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Abstract

Nowadays, computational tools are essential and ubiquitous in basically every re-

search field. In particular, they enormously helped Psychology and Neuroscience by

providing computational models of cognition, description of neurobiological phenom-

ena, data analysis tools and many more. In this thesis, I will propose a classification

method based on the scale of the problem under investigation, providing the results

of applying three different computational tools for neuroscience at different scales.

First, I perform graph theory-based analysis of whole human structural (DWI)

and functional (MEG and fMRI) connectomes using a new approach based on small,

induced, connected subgraphs called graphlets. I will show that graphlet provides

an elegant and effective way to represent and characterise topological information of

brain networks without the need for numerous classical graph-theory measures.

Second, I apply deep learning for parameter recovery of a perceptual decision-

making model simulating the evidence accumulation of the LIP area of the brain.

Deep learning offers a valuable tool for parameter recovery of more complex biolog-

ically plausible models. However, I also stress that successful parameter recovery

depends not only on the choice of the tool but also on the careful design of the exper-

iment to avoid the recovery of parameters that have a similar effect on the output,

thus making parameter recovery difficult.

Finally, I perform neuronal decoding of spiking neuron activity during a 2D reach-

ing task performed by two monkeys. Velocity decoding performances are generally

better than position or acceleration decoding. I also study the effect of PCA on

dimensionality reduction of neural data and consequent neuronal decoding, showing

that general performances on reduced data are lower except for position decoding

from PMd cortex activity of many neurons. Following previous research results, I

hypothesise this is caused by the encoding of different processes in the PMd cortex

not related to the simple forward motor output.

Overall, this work explores the use of powerful computational tools to solve prob-

lems in neuroscience at different scales.
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Chapter 1

Introduction

The human brain is a remarkable machine composed of billions of elements which

interact in a highly complex and structured way. Such interactions are what define

ourselves, our personalities, fears and desires. It allows us to interact with the exter-

nal world, make long-term plans and effectively achieve complex goals. For decades,

researchers from various fields have tried to demystify how the brain is able to accom-

plish this extensive set of tasks in such an efficient way. However, a comprehensive

understanding of how the brain’s structure and functioning translates into such win-

ning problem-solving capabilities still needs to be achieved.

The human brain is one of the best information encoders currently known. Every

fraction of a second, the brain receives enormous amounts of information from the ex-

ternal world through sensory inputs. Since our birth, such sensory input is constantly

acquired, transformed into some lower-dimensional representation (the “code“ of the

brain) and elaborated by combining information and generating valuable blueprints

for accomplishing complex goals.

The exact mechanism through which the brain performs such information com-

putation is another hurdle that persists in this burgeoning realm of study. With just

a few grams of sugar, the brain can quickly perform tasks that even the most sophis-

ticated computer today performs with lower accuracy, such as recognising a person’s

face or understanding other people’s emotions.

Given the high complexity of the human brain and the large amount of data in-

volved in its study, researchers have found the use of computational tools applied to

psychology, neuroscience and related disciplines highly beneficial. Computers dra-

matically helped understand the brain’s structure and functioning, facilitating var-

ious methodologies. From simulations of individual neurons up to entire networks,

advanced data analysis techniques, and the adoption of Artificial Intelligence as a

model of brain areas and cognitive processes or as predictive models for psychology
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and neuroscience-related tasks. One of the many possible ways to classify differ-

ent computational tools for studying the human brain is by considering the scale of

the specific approach. In the remainder of this chapter, I will follow a bottom-up

approach, going from the finer scale to the largest one.

Suppose we want to start limiting ourselves to directing our attention towards

the fundamental building block of the brain and the broader nervous system, namely

the neuron. In that case, we already encounter a highly complex entity exhibiting

correspondingly complex behaviours. A neuron can be represented in many different

ways. The choice of representation generally depends on the specific research question

we want to answer, as recreating a perfect replica will leave us with a model that is

as complex as the system we want to study, thus limiting the knowledge we can

extract from it. As we will see, this argument is valid for any model, not only in

neuroscience. To study single neurons, we may opt for a biologically plausible model

that considers the dynamics of ions and channels. Alternatively, we could simplify

it into a mathematical construct that integrates diverse input sources and produces

outputs through nonlinear operations.

Proceeding on a wider scale, the next step will consist of putting together several

neurons to study how their interaction works. Similarly to the single-neuron case,

different models can be proposed depending on what biological detail to include,

if any. We could consider, for example, the excitatory and inhibitory connection

between neurons or the dynamics of the neurotransmitters near the synapses. As we

increase the number of neurons in the model, we should cope with increasing variables,

which will require greater computational resources to manage. At some point, we may

average the activity of several neurons of the same type (e.g. excitatory or inhibitory)

or discard any biological detail and consider just an interaction of nodes connected

by a link. This approach will be helpful in studying how local populations of neurons

or entire regions specialise themselves to accomplish specific goals.

The latter approach can be gradually extended up to the broadest possible scale,

the whole brain 1. Such description is typical in the approach of Graph Theory

or Network Science, which intersects significantly with broader fields like Complex

System Theory. Here, the emphasis is typically placed on the connectivity patterns

within the network rather than the individual component properties. In this way,

the property of a system can be described by specific statistics that can refer to the

single node or even to the global system. To name a notable application, node-wise

1In reality, an even broader scale may exist if we consider social networks of interacting brains
[54].
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statistics can be used to understand how structure is related to function. In contrast,

global statistics can characterise different groups of brains, for example, to identify

neurological diseases or other specific conditions.

Recently, another computational approach has exploded, providing numerous in-

sights about the human brain at the different scales I described. Artificial Intelligence

(AI) is one of the most active research fields today, and it is transforming the way we

approach the study of the human brain. AI is not only a tool through which we solve

complex problems but also a model of cognition which can be both inspired by some

functioning of the brain and helpful in understanding some aspects of cognition. I will

present an application of AI mainly as a powerful predictive tool while also shortly

discussing how it can be used to model a single brain area which accomplishes a

specific cognitive task.

In this thesis, I will present a robust set of state-of-the-art computational tools for

neuroscience at different scales. Particular attention will be paid to a set of results

after applying such tools to study a specific problem. Although this thesis is far

from being an exhaustive list of the vast field of computational neuroscience, it will

present cutting-edge approaches that will be extensively discussed, including the main

limitations and potential future development. After the introduction, I will follow a

top-bottom approach to present the results, starting from the broadest possible scale,

i.e., the study of the whole brain, down to population models, which use a mean-

field approximation, to finally reach the analysis of data coming from single neurons.

By employing these sophisticated methodologies, we strive to progress towards the

ambitious goal of uncovering the secrets of what many consider the most complex

object in the known universe.

1.1 Structure of the thesis

In this thesis, Chapter 2 will provide an overview of some of the most used compu-

tational tools for neuroscience at different scales. I will start from the lower level

of analysis, presenting some of the most successful single-neuron models. Then, I

will discuss how several interacting neurons can be modelled as populations using a

mean-field approximation approach, and how population models can explain complex

tasks such as perceptual decision-making. A discussion on graph theory and network

science will follow, focusing on how to use these tools to study the whole brain, ne-

glecting the single neurons’ specific properties, and I will review a novel approach

that uses small induced connected subgraphs called graphlets. Finally, I will give a

3



quick overview of the broad field of Machine Learning, focusing specifically on how

it can solve two interesting neuroscience problems: parameter recovery and neural

decoding.

Each of the three subsequent chapters starts with a brief introduction of the

specific tool application. Then, I will describe in detail the data and the methods

used. Finally, the results will be presented and discussed in detail. In particular,

Chapter 3 will focus on the graphlet approach to graph data constructed from three

different neuroimaging methods: DWI, fMRI and MEG. In Chapter 4, I will use a

Deep Learning algorithm for parameter recovery of a simple yet powerful perceptual

decision-making model. I will also present a proof-of-concept of a simple neural

ensemble to simulate the output of the perceptual decision-making model, which in

turn effectively model a specific brain area involved in evidence accumulation during

a competing task. In Chapter 5, I will apply a typical neural decoding approach to

understand complex data from monkeys performing a 2D reaching task. I will also

apply a dimensionality reduction technique to study how the predictive performance

changes when using reduced data as input. Overall, I will present a non-exhaustive

yet robust set of computational tools for neuroscience at different scales.

In Chapter 6, I will summarise the results, discussing in particular the limitations

and possible directions for future research.
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Chapter 2

The model hierarchy of neural
networks

This chapter aims to provide a high-level overview of some of the most successful

computational tools for neuroscience at different scales and present in detail some

specific approaches which will be used in later chapters.

2.1 Modelling the brain

The human brain’s activity is basically due to neurons, electrically excitable cells

that exchange electrical and chemical signals through connections called synapses.

The average adult human brain contains around 86 billion neurons, and each of the

86 billion neurons has 7000 synaptic connections to other neurons on average [237].

It has been estimated that the brain of a three-year-old child has about 1015 synapses

while for an adult, the numbers range from 1014 to 5 · 1014 [50]. These numbers, as

well as the large variety of tasks it can perform, should give an overview of the high

degree of complexity of the human brain. To understand such a complex system, we

may take advantage of using simplified computational modelling [44].

A model can be defined as a simplified description of a system or process which

can make predictions. The keyword “simplified“ here is highly important because

a model which is as complex as the system we want to study does not help better

understand such a system. One of the most popular ways to categorise models, in

general, is the three-level organisation initially proposed by David Marr to investigate

visual systems [144]. Following this definition, a model of a system can be divided

into three different levels of abstraction:

1. The computational level only models the system’s goal without considering any

specific detail of the components.
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2. The algorithmic or representation level is a description of a possible implemen-

tation of a system.

3. The implementation level is an accurate description of how elementary compo-

nents interact together to generate the system.

To better understand these levels, I will present two examples. These are not

necessarily realistic examples, and they serve purely as an illustration of the reasoning

approach.

First, suppose we want to create a model of the areas of the brain involved in

distinguishing a cat from a dog. A potential top-down approach would start from

the computational description (first level). This represents the system’s goal, which

might be formulated as “quickly identifying discriminating features of an animal which

can be assigned to one and only one category with high precision”. Moving to the

representational level, we have some choices in acquiring and processing the data to

identify valuable features. We could first identify elementary features like lines or

edges and hierarchically combine them to create more abstract features which will

differ between cats and dogs. Eventually, we reach the implementation level where

we might, for example, use artificial spiking neurons which form several hierarchically

connected layers; the earliest neurons activate preferentially when they detect simple

edges or lines and pass this information in the form of activation pattern to the

successive layers which combine such information to create more complex features.

The top-down structured flow is one of many possible. As a second example, sup-

pose we want to understand how neurons communicate with each other to generate

complex behaviour. Using a CPU, we might create a biologically detailed compu-

tational replica of a neuron. Under some controlled conditions, we might study the

excitatory and inhibitory connections between two neurons and gradually increase the

number of neurons involved (the implementation level). We observe a synchronised

behaviour at a certain point where several neurons fire simultaneously. We hypoth-

esise that synchrony is the critical feature through which several neurons represent

specific information (the algorithmic or representation level). After combining a dif-

ferent set of connected neurons, we observe that hierarchical synchronisation leads

to a system able to solve complex tasks (the computational level). What is just pre-

sented is an example of a bottom-up approach where we start looking at the essential

components and gradually gain knowledge about larger-scale phenomena.

Depending on the specific research question, a successful model may only require

some of the three levels of description. Consider, for example, Artificial Intelligence.
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Today, AI algorithms are broadly used to solve tasks with super-human performances

(for example, controlling robotic arms to perform even delicate tasks [6], understand

questions provided by humans and give detailed elaborate answers [166], autonomous

vehicle driving [248], to name a small portion of AI applications). On the other hand,

a high effort is being put into making AI smarter to perform tasks that, at the moment,

only humans can do effectively: making long-term life plans, writing code to create

an app, and publishing an original research paper are just some examples of tasks in

which humans still outperform AI [85, 127]. Such algorithms are often not made of

essential components like the human brain. Consequently, it is not guaranteed that

the representations and algorithms these systems use are comparable to those in the

brain, although biology might inspire them [85].

In the following sections, I will start from the lower scale. I will first present

two of the most popular single-neuron models that will serve as a starting point for

the bottom-up approach to construct computational model from the smallest to the

largest possible scale and as an example of how the model changes depending on the

biological details that are introduced. Later, I will describe a powerful approach to

studying groups of connected IF neurons and how a simple two-population model

can replicate the behavioural output of a perceptual decision-making task. I will

then describe the graph theory approach to large-scale brain networks, that overlook

the fine details of the dynamics of the membrane current to focus on the structure

and the information flow of the system we want to study. Finally, I will give a brief

overview of Deep Learning and present some algorithms with exciting applications in

neuroscience.

2.1.1 Single neuron models

To understand how the brain performs complex cognitive tasks, an intuitive starting

point focuses on its essential components: single neurons. A neuron is a particular

cell that receives, processes, and transmits electrical pulses. Each neuron typically

possesses three main components: soma, axon and dendrites [41] (Figure 2.1).

The soma is the primary cell body containing the nucleus and other organelles.

Differently from other cells, the neuron can store electric charges via charged ions.

This ion concentration usually generates an average membrane resting potential of

−70mV . The cell is permeable to specific ions thanks to ion channel proteins involved

in transporting such ions. The charge distribution may change in specific conditions,

and the membrane potential may increase or decrease. The ion transportation mech-

anisms allow the cell to spontaneously move towards equilibrium by restoring its

7



Figure 2.1: Anatomy of the neuron and its main components.

resting potential. However, when the membrane potential reaches a threshold value

Vth of about −55mV , a rapid cascade of events causes a strong depolarisation of the

cell followed by a repolarisation [95]. The intense and rapid depolarisation is called

a spike, an almost instantaneous electrical pulse that can be transmitted to other

neurons through the axon. The axon is a relatively long extension of the cell body

and can be wrapped in a sheath of myelin, a discontinuous lipid-rich insulating mate-

rial which serves as a spike propagation facilitator [41]. The ending part of the axon

possesses several ramifications, which terminals are called synapses. A synapse is a

specialised structure serving as a system between neurons. Such communication typ-

ically involves the release of signalling chemical molecules called neurotransmitters.

Neurotransmitters are collected by receptors in the dendrites, branched extensions of

the soma which, together with the axons, form the extraordinarily complex network

of interactions between neurons.

When a spike propagates to other neurons, if certain conditions are met it may

cause depolarisation or polarisation of post-synaptic neurons and possibly trigger an-

other spike [77]. In a large ensemble of neurons like the brain, this gives rise to highly

complex dynamics, which is believed to encode and elaborate all the information that

makes us feel emotions, perform long-term plans or take decisions in front of uncertain

situations [188].
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A single neuron is an extraordinarily complex unit, and several models have been

proposed to represent specific features and behaviours.

2.1.1.1 The Integrate-and-Fire Model

The integrate-and-fire (IF) model is a simple computational model which successfully

explains some features of real neurons [41] and will serve as a basis for higher scales

analysis. IF neurons are represented by a membrane voltage V , which varies in time

due to an input current I(t) following

C
dV (t)

dt
= I(t), (2.1)

where C is the capacitance of the membrane. When the voltage reaches a threshold

value Vth, a spike represented by a delta function occurs, and the voltage is reset

to its resting value. Since such models generate spikes with a frequency increasing

linearly without bound, a post-spiking refractory period tref in which another spike

cannot occur can be introduced for higher accuracy. One of the significant limitations

of this model is that an increase in the voltage, which does not lead to a spike, is

retained indefinitely. Conversely, in real neurons, a relaxation to the resting potential

is observed. This observed spontaneous relaxation can be addressed by introducing

a leaky term in the model.

C
dV (t)

dt
= I(t)− V (t)

R
, (2.2)

where R is the membrane resistance. This is called the leaky integrate-and-fire model,

equivalent to the IF model in the limit R → ∞ (perfect insulating membrane).

If we multiply both sides of Eq. (2.2) by R and introduce a variable τm = RC

representing a time, we obtain the standard form of the equation for the leaky IF

neuron,

τm
dV (t)

dt
= −[V (t)− Vrest] +RI(t), (2.3)

where the resting potential Vrest is also explicitly introduced such that, at equilibrium,

V (t) = Vrest, and the first term in the second side of Eq. 2.3 is 0.

The solution of Eq. (2.3) with initial value V (0) = Vrest + ∆V , considering that

for t > 0 the input current vanishes I(t) = 0, is

V (t)− Vrest = ∆V exp

(
−t− t0

τm

)
for t > t0. (2.4)
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Figure 2.2: Spike train generated by a leaky-IF neuron with a constant current as
input. When the potential reaches the threshold value of −55 mV, a spike is gener-
ated. The potential is immediately reset to its resting value of −75 mV.

Eq. (2.4) represents an exponential decay to the resting value without inputs.

The leaky IF model includes a threshold potential Vth as in the IF model. When

this value is reached, a spike is triggered. Mathematically, in the leaky IF model,

spikes are represented as points in time using the Dirac δ-function. Suppose the

threshold potential is reached at time tf such that V (tf ) = Vth, then the spiking

event is registered and the potential is reset to a new value Vr < Vth < Vrest and the

dynamics for t > tf is again described by Eq. (2.3) (Figure 2.2).

The IF model of neurons is a simplified model that does not consider many complex

biophysical properties of real neurons, like the role of dendrites or other sub-cellular

structures in receiving and processing input signals or the effects of ion channels

or neurotransmitters. Moreover, it does not consider essential phenomena like the

refractory period or synaptic plasticity. Several extensions of the IF model have been

proposed to take into account the refractory period (e.g., the Refractory Exponential

IF model [8]) or the synaptic plasticity (e.g., the Spike Timing Dependent Plasticity

model [142]).

10



2.1.1.2 The Hodgkin-Huxley Model

The IF model is a simple yet powerful description of single neurons that is able to

describe complex behaviours without introducing many biological details. In the past,

another successful single-neuron model has been proposed and it focused more on the

biological details of the membrane selective ion channels responsible for the complex

electrical activity of neurons. While the IF will be used in later chapter to extend the

scale to ensemble of many neurons, it is still interesting to take a short detour and

present a model which reproduces biological details.

The first successful attempt to reproduce empirical observations of the membrane

depolarisation of neurons has been carried out by Alan Lloyd Hodgkin and Andrew

Huxley [95]. The Hodgkin-Huxley model describes the dynamics of neurons starting

from the equation of conservation of electric charge,

C
dV

dt
= −F + I, (2.5)

where V is the membrane potential (considered spatially constant for simplicity), C

is the cell capacitance, F is the membrane current and I is the total current entering

the cell from both external or synaptic sources. In this model, the membrane current

F is mostly generated by the motion of sodium and potassium ions crossing voltage-

dependent channels in the membrane. Minor currents generated by other ions are

grouped in a leak term. We can write the equation for F as,

F (V,m, h, n) = gL(V − VL) + gKn
4(V − VK) + gNahm

3(V − VNa), (2.6)

where gNa, gK and gL are the sodium, potassium and leaky conductances, respectively,

VNa, VK and VL are the sodium, potassium and leaky reversal potentials, respectively,

and m, h and n are time-and-voltage-dependent conductance variables with values in

the interval [0, 1]. These variables represent the probability that a specific channel is

open at any given time. In particular, m and h control the dynamic of the sodium

channel, and they model activation or voltage gates and inactivation of the channel,

respectively. The variable n controls the activation of the potassium channel. The

temporal evolution of the three gating variables takes the form

dx

dt
= − 1

τx(V )
[x− x0(V )], (2.7)

where x can be m, n or h, τx is a time constant, and x0 an asymptotic value for x.

In particular, m is close to 0 when the membrane potential is at its resting value,
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and it approaches its highest value m = 1 asymptotically as the potential grows. The

variable n behaves similarly to m but starts to increase at a higher potential. On the

other hand, the asymptotic value for h is 0 as it starts being slightly higher than 0.6

at resting and decreases as the potential increases.

The Hodgkin-Huxley model generates spikes resembling the dynamics of real ion

channels. Indeed, at equilibrium V = Vrest we have m close to zero, n = 0 and h

slightly above 0.6. Consequently, the voltage gates of sodium and potassium channels

are closed while the inactivation gate is open because the concentration of Na+ ions is

higher outside the cell, while the opposite is true for K+ ions. Following Eq. (2.6), if

an input current reaches the membrane, causing an increase in the membrane poten-

tial, the conductance of sodium channels increases in correspondence with increasing

m (voltage gate opening), and more Na+ ions enter the cell raising the membrane

potential further (depolarisation). If the input current is sufficiently high, the pos-

itive feedback loop of Na+ ions causes a dramatic increase in the concentration of

positively charged ions inside the cell, thus generating a spike. At this point, the

potassium gate is also activated, but since it has a higher characteristic time, it opens

more slowly, and the membrane potential becomes more and more positive. When

the reversal potential of sodium VNa is reached, the inactivation variable h stops the

flow of Na+ inside the cell, and the potassium gate controlled by n finally opens, al-

lowing K+ ions to cross the membrane towards the outside of the cell and decreasing

the membrane potential towards its resting value (re-polarisation). The potassium

channels close slowly as the characteristic time τn is higher. Hence, when the cell

reaches the resting potential, the potassium gate is still open, causing K+ ions to

exit the cell and the potential to decrease at lower values until it reaches the reversal

potential of the potassium VK (hyper-polarisation). Eventually, the leaky term slowly

restores the potential to its resting value, and the ATP-mediated sodium-potassium

pump restores the normal concentration of sodium and potassium ions inside the cell.

Similarly to the IF model, the HH model has some limitations [46]. Firstly, the

model is based on data from the giant axon of the squid, and its parameters may not

accurately reflect the behaviour of neurons in other species or regions of the nervous

system. Moreover, it does not account for other ion channels, receptors, or biophysical

factors that may be present in real neurons and influence their behaviour. Again, the

model cannot represent more complex behaviours of real neurons, such as bursting

and oscillations or synaptic plasticity. In addition to other limitations, it is worth

considering that the model is computationally expensive and difficult to simulate large

networks of neurons [107]. This is important to note as I will start presenting models
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of more interacting neurons in the next section. Several models have been proposed

as an extension of the HH model, like the FitzHugh-Nagumo model, to better account

for the behaviour of neurons in the presence of synaptic noise [59], the Morris-Lecar

model which adds a current generated by calcium ions [153], the Izhikevich model to

provide a more computationally efficient simulation of neurons [107].

2.1.2 Population models and neural mass models

In past section I presented two of the most successful single-neuron models, outlining

their advantage as well as limitations. However, it is hard to appreciate the brain’s

computational capabilities by looking at only single neurons. As we will see in deeper

detail later, the brain possesses a structured organisation different from a mere col-

lection of randomly connected neurons. It has been shown instead that neurons are

organised in richly structured populations (also called pools), which often show a

similar activation pattern (synchronisation) [218, 206, 205]. Each population might

contain several millions of neurons, and modelling such a high number of neurons

with their inputs and outputs is computationally expensive, especially in the case

of complex models like the Hodgkin-Huxley neuron presented in 2.1.1.2. What is

typically done instead is considering a population model, where all neurons are con-

sidered identical, receiving a common input and interacting in a statistically uniform

way [67]. This approach is inspired by physics and statistical mechanics where it

takes the name of mean field approach [68]. While considering a common input is an

easy but effective approximation, defining a population output is more tricky. Here

is one possible definition [67]: given a population of N neurons the activity can be

written as,

r(t) = lim
∆t→0

1

∆t

nact(t; t+∆t)

N
=

1

N

N∑
j=1

∑
δ(t− t

(f)
j ), (2.8)

where nact(t; t + ∆t) is the number of spikes in a small interval of time ∆t, δ is the

Dirac delta function, and t(f) represents firing time. Models that study neural popu-

lations with a mean-field approach are called Neural Mass Models (NMM), and they

aim to predict the temporal evolution of the population activity or mean firing rate

r(t) in large and homogeneous populations of spiking neurons [67]. More specifically,

NMMs describe how the population-averaged firing rate varies as a function of time

and the parameters of the specific network of neurons. Figure 2.3 shows a simple

comparison between rates observed from a simulation of 50 IF neurons and rates

predicted by Eq. (2.8). It can be seen that an NMM approach is justified by the
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Figure 2.3: Mean field predictions for spiking rates (y-axis) versus rates observed from
50 simulated IF neurons (x-axis). Points are located near the dashed line (identity
line), confirming the excellent approximation of the mean-field approach.

excellent approximation of the rates of the averaged neural population on the single

neurons’ rates. Neural mass models have achieved great success by effectively captur-

ing the collective behaviour of large populations of interconnected neurons, providing

valuable insights into brain dynamics and facilitating the understanding of complex

neural phenomena [17, 43, 40].

In the simplest case, we may define the differential equation for a feed-forward

network, with excitatory neurons only, as

τ
dr

dt
= −r + F (Iext) (2.9)

where r(t) can be defined as in Eq. (2.8) or using other averaging techniques, τ is

the characteristic time of the evolution of the average firing rate, Iext represents the

external input received by the population, and the transfer function F (·) represents
the population activation function in response to all received inputs (also known as
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F-I curve where I stands for input) [67]. The term −r is a leaky term indicating the

spontaneous decay of the firing rate without external inputs. A popular way to model

the transfer function F (·) is by using a sigmoidal function

F (x; a, θ) =
1

1 + e−a(x−θ)
− 1

1 + eaθ
(2.10)

where the argument x represents the input to the population, θ is a threshold indicat-

ing how much input is needed for the firing rate to reach its midpoint value 0.5, and a

determines the slope (gain) of the rising phase of the F-I curve [24]. The second term

is chosen so that F (0; a, θ) = 0. Several alternatives for the transfer function exist,

generally being non-linear monotonic functions. Valid examples of different transfer

functions are the hyperbolic tangent tanh(x) or the rectified linear function ReLU(x)

defined as

ReLU(x) =

{
x if x > 0,

0 otherwise.
(2.11)

As we will see in later sections, the rectified linear unit function is one of the most

popular functions to introduce non-linearity in Deep Learning architectures.

Eq. (2.9) is interesting because it helps understand how neurons respond to a spe-

cific input. However, in biological neural networks, populations of neurons typically

have a recurrent component which introduces a more complex behaviour. We may

describe the dynamics of a recurrent network or population of neurons as

τ
dr

dt
= −r + F (w · r + Iext) (2.12)

where we added to Eq. (2.9) a parameter w indicating the strength of the connections

between neurons in the population multiplied by the firing rate r.

At this point we should have an idea of how to model arbitrarily large neuronal

populations. One thing that’s important to notice is how the research questions

we can answer change with the increasing in the scale we are considering. Single

neuron models are very helpful in reproducing the spiking dynamics and other fine

phenomena, while when considering neural population we need a different approach

to study a more complex dynamics and understand how it relates to higher cognitive

functions. For this reason, in the section I will introduce a powerful framework to

analyse the dynamics of interacting neuronal populations.
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2.1.2.1 Dynamical System Theory of Neural Mass Models

The dynamical systems theory is one of the most used frameworks to study dynamical

equations like (2.12). A dynamical system is a system that evolves in time [108]. We

will focus on continuous dynamical systems, i.e. systems described by differential

equations, which differs from discrete dynamical systems where the time evolution is

defined using iterative maps [211].

In general, a continuous dynamical system θ of k components is mathematically

defined using a first-order differential equation:

θ =
dx

dt
= f(x) (2.13)

where x ∈ Rk and f : Rk → Rk. In this compact representation, the vector x

represents the dynamical variables, also referred to as state variables [108]. For exam-

ple, in the Hodgkin-Huxley model described in 2.1.1.2, we have four state variables

describing a membrane potential and three gating variables for currents generated by

the motion of Na+ and K+ ions.

A dynamical system can be characterised by its phase plane, which is a plot of the

system, i.e., the time derivatives, versus the state variables [108, 211]. In particular,

the dynamical system typically lives in a subset of the (dx
dt
, x) plane, which is called

phase portrait. To better understand the importance of phase portraits in dynamical

systems analysis, it is essential to introduce the concept of trajectory. A trajectory

in the phase plane is the set of points representing the dynamical system for t → ∞
[211]. Trajectories typically vary when changing the initial conditions i.e., the point

in the phase plane where the system is at t = 0. A phase portrait can be defined

as the set of all the possible trajectories of a dynamical system in the phase plane.

The phase portrait can only be created numerically for non-linear systems in cases

where an analytical solution is impossible [211]. This is crucial to understand as many

systems of interest in neuroscience are non-linear dynamical systems [108].

Of particular importance in dynamical systems are fixed points, i.e., points where
dx
dt

= 0. In such points, the system is in a steady state (equilibrium), which can

be asymptotically stable, unstable or a saddle point (if k ≥ 2) [211]. Following the

definition of Poincaré, a fixed point θ∗ is stable if it attracts all nearby trajectories:

lim
t→∞

θ∗ +∆θ = θ∗ (2.14)
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for any small ∆. In the phase portrait, these points are where nearby trajectories fall

into for t large enough. On the other hand, trajectories starting near unstable points

will tend to diverge or move towards a stable fixed point [108, 211].

A dynamical system equilibrium is described not only by simple points. Limit

cycles or fractal attractors, also called strange attractors, might also be present in

higher dimensional dynamical systems [211].

The dynamical system may also be described by parameters [211]. The system’s

dynamic, such as the number and the nature of fixed points, can be influenced by

those parameters. A valuable tool to study the influence of the parameters of a

dynamical system is the bifurcation diagram [211]. A bifurcation happens when the

number, the nature of the fixed point or both change due to the effect of changing

a specific parameter. The dynamic of relatively simple systems like the logistic map

may differ from having a single fixed point to a chaotic attractor based on relatively

small changes in one parameter [7].

Now that we have an introductory knowledge about dynamical systems, we can

apply this framework to our neural mass model of recurrent excitatory neurons de-

scribed by Eq. (2.12). The fixed points of such a system can be found by solving

Eq. (2.12) for dr
dt

= 0. Such a solution is not guaranteed to exist, and if F is a non-

linear function, numerical simulations might be needed to find it. With a sigmoidal

F-I curve, like in Eq. (2.10), the system’s fixed points depend on the value of the

parameters. For example, Figure 2.4 presents the cases for w = 4 and w = 4.2.

Interestingly, even a tiny change in the parameter value can cause the system to dra-

matically change behaviour, bringing the system from having three fixed points to

only one.

2.1.2.2 The Wilson-Cowan model

In the previous section, I presented a simple neuronal network model with only one

single excitatory population. However, it is also important to consider other kind

of neuronal population to describe more complex cognitive functions. To extend the

approach to excitatory and inhibitory neuronal populations, a simple yet powerful

model is the Wilson-Cowan rate model [238].

Two coupled differential equations describe the Wilson-Cowan model, each de-

scribing the dynamics of the excitatory or inhibitory population:
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Figure 2.4: Phase portrait of a neural mass model of a single excitatory neuron
population. (A) Phase portrait for the model with excitatory coupling parameter
w = 4. Three fixed points are observed, with two being stable (arrows pointing
inwards) and one unstable; (B) Phase portrait for w = 4.2. Only one stable fixed
point is observed.

τE
drE
dt

= −rE + FE(wEErE − wEIrI + IextE ; aE, θE)

τI
drI
dt

= −rI + FI(wIErE − wIIrI + IextI ; aI , θI)

(2.15)

where rE(t) and rI(t) represent the average activation (firing rate) for the excitatory

and inhibitory population, respectively, τE and τI are the characteristic times of the

dynamics of each population, and w represents the connection strengths, e.g. wEI is

the connection strength from the excitatory population to the inhibitory one. The

transfer functions (or F-I curves) FE(x; aE, θE) and FI(x; aI , θI) can be different for

the excitatory and the inhibitory populations.

When studying a two-dimensional system, plotting the two variables in the phase

plane is the standard procedure. In particular, of great interest are the nullclines,

defined as the set of points in which the derivative of one of the two variables is zero.

In the Wilson-Cowan model, we have the excitatory nullcline where dre
dt

= 0 and the

inhibitory nullcline where drI
dt

= 0. The points of intersection of the nullclines, if

they exist, have both derivatives equal zero, i.e., they are fixed system points. Each

nullcline divides the phase plane into two regions: one where the derivative is positive

and the other where it is negative. This guides the behaviour of the system and can

be visualised using a vector field, i.e., the map of the tangent to the trajectory in

each point (rE, rI) of the phase plane (Figure 2.5).
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Figure 2.5: Phase plane and vector field of the Wilson-Cowan model. The blue line
represents the excitatory nullcline, while the red line is the inhibitory nullcline. The
intersection points are the fixed points of the system. The vector field (teal arrows)
shows that the point in the middle is unstable while the others are stable.

Excitatory and inhibitory interacting pools help study one of the most critical

processes that the brain performs: decision-making [73]. In particular, the next sec-

tions will focus on perceptual decision-making and explain how competing dynamics

of excitatory and inhibitory neural populations provide a perfect framework to study

the problem.

2.1.3 Modelling perceptual decision-making

Through perceptual decision-making, an organism is able to acquire and integrate sen-

sory information from the external world to make choices or decisions [87]. The study

of perceptual decision-making is an interdisciplinary field which combines behavioural

experiments [187, 146, 18], neuroimaging [192, 90] and computational modelling [242]

which is the focus of this thesis.

Behavioural experiments are generally the starting point to gain a qualitative and

quantitative description of the phenomena we want to study. Typically, behavioural

experiments are designed to measure the responses of subjects to stimuli that can be of

different origins, like visual, auditory or any other which involves sensory perception.

The responses are then used to infer the underlying decision-making mechanisms and

can be used to create a model. In addition to the responses, experiments can focus
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on other measures like the subjects’ reaction time to the stimuli or physiological

responses like pupil dilation [157, 224].

One of the most interesting paradigms is the visual decision-making. Here, stimuli

can span from a range of simple choices like single dots or lines to more complex

ones such as images [146], faces or scenes [90]. The two-alternative forced-choice

task (2AFC) is a typical experimental setting to study visual decision-making. Here,

subjects are presented with a noisy visual stimulus and are asked to make a binary

decision (choose between 2 factors) about the stimulus. The subjects are not allowed

to give different answers beyond the two possible choices (forced choices); hence, they

have to answer even in a situation of uncertainty. This kind of tasks are performed to

measure the subject’s sensitivity to the stimuli as well as their decision criterion. In

this way, it is possible to quantify the level of accumulated evidence that the subjects

require to make a choice.

A notable example of a 2AFC paradigm is the random dot motion discrimination

task [187]. Here, subjects watch a combination of a pattern of random dots moving

in all possible directions, with a certain percentage of dots moving coherently in one

single direction. Such visual stimulus is also referred to as random dot kinematogram

(RDK). The possible directions are two, for example, left or right, and subjects are

instructed to choose the perceived direction by pressing one of two buttons. The

stimuli can be of a different degree of complexity depending, for example, on the

total number of dots, and motion direction can be more or less ambiguous depending

on the number of dots moving coherently [187]. Typically, behavioural experiments

are performed on different coherence levels; a high coherence level indicates that the

proportion of moving dots is high, and subjects usually make a higher fraction of

correct choices in less time. On the other hand, lower coherence levels indicate a

more difficult task with longer reaction times and less decision accuracy.

This task is interesting as it can be used to estimate the subject’s decision criterion,

i.e., the level of evidence that the subjects need to accumulate before making a deci-

sion, together with the time required to make a decision (reaction time). The results

can then be used to create a model of perceptual decision-making and can be sup-

ported by other experiments like neural activity measurements. In the next section, I

will present in detail one of the most successful models of perceptual decision-making

in a 2AFC task.
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2.1.3.1 The Wang-Wong model

The Wang-Wong model is a two-variables neural mass model based on the Wilson-

Cowan model, which implements the evidence accumulation involved in decision-

making during a perceptual decision-making task [242]. The model consists of a

mean-field approximation of a large-scale spiking neuronal network model [232] com-

posed of 7200 leaky IF neurons of the lateral intra-parietal area (LIP). The activity of

the LIP area has been observed to be correlated with both the response time and the

choice of the subject performing the perceptual decision-making task [187]. In par-

ticular, the Wang-Wong model successfully reproduced the behavioural performances

and the reaction times of a monkey performing a random dot motion discrimination

task [242, 187]. Each variable accumulates evidence for one of the two directions of

the dots (leftward or rightward) and competes with the other via mutual inhibitory

connections. A self-excitatory mechanism is also present. The input is modelled as

two different synaptic currents generated by the stimulus and represents the momen-

tary evidence supporting the two alternatives. In addition to the stimulus currents,

the model considers a common non-selective background input. Here, we consider an

extension of the model [126] where the background current is modulated by a factor β

to take into account the speed-accuracy trade-off observed in some studies [208, 91].

In the Wang-Wong model, the input is represented by a constant current for each

population. The current responsible for the correct choice (left or right) has a higher

intensity,

Il = Jextµ0(1 + c) (2.16)

Ir = Jextµ0(1− c) (2.17)

where c ∈ [−1, 1] is the coherence with negative values referring to rightward move-

ments, µ0 is the stimulus strength, and Jext is the average synaptic coupling with

external synapses. When c = 1 or c = −1, all the dots are moving towards a sin-

gle direction, and one of the two inputs would be 0 as no dots are moving in that

direction. These currents contribute to the synaptic currents of the two populations,

Isyn,l = JllSl − JlrSr + Il + βI0 + Inoise,l (2.18)

Isyn,r = JrrSr − JrlSl + Ir + βI0 + Inoise,r (2.19)

where Jll and Jrr are the self-excitatory coupling strengths within same populations,

Jlr and Jrl the inhibitory coupling strengths across different populations, Sl and Sr
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are the synaptic gating variables representing the activities of the two populations,

β is the modulation of the background current I0 and Inoise,l, Inoise,r are Gaussian

noisy currents for the left and right population, respectively. This simplified model

consider a general case in which excitatory and inhibitory synaptic interactions are

not symmetrical. In this work, we followed the approach of the authors in the original

paper [242], setting Jll = Jrr and Jlr = Jrl after following a consideration derived from

[185]. In particular, neurons of the two different populations interact each other via

an all-to-all connection pattern. Thus, when considering a mean-field approach, it

is reasonable to assume that while excitatory and inhibitory strengths between two

single neurons may vary depending on the population the neurons belong to (or even

within the same population), it can be considered constant when referring to the

average synaptic strength within and across populations, as the neurons belonging

to the system can be considered biologically very similar. We can note that the

excitatory coupling contributes positively to the population’s current corresponding

to the correct choice because it is multiplied by the corresponding synaptic gating

variable. On the other hand, the inhibitory coupling has a negative sign and multiplies

the synaptic variable, representing the other choice.

The temporal evolution of the synaptic variables is given by the following equa-

tions,

dSl

dt
= Sl −

Sl

τs
+ γrl(1− Sl) (2.20)

dSr

dt
= Sr −

Sr

τs
+ γrr(1− Sr) (2.21)

where rl,r are the firing rates of the neurons of the two populations, τs is the charac-

teristic decaying time of the synaptic activity, and γ is a kinetic parameter to fit the

synaptic activity [242].

The equations for the firing rates are,

rl = ϕ(Isyn,l) =
aIsyn,l − b

exp(−d(aIsyn,l − b))
(2.22)

rr = ϕ(Isyn,r) =
aIsyn,r − b

exp(−d(aIsyn,r − b))
(2.23)

where the parameters a, b and d define the input-output function that generates a

firing rate from a current [1].

The noisy current in (2.18) and (2.19) evolves in time following,
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dInoise,i
dt

= Inoise,i −
1

τnoise
(−Inoise,i(t) + η(t)

√
τnoiseσ2

noise), (2.24)

where i = l or r whether the current refers to the left or right population, respectively,

σnoise and τnoise are the amplitude and the characteristic time of decay of the noisy

current, respectively, and η(t) is a Gaussian white noise with zero mean and unit

variance.

The phase plane analysis of the Wang-Wong model provides a practical biological

interpretation of the model equations. We repeat the same procedure as the one

applied to the Wilson-Cowan model in section 2.1.2.2 by plotting the nullclines i.e.,

the set of points where dS1

dt
= 0 and dS2

dt
= 0 on the (S1, S2) plane. In Figure 2.6A,

we can observe the phase plane in the absence of a coherent stimulus (c = 0 in Eq.

2.16 and Eq. 2.17) i.e., when all the dots are moving randomly without a preferred

direction. In such a situation, the two nullclines are symmetrical and intersect 3 times

in 2 stable fixed points separated by one saddle point, which attracts trajectories

moving on the S1 = S2 direction and repel towards the orthogonal direction, driving

the system towards one of the two stable fixed points. The two stable fixed points

represent the model’s choices, one for the leftward movement and the other for the

rightward. The system is symmetrical without coherent motion, and the choice will

depend on the initial condition. Each stable point has a basin of attraction, which

can be defined as the set of points in the phase plane where that stable point attracts

the trajectories. Without coherent movement, the model will choose based on which

basin of attraction the initial condition is. Adding a coherent stimulus breaks the

symmetry of the phase plane by increasing one of the two basins of attraction (Figure

shows the case of c = 0.2). By increasing the coherence, the basin of attraction of the

correspondent choice will grow more extensively than the one for the other choice. In

the limit of a perfect coherent stimulus (c = 1), the two nullclines will intersect in

one stable point, which becomes the system’s trivial choice.

2.2 Graph representations of biological neural net-

works

So far, we have been focusing on tools and models where certain specific properties of

single neurons are essential. Starting from single neuron models, we moved through

neural mass models, where several neurons are grouped into neural populations to

study local circuits at a microscopic level. Now, I will present one of many possible

macroscopic approaches to studying the human brain. The term macroscopic refers to
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Figure 2.6: Phase plane and vector field of the Wang Wong model. The blue and
red lines represent the nullclines for the two choices. The black line represents one
possible trajectory of the system. Teal arrows represent the vector field. (a) Phase
plane in the absence of a coherent stimulus (c = 0). The plot is symmetrical, with
three fixed points, two stable, separated by one saddle point; (b) Phase plane for 30%
coherence(c = 0.3). The basin of attraction corresponding to the correct choice is
larger than the one corresponding to the wrong choice (c) Phase plane for completely
coherent stimulus (c = 1). There is only one stable fixed point corresponding to the
trivial choice.
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the fact that the models presented in the following sections can be applied to studying

the whole brain (while not necessarily only limited to such scale [158]). Naturally,

at such a scale, it is difficult to keep the finer details of single neurons, for example,

those biologically plausible details, or describe neurons or neural population using

dynamical equations. Instead, I will present a mathematical tool called Graph or

Network to study the connectivity within the brain and how this is important to

explain certain brain features.

The main difference between a dynamical system approach and a graph-theoretical

analysis applied to neural network is that the first method focused more on temporal

evolution of the system with a particular attention to behaviour and stability, while

the latter focuses on concepts like information flow or resilience to damages. Clearly,

the boundary between the scopes of these different approaches is quite nuanced and

an effort should be put into integrative approaches to get the best of the different

methods. For example, Graph Theory can also be applied to study dynamics [103].

In this thesis, in addition to the consideration about the difference in the scales of

application, the dynamical system approach presented in 4 relates equilibrium states

with perceptual decision making, while graph theory will be used to study how brain

structure relates to its functioning (Chapter 3).

2.2.1 Graph Theory, Network Science and biological net-
works

Graphs or networks are concepts derived from Graph Theory, a branch of Mathemat-

ics [9, 83]. A graph is a system composed of elements called nodes connected with

links1. A more formal mathematical definition of a graph is typically written in the

form of

G = (V , E) (2.25)

Here, a graph G is defined as a collection of vertices V and edges E . An edge going

from vertex u ∈ V to vertex v ∈ V is defined as (u, v) ∈ E .
A Graph is usually represented by an adjacency matrix A ∈ R|V|×|V| [9, 83]. In

the case of a binary or unweighted graph, all the edges have the same strength and

1In literature, the term graph is often interchangeable with network [9, 83]. Similarly, the terms
vertex and node usually represent the same thing. The same applies to the terms edge and link. The
terms graph, vertex and edge are typically used when referring to the mathematical abstract object
used to represent a specific instance in a real system (we most often use the term social network
and not social graph). Unless otherwise specified, the terms graph and network, edges and vertices
or vertex and nodes are interchangeable in the present work.
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Figure 2.7: Example of a simple graph with some properties outlined. The numbers
represent the node degree. Coloured circles identify different communities. The grey
circle outline a set of 3 nodes fully connected to give an example of a highly clustered
neighbourhood.

the elements of A can only assume the value A[u, v] = 1 if there is an edge between

the vertices u and v, 0 otherwise. If the graph is undirected, i.e., (u, v) ∈ E ⇔
(v, u) ∈ E , A is symmetric. Social networks are examples of networks represented by

undirected Graphs (if vertices represent friendships and Bob is Alice’s friend, then

Alice is automatically Bob’s friend). At the same time, the World Wide Web is an

example of an undirected graph since an edge represented by a URL is unidirectional.

The adjacency matrix is a convenient tool to represent a graph, but it has some

limitations [9, 83]. First, the number of edges per vertex can vary dramatically, leading

to sparse adjacency matrices. Sparse matrices are usually space-inefficient when we

need computational analysis of many large graphs. Another caveat is that adjacency

matrices are not permutation invariant. This requires an indexing of the vertices,

which must be maintained across the analysis, and it could be more problematic in

some state-of-the-art applications of machine learning on graphs. In such circum-

stances, using the edges list V or adjacency list is an elegant and memory-efficient

way of representing sparse matrices.

As mentioned before, when using graphs as models for a system we want to inves-

tigate, we are usually interested in the connectivity pattern among nodes instead of

the properties of the single node itself. Here, I will present some of the most funda-
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mental measures of Graph Theory [9, 83]. Some of these properties can be computed

node-wise, while others are global properties of the entire graph.

Node degree. Nodes can have different roles within a graph. It is convenient to

use specific features or measures to define the properties of a node. A typical starting

point is the node degree. Starting from the adjacency matrix A, the node degree is

defined as,

du =
∑
u∈V

Au,v (2.26)

In an undirected, unweighted graph, node degree represents the number of links

that a specific node forms with other node. In Figure 2.7, degrees are outlined inside

each node. For a directed graph, the degree can be easily extended to an in-degree

and out-degree, i.e., the number of links starting from the node u and the number of

links ending to the node u, respectively. For a weighted graph, the degree represents

the sum of the strengths of the link that the node u forms with other nodes. If there is

a link between u and v, or equivalently (u, v) ∈ V , u and v are called neighbours. As

we will see in more detail, these simple features can already discriminate important

nodes in the network called hubs, i.e., nodes connecting with many other nodes.

Average node degree. Single-node features can be extended to all the nodes in the

graph, providing full-graph features or global features which are helpful to summarise

important properties of the graph. In the example of node degree, we can define the

average degree by simply averaging the degree of all the nodes in a graph,

⟨k⟩ = 1

N

N∑
i=1

ki =
2L

N
(2.27)

where N is the number of nodes in the graph, and L is the number of edges. This

is an important property but does not give important information about the graph’s

structure.

Degree Distribution. A more descriptive degree-based global feature is the degree

distribution,

P (k) =
nk

N
(2.28)
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where nk is the number of nodes with degree k and N is the total number of nodes.

The degree distribution represents the probability that picking a random node in a

network, that node has degree k.

The degree distribution is one of the most crucial global features as it can identify

essential classes of graphs. Consider, for example, the random graph or Erdős-Rényi

graph model. This is a model to generate a graph by considering a set of nodes

and assigning edges between nodes randomly with probability p. The average degree

of random graphs is well approximated by a Gaussian distribution, meaning that

most nodes have a typical number of connections while just a few have a very low or

very high degree. This distribution, however, is not observed in real networks where

usually the degree distribution follows a power law distribution defined as

P (k) ∼ k−γ (2.29)

where γ is called degree exponents and characterises the distribution. Networks with

a power law degree distribution are called scale-free networks because they lack a

typical scale (for example, random networks have a scale represented by the average

degree, which is the top value of the Gaussian degree distribution).

The scale-free property is important because it unveils how real systems organise

into this kind of network. This has been studied by Barabási-Albert, who introduces

the concept of preferential attachment. Given a graph G and a new node u trying to

connect to G, it will link to a node of G with probability,

Π(ki) =
ki∑
j kj

(2.30)

meaning that the higher the degree of the node of G, the higher the probability u will

connect with it. In other words, real networks do not form new connections randomly,

but hubs are more likely to get new connections.

Node centrality. Hubs in a graph are typically important nodes with central roles.

However, more than a node degree is required to determine the importance of a node in

a graph. A different measure of a property called node centrality can give information

about the role of a node within a graph, like how influential that node is. Consider,

for example, a social network where links represent the diffusion of news. A hub

represents a famous newspaper with many followers, but it is not guaranteed to be

the most influential node. Indeed, a lower degree node helps spread the news more

quickly because it has a higher centrality.
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Among the possible centrality measures, two rely on the definition of distance.

In a graph, the distance or shortest path length between two nodes u and v is the

minimum number of edges that must be crossed to reach v starting from u.

The betweenness centrality of a node v can be defined as,

g(v) =
∑
s ̸=v ̸=t

σst(v)

σst

(2.31)

where σst is the total number of shortest paths from node s to node t and σst(v) is

the number of those paths that pass through v excluding those with v as destination.

In other words, betweenness centrality measures how often a node lies on the shortest

path between two other nodes. In our information passing example, the information

flow often crosses a high central node and can diffuse information very effectively.

Another centrality measure is closeness centrality defined as,

CB =
1∑

y d(y, x)
(2.32)

where d(y, x) is the distance between x and y. This is a measure of the average

shortest path length between a node and all other nodes.

In the following subsection, I will introduce a novel graph approach to characterise

nodes with different centrality roles.

Clustering coefficient. The clustering coefficient is a local graph measure which

gives information about how densely connected a given node’s neighbours are. It is

defined as,

cu =
|(v1, v2) ∈ E : v1, v2 ∈ N (u)|(

du
2

) (2.33)

where N (u) are the neighbours of the node u. The denominator calculates how many

pairs of nodes are in the neighbourhood of u. A clustering coefficient of 1 indicates

that all the neighbours of a node are connected, forming a fully connected sub-graph.

Watts and Strogatz have observed that the clustering coefficient is higher in real

networks than in random ones [233]. They also linked this feature to one of the most

essential properties of real networks: small-worldness. A small-world is a network

where the average distance between any two nodes is small relative to the number of

nodes in the network. This means that in a small world network, it does not matter

how many nodes there are; a node can most likely be reached with relative ease from

any other node.
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Communities. In real networks, nodes are organised into dense groups called com-

munities. A community is a subset of nodes S ⊂ N such that a node s ∈ S is much

more likely to connect to another node r ∈ S in the same community rather than

to any other node outside that community. Two different communities can be easily

identified in Figure 2.7.

The problem of identifying communities in a graph is called community detection,

and the most effective algorithms to solve it are based on hierarchical clustering. Hi-

erarchical clustering is based on constructing a similarity matrix, whose elements xij

represent the distance between node i and j. Then, two possible approaches can be

used starting from the similarity matrix: agglomerative algorithms that merge highly

similar nodes into the same community or divisive algorithms that remove links be-

tween nodes with low similarity. A hierarchical tree or dendrogram is generated

in both cases to predict the possible community partitions. Two examples of ag-

glomerative and divisive algorithms are the Ravasz and Girvan-Newman algorithms,

respectively.

Identifying communities in a network can provide valuable insights into the struc-

ture and dynamics of the network. In particular, Communities can help identify

critical nodes in a network, such as those that bridge different communities or have a

high degree of centrality within a community. These nodes can be considered influen-

tial, essential or central in the network. Such node influence can be quantified using

several measures, for example, the participation coefficient and the within-module

z-degree.

Participation coefficient. The participation coefficient measures the diversity of

connections of a node in a network [79]. It is a value between 0 and 1 and indicates

the proportion of a node’s connections absent in its most connected community. A

node with a participation coefficient of 0 is fully embedded in its most connected

community, while a node with a participation coefficient of 1 has an equal number of

connections to all communities in the network. Community detection algorithms often

use the participation coefficient to identify nodes that bridge different communities

in a network.

It can be calculated using the following formula

Pi = 1−
C∑
c=1

(
kc
i

ki

)2

(2.34)

where C is the number of communities in the network, kc
i is the number of connections

of node i within community c and ki is the total degree of node i.
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Within-module degree z-score. The within-module z-score measures the relative

connectivity of a node in a network with respect to its community or module [79]. It

quantifies how well a node connects to the other nodes in its community compared to

how well it would connect to the other nodes in the network if its connections were

randomly distributed. It can be calculated using the following formula:

zi =
ki − k̄si
σksi

(2.35)

where ki is the degree of node i, si refers to the community to which node i belongs,

k̄si and σksi
are the average degree and standard deviation of degree in the community

si.

More advanced approaches, which will not be used in this thesis, include the

spectral analysis of the Laplacian matrix of brain networks [42, 2], exponential random

graph models [198, 199] and network motifs analysis [207].

2.2.2 Network Neuroscience

Given the interacting nature of neurons and areas in the brain, a network model might

be a good choice. However, the problem of defining nodes and links is not trivial.

We may be tempted to follow the first intuitive approach, modelling single neurons

as nodes and synapses as edges. This approach has two significant issues:

1. As already discussed, the number of neurons and synapses is vast. Therefore, a

whole human brain simulation would require a computational power far higher

than the one we can access. To make a comparison, the only neural system

analysed at single neuron and synapse level is the nervous system of the nema-

tode worm Caenorhabditis elegans, which consists of 2,287 synapses connecting

279 neurons [221].

2. Even if it was possible to create a perfect full-scale replica of a human brain,

the model would be just as complex as the original system, making it hard to

extract knowledge from it.

However, the brain possesses a particular structure of groups of strongly connected

neurons specialised in the same task [205, 218]. This allows researchers to focus only

on some of these areas and study the whole brain at a larger scale by analysing their

interactions.
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So far, an optimal size of brain areas in terms of number of neurons has not

been determined. Hence, brain networks have been studied at different scales, from

whole brain networks consisting of 70 nodes [231] to 140,000 nodes [52]. This is

advantageous because the specific network model can be constructed differently based

on the requirements of each study [22]. However, it is essential to be careful as the

number of nodes significantly affects the network properties [231].

Once the problem of node definition is solved, the next step is clearly defining

what can be identified as a link. Based on the type of interaction represented, current

approaches typically follow three different frameworks [63]:

1. Structural networks. This is probably the first intuitive approach as well

as the oldest historically. In structural networks, brain areas are anatomical

portions of the brain tissue which are physically connected by white matter

tracks.

2. Functional networks. Here, links are identified in terms of some similarity

measure between brain areas activities i.e., temporal co-activation. In general,

links cannot be interpreted as real physical connections between regions.

3. Effective networks. This is a similar approach to functional networks, with

the difference that links represent effective interaction estimated using mecha-

nistic models that rely on causality measures to estimate the strength of the

connections.

Modelling the structural connectivity (SC) and the functional connectivity (FC)

of the human brain as a network provides the possibility to apply the well-developed

approaches of Graph Theory and Network Science [62]. Some remarkable results

on SC and FC organisation include the discovery of nodes with a high number of

connections, also called hubs [167, 223, 179], and their tendency to connect to each

other creating dense clusters called rich clubs [13, 222]. Moreover, peripheral nodes

have been often found directly linking to hubs creating the so-called core-periphery

organisation [13]. On a higher scale, it was observed that the brain is organised in

hierarchical communities, i.e. dense clusters of highly connected sub-networks further

divisible in smaller communities [13, 19] and that it has the small-world property [19].

These encouraging results, as well as the growing amount of data and the evolution

of computer science tools and methods, gave birth to a new discipline called Network

Neuroscience [156]. Network Neuroscience provided useful insights in developmental

science [114] and ageing [217], psychiatric conditions [148] and neurological diseases

[20, 10], cognitive science [178, 154], metabolism [160] and many other fields.
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2.2.3 Novel graph metric: Graphlets and Orbits

Recently, a new technique based on graphlets, defined as small connected induced

subnetworks, has been proposed [181]. The main difference between graphlets and

network motifs is that graphlets are connected and are used to identify local topolog-

ical features, while motifs do not have to be induced or connected, and they need to

be over-represented in the studied network compared to random networks [181]. If a

graphlet is not an all-to-all connected graph (each node connected to all the others),

different nodes may have different topological roles. These differences are addressed

by introducing the concept of automorphism orbits; we say that nodes belong to dif-

ferent orbits if they have a different topological role (see [182] for a formal definition).

For example, in the 3-node graphlet where node 1 is connected to node 2 and node

2 to node 3 (the second graphlet in Figure 2.8A), nodes 1 and 3 are topologically

identical but different from node 2. Since graphlets are small, they represent more

complex topological information about the neighbourhood of a node compared to clas-

sical graph theory measures like node degree or clustering coefficient. Graphlet-based

measures have been used to compare real networks with theoretical network models

[181, 182, 254], providing a comparison method which outperforms the older ones

[254] and to understand how biological function is connected to topological structure

in biological networks [149, 239].

In neuroscience, graphlet may potentially offer a powerful tool to characterise lo-

cal topological roles of important nodes as well as offering a potential biomarker for

the identification of specific conditions such as a disease. I will provide different ex-

ample of potential applications in neuroscience of the tools described in the following

sections.

2.2.3.1 Graphlet Degree Vector

We can associate to every single node in a graph a Graphlet Degree Vector (GDV)

where the components are the degree of a given orbit, i.e. the times that node appears

in the considered orbit [254]. For example, In Figure 2.8B, node V appears twice in

orbit 5; hence, the correspondent component of the GDV of V will be 2. The number

of times the given node appears in orbit 0, which is the first component of a GDV, is

the degree of the node. In this context, the GDV can be interpreted as an extension

of the degree measure of a node for the description of local topology [254]. This is

useful as now we are able to discriminate between different types of important nodes
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Figure 2.8: Illustration of graphlet-related methods. (a) All the 14 automorphism
orbits of graphlets up to 4 nodes. The 11 linearly independent orbits are highlighted
in red circles; (b) Construction of the Graphlet Degree Vector. For each node V of
a graph, the elements of the vector are the number of times the node V appears in
a given orbit. In the example, node V appears in the position of orbit 5 two times
(outlined in red and blue). Hence, the GDV value of node V corresponding to orbit 5
is 2. Only the 11 independent orbits of graphlets up to 4 nodes have been considered.
Repeating the procedures for each of the N nodes of a given Graph yields an N x
11 matrix where each row is the GDV of the correspondent node, and each column
refers to a specific orbit; (c) Construction of a Graphlet Correlation Matrix. Each
element of the GCM is the Spearman’s correlation coefficient of two columns of the
GDV. This value gives information about the correlation of two given orbits within a
Graph. In the example, the Spearman correlation coefficient between columns of the
GDV correspondent to orbits 1 and 2 has been calculated. The so-defined GCM is
symmetric.
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(hubs) in the brain while node degree only allowed to discriminate between hubs and

low-connected nodes.

We will see in more details that graphlets and orbits can help discriminating

between highly local nodes and nodes participating in topologically long-range con-

nections. While for some kinds of socio-economic networks this is not the case, for

brain networks nodes can have both roles, helping in identifying important brain areas

involved in multi-modal activity. In addition, comparing information from ”normal”

subjects, graphlets can provide a way to assess how connectivity in brain structure

or function associates with different states or diseases.

Considering all the graphlets up to 4 nodes, 15 different orbits can be identified.

However, only 11 are linearly independent [254] (Figure 2.8A in red circles).

2.2.3.2 Graphlet Correlation Matrix

Stacking the GDVs of all the nodes in a graph, we construct an N × 11 matrix where

N is the dimension of the graph and 11 are the independent orbits of up to 4 node

graphlets. We can now create the Graphlet Correlation Matrix (GCM) where the

nm component is the Spearman’s correlation coefficient of the n-th and the m-th

columns of the matrix of stacked GDVs [254]. This procedure condenses the topology

of a graph of any size into an 11 × 11 symmetric matrix where the values range

from −1 to 1 [254]. Moreover, Graphlet Correlation Distance (GCD), defined as the

Euclidean distance of the lower diagonal values of the GCMs of two networks, is a

graph distance measure which outperforms all the other previously defined [254].

GCMs offer a powerful and elegant tools to condense topological information of a

network of any dimension into a condensed 11 × 11 matrix, offering an efficient tool

for comparison. This, could potentially provide a quick way to compare brains from

different experimental settings or discriminate between different states or diseases

(assuming that such conditions causes a change in the topology of the brain).

2.3 Potential contributions of Machine Learning

to Neuroscience

In the previous sections I provided and introduction to some of the most successful

computational tools starting from the smallest scale, the single neuron, going through

neural mass models of neural population, up to graph theory which overlook the fine

biological details and the use of differential equations to describe the neural system

under investigation. Since graph theory is typically applied to study the whole brain,
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I kind of completed the bottom-up approach anticipated, from single neuron to the

whole brain. However, there is still a missing piece which is difficult to associate to a

particular scale, but it is an essential computational tools which in the last decades

has exploded in popularity given its staggering success in solving complex problem

with ease. The scope of this section is to introduce such approach which is Artificial

Intelligence and Machine Learning in particular, and providing two notable example

of application of these tools to solve two active problems in neuroscience.

In the last decades, an increasing effort has been made to enable machines to per-

form tasks that intelligent entities perform efficiently [85, 127]. Artificial Intelligence

(AI) has seen a real explosion, with many new publications each year, patents, and

open-source code libraries. Providing an exhaustive overview of the broad field of AI

is beyond the scope of this thesis. The focus instead will be on how AI, particularly

Deep Learning, are beneficial to solving practical problems in Neuroscience. It is

also convenient to note that since the best example of general intelligence we have

so far comes from the human brain, AI research has intertwined with Neuroscience

with considerable mutual benefits [85]. Many advances in AI were directly inspired

by human capabilities at solving specific tasks and even the human brain’s biological

structure [85]. On the other hand, understanding how AI solves specific tasks may

give insights into how information might be encoded and processed by human brain

areas, helping advance neuroscience research [85].

2.3.1 Supervised vs. Unsupervised learning

In general, a machine learning model is a mapping function f(x; θ) : RI → RO where

I and O represent the dimensions of the input and output space, respectively. In

particular, the mapping is defined between two statistical distributions, P (I) and

P (O), which are the input and output data distributions, respectively. In practice,

the true mapping function is unknown because we could usually access a relatively

small subset of only Ptrain ⊂ P (I, O) of the actual input and output distributions

used to train such a model. This is the reason why machine learning models are

considered approximation methods [74].

Machine learning algorithms mostly fall into two broad classes depending on the

learning strategy and the task they have to solve: supervised and unsupervised learn-

ing [74].

In a typical supervised learning approach, the model is presented with data that

has been previously labelled. The dataset used to perform supervised learning consists

of a series of inputs and the respective labels or targets. The model is then trained
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in an iterative way to map the input to the output in such a way as to minimise

the prediction error. The learning is iterative because it works as follows: first, the

model’s parameters are randomly initialised, and a prediction on the input data is

performed. Such prediction is compared with the ground truth (the labels), and

a loss or cost function is used to determine the error committed by the model in

making the prediction. The loss function can typically estimate the difference in the

prediction and the ground truth, meaning it can estimate how far the model prediction

is from the actual value. The gradient of the loss function is then computed. The

gradient is a vector that indicates the parameter variation that causes the highest

increase in the loss function. Since a machine learning approach aims to minimise the

error between the prediction and the actual labels, a small portion of the gradient is

subtracted from the respective parameters. In this way, the loss will be lower at the

next iteration, and the predictions will be better. This procedure is called gradient

descent, and each iteration is called a training epoch or simply epoch. Gradient

descent is usually repeated until convergence, although we will see that choosing the

optimal convergence point is not straightforward. Gradient descent can be expressed

in mathematical terms as follows:

θ̄n = θ̄n−1 − α∇θ̄L(x̂, ŷ; θ) (2.36)

where θ̄ are the model’s parameters, n refers to the training epoch, L is the loss or

cost function, (x̂, ŷ) ∼ P (I, O) is a single data point including the input feed to the

model and the generated output, and α is a parameter that controls the rate of the

model’s parameters update called learning rate. In practice, the gradient of the loss

is not generally computed using a single data point. Instead, the input is divided into

batches and the gradient is computed on the average loss of the data points within

each batch. This approach is called mini-batch gradient descent.

Supervised learning tasks are typically divided into two main categories: classifi-

cation and regression. In classification, the goal of the model is to assign a category

or class to each input data point. In regression, the model learns a mapping from

the input to a continuous value instead. A notable example of a supervised learning

application is image classification, a problem to which researchers have dedicated a

tremendous amount of resources in the past decades [125, 197, 89, 49].

In unsupervised learning instead, the input data does not come with labels. Hence,

the aim of the algorithm is to discover hidden patterns, structures or relationships in

the data. Some examples include clustering techniques [53], anomaly detection [164],

or dimensionality reduction. In particular, dimensionality reduction techniques, like
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Principal Component Analysis (PCA) [115] or t-SNE [140], are useful to reduce the

dimension of the data while preserving their essential structure. In the next section, I

will present PCA in more details and introduce one of the many potential application

which will be used in Chapter 5.

It is also worth briefly mentioning reinforcement learning (RL), a different paradigm

based on virtual agents that receive rewards or punishment when they perform a de-

sired or undesired action, respectively [212]. Recently, reinforcement learning has seen

a growing interest as a computational tool for neuroscience because of its promising

applications to understand better how planning works in the human brain [48].

2.3.2 Principal Component Analysis (PCA)

In the previous section, I introduced the concept of dimensionality reduction tech-

niques as a class of unsupervised learning algorithms. Here, I will present in more

details one of the most popular dimensionality reduction algorithms: Principal Com-

ponent Analysis (PCA) [174]. Similarly to other dimensionality reduction techniques,

PCA’s primary goal is to reduce the dimensions of a dataset, transforming it into a

lower-dimensional representation. It is designed in such a way as to preserve the es-

sential features in the data, with a particular focus on the sources of variation. PCA

comprises various sequential steps and typically starts with data preprocessing, such

as standardisation or normalisation. The first step consists of the computation of

the covariance matrix of the input data. This matrix represents the variation of each

variable with respect to all the others. In other words, the covariance matrix encodes

how each data point varies with respect to the others. Then, PCA identifies the

eigenvectors of the covariance matrix along with the respective eigenvalues through

eigendecomposition or singular value decomposition (SVD). Eigenvectors will be the

principal components, and their eigenvalues represent the fraction of variance in the

data captured (explained) by each component. Principal components are orthogonal,

i.e., they are uncorrelated. Hence, they represent the relationships between the orig-

inal data points, providing insights into their linear dependencies. Finally, principal

components are sorted based on the fraction of explained variance, meaning that the

first component is the one that captures the most variance, and so on. We can then

select only a subset of components based on the desired level of explained variance.

For example, a typical approach is to set a variance threshold (e.g. 90%) and estimate

how many principal components are needed to explain such a level of variance. When

all PCA procedures are completed, the original data can be projected onto the se-

lected principal components in order to obtain a reduced-dimensional representation
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of the original dataset. Such projected data can then be used for further processing or

other kinds of analysis or predictive modelling. PCA has many applications in various

fields, including image and signal processing, data compression, feature extraction,

exploratory data analysis, and more [116]. Although PCA is a powerful dimension-

ality reduction method, it is essential to note that it makes a strong assumption,

like the linear relation of the input data. Datasets in which data points have more

complex relations than simply linear may not benefit from applying PCA. Later in

this chapter, I will discuss how PCA can help identify latent components of neural

activity. This will be beneficial in better understanding how the brain encodes infor-

mation from the external world as well as providing a more efficient tool for neural

decoding, i.e., translating brain activity into a desired output. Chapter 5 will show

a possible application for motor behaviour decoding.

2.3.3 Deep Learning

Deep Learning is a revolutionising sub-field of Machine Learning, the branch of com-

puter science focused on enabling machines to ‘learn‘, i.e., improving performances in

specific tasks without external human supervision [74]. The term (deep) refers to the

use of artificial neural networks (ANNs), also called deep neural networks (DNNs).

These networks generally comprise a sequence of basic processing units ensembles.

The ensembles take the name of layers while the basic units are called neurons, be-

cause they are inspired by the functioning of real neurons in the human brain2. Each

layer can be seen as a mathematical transformation of the input data. Each of these

transformations projects the input data into a different space, transforming it into

increasingly complex representations as we go deeper into the sequence of layers. The

goal of the model is to learn an optimal representation, also called embedding, which

helps solve a specific task.

The birth of Deep Learning is usually located in the 1950s and 1960s and at-

tributed to Frank Rosenblatt, who developed the perceptron algorithm [189] as well

as to Paul Werbos who introduced the backpropagation algorithm for training neural

networks [235]. However, the field did not immediately get the interest he deserved.

2The fact that artificial neurons are inspired by real neurons should not be interpreted as the
fact that they are necessarily a good model of real biological neurons. Similarly, even if DNNs reach
comparable performances as humans in specific tasks, this does not guarantee that the computation
carried by the DNNs is comparable to the ones performed by the human brain. I will briefly present
a proof of concept of a DNN ensemble to mimic the behavioural results of human participants
performing a 2AFC task in Chapter 4, discussing the advantages as well as the limitations of these
kinds of approaches to study the human cognition.
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One of the main reasons was that perceptrons were strongly criticised for being unable

to solve a problem as simple as learning the XOR logic function [151]. The interest

in Deep Learning rose again in the mid-1980s with a series of studies culminating

in the formulation of the Universal Approximation Theorem (UAT), which states

that a conceptually simple DNN with sufficient processing units can approximate any

function at any level of accuracy [99].

When introducing the broad field of Deep Learning, a typical starting point is

defining the feedforward neural network (FNN), also known as a feedforward net-

work or an artificial feedforward network (AFN) [74]. This is the conceptually most

straightforward Deep Learning algorithm as the information flows in a unique direc-

tion: from the input to the output layer, passing sequentially through the hidden

layers without making a cycle. The number of hidden layers, as well as the number of

hidden units or neurons3 is variable and can be adapted based on the complexity of

the task the algorithm needs to solve. These numbers, together with the learning rate

and other parameters we will encounter in this section, are called hyperparameters,

and they can be tuned to optimise the model’s performance.

The data is fed into the input layer, and each layer applies a linear projection

followed by a non-linear transformation to the data, known as activation functions,

before passing it on to the next layer:

y = σ(xAT + b) (2.37)

where y represents the output of a unit, x is the input to the unit, σ a non linear

activation function, AT is the transpose parameters matrix and b a bias term. The

most common choices for the activation function includes sigmoid, tanh or ReLU.

Under this framework, a FNN, as well as more complex architectures, can be seen as

a nested function in the form of

y = fn(fn−1(...(f2(f1(x))))). (2.38)

The final model’s output is usually the output of the final layer, also called the

output layer. The number of neurons in the output layer determines the dimension-

ality of the output. The output can be a single value, discrete for classification or

continuous for regression. However, it can assume a more complex form like vec-

tors, for example, when the desired output is in the form of sequences, images, or

reconstruction of the input.

3In the field of AI, the term neuron or artificial neuron are usually interchangeable as there is no
ambiguity with biological neurons.
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A specific type of FNN is the Multi-Layer Perceptron (MLP), a neural network

composed of multiple layers of artificial neurons. An MLP is typically fully connected,

meaning that the output of each neuron of the previous layer is fed into all of the

neurons of the next layer. The number of artificial neurons in a single layer determines

the dimensionality of the space where the linear projection is applied. For example,

in the specific case of a layer with three artificial neurons and a single feature x, Eq.

(2.37) becomes

y = σ(a1x+ a2x+ a3x+ b). (2.39)

Given their conceptual simplicity, relative ease of implementation and versatility,

MLPs are the most used Deep Learning architectures with a variety of applications.

In section 2.3.1, machine learning was defined as an approximation method, and

later, the Universal Approximation Theorem (UAT) was introduced. More specifi-

cally, the UAT states that a feedforward neural network with a single hidden layer

composed of a finite number of neurons can approximate any continuous function,

given enough hidden neurons [99]. The proof of the theorem will not be reported

here in detail. However, it is based on the simple intuition that non-linear activation

functions used in Deep Learning are smooth, non-polynomial functions that can be

linearly combined to approximate any other smooth function. It is important to note

that the UAT provides theoretical proof of the feasibility of a universal approximation

with a DNN. In practice, a neural network with many hidden neurons may still not

be able to approximate a function well because of overfitting or other practical issues.

More complex mathematical functions require more units per layer to be approxi-

mated, and in some cases, the dimension of such an algorithm would be unreasonably

high. For this reason, part of the effort in deep learning research has been put into

finding more efficient ways to perform tasks using different kinds of data. For exam-

ple, images are defined as grids of h×w×c where h and w are the height and width in

pixels, respectively, and c is the number of channels (for example, c = 1 for grey-scale

images or c = 3 for RGB images). In such cases, instead of passing each pixel to a

single unit in an MLP, processing the input image with operations like convolutions

and pooling to identify space-invariant features allows the algorithm to generalise to

different tasks involving visual data. These operations are the essential components

of Convolutional Neural Networks (CNN) first introduced in [131]. On the other

hand, data that have a temporal component (like time series) or that are more gen-

erally ordered in something ”before” and ”after” (like stock index prices or words in

sentences) are best processed by recurrent architectures, in which a hidden state is
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recurrently passed to the following processing unit to keep track of the previous state

of the sequence. Such layers are the basis of Recurrent Neural Networks (RNN), first

introduced in [191]. Specifically, given an input sequence xt, each layer computes and

outputs yt as well as a hidden state ht, which keeps track of the information contained

in previous elements of the sequence,

ht = σh(Whxt + Uhht−1 + bh)

yt = σy(Whht + by)
(2.40)

where σ represents a non-linear activation function, W and U are parameter matrices

and b a bias term. When training RNNs, since the gradient is computed at each point

in time (element of the sequence), the following products of gradients could become

very small (vanishing gradient) or large (exploding gradient), making it difficult to

continue the training procedure. This problem has been addressed by researchers

with the introduction of variations of RNNs, such as long short-term memory (LSTM)

networks [94] and gated recurrent units (GRUs) [27]. These kinds of architectures

are able to retain information over a more extended period of time (more distant

elements in the sequence), and they have been proven to help avoid vanishing or

exploding gradients [247].

In the following two sections, I will present two of the many possible applications

that Deep Learning has in Neuroscience.

2.3.4 Deep Learning for parameter recovery

Parameter recovery is the first problem in Neuroscience that can benefit from using

Deep Learning. In general, parameter recovery is the problem of finding the optimal

parameters of a model that fit the data collected from experimental studies [100, 236].

In psychology and Neuroscience, this framework is instrumental for many reasons.

Here, I will present two main applications which will be used in 4.

The first task that can benefit from parameter recovery is assessing a model’s

performance when reproducing specific cognitive functions. By finding the parameters

that optimise a model’s performance, researchers can more easily spot pitfalls and

implement improvements to the model [21].

The second task is identifying differences across cognitive functions or different

groups of participants. For example, one potential application is recovering the op-

timal parameters of a cognitive model that fits the behavioural data of a group of

healthy participants and repeat the procedure for a group of subjects affected by
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neurological diseases or other conditions [184, 25]. In particular, the potential appli-

cation to healthy subjects for early diagnosis of neurodegenerative disease is a field of

growing interest for the potential improvement it can have on people’s mental health

span.

Classical methods for parameter recovery include Bayesian estimation [152], Markov

chain Monte Carlo [250], and Swarm Intelligence algorithms [51]. Recently, Deep

Learning has become a valuable ally for solving the problem of parameter recovery.

In fact, computational models of cognition, especially those more biologically plausi-

ble, have become increasingly complex, meaning they include more parameters. As

the number of parameters in a model increases, so does the difficulty in recovering

them. Moreover, parameter recovery of models with parameters with a similar effect

on the output can also be challenging because of trade-off effects [236]. Deep learning

helps solve these issues thanks to its capabilities of learning features by itself without

heavy data preprocessing, different from other statistical or machine learning applica-

tions where feature engineering is an essential step and might require a considerable

amount of resources.

Deep Learning also has some drawbacks that must be carefully considered. One

such drawback is that powerful Deep Learning algorithms’ are usually highly complex,

meaning they have many trainable parameters. A direct consequence is that a large

amount of data is usually required for successful training to make sure the algorithm

generalises well to unseen data (the problem of training an algorithm with few data

samples, the so-called one-shot learning problem, has not yet a unique, satisfying

solution and it is currently an active field of research in AI [124, 227]). On the

other hand, while data availability is limited in many cases, data from cognitive

computational models can be generated at will, with the only limitation being the

computational resources available.

It is also worth mentioning that when the model’s interpretability is a hard re-

quirement, instead of just a nice-to-have, the use of Deep Learning may pose some

additional challenges. Indeed, the high complexity of Deep Learning algorithms makes

it highly challenging to identify what a learned feature represents. This is because

learned features are generally abstract, non-linear combinations of the inputs that

humans cannot interpret directly. These challenges are currently tackled by the field

of interpretability or explainability of AI algorithms to make future AI systems trust-

worthy and aligned with humans’ values and goals [193].

In general, Deep Learning is exceptionally suitable for parameter recovery. In

Chapter 4, a simple MLP will be used for parameter recovery of a biologically plausible
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model of perceptual decision-making [242] introduced in Section 2.1.3.1.

2.3.5 Decoding continuous behaviour using Deep Learning

The second problem treated in this thesis that benefits from using Deep Learning is

making predictions about the outside world by interpreting activity recorded from

the brain, usually referred to as neuronal decoding [69]. Neuronal decoding typically

uses a computational model called a decoder that takes neuronal activity in various

forms as input and generates an output to predict what information is encoded in the

neuronal activity. The problem of how the brain encodes information is still an active

field of research [188]. As anticipated in Chapter 1, the human brain is an exceptional

encoder because it can take a large amount of data in the form of sensory inputs, as

well as other internal neural activity, and combine them to create an efficient neural

representation that can be used as a model of the external world. Similarly to the

case of embeddings in an artificial neural network, a comprehensive understanding of

what computation the brain makes to generate such representations is still missing.

Neuronal decoding can help shed light onto this yet obscure mechanism, allowing

researchers to understand better what information about the external world and in-

ternal states is represented by neural activity. It can be a valuable tool for researchers

exploring the neural mechanisms underlying various cognitive and behavioural pro-

cesses such as attention, memory, and decision-making [234]. Moreover, an efficient

decoding model that can translate neural activity into behavioural output, especially

if in real time, made it possible for the development of advanced neurotechnologies

like Brain-Computer Interfaces (BCI) or neuro-prosthetic [240]. These technologies

are already helping several people who suffered the loss of limb control either from

a traumatic loss [186], spinal cord injuries [15], or because of other neurological con-

ditions [121] which may also impair other critical day-to-day activities like speaking

[139] or even seeing [98]. Moreover, BCIs have been shown promising applications

for neurological and psychiatric diagnoses such as Alzheimer’s disease, Parkinson’s

disease, and schizophrenia [200]. Of particular interest is the combined usage of BCIs

and non-invasive neurostimulation approaches such as deep brain stimulation (DBS)

or transcranial magnetic stimulation (TMS) to regulate abnormal neural activity and

treat various neurological conditions [190].

2.3.5.1 Latent dynamics analysis of neuronal data

Usually, neuronal decoding is performed on the entire dataset coming from a neu-

ronal recording session. However, the data may be high dimensional in some cases,
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making it challenging to perform neuronal decoding in the whole dataset. Neuronal

data usually present different correlation patterns that vary based on the specific

brain region, experimental conditions or the type of neural activity being recorded

[30]. In such cases, dimensionality reduction techniques such as PCA, discussed in

section 2.3.2, can help identify lower-dimensional representations of the neural data.

Such representations are usually referred to as latent variables or latent dynamics,

and they constitute unobserved or hidden variables underlying the observed neural

data [38]. The term ‘latent‘ comes from the fact that these variables can not be

directly measured but are typically inferred based on statistical models and analysis

techniques. Latent variables can be thought of as primary sources of variability that

give rise to the observed neuronal responses [38] and may represent different aspects

of neural activity, such as firing rates, oscillatory patterns, or network dynamics.

Among the several applications, latent dynamics analysis can provide valuable

insights into the neural basis of motor behaviour and enable accurate decoding of

motor-related information from neuronal data. By leveraging the latent variables that

capture the underlying motor dynamics, it becomes possible to decode specific aspects

of motor behaviour, such as movement trajectories, kinematics, and even intended

actions, from the patterns of neural activity [29, 168]. Using latent dynamics instead

of the original high-dimensional data for neuronal decoding of motor behaviour is also

advantageous to improve the signal-to-noise ratio by capturing the shared variability

across neurons or time points related to the motor behaviour, effectively filtering

out noise and uninformative fluctuations [249]. Moreover, latent dynamics analysis

can provide a compact representation of the neural data that generalises well across

unseen trials or different experimental conditions [3].

In chapter 5, I will use PCA to identify the latent variables able to account for

80% and 90% of the explained variable and use such variables to see how decoding

performances vary with respect to the case of the decoding of the whole neural dataset.
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Chapter 3

Graphlet analysis of structural and
functional connectomes

3.1 Introduction

Integrating data from different imaging modalities, such as structural and functional

MRI (fMRI), electroencephalography (EEG) or magnetoencephalography (MEG), is

an active field of research given its promising applications to uncover the relationship

between the structure and the functioning of the brain. In particular, the effective

integration of fMRI and MEG-derived functional connectivity (FC) has received an

enormous interest in the last decades because of the dual nature of temporal/spatial

resolutions of the modalities [88]. Data from fMRI has a high spatial resolution but

poor temporal resolution, while EEG/MEG possesses an excellent temporal resolution

at the cost of a reduced spatial resolution. Integrating fMRI and MEG can combine

the potential of each approach, minimising their drawbacks. Several integration ap-

proaches have been proposed. The most conceptually simple are the so-called fusion

methods, which combine the features extracted from the data by averaging or con-

catenating them [201]. However, while the simplicity of such approaches is definitely

an advantage, these methods suffer from the risk of minimising or even ignoring the

specific strengths of each modality. A more rigorous approach is multimodal data

analysis, a set of statistical methods, such as multivariate analysis, to model the

relationship between the modalities. In this framework, we may find powerful meth-

ods such as Partial Least Squares (PLS), Canonical Correlation Analysis (CCA), or

Independent Component Analysis (ICA) [252].

In this work, I will focus on another class of methods called connectivity-based

approaches, specifically using graph-theoretic tools and measures [106]. Graph-theory

comprises a large set of tools to analyse the local and global properties of brain
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networks. These approaches have been extremely helpful in understanding the brain

structure and functioning, combining different type of networks (structural, functional

or effective) [155, 97, 128]. Moreover, graph-theoretical approaches can be adapted to

integrate data from various imaging modalities, like MRI, fMRI or EEG/MEG among

the others, to study the relationships between structure and function [203, 97]. Graph-

theory-based integration of structural and functional connectomes has been proven

effective in uncovering new properties of the brain and explaining how complex brain

dynamics arise from its structure [169]. At the same time, fMRI and MEG have

been used to identify critical parts of the human brain involved in complex tasks like

expressive language [246] or to identify biomarkers of neurological diseases [84] for

early diagnosis and treatments.

Recently, a novel Graph Theory approach has been proposed by making use of

graphlets. Graphlets are small, induced, connected subgraphs. They are similar

to network motifs, with the exception that motifs are defined as under or over-

represented compared to a random graph null model. The frequency of different

graphlets and their correlation is able to characterise the topology of the network un-

der investigation and can provide markers to classify networks from different domains

[181]. The frequency of graphlets can be evaluated for each node using the Graphlet

Degree Vector (GDV), an extension of the concept of node degree, which is then used

to estimate the Graphlet Correlation Matrix (GCM), a helpful tool whose dimension

does not depend on the network size. These tools were presented in detail in Section

2.2.3. To the best of my knowledge, there has yet to be a comprehensive study on the

graphlet statistics of human brain connectome across multiple modalities, and this

offers an excellent opportunity to use advanced graph-theory tools for multimodal

integration. The current study proposes graphlet-based analysis on whole-brain SC

(DWI) and FC (fMRI and MEG) to address the main topological differences across

these modalities.

This chapter’s analysis will be guided by three main questions. First, how do

graphlet-based measures vary across imaging modalities? In other words, can graphlet-

based approaches be a suitable graph-theory-based multimodal integration method?

Second, how does graphlet-based topology vary between groups of brain regions (brain

clusters)? In particular, the large-scale brain organisation suggested by [70] will be

used. Third, how do grahplet-based measures relate to conventional graph measures?

This question is vital to ensure that graphlets can effectively uncover new topolog-

ical information unavailable to conventional graph metrics and provide a quick and

effective way to condense such information, which normally require several different
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graph measures and extensive computational resources. In particular, I will present

the results of experiments designed to understand how graphlet-based measures relate

to conventional graph measures by correlating specific graphlet-based statistics with

six classical graph measures: clustering coefficient, average degree neighbour, partici-

pation coefficient, within-module degree z-score, betweenness centrality and closeness

centrality.

3.2 Methods

3.2.1 Neuroimaging

Data used in this chapter come from three different non-invasive neuroimaging tech-

niques: Magnetic Resonance Imaging (MRI), functional MRI (fMRI) and Magne-

toencephalogram (MEG). In this section, I will present a brief introduction to each

method.

3.2.1.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is based on the principles of nuclear magnetic

resonance (NMR), a phenomenon that occurs when nuclei of certain atoms are placed

in a magnetic field and exposed to radiofrequency (RF) pulses. Hydrogen is the prin-

cipal atom used in magnetic resonance imaging (MRI) because of its large abundance

in biological tissues.

When a subject is positioned in the MRI scanner, under the influence of a static

magnetic field B0, the spins of hydrogen nuclei (protons) in tissues are aligned along

the direction of B0. These aligned proton spins are not static. Instead, a precession

motion around the axis of the magnetic field is observed. Such precession happens

at a characteristic frequency called the Larmor frequency, which is proportional to

the strength of the external magnetic field. Next, a brief radiofrequency pulse (RF

pulse) at the Larmor frequency is applied, momentarily perturbing the protons’ spins

which will not align with B0 anymore. When the RF pulse is switched off, the protons

spin relax to their initial equilibrium state, in alignment with B0. This decay process

is referred to as relaxation, and the signal takes the name of Free Induction Decay

(FID) signal. Relaxation phenomena involve T1 relaxation (longitudinal relaxation)

and T2 relaxation (transverse relaxation).

Through T1 relaxation, also known as spin-lattice relaxation, protons transfer en-

ergy to their neighbouring atoms (the lattice) and realign with the magnetic field B0.

The time constant T1 quantifies the time it takes for the longitudinal magnetisation
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to recover approximately 63% of its original value. Different tissues have different

T1 relaxation times, allowing for contrast between different types of tissues in T1-

weighted images. For example, fat has a shorter T1 time compared to water, leading

to a brighter signal in fat and a darker signal in water on T1-weighted images.

T2 relaxation, or spin-spin relaxation, involves the dephasing of proton spins in

the transverse plane due to interactions between neighbouring spins. The time con-

stant T2 is the time it takes for the transverse magnetisation to decay to about 37%

of its initial value. T2-weighted images provide contrast based on the differences in

T2 relaxation times of various tissues. Tissues with high water content, such as cere-

brospinal fluid, have longer T2 relaxation time and appear brighter on T2-weighted

images, while tissues like white matter, with shorter T2 relaxation times, appear

darker.

In addition to T2 relaxation, there is a phenomenon known as T2* decay, which

accounts for magnetic field inhomogeneities and susceptibility effects. T2* decay oc-

curs faster than T2 decay due to these additional factors, leading to a more rapid

signal loss. Hence, it is possible to generate specific MRI pulse sequences to create

images with particular sensitivity to magnetic field inhomogeneities and T2* relax-

ation effects. This makes such sequences perfectly suited for another neuroimaging

technique called functional MRI (fMRI) focused on detecting changes in blood oxy-

genation levels, which indirectly relate to neuronal activity.

The contrast in MRI images is primarily determined by the differences in T1

and T2 relaxation times of tissues, as well as the proton density (the number of

hydrogen nuclei per unit volume). By adjusting the timing parameters of the RF

pulses and the data acquisition, it is possible to create images that emphasise T1

contrast (T1-weighted images), T2 contrast (T2-weighted images), or proton density.

Two parameters are of particular importance, Repetition Time (TR) and Time to

Echo (TE). Normally, a series of RF pulses is applied instead of just one single pulse.

TR identifies the amount of time between successive pulse sequences applied to the

same portion of tissue. TE instead, is the difference in time that occurs from the

delivery of the RF pulse and the receipt of the relaxation signal (echo). To obtain

T1-weighted images, short TR (repetition time) and short TE (echo time) values

are used to emphasise T1 differences, making fat appear bright and water appear

dark. On the other hand, T2-weighted images can be obtained using long TR and

long TE values, making water appear bright and fat appear darker. Finally, long TR

(similar to T2-weighted images) and short TE values highlight differences in proton
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density, providing a different type of tissue contrast which is the base of proton

density-weighted images.

A commercial MR scanner is typically composed of four principal components.

The primary magnet creates the high-intensity static magnetic field which causes

the nuclei to polarise and spins to align with the magnetic field lines. The Radio-

frequency coils (RF coils) generate the variable magnetic field. The gradient coils

apply a smooth (linear) small variation to the static field at different locations. Such

variation, slightly changes the spin precession frequency or phase, making it easy to

encode the spatial information of an imaged object in the frequency associated with

a position in space. The auxiliary coils, compensate for potential inhomogeneities in

the principal magnetic fields.

In the next two subsections, we briefly introduce two MRI modalities used in the

current chapter: Diffusion-Weighted Imaging (DWI) and functional MRI (fMRI).

3.2.1.2 Diffusion-Weighted Imaging

DWI is a non-invasive neuroimaging technique that measures the random Brownian

motion of water molecules within a voxel of tissue in vivo and non-invasively [215] with

MR. In tissues, diffusion is often restricted by cellular structures such as membranes,

fibres, and macromolecules. DWI exploits these differences in water diffusion to

generate contrast in MR images.

Specifically, the T2 signal attenuation is based on how easily water molecules dif-

fuse in a specific region. The further the distance covered by water molecules (easier

diffusion) the lower the amount of the initial T2 which persists. For example, water

within cerebrospinal fluid (CSF) generally diffuses very easily, causing the areas to

be black because no signal remains. Conversely, water within the grey matter can-

not move as easily because of the numerous cell membranes acting as obstacles and

therefore the initial T2 signal is only slightly attenuated. DWI uses strong paired

gradients to sensitise the MRI signal to the movement of water molecules. These

diffusion-sensitising magnetic gradients are applied in different directions, and the

signal attenuation observed is related to the extent of water diffusion in those direc-

tions. The first gradient dephases the spins of water protons, and the second gradient,

applied after a certain time interval, attempts to re-phase them. If water molecules

have moved (diffused) between the application of these gradients, the rephasing is

incomplete, leading to signal attenuation. The degree of signal attenuation is pro-

portional to the amount of diffusion, allowing for the creation of diffusion-weighted

images.
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DWI first focuses on the extraction of diffusion information from the tissue, ob-

taining a T2* weighted image. Next, diffusion attenuation is applied using the b-value.

The b-value is a crucial parameter that controls the sensitivity of the MRI signal to

the diffusion of water molecules. It is defined as

b = γ2G2δ2
(
∆− δ

3

)
(3.1)

where γ is the gyromagnetic ratio, a constant specific to the type of nucleus being

imaged (for hydrogen, it is approximately 42.58 MHz/T), G is the strength of the

magnetic gradient applied, δ is the duration of each gradient pulse in ms, ∆ is the

time between the onset of the two gradient pulses (ms). Higher b-values increase

the sensitivity to diffusion but also result in greater signal attenuation. Typical

b-values range from 0 (the first T2*-weighted image with no diffusion weighting)

to 1000 s/mm² or higher, depending on the application. Larger b values can be

obtained by applying stronger magnetic gradients as well as of longer duration, and

by increasing the interval between paired gradient pulses. Water diffusion within

tissues is quantified by the apparent diffusion coefficient (ADC). It can be calculated

by acquiring images at different b-values and fitting the data to the following equation:

S(b) = S(0)e−b·D (3.2)

where S(b) is the signal intensity with diffusion weighting, S(0) the signal without

diffusion weighting b = 0, and D is the ADC. The ADC reflects the degree of water

diffusion in tissues, with higher ADC values indicating more free diffusion and lower

values indicating restricted diffusion.

3.2.1.3 Functional MRI

Functional MRI is another non-invasive MR-based technique, focused on the study of

the time evolution of a particular signal to infer functional correlation across different

brain areas [113]. It does not detect neuronal activity directly but instead measures

changes in blood flow, blood volume, and blood oxygenation, which are coupled to

neuronal activity. This phenomenon is known as neurovascular coupling. The most

common fMRI technique relies on the Blood Oxygenation Level-Dependent (BOLD)

signal, which reflects changes in the magnetic properties of blood due to varying

levels of oxygenation. When neurons become active, they consume more oxygen. In

response, local blood flow increases to supply the active region with oxygen, leading to

a complex sequence of haemodynamic changes. Changes in blood oxygenation alter

51



the local magnetic field, which affects the MR signal. Oxygenated haemoglobin is

diamagnetic (weakly repelled by a magnetic field), while deoxygenated haemoglobin is

paramagnetic (attracted to a magnetic field). The relative concentration of these two

forms of haemoglobin affects the T2* relaxation time, which is what the BOLD signal

measures. Functional MRI offers good spatial resolution, typically in the range of 1-3

mm, allowing for detailed mapping of brain activity. However, its temporal resolution

is limited by the haemodynamic response, which occurs over several seconds. This

temporal delay means that fMRI cannot capture the rapid neural activity but instead

provides an averaged response over a short period.

3.2.1.4 Magnetoencephalogram

Magnetoencephalography (MEG) is a non-invasive neuroimaging technique used to

measure the magnetic fields produced by neuronal activity in the brain. Unlike fMRI,

which relies on changes in blood flow or magnetic properties of blood, MEG directly

captures the magnetic signals generated by the electrical currents flowing through

neurons. This direct measurement offers unique advantages in temporal resolution

although it does not have a good spatial resolution compared with other typical MR-

based techniques.

Neuronal activity in the brain generates tiny magnetic fields, on the order of mag-

nitude of 10 fT, primarily from the synchronous activity of pyramidal neurons in the

cortex. According to Maxwell’s laws, when these neurons fire, they produce electrical

currents that create corresponding magnetic fields. MEG sensors, typically supercon-

ducting quantum interference devices (SQUIDs), detect these magnetic fields outside

the head with high sensitivity and precision. Given the extremely small magnitude of

the magnetic field generated by neuronal currents, MEG scanners are required to be

located in magnetically shielded rooms (Faraday cages). During an MEG recording

session, the subject typically sits or lies down with their head positioned within an

array of MEG sensors. The sensors detect the magnetic fields generated by neuronal

activity in real-time, providing millisecond-level temporal resolution. This high tem-

poral resolution makes MEG particularly valuable for studying the dynamics of brain

processes.

After MEG data acquisition, several pre-processing steps need to be performed.

For example, artefacts like eye blinks or other minor events that introduce noise in

the recordings need to be filtered. Following the preprocessing step, an essential part

of MEG data processing is source reconstruction. Since MEG sensors record mag-

netic fields outside the head, it is necessary to reconstruct the sources of these signals
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within the brain. This process, known as source localisation or source reconstruc-

tion, involves mathematical modelling to estimate the locations and strengths of the

neuronal sources generating the observed magnetic fields. In section 3.2.2.11, the

algorithm used for this study will be conceptually explained and compared to other

common source reconstruction methods.

3.2.2 Imaging data acquisition and processing

In this section I will thoroughly present the procedures carried for data acquisition

and pre-processing. All the procedures presented before Section 3.2.2.13 were carried

by different member of the team involved in the project.

3.2.2.1 Participants

The participant cohort for this study consists of a group of 29 individuals who are in

good health and were selected from the participant panel of Cardiff University School

of Psychology. Ages range from 18 to 35 years and a mean age of 21.1 ±2.94 years.

None of the participants have a documented history of neurological or psychiatric

disorders. The study was approved by the Cardiff University School of Psychology

Research Ethics Committee, and all participants provided their informed consent in

written form.

3.2.2.2 MRI data acquisition

The diffusion-weighted images (DWI) were obtained for the whole brain, multi-shell,

of all participants from a Siemens 3T Connectom MRI scanner (Siemens Medical

Systems) at the Cardiff University Brain Research Imaging Centre (CUBRIC). A

HARDI protocol was utilized for spin-echo echoplanar imaging (EPI) pulse sequence

(echo time 59 ms, repetition time 3000 ms, voxel size 2×2×2 mm). The application

of diffusion sensitizing gradients followed in 20 isotropic directions at b-values of 200

and 500 s/mm2, in 30 isotropic directions at a b-value of 1200 s/mm2 and in 61

isotropic directions at b-values of 2400, 4000, 6000 s/mm2. Thirteen volumes without

diffusion weighting (b = 0 s/mm2) were obtained with an interleaved order across the

sequence. A correction for susceptibility-induced distortions was applied by acquiring

three images at b = 0 s/mm2 and 30 diffusion directions at b=1200 s/mm2 with the

opposite phase encoding direction. Participants also went through high-resolution

T1-weighted magnetization prepared rapid gradient echo scanning (MP-RAGE: echo
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time 3.06 ms; repetition time 2250 ms sequence, flip angle 9°, field of view=256×256

mm, acquisition matrix 256×256, voxel size 1×1×1 mm).

A multi-band protocol (echo time 35 ms, repetition time 1500 ms, voxel size 2 ×
2 × 2 mm, multi-band factor 3, flip angle 70°, AC-PC alignment with a posterior-

down tilt) was used for the acquisition of the final BOLD-sensitive T2*-weighted EPI

images for the whole brain. A total of 315 volumes were obtained from an interleaved

sequence. The instructions given to participants during the scan were to rest with

eyes open and focus on a red dot projected on a grey background. Analogously to

MRI data acquisition, a red dot was projected to a grey background, and participants

were instructed to fixate their eyes on it. The duration of each recording session was

about 8 minutes.

3.2.2.3 MEG data acquisition

MEG recordings for the whole brain were collected with a 275-channel CTF radial

gradiometer system (CTF Systems, Canada) in a magnetically shielded chamber with

a sampling rate of 1200 Hz. During the analysis of the primary sensors, it was discov-

ered that one sensor exhibited an excessive level of noise, rendering its data unreliable

for further examination. To cancel out any residual noise effectively, 29 additional

reference channels were recorded while analysing the primary sensors as synthetic

third-order gradiometers [229]. Blinks and eye movements were tracked using Con-

tinuous horizontal and vertical bipolar electro-oculograms (EOG). To minimise the

potential effects of head movement on the recorded data, a chin rest was utilised

while participants were seated in the MEG chair. This arrangement aimed to re-

strict excessive head movements during the experimental sessions by providing stable

and comfortable support for the chin. This precautionary measure aimed to ensure

the acquisition of high-quality and reliable data by minimising artefacts that could

arise from unintentional head movements. A Polhemus FASTRAK (Colchester, Ver-

mont) was used to digitise the head shape with the position of coils for MEG/MRI

co-registration.

3.2.2.4 Cortical reconstruction

The T1-weighted MP-RAGE images were processed using Freesurfer (version 5.3.0,

http://surfer.nmr.mgh.harvard.edu). The pre-processing consisted of motion

correction, intensity normalisation, skull-stripping, white-matter segmentation, tes-

sellation, smoothing, inflating and spherical registration [58]. Following pre-processing,

the surface of grey matter/white matter with inner skull, scalp and pial images were
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created. The mean non-diffusion image (b = 0 s/mm2) was used as the base for

the registration of conformed and intensity normalised T1-weighted image with a

boundary-based rigid body registration with six degrees of freedom [76]. For each

participant, the forward and inverse transformation matrices between the native DWI

space and T1 space were computed for the following co-registration and tractography

analyses.

The brain surface was parcellated into 360 regions using the Multimodal Hu-

man Connectome Project-based (HCP-MMP) atlas [70]. After careful examination

and analysis, it was determined that errors were present in the hippocampus re-

gions of several subjects. As a result, these regions had to be discarded from fur-

ther consideration in the study. Despite this setback, the remaining brain regions

were deemed reliable and suitable for analysis. Consequently, 358 region surfaces

were included in the subsequent investigations, allowing for a comprehensive exam-

ination of the neural activity and connectivity within the remaining brain regions.

The range of dimensions of the brain regions was wide (122 mm2 smallest region to

3198 mm2 largest region) in the original HCP-MMP atlas. More extensive regions

in the HCP-MMP atlas were subdivided into a determined number of sub-regions

using the ”mris divide parcellation” command from Freesurfer to obtain more homo-

geneous size across ROIs (average largest region size was 454 mm2). Smaller and

larger subdivisions were checked manually and corrected. The final structural con-

nectome contained 664 regions of interest (ROI).

Annotation files were registered in the fsaverage space to the subject space, and

the surface was sampled into volume to create subject-level parcellation of subdivided

HCP-MMP atlas. For each subject, cortical parcellation volume was co-registered to

native DWI space with no resampling and closest white-matter voxels were assigned

to grey matter regions. The assignation was performed by searching the grey-matter

voxels less distant than 1.73mm in a 5x5x5mm cube centred at the white-matter

voxel.

Native space-registered Freesurfer segmentation images, including white matter

and dilated grey matter/white matter boundary used in tractography, were used to

create the white matter mask.

3.2.2.5 DWI data preprocessing

DWI data format was converted from DICOM to NIfTI format using dcm2nii. Ther-

mal noise was removed from the images with the MP-PCA method, and skull-

stripping was performed using FSL BET [220]. Drift correction was applied [228], as
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well as subsequent susceptibility-induced distortions, eddy currents and head motion

corrections using FSL eddy and ”topup” functions (FSL 6.0.1). Following gradient

nonlinearity, [71] and Gibbs ringing artefacts [120] corrections, a mean non-diffusion

image (b = 0 s/mm2) was generated.

3.2.2.6 Tractography

Following the computation of input response functions for the cerebrospinal fluid

(CSF), grey matter (GM) and single fibre white matter (WM) from multishell DWI

data [47], the distributions of fibre orientation were estimated using multi-tissue con-

strained spherical deconvolution [111] for each tissue compartment in all voxels. The

”mtnormalise” tool from MRTrix was used to normalise multi-tissue fibre orientation

functions for multisubject comparison.

Next, seed masks for tractography were generated with the following steps: cre-

ating multi-tissue fibre orientation functions by resampling each subject’s left and

right hemisphere surfaces into volume and registering to native DWI space with the

transformation matrix from the previous step; creating a labelled WM/GM bound-

ary image by multiplying binarised WM/GM boundary image with subject-based

dilated HCP-MMP atlas image; adding the sub-cortical segmentation created in the

recon-all procedure to the labelled image. A total of 375 seed masks (358 cortical, 17

sub-cortical) were generated.

Region-to-region tractography was computed using a probabilistic algorithm based

on the second-order integration over fibre orientation [219]. To avoid undesired par-

tial volume effects, seed masks were restricted to the HCP-MMP atlas parcellations

on the extended GM/WM boundary. Tractography was only performed on white

matter. Two hundred streamlines were generated for each seed-voxel [196]. The min-

imum streamline length was set to 10mm. For tractography computational power

optimisation, larger seed masks were subdivided into smaller masks while preserving

the target masks [196], and the tractography was executed in parallel.

Streamlines ending outside the target mask or transverse WM were discarded.

An outlier removal based on clustering was also used [34]. To establish connections

between various brain regions, a sampling procedure was employed along the length

of the streamlines. These streamlines were then grouped into clusters based on their

proximity, as determined by the Euclidean distance between them. Whenever the

distance between two streamlines exceeded a predefined threshold, a new cluster was

created. Through iterative testing, the threshold was ultimately set to a value of

5 after evaluating multiple alternatives. It was found that smaller clusters could
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have provided more substantial insights and were therefore disregarded in the subse-

quent analysis. This methodology allowed for identifying and examining meaningful

connections between different brain regions while ensuring a consistent and reliable

clustering approach.

3.2.2.7 Structural Connectome

To derive the structural connectome, a total of 358 cortical ROIs from the HCP-MMP

atlas were utilised. The extraction process involved quantifying the number of valid

streamlines connecting each pair of regions. This approach enabled the establishment

of connectivity patterns between different brain areas. To determine the density of

connections, the number of streamlines was divided by the sum of those pairs of

regions that were linked. In order to focus on more robust connections, any connec-

tions with fewer than 50 streamlines were excluded from further analysis. ROIs were

grouped into 22 clusters according to their spatial location for a more comprehensive

understanding of the interrelationships and functional subdivisions within the brain

[70].

3.2.2.8 fMRI preprocessing

The preprocessing of resting state fMRI (3D rsfMRI) images was performed using the

Connectome Computation System (CCS) [244], which includes Freesurfer [57], FSL

[110] and AFNI [35]. The aim was to project 3D rsfMRI images onto 2D cortical

surfaces to increase the test-retest reliability of rsfMRI analyses [253]. Images under-

went the following preprocessing steps with CSS: (1) removal of the first 10 seconds

of each scan for signal equilibration, (2) slice timing correction, (3) 3D motion correc-

tion, (4) 4D global mean-based intensity normalization, (5) regressing out the white

matter, cerebrospinal fluid and motion parameters, (6) band-pass temporal filtering

(0.01–0.1 Hz), (7) linear and quadratic trends removal, (8) Application of a rigid

boundary-based transformation (BBR) algorithm for co-registrating between individ-

ual functional and anatomical images [76], and (10) projection of functional images

onto the fsaverage5 cortical surfaces in the standard MNI space (10,242 vertices per

hemisphere and 4 mm inter-vertex gap on average) [245].

3.2.2.9 fMRI derived functional connectome

From the subparcellated HCP-MMP atlas, a signal-average time series was calcu-

lated for each of the 358 ROIs, and the connectivity was determined as the Pearson
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correlation coefficient between each pair of ROI time series. Connections with a

non-significant correlation were discarded.

3.2.2.10 MEG preprocessing

MEG data preprocessing was based on previous pipelines [214]. Continuous raw MEG

data underwent the following preprocessing steps: (1) import to Fieldtrip [165], (2)

256 Hz downsampling, (3) application of 1-100 Hz 4th order two-pass Butterworth

bandpass filter, (4) line noise removal with 50 and 100 Hz notch filters, (5) Removal

of visual and cardiac artefacts using ICA decomposition with the fastica algorithm

[105] with the help of simultaneous EOG recordings. Removed components were in

the range of two to five for each subject.

3.2.2.11 MEG source reconstruction

Brainstorm software [213] was used to import Freesurfer and MRI scan-generated sur-

faces of the inner skull, scalp, pial, and grey matter/white matter boundary. These

data were then aligned to the MNI coordinate system with an automated procedure.

The iso2mesh software Brainstorm implementation [55] was used to generate a cortical

surface of dipole locations by identifying the midpoint between the pial surface and

grey matter/white matter boundary and downsampling it to 10,000 homogeneously

spaced vertices. Analogously, the inner skull surface was downsampled to 500 ver-

tices. Matlab was subsequently used to align these structural surfaces with the MEG

digitizers. A realistic, subject-specific, single shell forward model was then created

from the aligned MEG gradiometers, inner skull surface, and cortical surface [161].

The source activity was reconstructed using exact low-resolution electromagnetic

tomography (eLORETA) [170, 171], a linear, regularized, weighted minimum-norm

inverse solution with exact, zero error localization [170, 214]. The eLoreta method has

been shown to have high performances on (parcellated) resting-state data [136, 214]

and whole brain synchronization [56, 172] compared to other methods. In addition,

eLORETA caused low source leakage, a situation where the presence of spurious

correlation between voxels’ activity causes a non-precise estimation of functional con-

nectivity, resulting in lower-quality functional networks [32]. Other possible choices

for source reconstruction algorithms are the linearly constrained minimum variance

(LCMV) beamformer [225], weighted LCMV which is a LCMV with depth normali-

sation, [93] and other methods that use least-squares minimum norms under different

prior assumptions of source covariance like eLORETA. Specifically, these algorithms

are the minimum norm estimate (MNE) [82], weighted MNE [65], variance-normalized
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and sLORETA [173]. The orientations of the dipole were set normal to the cortical

surface [39, 92] under the hypothesis that M/EEG signals are mainly generated by the

postsynaptic currents in the dendrites of large vertically oriented pyramidal neurons

in layers III, V, and VI of the cortex [163].

The cortical surface was registered to the MEG-optimized reduction [214] of the

HCP-MMP atlas (115 cortical ROIs per hemisphere) in Freesurfer. Each ROI time

series was computed as the time course of the first principal component of all voxels

inside the ROI.

3.2.2.12 MEG derived functional connectome

Functional connectome was generated using phase and amplitude measures within

four frequency bands (theta 4-8Hz; alpha 8-13 Hz; beta 13-30 Hz; gamma 30-100Hz).

Amplitude envelope correlation (AEC) was calculated after multivariate orthogonal-

ization [32] between ROI pairs. This particular metric was chosen following previous

proof of its high reliability [33].

3.2.2.13 Network binarization

The connectomes derived from DWI, fMRI and MEG data are represented as un-

weighted adjacency matrices. In order to apply the graphlet approach, a standard

10% relative threshold has been used to binarise the matrices, meaning that only

10% of the most robust connections (matrix elements) were kept and transformed

to 1 while all other elements were set to 0. The Python library bctpy, a Python

implementation of the MATLAB Brain Connectivity Toolbox (BCT), has been used

for this procedure. This threshold value was set after testing for different threshold

levels and observing that 10% was an optimal level to preserve a power law degree

distribution, a fundamental property of real-world biological network as discussed in

Chapter 2. Setting higher threshold levels resulted in the disappearance of the power-

law degree distribution in favour of Gaussian degree distribution, typical of random

networks, and this could be a sign that the network was too dense. On the other

hand, lower threshold levels led to irregular degree distributions and multiple isolated

nodes.
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3.2.3 Graphlets and Orbits

3.2.4 Brain plots on central orbits proportions

The starting point of the graphlet-based analysis of human SC and FC is the com-

putation of the Graphlet Correlation Matrix (GCM), presented in detail in Chapter

2.2.3.2. GCMs help identify groups of correlated orbits. For example, in Barabasi-

Albert scale-free networks, orbits can be grouped into 3 categories based on the topol-

ogy of the nodes belonging to them: central orbits (0,2,5,7), near-central clustering

orbits (10,11) and peripheral orbits (1,4,6,9) [254]. However, in most real networks,

the topological role of orbits 10 and 11 does not differ considerably from the central

orbits [254]. Hence, we can consider 2 categories only: central orbits (0,2,5,7,10,11),

associated mainly with nodes connected to many other nodes (hubs) and peripheral

orbits (1,4,6,9), primarily associated with lower-degree peripheral nodes [254]. This

binary separation is helpful because we can now characterise a brain region using the

percentage of its central orbits over the total. We introduce a new orbit-based central-

ity measure called Orbit Centrality Percentage (OCP), defined as the z-transformed

values of the percentages of the central orbits over the total.

3.2.5 Associating between modality-specific and theoretical
GCMs

To infer which theoretical model is closer to brain orbit topology, we construct two

theoretical GCMs. The Barabasi-Albert network is a useful model for generating

networks through preferential attachment [9]. As such, it is a model widely used to

describe some properties of real-world networks, like the emergence of the power-law

in the degree distribution (scale-free property). However, it remains a theoretical

model built on simplistic assumptions, and as such it is unable to reproduce specific

properties. For example, real-world networks possess a more clustered structure,

resulting in a higher clustering coefficient. It can be shown that in Barabasi-Albert

scale-free GCM, 3 groups of strongly correlated orbits (0,2,5,7), (10,11) and (6,9,4,1)

can be observed [254]. Following this observation, the first theoretical GCMs have

been constructed as 3 groups of perfectly correlated orbits (0,2,5,7), (10,11) and

(6,9,4,1) while the correlation across groups was set to 0. Although this GCM does

not precisely represent a Barabasi-Albert scale-free network, it is attractive as a model

due to the lack of correlation between central orbits (0,2,5,7) and near-central high-

clustered orbits (10,11). The ideal 2 orbit groups GCM will have maximum correlation

across central orbits (0,2,5,7,10,11) or peripheral orbits (6,9,4,1) while 0 correlation
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between orbits of different groups. This resembles more a situation where networks

possess the scale-free like Barabasi-Albert ones, with a stronger clustering in addition.

This is more often observed in real networks. The next step is computing the GCD

between the lower diagonal of the brain GCMs and the two model GCMs. We repeat

this analysis at a whole-brain level and on another case for each of the 21 clusters.

The GCM of a cluster is constructed considering the full GDVs of the nodes within

that cluster, including orbits that involve links outside the cluster. Considering, for

example, the node in Figure 3.1B, the count of orbits 5 will still be 2 even if the 5 nodes

of the network belong to 2 or more different clusters. Clusters 1 and 2 covering the

occipital lobe were combined due to the small number of regions in the two clusters.

3.2.6 Associating between Graphlet and classical graph-based
metrics

Central and peripheral orbits were associated with hubs and degree-1 nodes, respec-

tively [254]. However, this definition needs to give a more unambiguous interpretation

of nodes in a network with a high correlation between central and peripheral orbits (for

example, biological networks [254]). To better investigate the independent topological

properties of orbits and apply the results to brain networks, we calculate the distri-

bution of partial correlation coefficients of central orbits count π with four classical

graph measures defined for each node i, partialling out peripheral orbits count χ and

vice versa the distribution of partial correlation coefficient of peripheral orbits count

partialling out central orbits count. This method is also helpful in investigating to

which degree graphlets can provide additional new information about brain network

topology compared to analysis based on 4 classical graph measures: local clustering

coefficient [159], average neighbour degree [159], within-module degree z-score [79]

and participation coefficient [79].

3.3 Results

3.3.1 Graphlet correlation matrices from multi-modal whole-
brain connectome

For each modality, we computed the GDV of each node (ROI) and then estimated the

whole-brain GCM as Spearman’s correlation over the number of 11 possible orbits.

Figure 3.1 shows the average GCMs for SC, fMRI FC and the 4 frequency bands of

MEG FC. The mean CGD across each pair of modalities is shown in Figure 3.1G.
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The mean GCMs show 2 separate groups of central and peripheral orbits for each

modality. However, the correlation between the two groups is high (higher than 0.5).

The mean GCDs between modalities showed that the mean SC is more similar to

fMRI FC than MEG FC (F (4, 26) = 29.384, p < 0.001, η2p = 0.531, BFinc = 5.629e13).

For MEG, α and β FC are less distant to pairwise comparisons of other frequency

bands (F (3, 26) = 12.438, p < 0.001, η2p = 0.27, BFinc = 1.301e15).

3.3.2 Spatial variance in graphlet orbit distribution

From the stacked GDVs of all ROI within a network, we calculated the percentage

of central orbits over the total for each ROI. We repeated this for each network and

z-transformed the results. We named this new measure Orbit Centrality Percentage

(OCP). The percentages are averaged first across subjects and then over ROIs within

a cluster. Figure 3.2 shows the mean cortical surface plots of the z-transformed

percentages of central orbits per cluster. Figure 3.2G shows the similarity of the

plots calculated as the Spearman’s correlation coefficient between plots.

3.3.3 Comparisons with theoretical-derived GCMs

We calculated the distance, estimated using the GCD, between all the networks across

modalities and the two theoretical GCMs models 3 orbit groups and 2 orbit groups.

Such theoretical GCMs represent an ideal Barabási-Albert network, and an ideal

clustered network, respectively. In Figure 3.3 the distributions of the distances with

theoretical models are shown. Figure 3.3A represents the theoretical GCM of an ideal

3-orbit groups network, while Figure 3.3B is the GCM of an ideal network where

central and peripheral orbits are perfectly correlated within them and not correlated

to each other. Overall, all the modalities have a lower distance from the two groups

model indicating a similarity with the clustered ideal network which is closer to real

networks.

In Figure 3.4, the same similarity with theoretical models is applied to each of

the 21 clusters of the brain. MEG FC is not shown because most clusters were

disconnected due to the small number of nodes and this led to several NaN values

in the GCMs. The results indicate that both structural and functional brain clusters

are better characterised by the two orbits groups model, indicating a high correlation

between near-central clustered orbits 10 and 11 and other central orbits, similarly to

the case of the whole brain and other real-world networks [254].
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3.3.4 Correlation between graphlet and classical graph-based
metrics

We calculated the partial correlation coefficient of each node’s central and peripheral

orbits count across networks with six node-wise classical graph measures: Clustering

coefficient C, average neighbour degree δ, within-module degree z-score z, participa-

tion coefficient P , beetweenness centrality β and closeness centrality χ. When the

correlation with central orbits is calculated, peripheral orbits count is partialled out

and vice versa. The bar plots with a 95% confidence interval of the distributions of

partial correlation coefficients are shown in Figure 3.5. The results generally show a

clear difference in the role of central and peripheral orbits for structural connectomes,

while the difference is of a lower degree for functional connectivity, although some

notable exceptions are present like the correlation with the within-module z-score for

MEG γ.

3.4 Discussion

In this study, we performed graphlet-based analyses on whole-brain SC (DWI) and

FC (MEG and fMRI). We introduced a new metric based on the proportion of central

and peripheral orbit counts that shows spatial heterogeneity. We compared CGMs

of whole-brain SC and FC with two theoretical GCM models, one inspired by the

Barabási-Albert scale-free network model and one derived from empirical observa-

tions of real networks. Furthermore, we investigated the link between graphlet-based

measures and conventional graph metrics.

The GCMs across modalities show 2 agglomerates of strongly correlated orbits

and a lower correlation between the orbits of different types. Similarly, networks of

the whole brain and brain clusters appear to be more similar to the 2 orbit groups the-

oretical model while preserving a certain degree of similarity with the 3 orbit groups

model inspired by the Barabási-Albert scale-free model. The partial correlation coeffi-

cients show a different behaviour, indicating that nodes with similar graphlet degrees

may have different topological roles across modalities.

To start with, connectivity matrices show two coarse modules in DWI (correspond-

ing to the two hemispheres) and four in fMRI, with structured functional connections

between the two hemispheres. Conversely, MEG presents a higher number of smaller

modules, indicating another kind of topological structure which is similar across fre-

quency bands. GCD takes into account such topological difference in a very efficient

way, while traditional methods (like degree distribution distance) only look at coarser
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Figure 3.1: Mean unweighted connectivity matrix at 10% relative threshold and cor-
respondent mean Graphlet Correlation Matrix across 28 subjects. (a) DWI; (b) fMRI;
(c) MEG theta band; (d) MEG alpha band; (e) MEG beta band; (f) MEG gamma
band; and (g) Mean GCD across modalities.
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Figure 3.2: Cortical plots of the Orbit Centrality Percentage (OCP) i.e., the z-
transformed percentage of central orbits over total orbits (central + peripheral) (a)
DWI; (b) fMRI; (c) MEG theta band; (d) MEG alpha band; (e) MEG beta band;
(f) MEG gamma band: and (g) similarity across plots calculated as the mean Spear-
man’s correlation coefficient.
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Figure 3.3: GCM model-based analysis of the whole network (a) GCM of an ideal 3
orbit groups network; (b) GCM of an ideal 2 orbit groups network; (c) Distribution
of the GCD between the network and 2 models.
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Figure 3.4: Distribution of the GCD between the 21 clusters and 2 models. (a) DWI;
(b) fMRI.
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Figure 3.5: Partial correlation coefficient of central κ and peripheral π orbits count
with 6 ”classical” graph measures. When the central orbits count correlation is calcu-
lated, peripheral orbits count is partialled out and vice versa. (a) Clustering coefficient
C; (b) average neighbour degree δ; (c) within module z-score z; (d) participation co-
efficient P ; (e) Betweenness Centrality β; (f) Closeness Centrality χ.
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details and may not be suitable. Conversely, other methods like the Laplacian distance

[254] are too sensitive to finest differences and may be more suitable to study finer

problems like inter-subject variability. This result is even more clear when looking

at the partial correlation coefficients, showing that GCD can effectively discriminate

between certain categories of network without the need for complex analysis based

on multiple traditional network measures. A general low GCD is a sign of similarity

in term of topology and this translates into similar ways to propagate information

in the network, as well as similarity in underlying properties which are universal to

resting-state brain networks. As such, given the qualitative similarity between DWI

and fMRI or between the various frequency bands of MEG, it is not surprising to

have corresponding low GCD for these pairs of networks.

Unlike the ideal Barabasi-Albert scale-free network, GCMs of brain networks

show a robust correlation among orbits (0,2,5,7) and (10,11). This result suggests

that central nodes are brokers, i.e., they act as connectors between different clus-

ters/communities. In addition, they simultaneously posses a clustered neighbour-

hood, meaning that such broker nodes also have an essential role in keeping together

the nodes within a community. Moreover, the correlation between central and pe-

ripheral orbits is lower than between orbits of the same type, but it is still higher

than 0.5, indicating that nodes are likely to be clustered/broker and peripheral nodes

simultaneously. This suggests that the broker nodes are likely to participate in long-

range connections or, in other words, links between broker nodes put topologically

distant communities together, a result compatible with the description of the rich-

clubs organisation of the brain [75, 122]. This is not surprising, as the human brain

needs to be organised in several specialised modules, topologically identify by com-

munities, to accomplish complex goals. Rich-clubs topology describe this situation

where highly connected nodes tends to connect to other highly connected nodes, and

since such nodes also act as hubs for their communities, these connections are indeed

connections between communities. Central nodes not correlated to peripheral nodes

can be interpreted as within community or provincial hubs, while peripheral nodes

not correlated to central nodes can be interpreted as low-connected peripheral brain

regions [179]. These two types of nodes are less common, indicating that only few

areas of the brain are low-connected to other distant areas. These results support the

evidence of the human brain organisation in communities while providing a powerful

yet simple tool to outline the role of the nodes in the brain organisation. It has been

observed that the organisation of the human brain in communities allows for complex

cognitive tasks and mechanisms [36].
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The spatial distribution of orbits’ centrality percentage shows a high central region

in the SC fronto-parietal area and occipital lobe. Cortical plots for fMRI FC show

a slightly different pattern, with higher central orbits in the motor cortex and lower

in the other regions. This result is in accordance with previous studies investigating

the role of hubs in the human brain resting state fMRI FC [134]; short-range hubs

were identified in the primary cortex, which in our case corresponds to a high OCP,

while long-range hubs were found in the multimodal association cortex, which in our

results correspond to slightly lower OCPs, indicating regions with a slightly higher

presence of peripheral orbits. Primary cortex is involved in motor activity. High OCP

in such area indicates that that connections are mainly formed with proximal areas,

like the premotor cortex or sensory areas. On the other hand, multimodal association

cortex is involved in higher functions which requires connections with several different

areas in the brain, even topologically distant. Is is important to note that short-

range and long-range hubs refer to the concept of topological distance, which in FC-

derived connectomes might not indicate proximity in anatomical terms. Short-range

hubs can be associated with ROIs with a high OCP, indicating a within-community

or provincial hub keeping together many lower-degree nodes inside a community.

In contrast, intermediate OCP values indicate an ROI which is both central and

peripheral and can be identified as a connector hub [79].

The motor cortex is dominated by peripheral orbits in all the frequency bands of

MEG FC. Moreover, OCP of theta, alpha and beta FC show high similarity, while

OCP of gamma FC appears different from the other bands apart from the beta

band. As central and peripheral orbits are positively correlated, we can associate

high OCP values to provincial hubs while low OCP derives from low-degree peripheral

nodes. Intermediate values of OCP refer to nodes with similar numbers of central and

peripheral orbits, and they can be identified as connector hubs. SC shows a coarse

OCP plot. Extreme values are only possessed by the inferior parietal region (high

OCP) and medial temporal (low OCP). Other regions show intermediate OCP values,

indicating a balanced percentage of central and peripheral orbits.

The OCP plot of fMRI FC follows a gradient similar to the gradient of myelin

content, meaning that regions with higher OCP are also regions with high myelin

content, which are correlated to uni-modal regions [104]. Moreover, it can be seen

from MEG FC that the OCP plot is similar to temporal activation of sensory areas,

where higher OCP areas correspond to activation of more extended events in time

[104].
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The partial correlation coefficients show interesting features at two different lev-

els of observation. First, central and peripheral orbit counts relate to graph metrics

differently, indicating that central and peripheral orbits have a distinct topological

role in the brain. In particular, participation coefficient and within-module degree

z-score show substantial differences across types of orbits. Second, different types

of orbits correlate differently across modalities, especially between DWI-derived SC

and FC. In particular, the results suggest that SC peripheral nodes connect different

communities with topologically long-range links. Indeed, the correlation between pe-

ripheral orbits counts and participation coefficient is positive and significant (around

0.4), while the correlation with the within-module degree z-score is closer to 0. On

the other hand, central nodes are negatively correlated with average neighbour de-

gree and positively correlated with the within-module degree z-score, indicating that

they tend to connect to lower degree nodes within a community, creating the core-

periphery structure already identified in the human brain, i.e. they can be identified

as provincial hubs. The role of central nodes as provincial hubs is preserved across

modalities, while other results are less significant, especially for MEG FC. In general,

FC shows more clustered modules than SC (this can also be observed qualitatively

from the adjacency matrices) and the higher inter-subjects variability makes it diffi-

cult to draw a clear conclusion from some partial correlations. Overall, FC seems to

be organised in several different modules on both hemispheres highly connected, but

the role of peripheral hubs could be more evident in SC.

In summary, graphlet-based measures are a simple yet effective tool for topological

analysis of the human brain connectome, although not especially suited for research

of novel properties. Most of the results about topological properties of SC and FC of

the brain obtained with graphlet-based analysis were already present in the literature

using conventional graph-theory approaches. GCM and OCP are tools which combine

effectiveness in describing complex topological features of the whole brain with a

surprising simplicity of visualisation of the results. Although at this level, graphlet-

based analysis is not well suited for uncovering new properties of the human brain

topology, it has promising potential developments towards the applications to directed

networks [195], weighted networks [204], dynamical networks [102], or the combination

with spectral theory [239].
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Chapter 4

Deep Learning for parameter
recovery of a perceptual decision
making model

4.1 Introduction

4.1.1 Decision making and sequential sampling models

Thanks to the advancement in psychology and neuroscience and the improvements

in neuroimaging techniques, detecting and studying neural activity within the brain

has become more accessible. For instance, it has been observed that the lateral intra-

parietal (LIP) region of the brains of non-human primates shows a strong correlation

between neural activity and the time it takes for the individual to reach a decision

during decision-making tasks such as random dot motion discrimination [187, 101].

Consequently, a growing interest in developing biologically more realistic models is

being developed.

When studying decision-making, the so-called Sequential Sampling Models (SSM)

represent a starting point in terms of simplicity. These decision-making models are

based on the hypothesis that individuals accumulate noisy evidence towards a spe-

cific decision until a threshold is reached. When the accumulated evidence reaches

the threshold, the decision is made. One notable example is the Drift Diffusion Model

(DDM), which represents a decision maker that accumulates competing evidence to-

wards an upper or lower stopping boundary. DDM is widely used, and it helped to

advance our understanding of cognitive processes [112] as well as characterising how

ageing impacts cognitive performances [209] or how conditions such as depression can

alter decision-making processes [130]. However, DDMs are not biologically realistic,
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and strong efforts have been put into the improvement of this kind of model by the

inclusion of more biological details.

Developing more biologically detailed models of cognition usually means adding

more parameters to describe specific processes at neuronal level. In addition, differen-

tial equations that describe the evolution of such systems are usually more complex.

This allows researchers to fit behavioural data better and reproduce essential aspects

of neural dynamics that are difficult to study with simpler models. On the other

hand, essential procedures such as parameter recovery are usually more challenging

to perform on more complex models. In this chapter, I will tackle the problem of

parameter recovery of a biologically plausible perceptual decision-making model [242]

described in detail in section 2.1.3.1, which is more complex than a typical DDM.

4.1.2 Parameter recovery

Parameter recovery refers to the task of identifying the optimal parameters to pro-

vide the best fit possible between the model’s predictions and empirical data. In

psychology and neuroscience, it is vital to analyse and create models that reproduce

the results of behavioural experiments or represent patterns of neural activity. For

complicated models with no analytical solutions, numerical optimisation algorithms

are often necessary. Such algorithms usually operate on several iterations until con-

vergence, i.e., when the model predictions approximate the real data. Optimisation

methods have the issue of being sensitive to local minima, meaning that it is not

uncommon for the algorithm to converge without finding the best possible solution.

To solve this problem, these methods use global optimisation techniques to find the

global minimum, and they may be further improved by introducing an element of

randomness into the search process to circumvent local minima. However, even in

the case of stochastic global optimisation strategies, the solution associated with the

global minimum is not guaranteed to be found. Moreover, they can be computation-

ally intensive algorithms, and concerns have been raised regarding the need for more

computational resources for effective parameter recovery [5].

Recently, parameter recovery has been applied in the context of behavioural

decision-making models, such as the diffusion model for conflict tasks [236] or the

leaky competing accumulator model [150]. These approaches are typically based on

a severe restriction of the parameter values to a range that is only able to reproduce

real-world behaviour in normal conditions. However, it is essential to be able to re-

cover the parameter of models reproducing more extreme behavioural data associated
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with, for example, the presence of neurological conditions or particular experimental

settings.

To the best of my knowledge, parameter recovery has not yet been extensively

explored in the case of the biologically plausible Wang-Wong decision-making model

presented in Section 2.1.3.1. Examining the model’s equations (Eq. 2.16 to 2.24), it

is clear that it is a complex model, making parameter recovery more difficult than on

simpler models like DDM. Consequently, fitting the Wang-Wong model to behavioural

data using conventional parameter recovery techniques has been challenging. How-

ever, as I will present in more detail in the next section, recent advancements in

Deep Learning have allowed us to address the challenge of parameter recovery in the

context of more intricate decision-making models.

4.1.2.1 Deep Learning for Parameter Recovery

In the present study, we applied parameter recovery to a neural mass model focusing

on a subset of the parameters to investigate the performance as well as the limitations

of this approach. We used a deep learning approach as it has many advantages

compared to global optimisation procedures, and it is computationally efficient.

The number of publications about deep learning has exploded in the last few

years, and it is still constantly increasing. Thus, it is very well known how to make

this approach as efficient as possible as well as to tackle the most common issues

that can emerge when using a deep learning algorithm. Creating specific libraries

for deep learning, data analysis, feature engineering and related problems, and a

vast community constantly giving free insights when needed made deep learning an

easy-to-deploy solution to many problems. It is often easier to design a deep learning

algorithm than applying statistical methods or a traditional, more conceptually simple

machine learning approach where thorough feature engineering work may be required

in order to get valuable results and satisfactory performances.

One of the main advantages of deep learning is that algorithms are able to find

the best representation of the raw data without external supervision, often making

it easy to apply the same core method to very different research areas. Of course,

this may have some drawbacks. For example, the features identified by the complex

algorithm may be too abstract to find a straightforward real-world interpretation

[132]. Furthermore, we need to pay attention to avoid over-fitting. In this situation,

the algorithm memorises the data we used to train it, losing its ability to generalise

to unseen data. Another limitation might be the need for more data. Training

supervised deep learning algorithms usually requires a large amount of data, which

74



is not always easy to acquire. However, this does not represent an issue in our

case, as samples of data can be generated at will, making deep learning particularly

suitable for parameter recovery. Moreover, training on a large amount of data offers

some significant advantages, like the fact that it is easier to find the global minimum

without worrying about local minima.

4.1.2.2 Deep Learning as a model of cognition

Parameter recovery is one of the many problems that can benefit from using deep

learning algorithms. Originally, artificial neural networks themselves were further

considered to be a model of human cognition, although extremely simplified without

the presence of biological details [189]. Later developments have focused on improving

the capabilities of deep learning to enable it to solve complex tasks with similar or even

higher performances than the human brain. Recently, the interest in neuro-inspired

AI has risen again to provide deep learning algorithms with human capabilities like

intuition, memory or planning [85]. However, although the connection between deep

learning research and cognitive science is becoming stronger than ever [176], the use

of AI as a model of cognition presents several issues mainly concerning a strong bias

towards the desire to publish positive results leading to a credibility crisis [16]. In

the second half of this chapter, I will present a proof-of-concept of the use of deep

learning as a model of cognition. Specifically, I will use an elementary CNN and

RNN ensemble with the only scope being generating a psychometric response similar

to primates while performing a random-dot motion discrimination task.

4.2 Methods

4.2.1 Neural mass models

We simulated the data using the two-variable neural mass model introduced in Section

2.1.3.1. The Wang-Wong model reproduces the evidence accumulation involved in

decision-making during a random dot motion discrimination task [242]. Each of

the variables in the model accumulates evidence in favour of either the leftward or

rightward direction of the dots while engaging in competitive interactions through

inhibitory connections. Additionally, the model includes a self-excitatory mechanism.

The input is represented by two distinct synaptic currents, corresponding to the

evidence supporting each of the two alternatives. Alongside these stimulus currents,

the model includes a shared non-selective background input. In this context, we have

extended the model to include modulation of the background current by a factor β.
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Parameter Minimum value Original value [242] Maximum value

Jll = Jrr 0.25 nA 0.2609 nA 0.30 nA
Jlr = Jrl 0 nA 0.0497 nA 0.25 nA

Jext - 5.2× 10−4 nA·Hz-1 -
I0 - 0.3255 nA -
µ0 - 15Hz -
β 0.95 1 1.05
a - 270 (VnC)-1 -
b - 108 Hz -
d - 0.154 s -
γ - 6.41× 10−4 -
τnd 100 ms - 500 ms

σnoise - I0/16.275 -
τnoise - 2 ms -

Table 4.1: Original parameters of the Wang-Wong model plus minimum and maxi-
mum values of the four parameters used for parameter recovery: Jll, Jlr, β, τnd.

This extension makes the model able to reproduce the observed trade-off between

speed and accuracy in certain studies.

We started from the original values used in [242]; The stimulus strength µ0 has

been fixed to 15Hz (for an analysis of the effects of varying µ0 see [242]), the average

synaptic coupling with external synapses Jext = 5.2×10−4nA· Hz-1, the self-excitatory
coupling strengths within same populations Jll = Jrr = 0.2609nA, the inhibitory

coupling strengths across different populations Jlr = Jrl = 0.0497nA, the background

current I0 = 0.3255nA, the input-output function parameters a = 270(VnC)-1, b =

108Hz and d = 0.154s [1], the kinetic parameter γ = 6.41× 10−4 [242] and the noisy

current Inoise,l,r has an amplitude of σnoise = I0/16.275 [208] and characteristic time

of decay τnoise = 2ms.

4.2.2 Data sampling and processing

We proceeded by focusing our attention on recovering four parameters: the excitatory

and inhibitory coupling strengths Jll and Jlr, the background current modulation β,

and we defined a new parameter called non-decision time τnd as a simple constant of

time added to the reaction time of each decision. The parameter values have been

drawn from the following uniform distributions:

• Jll = Jrr ∈ [0.25, 0.30]nA
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Figure 4.1: Accuracy and reaction time versus coherence plots for the original pa-
rameters of the model by Wang and Wong.

• Jlr = Jrl ∈ [0, 0.25]nA

• β ∈ [0.95, 1.05]

• τnd ∈ [100, 500]ms

The intervals were determined after a careful plausibility analysis of the results.

We noted that parameters outside these intervals may lead to infinitely long reaction

times, which is implausible in a 2AFC task setting. We computed the accuracy and

reaction time for each parameter at different coherence levels. We were interested in

the range of parameter values in which the model’s results were reasonably comparable

to a real subject. For example, we expected the accuracy to be close to 0.5 at 0

coherence and increasing following a sigmoid-like function to saturate at 1 for high

coherence levels (Figure 4.1)[242, 187]. Similarly, reaction times were expected not

to be extremely low without a loss in accuracy (i.e., speed-accuracy trade-off). In

Figure 3.2, we show some of the accuracy and reaction time versus coherence plots for

Jll = 0.3, Jlr = 0.01 and β = 1.05. In the original paper, Jll = 0.2609, Jlr = 0.7049

and the background current was not modulated (analogous to the case of β = 1).

We generated 5,000 combinations of the four parameters, each drawn randomly

from the abovementioned intervals. For each set of parameters, we computed the

equations for a total of 10,000 trials using a coherence of 0.15 (15%). Each trial had a

maximum duration of 2.5s for 2,500 iterations of 1 ms each. A decision is made if the

activity Sl,r of one of the two accumulators reaches a threshold set at 15Hz as in the

original paper [242]. For simplicity, we assumed a positive value for the coherence,
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Figure 4.2: Accuracy and reaction time versus coherence plots. a, results for Jll = 0.3
instead of 0.2609 of the original paper. Faster reaction times and lower accuracy indi-
cate a speed-accuracy trade off when increasing the self-excitatory coupling strength.
b, results for Jlr = 0.01 instead of 0.0497 of the original paper. Faster reactions
without speed-accuracy trade off is observed. c, results for β = 1.05 instead of no
modulation (correspondent to β = 1) of the original paper. Here we can see similar
speed-accuracy trade off as in the case of higher Jll.
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meaning that the correct direction of the points was always leftward. Of course, this

procedure is legitimate only for artificial model training as in an actual experiment, it

may cause a bias in the decision-making process after the subject learns that the dots

always move leftward. The output of each trial was 0 for rightward/wrong decisions

or 1 for leftward/correct decisions. If the trial ended without either accumulator

activity reaching the threshold, an output of −1 indicating a non-decision has been

generated. The number of iterations to reach a decision has been stored to identify

the reaction time plus the non-decision time τnd. The results were used to compute a

set of features describing the model’s performance for each set of parameters. Even

if deep learning algorithms can automatically identify useful features, as discussed

in 2.3.3, it is more efficient to compute simple statistics describing the data instead

of passing the large dimensional raw trial results as input. We initially identified 14

features:

• Accuracy The fraction of correct choices over the total choices.

• Indecision The fraction of trials ended without a decision over the total trials.

• Mean Reaction Time The average reaction times for correct and incorrect

choices.

• Percentiles of Reaction Time Distribution The 10th, 30th, 50th, 70th and

90th percentiles of the reaction time distributions for wrong and correct choices.

We decided not to use the indecision rate as input for the deep learning model

because, in a real experiment, the subject is instructed to make a decision even if

they are not entirely confident. Consequently, a framework that uses the non-decision

rate cannot be extended to the case of experiments involving real subjects. For the

same reason, the accuracy is calculated over the total choices, not considering the

iterations ended without a decision. However, the indecision rate was an efficient way

to identify certain combinations of parameters that generate extreme behaviours of

the model. In fact, in the plausibility analysis of the results, we did not consider

the complex problem of how the parameters interact between them. For example,

we observed that the model could not reach a single decision in 10,000 trials for

some set of parameters. We decided to discard the results, which had an indecision

rate lower than 0.2. Similarly, we excluded the results with an accuracy higher than

0.999 because the reaction time distribution for these trials was concentrated on

shallow values, indicating extreme behaviour where the model reached the decisions
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immediately for all the trials. In both cases, it is reasonable to assume that this kind

of behaviour cannot be observed in experiments with real subjects. Consequently,

we did not lose any useful information. Even excluding these values, however, some

parameters led to decisions with low reaction times compared to subjects in actual

experiments, although the accuracy distribution was reasonable. We decided to keep

these values to avoid constraining the parameter intervals too much and affecting the

generalisability of the algorithm. Moreover, reducing the boundaries of the parameter

distributions could prevent the model from predicting more extreme values of the

parameters that might be associated with particular conditions like specific pathology

[119]. We discarded 1183 of the 5000 initial combinations of parameters, such that a

total of 3817 combinations remained as our clean dataset. The final distributions of

the parameters are shown in Figure 4.5.

The script for running the models’ equations and generating the outputs has been

written in Cython [11]. This Python library compiles the code in C, dramatically

increasing efficiency and improving the running time. All other data cleaning and

feature extraction scripts have been written in Python.

4.2.3 Deep Learning for parameter recovery

The 13 features described previously were used as the input of our deep learning algo-

rithm. We trained the algorithm to predict all four parameters in a multiple-regression

problem. We used a simple deep neural network composed of 3 fully connected layers,

each followed by a ReLU non-linear activation (see Figure 4.3 for a schematisation

of the entire procedure and Figure 4.4 for a simplified flow diagram of the parame-

ter recovery approach). The network has been trained using a Mean Squared Error

(MSE) loss and Adam optimiser with momentum. We used hyperparameter tuning

to find the best architecture in terms of performance. We used Python’s library Py-

Torch to define the deep learning model as well as the training and hyperparameter

optimisation procedures. The models were trained using a single GPU of a 10 GPUs

Nvidia DGX-1 module owned by the Cardiff University Brain Research Imaging Cen-

tre (CUBRIC). In contrast, for hyper-parameter tuning, we used two GPUs to train

two models at a time in parallel.

4.2.4 Neural ensemble

The neural ensemble for reproducing the psychometric curve consists of a simple CNN

module followed by an RNN layer (Figure 4.6).
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Figure 4.3: Schematisation of the entire procedures of data sampling and parameter
recovery. First, a simulated input from a random dot motion discrimination task is
passed to the two-variable neural mass model in the form of an input current. The
model producing each output is defined by a specific set of parameter. For each set
of parameters, the behavioural output of 10,000 single trials are used to compute
statistics to be used as input features for the deep learning algorithm. The algorithm
is a DNN with fully connected layers and nonlinear ReLU activation. The predicted
parameters are compared with the real ones using R2 scores.
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Figure 4.4: Simplified low diagram of the parameter recovery procedure. First, the
variable parameters are chosen. Second, a set of variable parameters is drawn ran-
domly from the specified distribution (sample). Third, using the parameters drawn,
the model is run several times (trials). Fourth, the statistics are computed and the
parameters specific to that sample stored. The sampling procedure is repeated until
enough data for the Deep Learning is generated.
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Figure 4.5: Distributions of the four parameters after removing samples generated
by an extreme behaviour of the model (for example 100% accuracy and 0ms reaction
time). It can be seen that values of β lower than 1 are more likely to generate an
extreme behaviour and consequently they have been discarded. The values of Jll and
Jlr are slightly shifted towards higher and lower values respectively. The non-decision
time τnd doesn’t show a significant shift from the starting uniform distribution.
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Figure 4.6: Schematisation of the CNN + RNN ensemble for RDK discrimination
task. Each frame of the RDK video is passed to a single CNN filter which also
applies a pooling. The output is a sequence of the same temporal dimension as the
input and it is passed to a single RNN layer. The output is transformed into a single
value representing the probability that the model estimates of the dots movement in
the RDK being leftward or rigthward.
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The CNN applies a single convolutional filter of dimension 5 × 5 to a sequence

of 60 frames of a random dot kinematogram (RDK). Each sequence is generated on

a screen at 60 Hz, meaning that each trial lasts for one second. The frames are

transformed into single-channel images (greyscale) and resized to 128 × 128 pixels.

The convolution was followed by a two-dimensional max pooling with a stride of 2

and a kernel size of 2. A zero padding of type “same“ was used to avoid dropping

pixels from the images. The CNN output of each frame was 64 × 64 matrices, and

they were stored into a list forming a sequence of processed frames. The sequence

of CNN outputs was passed to a single RNN layer with ten hidden units. The RNN

output, a sequence of 60 matrices 64× 64, was linearly projected into a single value

followed by a sigmoid activation function to obtain a probability.

The neural ensemble has been trained on examples of random dot motion of 100%

coherence in both directions, left and right, which were labelled as 0 and 1, respec-

tively. With 50 trials for each direction in the training set, the model reached 100%

accuracy in identifying the correct direction of movement in 10 epochs on average.

The accuracy has been evaluated on a test set of 10 trials for each direction. The

model trained on non-noisy fully coherent RDK has been evaluated on noisy trials of

different coherence. In particular, a total of 31 trials at different levels of coherence

has been generated: from 1% to 20% with an increasing step of 1%, from 25 to 50

with an increase of 5% and from 60% to 100% with an increase of 10%. The model has

been trained on the fully coherence data and evaluated ten times on each coherence

level to avoid large fluctuations in the accuracy level. The average accuracy for each

coherence level was plotted and compared to the accuracy of the Wang-Wong model

evaluated on 10,000 trials for each of the 31 coherence levels.

4.3 Results

The predictions of the model on the four parameters are shown in Figure 4.7. We

can see that the model fails to predict Jll values (R
2 = 0.1097) and perform slightly

better for the other parameters with R2 scores of 0.86, 0.69 and 0.88 for Jlr, β and

τnd respectively. We hypothesised that the difficulty of prediction might be due to

the concurrency of Jll and β with a similar influence on the outputs of the model. To

test this hypothesis, we generated two new batches of samples; in the first, we kept

Jll = 0.2609 constant as in the original paper. In the second we set β = 1 meaning no

modulation of the background current I0. We repeated the hyper-parameter tuning

and the training procedures. In Table 4.2 we show the hyper-parameters leading to
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Parameters Batch Size LR Mom l1 size l2 size l3 size

4 parameters 50 0.0001 0.52 32 512 32
Jll constant 75 0.0003 0.84 512 512 32
β constant 50 0.0005 0.80 128 128 256

Table 4.2: Hyperparameter values for optimal performances of the algorithms trained
for the 3 cases: all four parameters prediction, predictions excluding Jll and prediction
excluding β, respectively. The hyperparameters to be optimised via fine-tuning are
batch size, learning rate (LR), momentum (Mom), and the number of units (neurons)
in each of the 3 layers separately (ln size). The optimal combinations of hyperpa-
rameter values have been obtained by looking for the maximum performances of a
model after repeating the training process with a random selection of hyperparameter
values.

the best performances in the three cases. The predictions with the absence of Jll

are shown in Figure 4.8A, while the results with the absence of modulation β are

shown in Figure 4.8B. We can see an increasing in the performance of the algorithm

especially when β is kept constant. When Jll is constant performances calculated as

R2 scores are 0.94, 0.90 and 0.92 for Jlr, β and τnd respectively. When β is constant

performances are 0.95, 0.99 and 0.99 for Jll, Jlr and τnd respectively.

Figure 4.9 shows the parameter recovery performances on Jlr, β and τndt obtained

with input features computed on different number of trials. The performance ten-

dentiously increases up to 10,000 trials (7500 for τndt) and then shows an undulatory

behaviour that would appear noisy in a finer binning. Figure 4.10 shows the results

of the average accuracies of the neural ensemble compared to the Wang-Wong model

at different coherence levels. It can be seen that the accuracy of the neural ensemble

approximates well the Wang-Wong one, which in turn approximates the performance

of real subjects at every accuracy level [187].

4.4 Discussion

For each set of parameters drawn randomly from a uniform distribution with specific

boundaries, we generated several samples of 10,000 trials each using a neural mass

model simulating a subject performing the random dot motion discrimination task.

Each trial generated a decision with an associated reaction time. Trials with high

indecision rate or extremely low reaction times had been discarded. For each sample,

we computed the accuracy and 12 statistics to describe the reaction time distributions

for correct and incorrect decisions of the 10,000 trials. We trained a simple 3-layers
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Figure 4.7: Model’s predictions (y-axis) compared to the expected values (x-axis) for
multiple regression of all the 4 parameters. The red dashed line represent the x = y
straight line, i.e. the best result possible. The blue dashed line is a linear fitting of
the data. It can be seen that the model fails to predict Jll (R

2 = 0.11) and doesn’t
show a high accuracy for the others parameters, especially for β ((R2 = 0.69)).
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Figure 4.8: Model’s predictions (y-axis) compared to the expected values (x-axis) for
multiple regression of 3 parameters. a, predictions for Jlr, β and τnd (Jll excluded).
The prediction accuracy is better than the 4 parameters case although significant
fluctuations can still be observed. R2 scores are 0.94, 0.90 and 0.92 for Jlr, β and τnd
respectively. b, predictions for Jll, Jlr and τnd (β excluded). Here the predictions are
satisfactory with smaller fluctuations. R2 scores are 0.95, 0.99 and 0.99 for Jll, Jlr
and τnd respectively.
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Figure 4.9: Performances of parameter recovery of the three parameters Jlr, β and
τnd with input data features evaluated on different numbers of trials.

Figure 4.10: Accuracy versus coherence plot of a simple CNN + RNN neural ensemble
(black line) compared to plot of the Wang-Wong model (red dashed line). The results
of the neural ensemble are averaged over 10 retraining while the Wang-Wong ones
are obtain using 10,000 trials for each coherence level.
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deep neural network to take the 13 features as input and predict the corresponding

parameter values that generated that specific features. We found that the model

performs well when either Jll and β were kept constant (three parameters recovery)

but performed poorly for all of the four parameters recovery. Finally, I implemented

a simple CNN + RNN ensemble to act directly on visual frames of an RDK thus

simulating real subjects performing the random dot motion discrimination task. The

ensemble, although extremely simple, approximates well the Wang-Wong model and

the psychometric data.

A particular attention has been posed to selecting the intervals of the parameters

such that we had the best possible biological plausibility without sacrificing general-

isability. For this reason, we decided to keep combinations of parameters that gave

lower reaction times than expected in a real subject. This is one of the most debatable

procedures as there may exist several factors that might influence the selection of the

parameter values to predict. Moreover, further studies need to investigate whether

the model we used fits well experimental data from healthy subjects, and is also able

to describe pathological subjects or results from a different task. Indeed, a model can

often generate results even when set with extreme parameter values but it is likely

that those results don’t fit behavioural data collected in different circumstances than

the ones which the model was originally designed to describe. This fact should be

taken into account when applying our deep learning approach for parameter recovery

of such different task or subject conditions in a real-world scenario as a poor recovery

performance might be caused by the inadequacy of the model to generalise to such

conditions instead of the recovery algorithm itself.

Our results suggest that, because of the inherent interactions of some parameters,

they may have a similar effect on the outputs hence making recovery extremely diffi-

cult, not only for deep learning. For this reason, it is important to carefully design an

experiment and combine the parameter selection with previous knowledge about the

effects of those parameters and their variability across subjects or conditions. For ex-

ample, suppose we wanted to use our algorithm to recover the self-excitatory synaptic

strength in healthy and pathological subjects to prove that it is lower in the presence

of pathology. We might design an experiment where the subjects perform a random

dot discrimination task, pass their performances to the algorithm and hypothetically

observe that indeed Jll is significantly higher in healthy subjects. However, to con-

clude that Jll is lower in patients with a certain pathology, we first need to address

the possibility that such difference in the behavioural output is caused for example
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by the modulation β of the background current I0 as we’ve observed them having a

similar effects on the outputs in their range of values (speed-accuracy trade-off).

While Deep Learning provides an extraordinary versatile tool for solving the prob-

lem of parameter recovery, it also has some limitations. In this chapter, we fixed four

parameters for simplicity making the problem relatively easy. However, in a scenario

with more complex models (or simpler models with a higher number of free param-

eters), the complexity of the DL algorithm used should also increase to maintain a

good predictive power. If the interpretability of the model (and of course, the com-

putational overhead) is not a concern then Deep Learning remains an outstanding

tool combining practicality and powerfulness. However, if the number of parameters

to be recovered is high, classical optimisation algorithms might become easier to ap-

ply. Current research is trying to create more effective DL algorithms by exploiting

specific geometry of the parameter search space [23].

A word of caution is needed about the results of the neural ensemble. Indeed,

this approach has to be intended as a simple proof-of-concept and has many limi-

tations. For example, no information about reaction times or other kinds of output

is available. Recent work has tackled the problem of creating neural architectures

with an intrinsic reaction time [183]. A similar result on accuracy may enable future

research to compare human neural representations with the embedding learned by

the artificial neural architecture. Embeddings are vector representations of an object

(or more generally, an input) which is of lower dimension compared to the real world

representation (i.e., we may describe an apple using a 3-dimensional embedding made

of colour, dimension, sweetness). In some way, human brain has to use an analogous

approach using the neural code, as it would be impossible to represent with high-

fidelity the entire world using our limited, although enormous, number of neurons

and synapses. However, we should be careful in interpreting high correlations of the

representations, as this does not necessarily mean that the computations performed

by the neural ensemble are comparable to the ones in the brain. On the other hand,

these kinds of results may help advance the research in neuro-inspired AI to create

algorithms that perform well in advanced complex tasks that human performs effi-

ciently [85] but not necessarily advance our knowledge of the computation the human

brain carries.
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Chapter 5

Deep Learning for Neural
Decoding of Motor Behaviour

5.1 Introduction

The problem of deciphering the neural code, i.e., how the brain encodes the infor-

mation from the external world into neural representations, has received a high level

of attention in the past decades. It is essential to understand the representations the

brain uses to picture the external world and how they are elaborated and translated

into actionable plans to achieve complex goals. Not only does this have an inherent

scientific significance, but it also has profound implications for several practical ap-

plications. In recent decades, the interest in brain-computer interfaces (BCIs) and

neurotechnologies has exploded [109, 4]. Such devices have been studied for promis-

ing clinical applications like neuro-prosthetics [78], rehabilitation [141], therapeutics

[147], and advanced diagnostics [202] for neurological diseases and conditions. In ad-

dition, BCIs find increasing applications in other fields like gaming [145] or enhancing

human capabilities [14].

In particular, BCIs are based on neuronal decoding of the activity in the brain,

i.e., the translation of neural representations into action and behaviour. This ac-

tive interdisciplinary approach is found in an intersection of neuroscience, computer

science and engineering. Neural representations carry latent information related to

cognitive states, sensory perceptions or intentions that precede motor actions. Given

the complexity of the brain, finding such latent representations is an arduous task

which can find enormous benefits from the use of computational tools and machine

learning in particular.

Several tools have been developed for neural decoding. One of the most typical

approaches is the well-established linear regression, with or without regularisation
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[96]. Other options include, for example, the Kalman filter [243] or Naive Bayes

decoder [123]. Such algorithms have many advantages, being computationally simple,

easy to interpret and less susceptible to overfitting, a common problem when using

machine learning tools. On the other hand, such simplicity comes at the cost of a

strong assumption. For instance, linear regression assumes that input and output

variables are linearly correlated, and noise follows a Gaussian distribution. These

assumptions may be instrumental in specific contests, but generally, they may not

hold, thus making the results completely unreliable.

In contrast, deep learning methods are much more flexible thanks to their ap-

proximation capabilities. As discussed in Chapter 2, deep learning’s neural archi-

tectures are universal approximators, meaning that complex enough neural networks

can approximate any functions, even the most intricate. Also, flexibility comes at a

significant cost, namely, the increased computational overhead and susceptibility to

overfitting, a situation where the model fails to generalise to unseen data.

The brain possesses a highly intricate and nonlinear structure and functioning

patterns. As such, linear relationships between input and output cannot generally be

assumed. Therefore, deep learning is a practical choice for neural decoding despite

its high computational cost, provided that careful attention is given to all of the

standard procedures to avoid overfitting. In this thesis’s chapter, I will use a recurrent

neural architecture to decode continuous actions from neural recordings, because such

model structure suits data with a temporal component. Recurrent neural networks

can keep information about a sequence’s previous element by propagating a hidden

state. This is very important as brain activity casually related to motor behaviour

may start several hundred milliseconds before the actual movement and even present

some correlated activity after. I will also study the latent dynamics represented as the

most explaining variables identified through PCA. An important question to answer

will be whether latent dynamics can carry enough information to achieve satisfactory

decoding performances and even if they are able to eliminate noise sources, thus

improving performance.

5.2 Methods

5.2.1 Data collection

This chapter’s analysis is performed on a publicly available dataset [177]. A subset

of the data has been analysed in another study [129].
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Figure 5.1: Schematisation of the reaching task performed by a monkey during the
behavioural experiment. The monkey controls a cursor using a joystick while its
neural activity is recorded. The monkey learns to reach a target and hold for 100ms
before the next target is triggered.

The recordings come from two different monkeys of the species Rhesus Macaque,

M and T (they are referred to as MM and MT), performing a reaching task in which

a computer cursor is controlled via arm movements (Figure 5.1).

During the task, a primate chair sat the monkey while it controlled a two-link

planar manipulator. Such manipulator consists of two rigid links connected in a serial

chain by two rotational joints (often referred to as revolute joints), and operates in a

two-dimensional (planar) workspace. Hand movements were confined in a horizontal

plane with a square workspace of 20 cm x 20 cm. A 2 cm square acted as an on-screen

visual cue indicating the target location for each reach. When the cue appears on

the screen, the monkey has to reach it. After each reach, the previous visual cue

disappears and a new one will appear in a random location of the screen. After

up to four sequential successful reaches to the targets, a liquid reward was offered

to the monkey. This series of successful reaches identifies a trial. The successive

target location was chosen following a pseudo-random procedure and located with an

annulus (radius = 5-15 cm, angle = 360 degrees) centred on the current target. The

pseudo-random procedure was used as follows: first, a distance between 5 cm and 15

cm and a relative angle between 0° and 360° with respect to the current target are

randomly chosen for the new target. Then, if the new target is located outside the
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workspace, a 90° angle is added, and the distance is set to 5 cm. Step 2 is repeated

until the target falls within the workspace.

For each trial, the first reach (made from rest) had a different timing for target

presentation compared to the following three reaches. For the first reach, after the

target was presented, the monkey was allowed to move without an instructed delay

period. For the other reaches, the monkey initiated the next target, keeping the cursor

within a 2 cm x 2 cm box centred on the current target. Consequently, the successive

target is triggered but not displayed, with a 100ms delay. Due to the specificity of the

software, the next target is displayed after roughly 100ms, so, in total, the successive

target was displayed at 200ms on average after the monkey successfully reached the

current target. In addition, a 100ms holding period was imposed simultaneously

when the next target was triggered. Thus, the time interval between the reach of

the current target by the monkey and when the moment was allowed again was

200ms. The holding period has been used to force the monkeys to decelerate when

approaching the target and generate relatively smooth arm movements of variable

distance.

All surgical and experimental procedures were performed following the standard

for the care and use of laboratory animals. The institutional animal care and use

committee of Northwestern University approved the procedures. The data collection

was performed using 100-electrode arrays (Blackrock Microsystems, Salt Lake City,

UT) implanted in the PMd region (1mm electrode shaft length) and in M1 (1.5mm

length). Spike sorting with standard procedures has been performed manually, iden-

tifying spikes from raw waveforms (raw signals).

Monkey MM performed a total of 140 trials of 4 reaches each in a single trial

for a total of 496 valid reaches. From the primary motor cortex (M1) region, the

activity from 67 neurons has been recorded, while from the dorsal premotor cortex

(PMd), the number of neurons was 94. Monkey MT performed three sessions while

only activity from PMd was recorded. A total of 419 valid reaches were completed in

the first session, and 49 neurons were recorded. The second session consisted of 646

reaches and 46 neurons recorded. The third session consisted of 652 and 57 neurons.

Invalid reaches or neuron recordings were present due to errors in the data collection,

and such data were discarded. In particular, for monkey MM 5 invalid reaches in the

single session were excluded, while monkey MT performed 6, 8 and 7 invalid reaches

in the three sessions, respectively.

The generated dataset contained two sets of data: raw and heavily processed. The

raw data has been used in the analysis presented in this chapter to have maximum
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flexibility. Raw data consisted of recordings of neural activity and four different

behavioural outputs: position, speed and acceleration of the cursor moved by the

monkeys plus the force applied to the controller only for monkey MT. Only the first

three outputs were analysed in this chapter. All of the recordings were collected in

bins of 1ms each. At such time resolution, each time bin contained one spike at

maximum.

5.2.2 Data preparation

The data was processed using an existing processing and decoding toolkit [69]. Input

and output data were binned in 50ms time bins. Input bins contained the number of

spikes in each 50ms time window, while output bins contained an average output value

for each bin. A functional connectivity matrix between neurons has been estimated

using simple cross-correlation to perform graphlet-based analysis, similar to Chapter

3.

Following a standard procedure [69], decoding the behavioural output at a specific

time was performed using a total of 13 time bins: six before, six after and the one

corresponding to the same time bin of the output. In other words, a total of 650ms

of 300ms before, 300ms after, and 50ms concurrent to the binned output have been

used to decode 50ms of average output within that time window. To decode an

output yt(0), the input consisted of Xt(−6), Xt(−5) . . . Xt(0) . . . Xt(6). An analysis of how

decoding performances vary with the number of time bins in the input has been

performed for velocity decoding in the PMd region of monkey MM.

The data has been further processed by computing the z-score and 0-centring

values to help convergence of the DL decoding algorithm.

5.2.3 Neural decoding

Given the continuous nature of the behavioural patterns in the dataset, decoders with

a recurrent mechanism are the most suited for this kind of analysis. In particular, a

simple Recurrent Neural Network (RNN) has been chosen among its more complex

derivations, such as GRU or LSTM. The reason is that GRU and LSTM are more

suited to “remember“ information far in the past for long sequences, while in our case,

the sequences are composed of 13 elements close in time. The RNN takes a sequence

of 13 components (time bins) and, for each component, generates an embedding of

a dimension equal to the number of hidden units used. It applies Eqs. (2.40) to

the input xt with t = 6. A number of 400 hidden units have been used for regular
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analysis, meaning that ht in Eqs. (2.40) has a dimension of 400 and hence Uh a

dimension of 400×400, Wh a dimension of 400×13 and bh a dimension of 400. In the

case of the analysis of decoding performances using input data of varying numbers of

bins, 300 hidden units have been used. After the projection in the higher dimensional

embedding space, a non-linear function (tanh) has been applied. Finally, a fully

connected layer following Eq. (2.37), is used to project the RNN’s output of dimension

400 × 13 = 5200 or 300 × 13 = 3900 to a two-dimensional behavioural output for

the X and Y components, respectively. The training has been performed on the 70%

of the data and tested on another 15% chosen such that there is no overlap between

any of the neural data time windows. A batch size of 32 was used, and the training

lasted for 25 epochs (15 for the different number of time bins analysis). The MSE

Loss has been selected for minimisation to improve the decoder performance, and the

RMSprop optimiser has been used with a learning rate of 0.0005. The trained decoder

has been evaluated using the remaining 15% as validation data, and its performance

was quantified using the R2 score.

5.3 Results

The neural recording data consist of timed arrays of 0 and 1, where 1 indicates that

a spike happened. The raw dataset has been put into bins of 50ms each by summing

all the spikes that happened in a specific time bin. The behavioural outputs have

been binned as well by averaging the data within each window of 50ms. The output

data to decode has been constructed by picking 13 time bins of spiking data for each

output bin (concurrent bin, six before and six after).

To start with, the connectivity matrices of the PMd area for the three sessions

performed by the monkey MT plus PMd and M1 areas of monkey MM have been

estimated. Figure 5.3 shows the connectivity matrices across sessions and regions and

the respective GCMs obtained using the same approach as in Chapter 3. The GCMs

show 2 clusters similar to the case of SC and FC-derived graphs, but with a lower

correlation between orbits of different types (central and peripheral). These results

indicate similar graphlet substructures in connectivity matrices between single-unit

recordings from non-human primates and whole-brain structural-functional data from

humans as shown in Chapter 3 (3.1).

The following figures show a comparison between the predicted behavioural output

for the X and Y components separately and the actual output: Figure 5.4 for position

decoding, Figure 5.5 for velocity, and Figure 5.6 for acceleration. The performances
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Figure 5.2: Schematisation of data preparation and neural decoding procedure. (a)
Depiction of data preparation method including binning input and output and as-
sociating a series of M input bins, before and after the concurrent output time; (b)
Simple diagram of the neural architecture (RNN) used for neural decoding.
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of the decoder have been evaluated using the R2 scores. Overall, the best decoding

performances are obtained with velocity decoding, with R2 scores comprised between

0.60 and 0.77. Following, position decoding with R2 scores between 0.30 and 0.64.

Finally, position decoding with R2 scores between 0.22 and 0.53. The M1 region of

monkey MM performing the single session offered the highest performances most of

the time, while the decoding of the PMd region of MT did not perform better than

the PMd region in MT, independently from the fact that more neurons were recorded.

Figure 5.7 presents the fraction of variance explained by the components identified

using PCA. The red dashed line highlights the number of components necessary to

obtain 80% of explained variance, while the green dashed line the 90% of explained

variance. Such values are relatively high compared to previous studies focused on

different areas [26, 117]. That is, we observed a large variety of neural activity patterns

in the current data, which led to a high number of principal components needed to

explain a sufficient amount of variance.

Figure 5.8, 5.9 and 5.10 shows again the predicted behavioural outputs with the

difference that the input data is composed by the PCA components of the spiking

data that explained 90% of the variance. Generally, decoding performances on PCA-

reduced data are lower, but in the case of position decoding, using PCA components

instead of the unaltered data leads to a significant increase in performances for posi-

tion decoding from the PMd area of monkey MT.

Figure 5.11 shows the R2 scores obtained using inputs of different dimensionality,

covering all possible combinations of the number of bins before and after ranging

from 0 to 10. Considering monkey MM and PMd region as example, the highest

performances are reached when the bins before are increased while the bins after are

decreased. This result indicates that considering the correct number of bins before and

after the concurrent output bin, it is possible to reach higher decoding performances

while maintaining a similar computational overhead.

5.4 Discussion

In this study, we performed neural decoding of continuous motor behaviour from

neural spiking data from two monkeys performing a 2D reaching task. We utilised

a recurrent neural network and used the binned data, in the whole form and PCA-

reduced, as input to decode three different behavioural outputs: position, velocity

and acceleration of the cursor controlled by the monkey’s arm.
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Figure 5.3: Connectivity matrices of neurons estimated using cross-correlation be-
tween spike trains (left) and respective GCM (right). (a) Monkey MM, M1 area; (b)
Monkey MM, PMd area; (c) Monkey MT, PMd area, session 1; (d) Monkey MT,
PMd area, session 2; (e) Monkey MT, PMd area, session 3.
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Figure 5.4: X component (left) and Y component (right) of real and predicted position
of the cursor controlled by the monkey arm movement. (a) Monkey MM, M1 area;
(b) Monkey MM, PMd area; (c) Monkey MT, PMd area, session 1; (d) Monkey MT,
PMd area, session 2; (e) Monkey MT, PMd area, session 3.
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Figure 5.5: X component (left) and Y component (right) of real and predicted velocity
of the cursor controlled by the monkey arm movement. (a) Monkey MM, M1 area;
(b) Monkey MM, PMd area; (c) Monkey MT, PMd area, session 1; (d) Monkey MT,
PMd area, session 2; (e) Monkey MT, PMd area, session 3.
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Figure 5.6: X component (left) and Y component (right) of real and predicted accel-
eration of the cursor controlled by the monkey arm movement. (a) Monkey MM, M1
area; (b) Monkey MM, PMd area; (c) Monkey MT, PMd area, session 1; (d) Monkey
MT, PMd area, session 2; (e) Monkey MT, PMd area, session 3.
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Figure 5.7: Explained variance plots of principal components identified with PCA
across all the regions and sessions. The blue line indicates the cumulative explained
variance. The red and green dashed lines indicate the number of components to reach
80% and 90 % of explained variance, respectively.104



Figure 5.8: X component (left) and Y component (right) of real and predicted position
of the cursor from neural data PCA reduced to explain 90% of the variability. (a)
Monkey MM, M1 area; (b) Monkey MM, PMd area; (c) Monkey MT, PMd area,
session 1; (d) Monkey MT, PMd area, session 2; (e) Monkey MT, PMd area, session
3.
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Figure 5.9: X component (left) and Y component (right) of real and predicted velocity
of the cursor from neural data PCA reduced to explain 90% of the variability. (a)
Monkey MM, M1 area; (b) Monkey MM, PMd area; (c) Monkey MT, PMd area,
session 1; (d) Monkey MT, PMd area, session 2; (e) Monkey MT, PMd area, session
3.
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Figure 5.10: X component (left) and Y component (right) of real and predicted accel-
eration of the cursor from neural data PCA reduced to explain 90% of the variability.
(a) Monkey MM, M1 area; (b) Monkey MM, PMd area; (c) Monkey MT, PMd area,
session 1; (d) Monkey MT, PMd area, session 2; (e) Monkey MT, PMd area, session
3.
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Figure 5.11: Decoding performance as R2 scores with input data consisting of all
the possible combinations from 0 up to 10 bins after and before. The decoding is
performed on velocity from neurons of MM monkey’s PMd region.

A critical premise is that Machine Learning, particularly Deep Learning, is gen-

erally easy to apply but more challenging to optimise. The choice of the optimal

algorithm is already a daunting task, given our vast pool of choices in that sense.

Here, RNNs were chosen following other studies [69] or simple considerations about

the tasks that can be performed using this specific architecture. However, this does

not guarantee that RNN is the best choice for decoding performance. Moreover,

Deep Learning algorithms typically have several hyperparameters to optimise, which

usually requires fine-tuning operations. This is important because the same decoder

may need to be tuned differently on each dataset to reach optimal performances. In

addition, the same algorithm can even perform differently based on the hardware is

running on (the so-called ”no free lunch theorem” [241]). Given the high number of

model training procedures on different datasets, fine-tuning has not been performed

in this chapter to avoid an exaggerated computational overhead. However, it is rea-

sonable to assume that fine-tuning would only slightly increase some performances.

Below, I will focus on discussing the most significant results.

Good decoding performances do not necessarily imply that a brain area encodes

that specific behavioural output, nor that the decoder performed analogous compu-
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tation as the nervous system. Specifically, the top performances reached by velocity

decoding do not necessarily imply that M1 and PMd encode more information about

velocity than position or acceleration. Instead, our results suggested that the neural

activity in M1 and PMd and velocity output have a more straightforward correlation

type, a less noisy relation, or both with respect to other motor outputs. In addition,

it is generally not possible to conclude that motor behaviour is a direct cause of the

specific neural activity used for decoding, even if one precedes the other in time. We

can accurately decode a motor output from a specific pool of neurons involved in

a different process caused by another pool, which is the main responsible for move-

ment. One notable case which has been widely studied in the previous decades is

motor learning. It has been observed that PMd has a vital role in motor learning,

a process which temporally follows motor activity [80, 81]. Although motor learn-

ing comes after the motor output, we may still be able to decode it from the neural

ensembles involved. To assess this effects, a cause-effect analysis should be carried

on which is a complicated problem I overlooked in this case. In general, assessing

causality is a challenging task, and different experiments from various fields may be

necessary for a comprehensive understanding of how neural activity causally leads to

motor behaviour [66, 81, 12].

Another exciting aspect of these results is how M1 performed better than PMd in

MM. Again, this may support the fact that M1 is more specialised in directly trans-

lating neural activity into motor behaviour. At the same time, PMd is also involved

in more complex backward activities, i.e., those neural activities which propagates

in the opposite direction of standard forward motor activities. An example is motor

learning, with neural activity propagating backward with respect to standard motor

tasks like limb controls. This, could add noise to the decoding task of limbs move-

ment. However, it is interesting to note that in the third session of MT monkey

experiments, performances were similar to the MM case, except for acceleration de-

coding. In addition, in all three sessions, PMd decoding in MT performed better than

PMd decoding in MM. Given the similar experimental conditions and subject, these

results strongly suggest that the presence of activity in PMd is not directly correlated

to motor behaviour. In fact, PMd neurons recorded in MM were significantly more

than in MT, indicating that more noise, i.e., neural activity related to different motor

tasks, may have also been added.

If neurons have strong cross-correlation or merely introduce noise unrelated to

behaviour, it is useful to apply dimensionality reduction to capture the strongest

sources of variance in the data. However, in the current study, PCA-reduced data
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did not increase decoding performances, with the only notable exception of position

decoding in PMd of monkey MM. This may be because velocity is well represented by

neural activities in M1 and PMd, meaning that reducing the input data dimensions

does not provide any advantage in denoising. Position decoding might be different

because PMd has been observed to better encode the prediction of future occurrence

of a target compared to M1 in a 2D reaching task [86]. Potential future research may

focus on the study of position decoding using a different number of time bins before

or after the concurrent output bin to evaluate better the role of PMd in position

encoding.

It is also interesting to note that the number of components to explain 80% and

90% of the variance is relatively high compared to other brain regions or neural data.

This is particularly evident for monkey MM PMd, while the effect is weaker for M1

decoding, where a lower number of components is needed to explain a higher level of

variance. Again, this could be because different sources of variance are present in the

recorded data, with a more substantial presence of competing representation in PMd

than in M1. An exciting research direction is the analysis of the first components, as

previous studies indicate that different components may encode different information

[216].

Another vital aspect to remember when discussing the potential origin of noisy

information from the input data is the number of bins used for neural decoding,

especially the ones after the concurrent output bin. Although other studies have

used up to six time bins after (300ms) [69], the results of this chapter show that

adding an excess of time bins after the concurrent time causes a drop in performances.

Given that the computational overhead is similar, including more time bins before

the concurrent time and leaving a maximum of one or two (50-100ms) bins after the

concurrent time is better. Using an excessive number of time bins after the concurrent

time may introduce neural activity unrelated to the behaviour we are trying to decode,

thus making input data more noisy and hard to decode. This may not be true for

different brain areas, and potential future improvements of this framework may focus

on integrating different sources of neural activity [162].
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Chapter 6

Discussion

6.1 Summary of the results

In this thesis, I presented a small but powerful set of results from the application of

computational models at different scales for neuroscience.

Proceeding with a top-bottom approach, in Chapter 3 I presented first an analy-

sis of the whole brain connectome using an approach from graph theory and network

science, two disciplines that overlook fine-grained biological details and describe in

mathematical terms the human brain as a collection of nodes and links. More specif-

ically, I applied a novel approach based on graphlets, which are defined as small, in-

duced, connected subgraphs. The results of the application of the graphlet approach

to human structural (DWI) and functional (fMRI and MEG) connectomes show a

concise, efficient and elegant way to summarise many topological results based on

network neuroscience. After identifying the first linearly independent orbits from

graphlet of up to 5 nodes, I computed the Spearman’s correlation coefficient between

each pair of orbits to obtain the Graphlet Correlation Matrix (GCM), a useful tool

that can condensate many topological information of a graph of any dimension in an

11 × 11 matrix, offering an efficient and universal comparison tool [254]. We found

that differently from socio-economical networks, in brain networks, all the orbits are

strongly correlated similarly to other biological networks. However, the correlation is

stronger between central orbits and between peripheral orbits, indicating the presence

of provincial hubs as well as connector hubs in the human brain. I computed the Orbit

Centrality Percentage (OCP), i.e., the z-transformed percentage of central orbits over

the total, for each brain region of the HCP human brain atlas. This analysis offered

an easy way to identify and characterise important regions in the brain. Indeed, net-

work neuroscience intensively investigated the role of hyper-connected nodes, namely

the hubs of the network. Hubs can have different roles, and characterising such nodes
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using only their degree risks to overlook other essential features. For example, hubs

can be brokers/connectors if they act as a bridge between several nodes of different

communities, or they can be provincial hubs if they connect to many lower-degree

nodes within the same community [79].

In Chapter 4, I utilised a simple MLP for parameter recovery of the Wang-Wong

model of perceptual decision-making (Eq. 2.16 to 2.24). I drew several combinations

of 4 different parameters: excitatory synaptic strength Jll, inhibitory strength Jlr,

background current modulation β and non-decision time τnd. With the help of ac-

curacy and reaction time vs coherence plots, the parameter distributions have been

adjusted, discarding those parameter values leading to an unreasonable model’s be-

haviour. The input layer of the MLP took a set of representative statistics computed

from the model’s raw results (decisions and reaction times). The output layer pro-

vided the parameter values that most likely generated those specific statistics. In

the case of 3 parameters decoding, the model performed very well with R2 scores

around 0.9. In contrast, the model failed to reach acceptable performances for the

four-parameter decoding because of the concurrent effect of Jll and β on the output.

The decoding performances have been evaluated on statistics computed from different

model runs (trials), outlining an optimal performance of around 10,000 trials. Finally,

a proof-of-concept neural ensemble has been presented to act directly on a sequence

of frames of a random dot kinematogram, showing that even a simple CNN and RNN

combination can provide a psychometric curve similar to the one of human subjects

performing the same task.

In Chapter 5, I performed a neuronal decoding task on spiking neuron data of two

monkeys performing a 2D reaching task. The monitored brain areas were M1 and

PMd with 58 and 95 neurons, respectively, in one session for one monkey and PMd in

three different sessions for the other with 49, 46 and 58 neurons, respectively. Using

RNN, I found that velocity decoding performed better than position and acceleration,

withR2 scores around the value of 0.7 on average. In addition, M1 decoding performed

slightly better in general for all the behavioural outputs. The performance has also

been tested with respect to input data of different bins, proving that it is better to

limit the number of bins after the concurrent output time and focus on adding more

bins before. In the second part of the experiment, I performed PCA on the neural

data, proving that the numbers of components needed to explain 80% and 90% of the

variance were relatively high. Then, I performed the same decoding task, this time

using the PCA-reduced data as input for the decoder. The decoding performance
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generally dropped significantly, except for the position decoding from PMd of the

first monkey, where PCA reduction of input data was beneficial.

6.2 Discussion

The human brain is arguably the most complex object in the known universe. As

such, neuroscience can enormously benefit from the use of computational tools. The

zoo of computational tools for neuroscience includes many approaches. In this thesis,

I decided to catalogue them based on the application scale. This is just one of the

many possible choices to classify such tools, and it helped address the specific research

questions I posed at the beginning of the thesis.

Intuitively, larger-scale approaches necessitate several approximations, particu-

larly reducing biological details to some essential features. We have seen graph theory

to fit particularly well in this framework as it models a network as a mathematical

object which can be represented as a square matrix. At this level of analysis, we

want to answer research questions related to the higher organisation of the brain

or to the broader activity patterns that may explain whole-brain states or describe

biomarkers used to discriminate a specific group of individuals from others. Moving

to a smaller scale is far from being a straightforward procedure, as the research ques-

tions may change dramatically. The Wang-Wong model introduced in Chapter 4 was

created as a model for the LIP area in the brain that has been proven to accumulate

noisy evidence before reaching a decision threshold in a 2AFC. Reducing the scale

of analysis allowed us to consider biological parameters such as synaptic strengths

and currents. This comes with the necessity to overlook details like the effect of

other brain regions. The input is simulated as an input current, but no information

about the origin of this current is provided. To bridge the gap between large-scale

and mid-scale computational tools, I presented a proof-of-concept neural ensemble to

simulate a system able to solve the random dot motion discrimination task from a

series of frames (video). This model has many limitations compared to the Wang-

Wong model, the biggest being the non-biological plausibility. However, it provides

a proof-of-concept for potential future development in integrating tools at different

scales (see Section 6.3).

In general, the choice of the model is guided by many factors. However, two spe-

cific aspects are essential: interpretability and complexity. Although not necessarily,

those two aspects are usually inversely correlated: the higher the complexity of the

model, the more challenging its interpretability. Hence, we should expect a loss in
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interpretability when considering more powerful approaches. AI provides a typical

example. The MLP used in Chapter 4 for parameter recovery and the RNN used

in Chapter 5 for neural decoding are not natively interpretable models. That means

that they are not able to answer research questions such as ”Which specific part of

the inputs guided the model to make a specific prediction?” or ”Are the computations

carried by AI similar to the ones performed by the human brain?”. This lack of native

interpretability is caused by the complex nonlinear computation that DNNs can per-

form. Conversely, the meaning of correlation coefficients between orbits in Chapter

3 were easier to understand and related to real-world scenarios, helping to charac-

terise different real-world networks. However, the predictive power of the graphlet

approach is far from the one of AI. It is essential to find a good balance between

interpretability and complexity [133]. We may prefer more complex models because

we have the necessary computational resources. However, a model as complex as the

system we want to study is not helpful. For example, the original proposal of the

Human Brain Project (HBP) [143] was criticised because it aimed at recreating a

perfect computational replica of a whole brain using neuromorphic computing [61].

In such a scenario, researchers complained about the lack of well-defined research

questions and the non-clear usefulness of such large-scale simulation [61].

In this discussion, it is also worth mentioning alternative models to accomplish

the goal set at the beginning of the thesis. For example, Dynamic Causal Modelling

(DCM) is a framework that specifies, fit and compare models [64]. It is widely used to

estimate the influence that an area of the brain has on another using multivariate time

series like fMRI or MEG. Such approach first focuses on the fitting procedure of dif-

ferent models to the time-varying data, applying a subsequent Bayesian approach to

select the best model in term of some type of performances of interest. As described,

this approach fits perfectly in the framework of the problem I addressed in Chapter

3, i.e., the multi-modal integration problem. While offering potential improvements

over a conceptually simple approach like Graph Theory, DCMs are usually more com-

putationally expensive and there are high risks of over-fitting, especially when dealing

with complex models and a lack of data [137]. In Chapter 4 and 5, Deep Learning

was the main tool used to answer the relative research questions. As discussed, su-

pervised DL algorithms estimate the joint probability p(X̂, ŷ), with X̂ and ŷ referring

to a subset of input and output data, respectively. This is in turn an approximation

of p(X, y) where X and y refer to the real complete data which for practical reasons

are unavailable. A similar approach is followed by Bayesian methods. In particular,

to solve the problem of information encoding in the brain, Bayesian approaches look
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for the joint distribution p(D, I) (where D refers to the information encoded by a

specific area, and I the sensory input) [226]. Bayesian models have been extensively

used to study visual processing, sensory integration, sensorimotor integration, and

collective decision making [175]. However, compared to DL approaches, Bayesian

methods suffer from similar disadvantages like complexity and lack of interpretabil-

ity. In addition, specifying appropriate prior distributions and likelihoods requires

domain expertise and can be subjective, potentially influencing results. On the other

hand, Deep Learning does not inherently provide measures of uncertainty in predic-

tions, which can be a limitation in critical applications. A novel field of research is

working towards the unification of the two frameworks in the so-called Bayesian Deep

Learning [230].

Another critical aspect of computational tools is that, by definition, they are used

with computers, and sometimes, the optimisation of computational resources can be

as important as any other field-specific research question. In all of the chapters of

this thesis, I paid attention to the problem of computational overhead and how to

improve it. I have shown in Chapter 3 that graphlet analysis can efficiently represent

the topology of large brain networks in just an 11 × 11 matrix. In Chapter 4, the

main computational overhead was given by the several runs of the Wang-Wong model

to generate task responses. I made sure to use the most efficient library in Python,

Cython, which compiles the code in C, and verified that the number of trials cho-

sen was optimal to avoid running unnecessary simulations. Finally, in Chapter 5, I

presented the performance of a decoder on PCA-reduced data, showing that in most

cases, the decrease in the R2 scores can be compensated by the reduced computational

overhead and, in one case that it can even be more beneficial to use PCA-reduced

data as it is less contaminated with noise due to unrelated neural activity.

Computational tools in neuroscience are instrumental to better understanding

how the brain works and have potential applications in improving people’s lives. The

approaches presented in this thesis, as well as many others, can be used for the diag-

nosis of neurological conditions or even rehabilitation, regardless of the scale of the

model. In Chapter 3, the discussion focused on the multimodal integration of SC

and FC or FC from different sources. However, analogous methods can be applied

to classify different groups of subjects. There is increasing evidence of the modifi-

cation of the structure or functional patterns of the brain in neurological disease, or

even decades before the onset of the specific condition [60]. In such a framework, a

powerful and efficient tool to study the topology of brain networks, like the graphlet
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approach, provides hope in developing tools for early diagnosis of neurological con-

ditions, enabling early treatments that could improve people’s healthspan and save

lives. Effective multimodal integration provides a more powerful basis for potential

future diagnostic tools. Future research should be focused on applying existing tools,

especially elegant and efficient ones like the graphlet approach, to clinical studies,

instead of focusing on just trying to find more powerful computational approaches.

This is also important especially for Deep Learning, as the vast majority of publica-

tions in the field are increasingly focused on improving predictive performances by

often just a small percentage. A similar conclusion can be drawn from the results in

Chapter 4. It has been observed that a neurological condition, even if not diagnosed

yet, may cause people to perform differently in a task than healthy participants [28].

However, associating between different performances and the early onset of a neu-

rological disease is not straightforward. Parameter recovery may help by identifying

parameter changes referred to a biological property. The variation of a biological

property is usually a more robust signal of the potential future onset of a neurological

condition, thus providing another valuable tool for potential early diagnoses [180].

Future research should be focused on clinical study where parameter recovery can

effectively estimates parameters of healthy brain and pathological ones. The number

of potential applications is vast given the wide range of pathological conditions. As

such, integrating between different fields of research like pathological neuroscience or

neurosurgery is imperative.

We should remember that a successful computational tool is not only one that has

evident practical application, even if far in the future. Theoretical implications are

also significant as they may verify or confute models and other theoretical paradigms,

which can help advance the research in the field [138]. For example, the graphlet

approach challenged the vision of a complex graph theory-based analysis of networks,

which requires several metrics to be computed and interpreted, substituting it with

a simple representation in the form of a matrix. This is also relevant to one of the

most theoretical and practical issues, which will be discussed in the next session: the

unification of different computational tools [72].

6.3 Limitations and future directions

Computational tools have revolutionised every research field. However, modern ap-

proaches still require many improvements in different aspects. In this section, I will
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discuss the limitations of the tools used in the thesis, presenting potential improve-

ments to guide future research.

In this thesis, I presented the results on a top-bottom scale, presenting whole-brain

analysis first down to single-neuron activity recording. While reducing the scale of

analysis, I also focused on more task-oriented problems, from the analysis of resting

state connectomes with graph theory, passing through a simple 2AFC where the re-

sponses are made in fractions of seconds, to more complex 2D reaching task which

lasted several minutes. Given the broad range of scales of approaches treated in this

thesis, I focused on these specific problems because it is generally more challenging

to apply more powerful tools to large-scale problems. However, larger-scale computa-

tional approaches can be extended to task-oriented analysis and more complex brain

dynamics. For example, in Chapter 3, I cited different works based on the exten-

sion of the graphlet approach to more complex problems in network neuroscience,

like dynamic networks, which are helpful for task-based analysis. Another promising

research field is the application of neural architectures specifically designed to oper-

ate on graphs. Graph Neural Networks (GNNs) are increasing their popularity and

find several applications in whole-brain analysis. For example, GNNs can be used

to simulate brain states and generate data for subsequent analysis [118]. On a more

practical aspect, GNNs can be used to characterise and analyse brains affected by

neurological diseases [37, 251].

On the other hand, finer-scale approaches like NMM can also be extended to

larger-scale problems [45]. However, particular attention should be put to avoid

an excessive increase in complexity that could make the tool unable to answer the

research questions it was designed for.

Again, for simplicity requirements, given the broad range of scales considered, I

focused more on answering research questions with the most straightforward possible

tool instead of asking which approach could give the best increment in performance.

This is particularly the case of AI approaches. The simple MLP in Chapter 4 or the

basic RNN in Chapter 5 are certainly not the optimal models. However, they acted

as a good balance between performance and computational efficiency. The field of

AI is in constant evolution, with models of surprising performances coming out every

month. One notable example is transformers, robust architectures based on attention

scores on the input data, which outperform RNNs and their derivation in basically

every task performed on sequence data [135].

As I discussed in the previous section, even if ideal in some way, a computational

tool cannot be simultaneously powerful and interpretable. The emphasis to be put
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on one of the two aspects depends on the research question we want to answer or the

potential practical aspect. For example, neuronal decoding is one of the approaches

that should be as much interpretable as possible for many reasons. In particular,

to understand how the input is processed and transformed in a behavioural output,

i.e., which computations are performed by the brain to transform sensory data and

previous internal representations, we need a model simple enough to be interpretable

but powerful enough to approximate specific aspect of the highly intricate nonlin-

ear nature of the brain. The RNN used in Chapter 5, and deep learning in general,

has solid predictive capabilities but lacks interpretability. This is also particularly

important for future applications, like BCI, to ensure ethical standards and trust-

worthiness [31]. While developing more powerful interpretable models is difficult, a

new research field focused on developing external tools to interpret black box models

like deep learning is quickly developing [193]. Currently, the need for more powerful

AI tools is pushing researchers to focus more on the capabilities of an AI system

instead of its interpretability. Few large companies have whole teams working on AI

safety and explainability. However, AI interpretability should not be separated from

any other AI research to ensure the creation of more powerful computational tools

natively interpretable.

A broader limitation of current computational tools is that a unification of dif-

ferent approaches needs to be included. Future research efforts should be put into

multimodal integration of experimental procedures and tools for implementing spe-

cific tools. For example, in Chapter 3 I performed all the analysis with a clear research

question in mind: How do topology and other characteristics change across different

imaging techniques? A similar approach is essential for neuronal decoding as well

to improve decoding performances using complementary techniques like EEG and

fNIRS or to enable less invasive but still powerful BCIs. A different kind of unifi-

cation regards the specific tools to implement computational models and approaches

[72]. Recently, new open-source libraries for research in computational neuroscience

were released [210, 194]. However, many researchers still prefer to create ad-hoc im-

plementations for their studies. Future effort should be put into making the code

of a specific computational tool open and available to the community not only to

reproduce the results of the specific study but also to build new knowledge quickly.

While I put a strong emphasis on clinical applications, it is imperative to clearly

state that most approaches are still very preliminary to have a strong impact on

people lives. However, first results are encouraging and the potential of these ap-

proaches to positively influence people’s lives is high, making it worth the effort and
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resources invested in advancing this field of study. A notable exception is given

by brain-computer interfaces. BCI technology is constantly evolving and extraor-

dinary advancements have been made, as discussed extensively in Chapter 5. Two

main factors are essential for succesful BCI applications, namely the accuracy of the

data acquisition method, and the performances of the decoding algorithms. While

improvements should be made on both sides, more effort should be put in the the-

oretical understanding of the brain encoding mechanisms. This is to ensure future

exciting development of BCIs, not only limiting to the important problem of neuro-

prosthetic, but providing effective rehabilitation therapies or even enhancing human

cognitive capabilities.
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[181] Natasa Pržulj, Derek G Corneil, and Igor Jurisica. Modeling interactome: scale-

free or geometric? Bioinformatics, 20(18):3508–3515, 2004.
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