79 0.432
Morning predominant 

seizures
0.68 (0.28–1.63) −0.87 0.384

Sex female 1.69 (0.77–3.71) 1.31 0.190
BIS-Brief score ≥21 0.74 (0.34–1.62) −0.75 0.454
Log10 BMI 17.56 (2.96–104.2) 3.15 0.002

BMI is measured at outcome and therefore not a predictor.
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prevalence of ASM resistance (49%) compared with females 
with neither (15%); see also below. A proposed prognostic 
classification based on these findings is illustrated in Fig. 2.

Lack of sex stratification has perhaps contributed to in
consistent evidence for differential prognosis in females in 
previous studies.70 The relationship between sex and prog
nosis is nuanced however, suggesting a hierarchy of factors: 
stress precipitants only increase the odds of ASM resistance 
in females ‘without’ absence seizures, whilst photosensitivity 
decreases the odds of ASM resistance in females ‘regardless’ 
of absence seizures.14

Absence seizures. The strong effect of absence seizures on 
ASM resistance reported multiple times71 is strongly asso
ciated with trait impulsivity in JME.13 Absence seizures, vis
ual sensitivity and stress-related precipitants in JME may not 
just be clinical features, but the instantiation of separate seiz
ure susceptibility networks with their own distinct effect on 
seizures and behavioural outcomes,72 which may suggest 
completely new therapeutic approaches such as circuit- 
specific therapy.73,74

Triggered seizures. In the BIOJUME data set, around half 
of all individuals with JME report triggered seizures, with a 
slight female excess (59% versus 50%).14 Moreover, this 
subgroup reports a large proportion (median 70%) of their 
seizures to be triggered, with one in five estimating that 
‘all’ their seizures are precipitated. In previous analysis, we 
saw that just five triggers accounted for >80% of the total: 
sleep disturbance, stress, alcohol, visual/lights stimuli and 
menstrual cycle, which are well-known in JME75,76 and 
other epilepsies.77-79 We found no association of any trigger 
with seizure control in males but a marked difference in trig
ger/seizure control associations, depending on whether fe
males experience absence seizures.

Photoparoxysmal response. PPR recorded in the EEG lab 
can be seen in up to 90% of untreated subjects with JME ac
cording to the ILAE position statement.5 However, precise 
estimates can be marred by the fact that photosensitivity 
can fluctuate across days or weeks, can be lost with age, 
can be modified by treatment, and can depend on laboratory 
stimulation procedures.80 PPR and self-reported photosensi
tivity are also more common in females, consistent with pre
vious studies showing a female excess of 1.5–2.81-83

BIOJUME data analysis shows a strong relationship between 
self-reported triggered seizures and PPR, with 71% of those 
with PPR reporting triggered seizures.14 More specifically, 
63% of those who report light/visual patterns as a trigger 
also had PPR, and 24% of those with PPR reported light/vis
ual patterns as a trigger.14 A lesser degree of association was 
observed between the presence of PPR and other precipi
tants: stress, sleep disturbance, praxis and concentration in 
females, and with alcohol in males.14 This finding suggests 
that failure to conduct a sex-stratified analysis may explain 
the lack of overall association in a recent meta-analysis 
that found a protective effect of PPR on seizure freedom in 

four out of five studies.70 One possibility is that the compo
nent of seizure susceptibility mediated via visual pathway 
hypersensitivity76,84,85 is effectively treated by current 
ASMs, a hypothesis we are unable to test in the BIOJUME 
data but that merits further investigation.

Psychiatric comorbidity. Coexistent psychiatric or per
sonality disorders are associated with ASM resist
ance10,15,27,57,86-88 although in the absence of prospective 
studies, the direction of this association is uncertain.89

EEG biomarkers. Focal EEG features have been variably 
defined in the literature (e.g. lateralized GSW, asymmetric 
amplitude of GSW, focal spikes or focal slowing),87 but 
prognostic analyses have not included known predictors in 
multivariable analyses.90,91 Hence, although focal EEG fea
tures have been proposed as a predictor of ASM resistance 
and refuted by others,60,92 confounding by other variables 
is possible, and hence their utility is unproven. However, 
other EEG features93 such as generalized polyspike train dur
ing sleep have been validated in multivariable analyses and 
replicated in IGE cohorts, including JME.93,94 Differences 
in functional network topology computed from EEG may 
also provide biomarkers of drug resistance.95 However, the 
assessment of specific EEG features, or prolonged recording, 
is not a routine part of the neurophysiological practice and 
therefore may be impractical for a simple classification 
scheme.

ASM adverse events
Our literature search identified 470 articles related to levetir
acetam (n = 20 relevant after reviewing abstracts), 522 for 
valproate (n = 19) and 381 for lamotrigine (n = 34). 
Adverse effects to the three most common ASMs used in 
IGE appear to correlate with efficacy: valproate, levetirace
tam and lamotrigine in declining order.59,96-98 Since the 
probability of failure with the first ASM is so high,59 due 
to either lack of efficacy or intolerable adverse effects, there 
is an urgent need for predictive tools to avoid iatrogenic mor
bidity. Some adverse effects are shared across ASMs, for ex
ample somnolence and dizziness, whilst others are more 
specific such as paradoxical seizure exacerbation, or skin 
rash with lamotrigine; psychiatric disturbance with levetira
cetam99; and weight gain or polycystic ovary syndrome with 
valproate.100

Levetiracetam. Attempts have been made to develop pre
dictors of psychiatric adverse effects to levetirace
tam.13,101,102 The most recent of these showed that people 
who had levetiracetam-induced psychosis had an increased 
polygenic risk score for schizophrenia than those who did 
not.103 HLA-A*1101 is enriched amongst Korean epilepsy 
patients with psychiatric adverse events to levetiracetam.104

Genetic variation in dopaminergic activity has also been sug
gested as an association.102

Trait impulsivity is independently associated with the risk 
of an adverse psychiatric event on levetiracetam, as shown by 
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a score on the BIS-Brief (8 items) of ≥21.13 This association is 
independent of sex and seizure frequency and replicates simi
lar findings using the extended BIS (BIS-11).102 However, the 
predictive value of BIS ≥ 21 is poor, with a positive predictive 
value (PPV) 50% and negative predictive value 69% in the 
discovery data set.13 Higher cut points of BIS increase PPV 
marginally at the cost of sensitivity. Female sex, social de
privation, a past history of depression, anxiety, personality 
disorder or recreational drug use (all associated with impul
sivity) and status epilepticus have also been suggested as risk 
factors for psychiatric adverse events to levetirace
tam101,104,105 and topiramate106,107; these factors need pro
spective validation.

Valproate. Valproate exposure is associated with obesity in 
the BIOJUME data set (Fig. 3). We found no relevant uni
variate or multivariate associations with valproate weight 
gain in the BIOJUME data set including BIS-Brief score, a 
measure of trait impulsivity (Table 4). Candidate gene stud
ies suggest that valproate-associated weight gain is asso
ciated with (i) variation in satiety and energy homeostasis 
genes leptin and ankyrin101 and (ii) polymorphisms in 
Cytochrome P450, CYP2C19 and in CD36, PPARγ, GNB3 
in Han Chinese.108-113 (Fig. 3 and Table 4).

Lamotrigine. There is a known HLA predisposition to se
vere cutaneous reaction to aromatic ASMs (phenytoin, 
carbamazepine, oxcarbazepine, and lamotrigine),114 and 
these HLA types are more common in certain ancestries 
such as HLAB*15:02 in Chinese and Southeast Asian; 
HLAB*24:02 in Han Chinese and possibly other Asian, 
European and American populations115,116; HLAB*31:01 

in Japanese; and HLAB*44:03 in Koreans.114 Several other 
candidate loci have been reported in different popula
tions.117-119 Independent risk factors such as history of pre
vious cutaneous reactions with another ASM, age < 13 years 
and polytherapy were identified in retrospective data.120,121

Discussion
We propose a simplified set of mandatory criteria for defin
ing JME that refine and expand those proposed recently by 
the ILAE Position Paper on definition of IGEs.5 However, 
differently from this position statement, our proposal, be
sides literature data, is based on previous analysis performed 
by our group in the large BIOJUME cohort, thus advancing 
from current definitions resulting from expert consensus to 
criteria based on ‘ground truth’ clinical data. The criteria 
that we propose include (i) myoclonic jerks as mandatory 
seizure type and (ii) generalized EEG abnormalities, in line 
with the ILAE statement; in addition, we provide as add
itional criteria that deviate from the ILAE proposal: (iii) ab
sence of a circadian timing for myoclonia not exclusionary 
for JME; (iv) age of onset ranging from 6 to 40 years consist
ent with the diagnosis of JME; and (v) intelligence conform
ing to population distribution. We show the prognostic 
value, when appropriately analysed, of some variables 
(such as absence seizures and female sex with regard to 
ASM resistance), whilst we find that other features (e.g. 
morning predominance of myoclonia) had no value and 
may be discarded. When considering prognosis, a simple 
model is not sufficient to understand the outcome of interest, 
such as drug response or adverse events. Evidence suggests 

Figure 2 Proposed predictive model of ASM resistance in JME based on Shakeshaft et al.14 At each stratum, blue denotes better 
prognosis, orange worse prognosis, and grey denotes neutral effect on outcome.
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that, for ASM resistance in JME, female sex is a key stratify
ing variable overlooked in previous research or unmasked by 
the avoidance of valproate in females of child-bearing age. A 
sex-stratified analysis brings into perspective the prognostic 
roles and therapeutic potential of taking in consideration 
and making recommendations manipulating stress response, 
catamenial seizures and photosensitivity in women. Future 
research should focus on refining, replicating and validating 
proposed predictive models122 using large-scale data sets and 
meta-analyses and in mapping stratifying factors onto 
evidence-based interventions and clinical guidelines 
(Table 5).

Existing taxonomy structures do not focus on outcomes; 
thus, their usefulness for stratified medicine or for clinical 
trials is limited.123,124 When we focus on prognosis, the rele
vance of definition and classification becomes obvious. In 
this paper, we propose a set of simplified criteria to define 
JME aiming to avoid the inductive fallacies characterized 

by earlier attempts, and our scheme is robust to counterfac
tual arguments. The debate around the morning occurrence 
of myoclonic seizures seems moot in light of the finding that 
lack of circadian pattern probably reflects the co-occurrence 
of absence seizures and EEG GSWs. An interesting hypoth
esis that should be tested in patients featuring absence sei
zures is whether morning predominance could be, at least 
partially, restored by complete control of this seizure type.

There are enough markers of differential treatment out
come to make a case for a stratified treatment approach in 
JME. The idea of stratified treatment is novel in epilepsy 
but commonplace, for example, in cardiology and oncology. 
In this example, it would entail selecting treatment according 
to the various prognostic subgroups that each patient falls 
into guided by a combination of demographic, clinical, 
neurophysiological, molecular or other biomarker indica
tions. The change from current practice is to consider the 
management of each prognostic factor separately or in 

Table 5 Robust and potential stratifiers in JME

Robust criteria Requires validation

Variable features for treatment outcome 
prediction

Absence seizures 
Female sex 
Catamenial seizures 
Photosensitivity 
Age of first motor seizure onset <12 years

Stress-triggered seizures in females

Variable features for prediction of selected adverse  
event to ASM

Lamotrigine rash 
• Ethnicity/HLA status
• Cross-reaction to ASM
• Age < 13 years
• Polytherapy

Levetiracetam psychiatric symptoms 
• Pre-existing psychiatric diagnosis or personality 

disorder
• HLA associations Valproate weight gain
• LEPR and ANK1 polymorphisms
• CYP2C19, CD36, PPARγ, and GNB3

Figure 3 Association of valproate with obesity in the BIOJUME data set. WHO categorization of weight in 695 JME patients in the 
BIOJUME data set by sex (left) and by lifetime exposure to valproate (right). Legend: BMI, body mass index; Overwt, overweight; VPA, valproate; 
WHO, World Health Organization; wt, weight.
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combination as appropriate and according to the relative in
fluence of each factor on the outcome of interest. An analogy 
might be made with managing cardiovascular disease, simul
taneously attending to blood pressure, lipids, exercise and 
diet. In JME, absence seizures are the strongest stratifying 
factor with regard to ASM resistance or seizure freedom 
for both sexes, and this finding has been replicated multiple 
times.15 After absence seizures, it is evident that sex is the 
major stratifying factor, revealing very strongly elevated 
odds of ASM resistance conferred by self-report of catame
nial and stress-related factors including sleep deprivation, 
as well as reduced odds of ASM resistance associated with 
EEG-measured or self-reported photosensitivity, selectively 
in women. Although menstrual and stress-related triggers 
have long been recognized,75,76,125,126 their influence on 
prognosis in women has not previously been appreciated; 
this may warrant further research aiming to develop predict
ive models. Sex-stratified meta-analyses of existing data sets 
using individual patient data would be helpful to replicate 
these findings, and prospective studies in inception cohorts 
are necessary to validate them in real-world practice for 
JME and other epilepsies. Appropriately validated biomar
kers could be incorporated into clinical guidelines and clinic
al trial designs.

In addition to identifying groups at differential risk of ASM 
resistance, stratifiers should ideally map onto specific 
evidence-based interventions. There is an urgent need for clin
ical trials of novel or existing/adjunctive ASMs stratified on 
prognostic factors such as the occurrence of absence seizures 
in JME. Catamenial seizures are also well recognized as a 
risk factor for ASM resistance; secondary analysis of previous 
hormonal trials suggests the need for further stratification ac
cording to seizure susceptibility at different times during the 
menstrual cycle.127 Although the female-specific prognostic 
significance of response to stressors including sleep depriv
ation needs replication, there is a notable lack of good quality 
evidence for the effectiveness of stress or sleep management 
strategies in epilepsy.128-130 Additionally, whilst lifestyle man
agement improves stress, mental health and sleep, the evidence 
for sustained effects on primary disease measures is less so
lid.131-133 Pharmacological and non-pharmacological inter
ventions such as cognitive behavioural therapy, mindfulness- 
based relaxation, yoga, play, biofeedback and exercise 
should be evaluated according to stress-response profiles.134

Connected to lifestyle modification is the seizure refractoriness 
due to ASM non-compliance (i.e. ‘pseudo-resistance’) that 
might be linked to the psychological challenges of regulating 
lifestyle or adhering to prescribed medications or to the impul
sivity trait, as recently reported.135 This is especially salient in 
JME where we know that impulsivity is markedly ele
vated13,136-138 and increases general risk for multiple adverse 
psychosocial consequences related to lifestyle, relationships 
and behaviour.139

In contrast to ASM resistance, there are few validated pre
dictors of ASM adverse events other than known HLA asso
ciations with drug-induced immune adverse response.114

Behavioural traits and psychiatric history might predict 

psychiatric adverse events to multiple ASMs10,15,27,57,86-88; 
however, prospective studies are needed to validate these hy
potheses. Whilst valproate prescription has rightfully de
clined in recent years because of teratogenicity, it remains 
the most effective ASM in JME,59,98,140 ensuring its contin
ued role in men. However, one of its main adverse events 
leading to withdrawal is weight gain, and predicting this 
risk would be a prioritized patient benefit.

Identifying molecular biomarkers is an alternative ap
proach to prediction than using clinical and demographic 
variables. Molecular biomarkers are likely to contribute 
greatly to prognosis in future epilepsy practice. For example, 
there is evolving evidence that the circulating inflammatory 
marker HMGB1 may predict seizure severity and drug resist
ance at epilepsy diagnosis.141,142 Similarly, polygenic risk 
scores will assume an increasing role in enhancing risk pre
diction models and clinical pathways.143 EEG-based prog
nosis can be limited in resource-poor settings, or when 
relying on age-related EEG markers (such as GSW before 
ASM is started, or PPR in adolescence) but the opportunity 
for that EEG was missed, and the patient is now an adult. 
The prognostic EEG features reviewed here have current 
drawbacks in terms of human resources, but these could be 
solved by AI approaches that learn from high dimensional 
data sets. A machine learning model predicted drug resist
ance 2 years before epilepsy patients had failed two ASMs 
and could predict which patients would fail more than or 
equal to three ASMs at the time of first ASM prescription.144

Whilst we have focused on medical outcomes here, we 
should not neglect psychosocial outcomes, which typically 
arise from multiple genetic, early life and stressful life events 
interacting with adjustment styles and social support.145

Detailed lifespan studies or population linkage data sets 
would be indispensable to generate appropriate psychosocial 
prognostic models.

Conclusion
Our paper provides evidence-based diagnostic criteria for 
JME based on clinical data collected by the BIOJUME 
Consortium, supplemented by literature review, and it 
proposes a predictive model of ASM resistance that shows 
the prognostic value of variables such as absence seizures 
and female sex in predicting ASM resistance or the rele
vance of photosensitivity in females in reducing the odds 
of ASM refractoriness. These findings may assist in clinical 
practice by helping in the early diagnosis of drug-resistant 
patients or in the management of their treatment, particu
larly when drug withdrawal is considered after years of 
seizure freedom. Our findings can inspire future research 
either to replicate and validate them, to develop further 
prediction models in large-scale data sets and to assess 
whether the stratifying factors that we have outlined can 
serve to measure intervention-related outcomes and 
whether they can be meaningfully incorporated in clinical 
guidelines.
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