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Induced plant resistance and its influence on natural 
enemy use of plant-derived foods
Islam S Sobhy1,*, Geoff M Gurr2,# and T Hefin Jones1,$

In response to herbivory, plants employ several inducible 
defenses to mitigate herbivore damage. These plant-induced 
responses can trigger subtle changes in plant metabolite 
composition, altering the profiles of plant-produced exudates 
such as (extra-) floral nectar and plant guttation. Natural 
enemies consume these plant-produced exudates, which serve 
as consistent and nutrient-dense food sources. There is 
mounting evidence that natural enemies’ access to plant- 
produced exudates impacts their fitness, performance, and life 
history traits. Nonetheless, the role of induced plant defense on 
plant-produced exudates and the subsequent effect on natural 
enemies remains under-researched. This review, thus, 
highlights the potential role of induced plant defense on the 
profiles of plant-produced exudates, with a particular emphasis 
on altered metabolic changes affecting resource nutritional 
value and consequently the fitness and performance of natural 
enemies. Future directions and potential implications in 
biological control practices are also highlighted.
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Introduction
During their coevolution, plants have evolved a complex 
arsenal of defense mechanisms against insect herbivores 
[1]. Apart from constitutive defenses, inducible de-
fenses, activated only when herbivore attack occurs, 

represent a dynamic and adaptive response strategy for 
plant persistence and survival, frequently against the 
most potentially harmful intruders [1]. These inducible 
defenses involve a sophisticated array of traits, including 
the production of secondary metabolites and the release 
of volatile organic compounds (VOCs) [1]. The specifi-
city and magnitude of these responses can vary both 
inter- and intra-specifically dependent on the herbivore 
species and/or their guilds; in turn, plants can adapt and 
shape their plasticity in defense to a diverse community 
of insect herbivores [2]. These inducible changes in 
plants not only impact insect herbivores but also, at least 
in terrestrial ecosystems [3], transcend higher trophic 
levels, potentially impacting the behavior and perfor-
mance of natural enemies.

The focus of this review is to consider evidence for plant 
defenses influencing plant-derived foods, such as nectars 
and pollen, that are all known to be valuable to natural 
enemies. To sustain their populations and optimize their 
pest management effectiveness, many natural enemies 
require supplementary nutrition beyond what is ob-
tained from preying on insect pests [4]. Exudates and 
other plant-derived materials, such as nectar, extrafloral 
nectar (EFN), and honeydew, serve as crucial sources of 
carbohydrates and amino acids for these beneficial or-
ganisms, enhancing their fitness, longevity, and re-
productive capabilities [5,6]. Understanding and 
managing the availability and quality of these plant 
exudates and other plant-derived materials are essential 
aspects of promoting the efficacy of natural enemies in 
sustainable pest control practices [4]. Despite significant 
efforts having been made in recent years studying the 
effects of plant-derived food sources on the fitness of 
natural enemies and thereby the overall effectiveness of 
biological control, the role of induced plant defense on 
the quality and the nutritional value of these plant- 
produced exudates and the subsequent effects on nat-
ural enemies remains largely under-researched [7].

This article highlights the role of induced plant defense 
in determining the nutritional value of plant-derived 
substances as an important fitness and performance-de-
termining food source for natural enemies. In providing 
an overview of our current understanding, knowledge 
gaps requiring further exploration are identified, and 
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potential implications for conservation biological control 
programs are determined and assessed.

Impact of plant-derived foods on natural 
enemies’ traits
Plant-derived foods play a significant role in enhancing 
biological control by creating an environment that sup-
ports and sustains populations of pest-regulating natural 
enemies [4]. Specifically, these foods provide essential 
resources that improve the survival, reproduction, and 
effectiveness of natural enemies, leading to enhanced 
pest management effectiveness [6,8]. Plant-derived foods 
can enhance biological control via a range of effects.

Increased lifespan and survival
Accumulating evidence substantiates the positive cor-
relation between the availability of plant-derived nutri-
tional resources and the extended lifespan, as well as 
increased likelihood of maturation to adulthood, of nat-
ural enemies [6,9]. Notably, the ingestion of carbohy-
drate-rich floral nectar has been associated with 
increased longevity and heightened survival rates across 
diverse parasitoid [10–14] and predatory [6,15,16] spe-
cies. Furthermore, the provision of EFN has demon-
strated a profound influence on the biological attributes 
of natural enemies, significantly supporting adult sur-
vival rates and prolonging longevity under both labora-
tory and field conditions [17–20]. Pollen, likewise, has 
been identified as a key contributor to the increased 
survival and longevity of both predatory [6,21] and 
parasitoid species [22–24]. Honeydew, contingent upon 
its composition, exerts a substantial impact on parasitoid 
longevity and survival, with parasitoid individuals ex-
hibiting significantly prolonged lifespans when nour-
ished on the honeydew of their hosts [8,25–27]. Recent 
investigations by Urbaneja-Bernat et al. [28] have re-
vealed a notable increase in adult longevity among aphid 
natural enemies (i.e. Aphidius ervi and Chrysoperla rufi-
labris) when utilizing plant guttation as a nutritional 
source that contains several organic compounds (e.g. 
carbohydrates, proteins, enzymes, and amino acids) and 
inorganic solutes (e.g. salts, ions), surpassing the effects 
observed with conventional sugar and protein solutions.

Enhanced growth and reproductive biology
Although reproduction requires food sources that are 
high in protein, mixtures of prey and non-prey foods 
usually support greater reproduction of natural enemies 
rather than each component alone [16], the natural 
enemies’ access to plant-derived foods enhance their 
growth rate and reproductive traits, resulting in abun-
dant populations [6,8,9,29].

An essential element of parasitoid foraging behavior in-
volves the capability to detect and respond to floral signals 
that signify the availability of nectaries [9]. In a recent 

meta-analysis, He et al. [6] found that 45 out of 48 predator 
species could lay eggs on a diet consisting solely of floral 
resources. For instance, the adult stages of hoverflies and 
lacewings rely on nectar and pollen to sustain themselves 
and to reproduce [6]. In addition, floral nectar is reported to 
increase egg load, fecundity, egg maturation rate, host 
searching time, and fitness of parasitoid [10–12,30] and 
predator [6,16] species. Moreover, the parasitoid access to 
EFN enhances its foraging and promotes adult populations 
[17,18]. Nevertheless, little is known on the effect of EFN 
on the reproductive biology of natural enemies [19]. Many 
natural enemies are obligatory consumers of pollen during 
their adult stage [31]. For example, pollen alone sig-
nificantly shortens the developmental time of the phyto-
seiid predator Amblydromalus limonicus [21] and has been 
deemed to be the most suitable food for the tachinid 
parasitoid Exorista larvarum [22]. Combined with honey, 
pollen significantly enhances the fecundity of many natural 
enemies compared to pollen alone [23,24]. Honeydew, 
which is a byproduct excreted by many plant-feeding 
hemipterans, such as aphids, proved to be a good nutrition 
source, enhancing parasitoid fecundity, increasing their egg 
loads, and affecting the proportion of male progeny [8,14]. 
Higher fecundity rate was observed when generalist nat-
ural enemies such as C. rufilabris fed on plant guttation 
droplets [28].

Increased host/prey seeking activity
Well-nourished natural enemies, resourced with floral 
and plant-driven resources, are more active and effective 
predators and parasitoids [6,9]. The increased energy 
gained from nectar consumption and pollen feeding 
enables predators and parasitoids to search for and con-
sume pest insects more actively, as well as covering 
larger areas in prey/host seeking, leading to more ef-
fective herbivore control and subsequently reducing 
crop damage [4,6]. As an example, the ingestion of 
buckwheat nectar substantially prolonged (40-fold) the 
search duration of the aphid parasitoid Diaeretiella rapae 
compared with individuals provided with water only 
[30]. In contrast, the host searching time was decreased 
when parasitoids experienced a lack of energy resources, 
as starved parasitoids exhibit a broad decline in their 
foraging endeavors [9]. Honeydew enhanced the host 
searching behavior of the parasitoid Aphelinus mali and 
also stimulated higher oviposition rates [26].

Induced defense and the natural enemies’ 
plant-derived foods
Induced plant resistance can have both direct and in-
direct influences on the availability and quality of plant- 
derived foods as a result of substantial changes in plant 
physiology, growth patterns, and resource allocation [7]. 
Among the plant-derived resources for natural enemies 
discussed in the preceding sections, certain resources 
(e.g. EFN, floral nectar, and honeydew) have garnered 
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considerable attention in contrast to others. In this sec-
tion, we will spotlight recently published work exploring 
the potential impact of induced plant defenses on the 
nutrient composition of plant-derived foods, conse-
quently influencing the nutritional value and palatability 
of these foods to natural enemies (Figure 1).

Herbivory
Overall, herbivore attack can elicit both broad-spectrum 
and targeted responses in plants, reallocating some pri-
mary metabolites (e.g. sugars, amino acids, lipids, and 
steroids) to synthesize defense-related metabolites that 
protect against herbivory [1]. This, in turn, can qualita-
tively and quantitatively alter the content of plant-de-
rived foods provided for natural enemies.

Although plants can constitutively produce EFN, 
several studies have shown that its production can also 
be induced and increased after above- and/or below- 
ground herbivore damage [5,19,32,33]; this can also 

vary between specialist and generalist herbivores [34]
and even plant ontogeny (i.e. older vs younger plants) 
[35]. In addition, foliar herbivory not only induces the 
production of EFN but also alters its composition 
modifying the sugar content in nectar [36,37], influ-
encing the foraging behavior of plant-visiting insects. 
Similarly, herbivory by the specialist Manduca sexta 
induces higher concentration of alkaloids (e.g. anaba-
sine) in tobacco pollen [38]. Cotton exposure to her-
bivore-induced plant volatiles, mainly sesquiterpene 
and aromatic VOCs, increased the production of EFN 
from healthy plants [39]. This induction results in an 
increase in the sucrose content of EFN, while glucose 
and fructose are reported to remain unchanged [36]. 
Nevertheless, other studies have shown that herbivory 
by the pea aphid, Acyrthosiphon pisum, may not induce 
EFN secretions and even reduces its production [40]. 
In addition, the production of other traits, such as 
floral nectar and pollen, was strongly induced in re-
sponse to herbivory [41].

Figure 1  

Plant Induction Biological Control 
Improvement 

Changes in Plant-derived 
Food for Natural Enemies

A

B

D

C

Current Opinion in Insect Science

Schematic representation illustrates how induced plant defense affects the utilization of plant-derived foods by natural enemies. The induction of plant 
defenses can occur through various mechanisms, including (1) flower association with nectar microbes; (2) real herbivory caused by chewing and 
sucking insects; (3) simulated herbivory induced by elicitor application; and (4) root interaction with soil microbes. These processes have the potential 
to influence the nutritional content and palatability of plant-derived foods such as (A) floral nectar; (B) pollen; and (C) honeydew; and (D) EFN for natural 
enemies’ use, which consequently enhance their fitness, performance, and life history traits, ultimately enhancing biological control.  
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Microbes association
As sugar-rich resources, plant-derived foods such as floral 
nectar and honeydew have the capacity to host a diverse 
array of specialized micro-organisms [42]. These micro- 
organisms, which are symbiotic (nonpathogenic), play a 
significant role in altering various traits, including 
changes in nectary volumes, sugar concentration and 
types, increased amino acid content, and the synthesis of 
secondary metabolites [43]. The presence of these 
beneficial microbes can consequently enhance nutrient 
availability, thereby impacting both the quantity and 
quality of plant-derived foods [42]. Mounting evidence 
suggests that the fermentation process carried out by 
both yeasts and bacteria can influence the odors of floral 
nectar [44–46]. Nectar-inhabiting microbes have the 
capacity to produce de novo distinct blends of microbial 
organic volatile compounds (mVOCs) due to microbial 
metabolic activities, contributing to flower–insect asso-
ciation [47].

Emerging evidence suggests that the metabolic activity 
of micro-organisms inhabiting nectars and honeydew 
plays a pivotal role in modulating nutrient profiles, no-
tably by transforming sugar profiles from disaccharides 
such as sucrose to monosaccharides such as fructose 
[43,48]. It is noteworthy that bacteria and yeasts can 
exert contrasting effects on the characteristics of plant- 
derived foods. For example, while nectar fermentation 
by the yeast Metschnikowia reukaufii resulted in reduced 
levels of amino acids without impacting sugar composi-
tion, the presence of the bacterium Gluconobacter sp. led 
to elevated concentrations of amino acids and a higher 
proportion of monosaccharides in the nectar of lopseed 
plants [49], which may, in turn, impact the performance 
of nectar consumers such as natural enemies.

Another significant consequence of microbial activity is 
the modification of nectar [44–46,50,51] and honeydew 
[52,53] odors, thereby altering the scent profile of plant- 
derived foods. These mVOCs serve as honest signals of 
reward quality for insects, such as parasitoids and pre-
dators [42,54], at higher trophic levels. Chemical analysis 
of fermented nectars revealed qualitative and quantita-
tive differences in mVOCs composition between dif-
ferent microbial strains, suggesting that these signals are 
species-specific and involve intricate sender–receiver 
dynamics, as odorants derived from fermented nectars 
may elicit diverse effects in different ecological contexts, 
including parasitoids [45,51] and bees [44].

Accumulating evidence underscores the significance of 
microbially produced cues emanating from plant-derived 
foods in shaping the behavior of natural enemies 
throughout their life cycles [9,42,54]. For instance, syn-
thetic nectar fermented by M. reukaufii exhibited high 
attractiveness to the aphid parasitoid A. ervi [45,50], a 
trend similarly observed with other microbes, such as the 

yeast Metschnikowia gruessii and the bacterium Staphylo-
coccus epidermidis, where their fermented nectars at-
tracted various egg parasitoids of stink bugs [51,55]. The 
consumption of these microbe-fermented nectars by 
parasitoids did not, however, affect their survival or 
longevity [45,46,55]. Additionally, the scent profile of 
aphid honeydew colonized by bacterial strains has been 
found to be more attractive to primary aphid parasitoids 
and their hyperparasitoids [52,56].

In a recent meta-analysis, Hyjazie and Sargent [57] re-
vealed that root association with soil microbes, particu-
larly mycorrhizal fungi, has a positive effect on floral 
characteristics, including the size of the floral display. In 
addition, mycorrhizal fungi also promote pollen and 
nectar quality and quantity [58]. In contrast, nitrogen- 
fixing rhizobia reduces EFN production by lima beans, 
leading to fewer ants attracted to rhizobia-associated 
plants [59]. This suggests that belowground plant in-
teractions mediated by soil microbes also play a crucial 
role in shaping floral traits and the availability of floral 
resources, ultimately influencing plant interactions and 
ecosystem dynamics. However, the impact of root–mic-
robe associations on the plant-derived foods consumed 
by natural enemies remains largely unexplored.

Elicitor application
The application of elicitors, chemical substances that 
trigger plant direct and indirect defenses [60,61], could 
potentially impact the allocation of resources in plants. 
This may lead to changes in the production of plant- 
derived foods and the compounds that attract or deter 
natural enemies.

Under field conditions, lima bean plants under jasmonic 
acid (JA) exogenous application produced more nectar in 
both extrafloral nectaries and flowers, attracted more 
ants, and produced more flowers and seeds than non-
induced plants [62]. Likewise, treating legume plants 
with JA increased the volume of EFN and the mass of 
sugar per nectary without affecting the sugar con-
centration [63]. In addition, cotton application with 
methyl jasmonate (MeJA) increased the production of 
EFN, without a corresponding increase in yield [64]. 
Supporting this, both herbivory, using chewing (cater-
pillar, weevil) and sucking (aphid) herbivores, and MeJA 
treatment increased EFN secretions of tallow tree, but 
SA decreased it [65].

A similar pattern of producing high amount of pericarpial 
and extrafloral nectaries was also observed when plants 
were subjected to simulated herbivory [66,67]. EFN 
secretions increased significantly when wild cotton 
plants were exposed to recurrent simulated herbivory 
(i.e. two episodes of damage) but not after a single 
herbivory interaction [68]. These EFN secretions were 
specifically observed within 24 hours post simulated 
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herbivory, but EFN secretions dropped to initial levels 
after 7 days [69]. Such induction in EFN production 
increased the attraction of natural enemies and ants even 
in the absence or low prey/host density.

Conclusion and future perspectives
The availability and quality of plant-derived foods, in-
cluding floral nectar, EFN, pollen, honeydew, and plant 
guttation, play a crucial role in supporting the survival, 
reproduction, and effectiveness of natural enemies in 
pest management systems. These plant exudates serve 
as consistent and nutrient-rich food sources for natural 
enemies, enhancing their fitness, longevity, and re-
productive capabilities. This enables natural enemies to 
flourish while also further supporting their role in bio-
logical control ecoservices and boost integrated pest 
management strategies while promoting the health of 
ecosystems [4,70]. The influence of induced plant de-
fense mechanisms on the profiles and nutritional value 
of these plant-derived foods does, however, remain re-
latively understudied. The modulation of plant meta-
bolites and the subsequent alteration of plant-produced 
exudates by induced plant defense responses have 
significant implications for the ecology of natural ene-
mies. Thus, understanding how induced plant defenses 
affect the availability, composition, and attractiveness of 
plant-derived foods is essential for optimizing the effi-
cacy of natural enemies in sustainable pest control 
practices.

Future research should focus on elucidating the under-
pinning mechanisms by which induced plant defenses 
influence the nutritional quality and palatability of plant- 
derived foods for natural enemies. This includes in-
vestigating how induced changes in plant physiology, 
growth patterns, and resource allocation affect the pro-
duction and composition of floral and EFN, pollen, 
honeydew, and plant guttation. Furthermore, studies 
exploring the interactive effects of induced plant de-
fenses and microbial associations on the nutritional value 
and attractiveness of plant-derived foods are necessary. 
This is of necessity a multidisciplinary approach, re-
quiring the integration of expertise from entomology, 
applied biology, biochemistry, and microbiology, to ex-
ploit effectively what has been overlooked. Although 
there has been increasing interest in using defense eli-
citors [7,60] and microbial bioactive compounds [42,54]
as sustainable and ecologically sound methods for con-
trolling insect pests in agriculture by enhancing the ef-
ficacy and fitness of natural enemies, their practical 
application in agriculture remains in its infancy. 
Studying these interactions poses significant challenges 
as controlled environments often fail to capture the 
complex dynamics of natural ecosystems, while field 
studies are hindered by high variability and the sub-
stantial resources and time required.

Understanding how induced plant defense and microbial 
activity in plant-derived foods affect the nutritional and 
odor profiles of these plant exudates, and consequently 
the foraging behavior of natural enemies, can provide 
valuable insights into the ecology of plant–micro-
be–insect interactions. Additionally, research efforts 
should focus on how changes in the availability and 
quality of plant-derived foods influence foraging beha-
vior, reproductive biology, and population abundance of 
natural enemies in agricultural landscapes.
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