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Abstract: Smart grids are a cornerstone of the transition to a decentralised, low-carbon energy system,
which offer significant benefits, including increased reliability, improved energy efficiency, and
seamless integration of renewable energy sources. However, ensuring the security and resilience of
smart grids is paramount. Cyber attacks, physical disruptions, and other unforeseen threats pose a
significant risk to the stability and functionality of the grid. This paper identifies the research gaps and
technical hurdles that hinder the development of a robust and secure smart grid infrastructure. This
paper addresses the critical gaps in smart grid security research, outlining the technical challenges
and promising avenues for exploration by both the industry and academia. A novel framework
designed to enhance the reliability and security of smart grids was proposed against cyber attacks,
considering the interconnectedness of the physical and cyber components. The paper further explores
future research trends and identifies the key open issues in the ongoing effort to strengthen the
security and resilience of smart grids.
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1. Introduction

The demand for smart grid technology has significantly increased over the past decade
due to a convergence of the global market and government trends. In 2023, the global smart
grid market reached USD 63 billion, with a projected Compound Annual Growth Rate
(CAGR) of 16.2% expected until 2032 [1]. Microgrids serve as an illustrative example of the
benefits and challenges within the broader context of smart grid development. Microgrids
can significantly benefit the global demands for clean energy generation and diversity of
power sources, relying on key enabling techniques, such as a robust physical infrastructure,
cyber security measures, resilient control systems, and robust power networks.

A microgrid is a localised energy system that can operate independently of the larger
power grid. It consists of distributed energy resources, such as solar panels, wind turbines,
and energy storage systems, which are interconnected and managed through a central control
system. Microgrids can also be connected to the larger power grid and operate in parallel with
it. Microgrids show great potential to combat climate change in several ways: (1) reducing
greenhouse gas emissions: microgrids can incorporate renewable energy sources, such as solar
and wind, to generate electricity with little to no greenhouse gas emissions. This reduces the
reliance on fossil fuels and helps to combat climate change. (2) Improving energy efficiency:
microgrids can also improve energy efficiency by using energy storage systems to store excess
energy and dispatch it when needed. This reduces the need for energy generation during
periods of peak demand and can reduce the overall energy consumption. (3) Providing
resilience: microgrids can also provide resilience during extreme weather events or other
emergencies that disrupt the larger power grid. By operating independently of the grid,
microgrids can continue to provide electricity to critical infrastructure, such as hospitals and
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emergency services, when the grid goes down. (4) Empowering local communities: microgrids
can be owned and operated by local communities or organisations, providing them greater
control over their energy supply and reducing the reliance on centralised power systems. This
can also provide economic benefits by creating local jobs and reducing energy costs.

However, to implement microgrids, the following challenges need to be addressed: (1)
cost: the upfront cost of designing, building, and operating a microgrid can be high, partic-
ularly for larger systems. This cost may be prohibitive for some communities or facilities.
(2) Regulation: microgrids operate differently from traditional power grids and may not fit
into the existing regulatory frameworks. This can create uncertainty and additional costs
for microgrid developers. (3) Integration: microgrids must be integrated with the existing
infrastructure, including the larger power grid and local distribution networks. This can be
a complex process and may require significant planning and coordination. (4) Maintenance:
microgrids require regular maintenance to ensure that they operate reliably and efficiently.
This can be a challenge, particularly for remote or isolated microgrids. (5) Scalability: some
microgrids may be too small to generate enough electricity to meet the needs of a larger
community or facility. This can limit their scalability and may require the construction of
multiple microgrids to meet the demand. (6) Cyber security: microgrids are vulnerable to
cyber attacks, which could disrupt or disable the system. Ensuring the cyber security of a
microgrid can be challenging and may require significant resources.

This work focuses on the cyber–physical security and resilience of smart grids by ad-
dressing the above challenges, specifically, focusing on the cyber attack detection/mitigation
and resilient control systems in microgrids. Microgrids are a smart monolithic system
including power generation, power transmission, and power distribution [2]. When tradi-
tional power grid infrastructures gradually adapt themselves to smart grid and microgrid
concepts, they start to grow their dependencies on emerging technologies, such as smart
technology, cyber–physical systems (CPSs), artificial intelligence, cyber security, edge
computing, big data analytics, etc. [3]. The cyber security issues that existed in IT sys-
tems will remain in microgrids; what is more, some new cyber attacks appear during the
microgrid operations.

This work will introduce the application and enabling techniques in microgrids, including
distributed energy resources (DERs), a distributed management system (DMS), a power
control system, advance metering infrastructure (AMI), energy scheduling, and dynamic
pricing [4].

Because cyber–physical attacks can happen at any point through the information
chain, this survey takes Secure Smart Grid Standard NISTIR 7628 [5] as a high-level
security analysis framework and the National Infrastructure Advisory Council’s report:
A Framework for Establishing Critical Infrastructure Resilience Goals (used as NIAC in
this survey) [6], as a high-level resilience analysis framework, which details the operation
actors from the ICT architecture and will be explained in the next section [3]. The main
contribution of this work can be summarised as follows:

(1) We introduced the common cyber–physical attacks, communication protocols, and re-
search testbed from the smart grid research and demonstrated various secure countermeasures
and resilient technologies through four stages: securing communication channels, state esti-
mation, detecting malicious attacks, and contingency responses for mitigation.

(2) This work proposed secure and resilient frameworks by considering cyber security
measurements, redundancy and resilience, real-time monitoring, and situational awareness.

(3) This work investigated the specific challenges related to resilience in smart grids
and microgrids, including grid disruptions, distributed energy resources (DERs) integration,
security concerns, communication, and control systems.

The paper outlines a comprehensive framework for enhancing the security and re-
silience of smart grids, structured around critical analyses and proposed solutions spanning
multiple dimensions. Section 2 lays the foundation with an exploration of secure and re-
silient frameworks. In Section 3, various cyber–physical attacks and real-world attack
scenarios are introduced based on the frameworks. Section 4 delves into an array of de-



Electronics 2024, 1, 0 3 of 24

fence and mitigation mechanisms, including the development of secure communication
channels, advanced state estimation, robust attack detection strategies, comprehensive
contingency responses, and the integration of testbeds within the contexts established
in Section 2. Lastly, Section 5 confronts the challenges inherent in implementing these
frameworks, proposing potential solutions that span the spectrum of security and resilience
in smart grids.

2. Secure and Resilient Smart Grid Frameworks

The development of secure and resilient smart grid frameworks is essential for a com-
prehensive understanding of the power system structures, functions, and techniques. Such
frameworks enable a systematic analysis of the vulnerabilities and existing cyber threats,
facilitating the application of targeted protection, detection, and mitigation methods. This
strategic approach is vital for safeguarding the specific functions, services, and infrastruc-
tures within the power system. It underscores the importance of these frameworks in
ensuring the operational integrity, reliability, and security of our energy infrastructures
against a backdrop of evolving cyber challenges.

2.1. Secure Framework: NISTIR 7628 R1

According to NISTIR 7628 [5], the smart grid’s operation actors are divided into
seven domains: marketing, operations, service provider, bulk generation, transmission,
distribution, and customer. All these domains connect and interact with each other via over
one-hundred-thirty different logical interfaces, which can be summarised into twenty-two
interface categories based on two communication ends and the CIA requirements.

This work focuses on five main domains: bulk generation, operations, transmission,
distribution, and customer. The related logical interface categories can be listed as follows:
logical interface categories 1–4 describe the interface between control systems and equip-
ment (e.g., category 37 represents the transmissions between SCADA and transmission
substation equipment); logical interface categories 6–7 describe the interface between the
control system and the same/different organisations (e.g., the information flow between
29/37 SCADAs and 30 EMS); logical interface category 10 refers to the interface between
control systems and non-control/corporate systems (e.g., the information flow between the
control system and 46, 47, 17, 5, and 7 non-control/corporate systems); and logical interface
categories 11–12 denote the interfaces between the sensors and sensor networks/control
system (e.g., the information collected by 12 and the information 12 communicated with
control system 37). Figure 1 simplifies the process and the architecture of the smart grid.

Figure 1. NISTIR 7628 smart grid processes.
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The NISTIR 7628 framework provides readers with a better understanding of the smart
grid structure, issues, and related security techniques; also, the logic reference model will
benefit defence-in-depth security deployment because it defines each interface’s security
(CIA) requirements.

2.2. Resilient Framework: NIAC

The National Infrastructure Advisory Council (NIAC) classified the four stages in the
resilience framework with more detailed high-level concepts when the system encounters
incidents: robustness, resourcefulness, rapid recovery, and adaptability [6,7], which are
illustrated in Figure 2.

Figure 2. NIAC resilience framework.

Robustness denotes the continuity ability of the smart grid when facing incidents,
which refers to the infrastructure hardening and substitute/redundant system designed
to support the grid to keep operating during an incident. Resourcefulness denotes the
response prioritisation ability when incidents are happening, which relies more on skillful
and experienced people to mitigate damage. Rapid recovery denotes the recovery ability
of the smart grid after incidents, which requires detailed continuity plans and emergency
operations to set the grid back to its normal state. Adaptability denotes the knowledge and
experience gained from previous incidents, which involves revising the system operations,
patching vulnerabilities, and applying new techniques to improve the system’s robustness,
resourcefulness, and rapid recovery capabilities.

3. Smart Grid Cyber–Physical Attacks

The traditional power grid is a geographically distributed system, which mainly
suffers from infrastructure exposure to the external environment throughout all weather
conditions [8]. However, with the development of ICTs, the smart grid vulnerabilities have
been expanded into the cyber–physical aspect.

Smart grid control systems have inherited the shortcomings from both the traditional
IT infrastructure and the deployment of a Distributed Phaser Measurement Unit (PMU),
which means traditional IT attacks like DoS attacks, false data injection, and Malware
Injection are affecting smart grids. On the other hand, smart grid control systems are
suffering from cyber–physical attacks, which are aimed at critical physical devices that
operate in the control system. Once the critical devices in power systems like generators
are cyber–physically attacked, it may cause irreversible damage to the devices.

3.1. Cyber–Physical Attacks

Depending on the system architecture, the CPSs’ controller can be normally classified
into a centralised controller and distributed controller [9]. The centralised controller collects
all the global measurements from the basic units or the secondary controllers, which will
have a potential attacking surface in between the controller (PMU) and physical units [9].
In this case, cyber attacks mainly happen in logical interface category 10 (the interface
between control systems and corporate systems), logical interface category 11 (the interface
between sensors and sensor network), and logical interface category 12 (the interface
between the sensor network and control system) [5,9]. The distributed controller, however,
only collects the information from local units and neighbour controllers, which is widely
used in distributed systems like microgrids [9]. The attacking surface is not only between
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controllers and local devices but also between controllers and neighbour units like logical
interface 5, logical interface category 6, and logical interface category 20 [9].

According to the NISTIR 7628, cyber–physical attacks can commonly be classified into
three types [5]:

1. Physical attacks informed from cyber, which utilise confidential information gathered
from cyberspace. For example, with this information, attackers will be able to identify
which substations and lines are on high load. Physical attacks against these critical
infrastructures will cause more damage than random physical attacks.

2. Cyber attacks enhance physical attacks, which introduce cyber attacks into physical
attacks to enlarge the damage or increase the attack/recovery duration. A typical
example is attackers conducting DoS attacks after physical attacks to disrupt the
recovery operations and enhance the attack consequences.

3. Cyber attacks cause physical damage, which compromises the cyber control systems
and applies harmful operation instructions to cause physical damage. The Aurora
attack introduced in Section 3.3 is an example.

3.2. Power System Attack Scenarios

Under the pressure of various cyber–physical attacks, the power systems are facing
challenges from infrastructure vulnerabilities, operational vulnerabilities, energy efficiency,
generation costs, extreme climate, etc. Table 1 examines some representative real-world
power system attack scenarios and their devastating consequences in the real world.

Table 1. Power system attack scenarios study.

Year Place Attack Methods Impact

2003 [10] Ohio The Slammer worm attacked
and disabled the supervisory
system

Ohio Davis–Besse nuclear
plant supervisory system
disabled for 5 h.

2010 [10,11] Iran Replay attack. The Stuxnet
worm tempered the power
frequency of nuclear
centrifuges rapidly in
between high and low
speeds and sent the normal
measurements to SCADA.

Disrupt the operations of
1/5 of centrifuges in the
nuclear plant and the
Stuxnet worm infected over
200 thousand computers in
the control system.

2015 [10,11] Ukraine BlackEnergy3 was designed
to conduct spear-phishing
attacks to collect internal
staff’s VPN credentials and
deploy a telephonic DoS
attack to outage report.

Three Ukrainian power
distribution companies had
a large-scale power outage
that lasted for 3 h, affecting
225,000 users.

2016 [11] Israel Ransomware attack through
phishing email against Israel
Electric Authority.

Suspend the operations of
affected computers and
company facing 12,610
megawatts electricity
demand.

2021 [12] Texas Extreme weather winter
storm

Short of 1.6 million
megawatt-hours electricity
and electricity generation
cost increased by USD 52.6
bn.

Real-world power system attack scenarios are valuable resources for understanding
the vulnerabilities and risks facing the power grid. As a critical national infrastructure,
the power grid’s security and resilient architectures need to be studied and tested urgently
to avoid any damage to the power system.
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3.3. Denial of Service (DoS)

Data absence attacks in smart grid control systems are mainly referring to Denial of
Service (DoS) attacks that comprise the data availability. A DoS attack refers to a type
of network overflow attack, which will jam the traffic and prevent legitimate users or
services from using the channel to communicate. In [13], the author summarised the
DoS attack differences between smart grids and traditional networks: first, DoS attacks
in smart grids are not targeting only timely and reliable access assets but also the control
system, computing process, communication channels, or the power itself. Second, DoS
attacks could affect state estimation. Combined with other attacks, DoS attacks can cause
cyber–physical damage.

The DoS attack targets in the smart grid can be mainly classified into three categories:
1. smart grid communication protocols, 2. smart gird physical devices, and 3. smart
grid applications [13]. There are several pieces of research regarding DoS attacks against
smart grid communication protocols, such as IEC 61850 (substation automation) [14], ANSI
C12.22/IEEE 1703 (AMI) [15], IEEE C37.118 (PMU) [16], and IEC 60870 (SCADA) [17]. Also,
DoS attacks will prevent users from changing the routing protocol to mitigate the risks [18].

DoS attacks’ main focus is on smart grid devices, like smart meters, generators, PMUs,
IEDs, RTUs, and PLCs; DoS and Distributed Denial of Service (DDoS) attacks can start
from one specific or several distributed sources by transmitting malformed packages to
exhaust the target’s network bandwidth and processing capacity [19]. One of the famous
DoS attack cases happened in 2015 against a Ukrainian substation, resulting in a power
outage [20].

The data sources that smart grid applications use, like Advanced Metering Infras-
tructure (AMI), Distribution Management System (DMS), and Wide Area Monitoring,
Protection, and Control Systems (WAMPAC), are some of the DoS attack targets as well [13].

To sum up, the DoS attack’s main purpose in smart grids is to prevent the smart
grid control system from receiving the control signals, or PMUs from receiving the data
from sensors, which will lead to cascading blackouts and loss of availability to many
infrastructures in the smart grid sectors [13].

3.4. False Data Injection (FDI)

False data injection attacks have been considered one of the most challenging issues in
smart grids [19]. To successfully conduct an FDI attack, the attackers must have somewhat
of an understanding of the configuration of the target power system, especially the system
topology [21]. At the same time, the attackers will try to temper some of the values from
smart meters either physically or manipulate the measurement data to keep the residuals
the same, which will not be alarmed by bad data detection [22].

Farzam et al. analysed FDI attacks in detail, which can be classified by FDI attacks’
targets [19]. They proposed four different targets that FDI attacks usually aim at in a smart
grid system: FDI attacks on state estimation, FDI attacks on voltage control, FDI attacks
on frequency control, and FDI attacks on the protection system. In state estimation, more
DC state estimation cases have been studied than AC state estimation due to simplicity.
An FDI attack will pose a major threat to state estimation if the critical measurement data
have been manipulated. The smart grid voltage value is usually controlled by power
electronics-interfaced distributed generations and rotational-based generators. Modifying
the measurement of voltage and control signals among the layers will impact the voltage
regulation in the smart grid. Smart grid frequency control is sensitive to active powers,
frequency measurements, and reference signals, which means any FDI attacks aiming at
rotor speed or angle measurements will change the frequency stability. Protecting the
system design is one of the main challenges of smart grids. FDI attacks against protection
systems could affect the system performance and also lead to disaster events.

A network topology attack is one of the FDI attacks, which mainly aims to disorder
the state estimation results by attacking the topology estimations. The stealthy topology
attack could not only bypass bad data detection but also convince the control center of the
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new network topology. In [23], the author proved that stealthy topology attacks will be
able to affect the state estimation and also the real-time locational marginal price (LMP).

Replay attacks in smart grids require attackers to gain access to PMUs first, then
intercept and record the packages, including the measurements, for a period of time.
At last, the attackers launch the replay attack by forwarding the captured packages to
trick the smart grid and collect real measurement data for other malicious use. To sum up,
a replay attack is one kind of FDI attack, which repeats stealthy data in a period to deceive
the smart grid controlling system and aims at stealing electricity and causing physical
damage without being detected. According to [18], reply attacks are difficult to detect by
the control systems because of the limited capability of examining the cryptographic keys.

Another type of sophisticated false data injection attack is called a zero-dynamic attack
(ZDA), which requires some knowledge from the target system [24,25]. The key element
of zero-dynamic attacks is designing a residue attack signal that equals zero by adjusting
the attack vectors against non-minimum phase systems [24,25]. ZDAs can cause serious
damage to a smart grid because, even if the input data are geometrically changing, there
will be little change in the output stage. Sometimes, it is also called a stealthy FDI attack.

Another well-known attack is the load redistribution attack, which only requires
limited smart meters [2]. The load redistribution attack is one of the FDI attacks focusing
on tempering the load buses’ power injection and line power flow measurements.

3.5. Advanced Cyber–Physical Attacks

Random attacks are a kind of attack that especially aims at the sensor readings rather
than bypassing the detection system [26]. The random attack vector can be generated at
any time by the attacker. According to the attacking period, an attack can be presented as
either a short-term or long-term random attack.

Srivastava et al. [27] mentioned a unique cyber–physical attack called an Aurora-like
attack, which refers to attacks specifically aiming at the breaker near a power generator.
The attack leads to extreme torque by opening and closing the breaker rapidly, which may
cause physical damage to the critical assets in smart grid power generators according to
the Idaho National Lab [28]. The purpose of an Aurora-like attack is to disconnect as many
generators as possible from the smart grid and then reconnect them to the grid out of
synchronism. In [29], the author simulated the Aurora-like attack under the IEEE 9-buses
3-generators testbed.

Adversarial Machine Learning (AML) attacks have also been introduced in many
works to exploit the vulnerabilities in the pre-trained data-driven IDS model. AML attacks
can manipulate the measurement data like FDI attacks but aim at bypassing ML/DL-based
IDSs [30]. In [30], Eirini demonstrated the adversarial samples designed for the Random
Forest and J48 Decision Tree model. In [31], the author proposed an AML attack method
against the RNN model that works under the black box scenario in the power system.

4. Security and Resilient Architecture

The security architecture in CPSs is commonly divided into three stages: protection,
detection, and mitigation [28]. On the other hand, reliability and resilience ought to be
considered throughout the entire smart grid framework. In this survey, these incidents are
considered among all the aspects of cyber–physical attacks included in the previous section.

In a similar context, developing a secure and resilient smart grid architecture can
be classified into secure communication channels (protection, prior to an incident), state
estimation (detection, during an incident), detecting malicious attacks (detection, during an
incident), and contingency response (mitigation, after an incident).

4.1. Secure and Resilient Communication Channels

Developing secure and resilient communication channels in smart grids can defend
against the majority of malicious cyber attacks, which reflects security concern logical
interface category 22 (the interface between security management consoles, networks,
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and systems) in NISTIR [5,28]. The confidentiality, integrity, and availability impact levels
are all marked as high in category 22 [5]. In [32], the author listed four main communication
technical challenges in the smart grid: (1) short latency and high reliability, (2) high-density
random access, (3) reliable coverage, and (4) coexistence of H2H (human to human) and
M2M (machine to machine) traffic.

To guarantee the security and resilience of the communication channel, there are
three basic requirements: information security, communication reliability and scalability,
and transmission latency [33].

4.1.1. Data Security and Vulnerabilities

Data security is defined as the first line in the defence-in-depth model. It ensures
the security of information exchanges between every actor in the smart grid. Information
security in a smart grid is usually guaranteed by secured communication protocol and
advanced encryption algorithms, thus avoiding data jamming and data tampering.

The vulnerabilities and drawbacks of communication protocols used in smart grid
are listed in [34]. The comparison between lightweight cryptography algorithms for
IoT devices has been presented in [34]. They summarised that, compared to Advanced
Encryption Standard (AES) [120], Blowfish, and Data Encryption Standard (DES) [121],
the asymmetric algorithm Elliptic Curve Cryptography (ECC) is one of the most studied
and secure algorithms because it requires fewer computing resources (capability, energy,
and memory) than other algorithms when providing the equivalent security level.

The Sandia National Lab introduced a network segmentation concept called enclaves
to ensure information security [35]. Enclaves separate smart grid networks via system
functions, share physical locations, and similar security requirements rather than traditional
IT network segmentation. In [36], Dong Jin presented a Software-Defined Networking
(SDN) communication architecture, which first separates the network control function
from the forwarding data function in the network devices in the communication network
layer and then gathers all the collected data in the SDN control layer; finally, it provides
the SDN application in the application layer. They utilised SDN to verify there are no
loops, black holes, consistent updates, and incremental consistent updates existing in the
communication channel to ensure information security.

4.1.2. Communication Reliability and Scalability

After ensuring information security, communication reliability and also scalability
become the next stage of consideration. On the one hand, communication reliability refers
to the situation when communication failures, re-transmitting packages, or discarding pack-
ages occurred [24]. On the other hand, smart communication scalability is also important
because many renewable energy resources, smart IoT devices, smart meters, and smart
vehicles are joining the smart grid and also the communication network [12].

Jin et al. provided SDN-based self-healing network management applications, which
not only solve transmission failure and hardware resource limits but also deal with cyber
attacks such as isolating compromised PMUs and establishing the best path for discon-
necting non-compromised PMUs [36]. The SDN self-healing application is built into the
ONOS platform and works in between the network control center and energy storage
assets. The restoration connection is run by Dijkstra’s shortest path algorithm based on the
dynamic topology in ONOS, which also supports multi-path forwarding [36].

Kulkarni et al. discussed the communication technologies in smart grids, listing the ex-
isting technologies for AMI communications by comparing their coverage and cost [37]: (1)
special-purpose wired network connection, (2) cellular connection, (3) fixed broadband, (4)
TV white space, (5) power line communications, (6) 802.15.4 mesh radio, and (7) Wi-Fi mesh
radio. The auto-configure and reconfigure solutions also need to be studied at the same
time. In the meantime, communication protocols resilience [38–40] and communication
algorithms resilience need to be studied as well [41].
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4.1.3. Transmission Delay

Many smart grid control system actions (like real-time state estimation and commu-
nication between the power supplier and consumer) require time-sensitive data. Many
operations and services have max latency of the data; for example, the protective relay is in
4 ms, and the situational awareness monitor system based on PMU is in sub-seconds [19].
In this case, data transmission delay is also considered critical to data availability and smart
grid operations. A Quality of Service (QoS) routing protocol can effectively reduce the
transmission delay [42].

The transmission latency and reliability analysis in the distribution automation area
was studied in [32,43]. In [36], an SDN model was developed collecting real-time network
flow to create static network topologies and calculate QoS to guarantee the transmission
delay. In [44], the authors used a method that combined code division multiple access
(CDMA) and compressed sensing to solve the transmission delay problem in the meter
reading process under sparse data arrival scenarios. Aparna et al. studied fog computing’s
performance in response time, transmission delay, and energy management cost in 5G
smart grid distributed network communication [45].

4.2. Power System State Estimation (PSSE)

PSSE is one of the fundamental applications in smart grids, which estimates accurate
system state by collecting and analysing the meter measurements and power system models
to prevent cyber–physical attacks [9,21]. Many important applications like contingency
response and optimal flow calculation highly rely on state estimation. After receiving the
measurement data, PSSE is usually finished in three stages: observability analysis, state
estimation (SE), and bad data detection (BDD).

Observability analysis is to determine whether the state variables of a power system
can be estimated using measurements from available sensors in the network. The state
vector that SE usually refers to voltage magnitudes and phase angles on the power grid
buses, which is used to evaluate system performances and reliability. State vector can also
be formed as a three-phase model in polar coordination [46]. The BDD process usually
comes after the state estimation, to check especially the false data attacks (FDI, replay
attack, and zero-dynamic attack). The BDD process usually comes up with a residual signal
based on the measurements and then compares the value with the predefined threshold.
If the residual value exceeds the threshold value, it can be considered an attack. The state
estimation on the AC power system is considered computationally complex and expensive
due to the nonlinear model and calculating both real and reactive power [21]. As a result,
many power systems use stable DC power systems to represent the AC model.

The observability analysis, measurement data, state estimation algorithms, and bad
data detection algorithms for different state estimation systems (static state estimation,
dynamic state estimation, and distribution system state estimation) are studied in detail.

4.2.1. Observability Analysis

Observability analysis is an important pre-process before the measurement data enter
the state estimation stage. The observability analysis helps to identify the minimum number
of sensors that are required to accurately estimate the state variables in the power system.

For SSE, the observability analysis is usually based on topological or numerical analysis
models, such as checking the rank of the measurement Jacobin matrix, to determine whether
the system is observable or not, which is a binary outcome [47,48].

For DSE, different from SSE observability’s binary outcome, it usually can be classified
into strong or weak observable systems. The linear DSE observability is determined by
the observability matrix’s full rank state; and, for non-linear DSE observability, the system
can analyse the local observability and perform a linearisation analysis [49]. There are two
feasible approaches for observability analysis: (1) use small signal approximation, which
uses the first order linear approximations to analyse the system observability, and (2) use
Lie derivation to build an observability matrix [47].
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For DSSE, because of lacking real-time measurements, the observability analysis highly
relies on pseudo measurements. The real-time measurements’ improvement, optimal
placement, and resiliency against cyber–physical attacks are the study focus recently [50].

4.2.2. Measurement Data

Lacking measurement data will affect the observability analysis; as a result, classifying
the different types of measurement data is necessary. The measurement data most works
use can be classified into three categories: real-time measurement, pseudo measurement,
and virtual measurement [51].

Real-time measurement refers to direct measurement data like bus voltage, current,
and frequency via sensors or other monitoring equipment gathered by the SCADA system.
Because of the high dependency on the bandwidth and reliability of the communication
infrastructures, especially in large-scale or distributed power systems, it is hard to guarantee
to obtain real-time measurements.

Pseudo measurement refers to the data generated by mathematical models (billing
data and probability density) or algorithms (ML/DL) from historical system data when
direct measurement is not possible or feasible [52]. Virtual measurements are typically
characterised by low or zero-variance data, which can be effectively processed using the
Lagrange multipliers algorithm [51].

4.2.3. Static State Estimation (SSE)

Most current power monitoring systems and energy management systems (EMSs) are
based on the quasi-steady state system model and static state estimation model, which rely
on slow scan rates and no timestamps measurements from SCADA systems [49,53]. State
estimation is a knowledge-based approach to detecting malicious attacks. In a common
steady DC power system model, the system state can be formulated using a linear regression
model [21]

z = h(x) + ϵ (1)

where z is the measurement vector usually includes bus voltage magnitude, power in-
jections, and power line flow, x is the state vector including voltage angle and voltage
magnitude, ϵ is the Gaussian measurement white noise with zero mean and covariance
matrix, and h function is the Jacobian matrix related to power system topology [9,54,55].
The measurement residual is usually constructed with the help of weighted least-square
observers and then compared with a predetermined threshold [18].

The measurement noise in PSSE usually uses the Gaussian distribution model; how-
ever, according to Pacific Northwest National Laboratory’s study, the measurement noise
follows a “thick tail” non-Gaussian distribution model [56,57].

Weighted least square (WLS) is one of the commonly used traditional static state
estimation approaches, which is based on the non-linear mathematical relations between
the actual measurements and the state estimations. In WLS, the residuals are usually
defined as a column vector, according to the regression model.

r = z − h(x)

= [z1 − h(x1), z2 − h(x2), . . . , zn − h(xn)]
−1 (2)

The weighing matrix W can be represented as the inverse of the covariance matrix R in
the WLS solution, which reflects the precision or reliability of the observations. Because the
measurement error is the zero-mean, this means all measurement noise is independent and
unrelated to each other. The variance (σ2) of the measurement errors can be used as an
estimate of the uncertainty associated with each measurement.

W = R−1 = diag(
1
σ2 ) (3)
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The WLS objective function is used to minimise the sum of the squares of the weighted
residuals, which can be formulated below

J(x) =
m

∑
i=1

Wr2 =
m

∑
i=1

rTWr = [z − h(x)]TW[z − h(x)] (4)

To minimise the objective function, the derivation J(x) needs to be calculated equal to 0,
and X is the point, where H(X) is the Jacobian matrix, which refers to the partial derivatives
of the model function h(X) with respect to the parameters X.

g(X) =
∂(rTWr)

∂X
= −HT(X)Wr = 0 (5)

Non-linear WLS estimation is usually solved by the Gauss–Newton iterative algorithm,
where is the k-th iteration of x, which has the Gain matrix calculated as

G(xk) =
∂g(xk)

∂x
= HT(xk)WH(xk) (6)

The weights allow the WLS model to assign more weight to observations that are more
reliable or have less error variance and less weight to observations that are less reliable
or have more error variance, which provides more accurate and stable estimates of the
regression coefficients for WLS. The WLS solution’s disadvantages are very obvious: it is
not very robust and vulnerable to non-Gaussian processes, complex and highly non-linear
systems, and cannot capture history records, even though it can process very fast [56,58].
Some SSE studies are listed in Table 2:

Table 2. Static state estimation studies regarding WLS algorithm.

Cite Contributions Input Algorithm Evaluation

[59] Performance of WLS
according to different
combinations of
measurement
features.

Voltage
magnitudes,
active and
reactive
power flows
and injections.

WLS Estimate voltage
magnitude and voltage
angle in 3-bus testbed
and IEEE 14-bus testbed.

[60] Use Linear WLS to
estimate PMU
measurements; use
Non-linear WLS to
estimate unregulated
mixed
measurements.

Voltage
magnitudes,
voltage angle
shift, active
and reactive
power flows,
and injections.

Non-linear
WLS + Linear
WLS

Estimation for linear
WLS in 1,2,5 buses of
IEEE 14-bus testbed.

[61] Factorise non-linear
WLS model into two
stages: linear filter
stage and non-linear
estimate stage.

Squared
voltage
magnitudes,
power flow,
power
injection.

Linear WLS +
Non-linear
WLS

Estimate in IEEE 118-,
298-bus testbed, it has a
lower computational cost
and provides higher
accuracy, but the
intermediate vectors
between two stages can
be verified.

[62] Assign weights to
PMU measurements
in WLS to reduce
measurement
uncertainty.

Voltage
magnitudes,
phase angle.

Propagation
of Uncertainty
+ WLS

Estimate upper and
lower limits of voltage
magnitude and voltage
angle to reduce
uncertainty in WLS in
IEEE 14/30/57/188-
bus testbed.
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4.2.4. Dynamic State Estimation (DSE)

With the development of the distributed energy resources (DERs) infrastructure,
especially when renewable energy, electric vehicles, and time-history-related Internet of
Things devices are added into the system, the state of the power system is becoming more
uncertain and unpredictable [55]. Compared with the SSE, DSE methods will be able to
track the dynamic changes of device states and loads throughout time [55]. DSE models
usually use current or previous state estimation values combined with the system’s physical
model to predict future states (t + 1) [49]. However, some research is still based on that
the power system is a quasi-static system and has Gaussian distributed noise because of
the complexity. Other works focus on reducing the DSE complexity. In [63], the author
mentioned that most works use partial measurements and hierarchical and decoupled
methods to reduce the DSE model complexity. Some DSE studies are listed in Table 3:

Table 3. Dynamic state estimation studies with Kalman filters.

Cite Contribution Input Algorithm Evaluation

[26] Introduce Euclidean
detector combined
with Kalman filter to
detect FDI attacks

DoS attack, Random
attack, False data
injection attack
signals.

Kalman
filter +
Euclidean
detector

Compare χ2 and Euclidean
detector under Kalman
filter in various attacks.

[64] Comparing UKF and
EKF in non-linear
state estimation.

- UKF, EKF UKF is more robust and
convergence quicker than
EKF with similar
computational load.

[65] Extended Kalman
filter (EKF) model
performance in DSE.

Bus voltage, bus
angle, line flows

EKF EKF performance relatively
good under 0.03 s
measurement sampling
speed, and 30% noise level.

[66] Two-stage KF model
in DSE: 1. use AKF
with InNoVa for
static estimation; 2.
EKF for DSE

Voltage magnitudes
and phase angles,
process and
measurement noise

AKF with
InNoVa +
EKF

Compare KF, RKF,
and AKF with InNoVa
estimate performance in
stage one under various
noise environments

[67] Iterated EKF
combined with
Generalised
maximum likelihood
(GM-IEKF) in DSE.

Voltage magnitudes,
phase angles, active
and reactive power,
process and
measurement noise

GM
estimator
+ IEKF

Compare GM-IEKF, EKF,
UKF under various noise
situations (non-Gaussian
noise distribution included)
in IEEE 39-bus testbed.

[63] EKF based massively
parallel DSE.

- EKF In 4992-bus testbed, using
parallel iterative and direct
linear models, the speed is
15 times faster.

[68] Use voltage
magnitude
deviations to identify
the radial path from
PMUs Phase angle
deviations in
off-nominal
frequency scenarios.

Dynamic generator
internal voltages and
phase angles
measurements

Finite
difference
+ Cheby-
shev Filter

Use Finite difference and
Chebyshev Filter to smooth
the noise in equivalent
generator signal
waveforms.

[69] DSE model
combining the power
flow equations with
load forecasting.

Voltage magnitudes,
phase angles.

EKF In IEEE 14-bus testbed,
including load forecast has
better accuracy and fewer
computational
requirements than
augmented SSE.
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4.2.5. Distribution System State Estimation (DSSE)

Compared to centralised PSSE, DSSE is more robust, and decentralised estimators
are able to provide decentralised information from different system hierarchies divided
according to geographical, topological, and measurement points [51,70]. Especially when
the new generations of digital devices start to join the power grid, the study of DSSE
is necessary.

In [71], Izudin points out that DSSE nowadays shares some similar features: 1. radial
or weakly meshed topology, 2. high R/X ratios, 3. few real-time measurements, and 4.
asymmetric construction and unbalanced loads. Lack of network observability (unless
using pseudo measurements) makes the DSSE processes even harder to implement.

Dzafic and Pau proposed two main types of WLS state estimation methods: node-
voltage estimator (NV-DSSE) and branch-current estimator (BC-DSSE) [72,73]. The dif-
ferences mainly exist in the state variables, the simplifications of estimation, and the
incorporation of heterogeneous measurements [51]. In NV-DSSE, voltage magnitudes
and phase angles are usually used as the state vector. In BC-DSSE, pseudo measurements
of power injections, power flows, and sometimes the slack bus voltage magnitudes are
included in the state vector. However, because of the voltage measurements, the derivations
of branch current are non-zero Jacobian terms, which makes the BC-DSSE method compute
slower than NV-DSSE [51]. Some DSSE studies are listed in Table 4:

Table 4. Distribution system state estimation algorithms.

Cite Contribution Input Algorithm Evaluation

[71] The proposed
three-phase DPSSE
model reduces the
dimension of state
estimation processes.

Analog real-time
current
magnitude, active
and reactive
power
measurements;
Historical
loads/AMI/AMR
information as
pseudo
measurements.

WLS Test in modified IEEE
34-bus testbed.
But cannot perform
well in systems that
lack telemetered
power and
magnitude
measurements,
and bad data in load.

[74] Do not need local
observability of all
control areas. In DC
SE, the linear power
flow model
converges to a
centralised WLS
model. In AC SE, use
distributed WAU
(wait-and-update)
rule-based
algorithms.

14-bus: 6 power
injection, 16
power flow
measurements;
118-bus: 49 power
injection, 129
power flow
measurements

WLS + WAU
(rule-based)

The algorithms based
on WLS can perform
estimation on both
AC/DC system in
IEEE 14-bus and
118-bus testbeds.

[75] Divided the DPSSE
processes into two
stages: (1) Decouple
the manner of
multiple WLS
subproblems; (2)
Coordinate each
substation using
linear WLS.

Voltage
magnitudes,
transformers
power flows

WLS Test on a substation
with two parallel
transformers, which
includes 69-bus and
85-bus systems.
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4.3. Attack Detection in Smart Grid

Detection of malicious attacks is another main security concern in smart grids [24].
Different from the traditional IDS in networks, detecting malicious attacks in cyber–physical
Systems (CPS) like the smart grid is far more complex. Cyber attacks in the smart grid
normally are reflected in the form of changing voltage, current, or phase in the system [76].
As a result, the detection strategy mainly depends on deleting or correcting the polluted
data under cyber attacks [77].

The bad data detection methods are usually conducted after the state estimation
process, which utilises the χ2 detector and largest normalised residual (LNR) the most.
The BDD process is used to validate the topology and the measurement data. However,
a clever attacker can bypass the LNR by customising the attack vectors [54,56].

4.3.1. Largest Normalised Residual (LNR)

The LNR method uses the normalised residual of each measurement to identify the
measurements with the largest deviation from the expected threshold. The measurement
with the largest normalised residual is assumed to be bad and will be removed or corrected
from the estimation process. The state estimation is then repeated using the remaining
measurements, and the process is repeated until no bad measurements are left [78,79].
The normalised residual rN

i is the deviation measurement of the residual that can be
calculated using the following equation:

rN
i =

|ri|√
Ωii

=
|ri|√
SiiRii

(7)

in which Ωii is the (i, i)-th element of the error covariance matrix, which combines the mea-
surement noise and modeling errors. It represents the uncertainty of the i-th measurement,
which takes into account both the measurement noise ϵ and the errors in the model used to
estimate the measurement

Ω = E[ϵϵT ] = SR (8)

in which Sii is the diagonal element of the inverse of the covariance matrix of the residual
vector ϵ, which represents the variance of the residual between the measured and estimated
values; Rii is the variance of the measurement noise in the i-th measurement. After identi-
fying the measurement, there are two main solutions to process the data: (1) remove the
bad data from the measurement dataset; however, the removal of bad data may result in
the loss of observability in SE [78]; and (2) correct the bad data using the relation between
measurement errors and residuals calculated following the equation below

zcorr
i = zbad

i − Rii
Ωii

ri (9)

The LNR algorithm’s limitations are obvious; the LNR algorithm has to process the
bad data sequentially and restart a WLS algorithm for SE. The computational complexity
makes it difficult to handle multiple bad data simultaneously, which is not suitable for
large-scale power systems [78].

4.3.2. Chi-Squared Detector

Then, the estimated value along with the original value are all fed into the χ2 detector
to make judgments. χ2 detector is a proven effective and widely used detecting method in
smart grids. Combined with the Kalman filter, the χ2 detector can easily detect both the DoS
attack and random attacks by comparing the estimate value to the original value [26,80]. It
can be calculated as [26]

gk =
rT

k rk

Rii
(10)
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where rk is the Gaussian-distributed residuals, gk is χ2 distributed. In this circumstance,
the χ2 detector is effective under the Kalman filter framework, which has high noise
tolerance [26,81]. The goal is to compare gk value to the threshold, which is provided by
the standard χ2 table, to detect potential intrusion [9,26]. However, some FDI attacks like
zero-dynamics attacks will adjust their attack vectors according to the target to bypass the
χ2 detector [24].

4.3.3. Data-Driven Detecting Method

Although the traditional attack detection methods can identify and mitigate some
attacks, physical attacks and cyber–physical attacks are not usually considered in smart
grid scenarios. In comparison, the anomaly-based method focuses on detecting abnormal
behaviour patterns from normal behaviour data and also has several proposed approaches:
the data mining method, the information theoretic-based method, and the artificial in-
telligence (AI)-based method [82]. In this case, anomaly-based IDS has the potential to
encounter not only zero-day vulnerabilities but also cyber–physical attacks. Some data-
driven attack detection methods are listed in Table 5.

Table 5. Data-driven attack detecting methods.

Cite Algorithm Against Attacks Evaluation

[22] Transformer +
Federated Learning +
Pallier Cryptosystem

Stealthy FDI attack Test on IEEE 14-bus, 118-bus
testbed, has more than 90% accuracy
on both weak and strong attacks.

[83] Jripper, Random
Forest (RF), one-R,
Naive Bayes

Short circuit faults,
Line maintenance,
Remote tripping
command injection,
Relay setting change,
FDI attack

Classification test on Mississippi
State University three-class dataset:
no event, attack, natural. RF has
92.1% accuracy on detecting attack
events.

[84] OCSVM
(unsupervised) +
Decision Tree; RF
(supervised
evaluation)

Scanning, replay,
and DoS attacks; load
breakers and
generators with
abnormal behaviours
(rule-based).

Test on Idaho CPS SCADA (ISAAC)
testbed to identify normal,
abnormal cyber, and abnormal
physical scenarios using PCA
anomaly detection method OCSVM
has over 98% accuracy.

[85] K-means algorithm
and DBSCAN
clustering

Flooding DoS attacks Using traffic features: ip source, ip
destination, ethernet source,
ethernet destination, protocol name,
frame numbers, and data bytes to
conduct three-class clustering.
K-means has 91% accuracy.

[49] Proposed
Autoencoder +
Generative
Adversarial Network
(GAN)

DoS, FDI, replay
attacks

Anomaly detection and anomaly
classification evaluation with
various algorithms on Modbus
network flows (generated by Smod),
DNP3 network flows (IDS data from
Rodofile), and operational data in
different scenarios.

[86] Hierarchical
Temporal Memory
(HTM)

- Test on open PMU source data from
Lawrence Berkeley National
Laboratory’s (LBNL) 7.2 kV
distribution grid. Compared with
random cut forest, Bayesian change,
relative entropy. HTM has over 96%
accuracy.
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4.4. Contingency Response

According to NIAC, contingency response shows the resilient ability of the smart grid,
which can be divided into three aspects: robustness, resourcefulness, and rapid recovery
according to the periods of encountering an incident and adaptability after the incident.

The quantitative metrics method is commonly introduced in this period, which quan-
tifies the system resilience capability during the different time periods of an incident.
A general smart grid resilience framework during an incident is illustrated in Figure 3
[7,87].

Figure 3. System’s resilient performance during an incident.

The smart grid resiliency performance starts to degrade from time t1, which is the
direct result of the incident. However, incidents like cyber–physical attacks happened
before time t1, referring to the t0 point. After the degradation, the smart grid system starts
to analyse the incident and prepare for the restoration during t2 − t3. In t3 − t4, the smart
grid initially recovers the critical electric services, and the grid will perform in an acceptable
state M1. Then, after t4, the infrastructures gradually start to be recovered and adapt to
new patched rules.

4.4.1. Robustness

The system resiliency performance between t0 (incident start) and t1 (degradation
start) can be considered as the robustness capability of the smart grid. In [87], the author
introduced the normalised degradation index (DI) to evaluate the system degradation
extent according to the time t during the incident

DI =

∫ t2
t1
(M0 − M(t))dt

M0(t2 − t1)
(11)

Ceeman Vellaithurai mentioned in [77] that North American Electric Reliability Cor-
poration (NERC) regulates that the Electric Power Grid (EPG) should be able to operate
normally in the “N-1” case; however, this regulation does not take cyber aspects’ impact
into account. As a result, one of the security topics that has been discussed frequently is
establishing a cyber–physical vulnerability model in the smart grid.

In another cyber–physical vulnerability-related report [27], A. Srivastava, focused
on studying cyber–physical attacks like the Aurora-like attack against the smart grid.
Commonly, the smart grid is able to handle “N-1” cases without any interruption; however,
an Aurora-like cyber attack will lead to an “N-X” contingency, which means the grid could
potentially lose multiple critical power assets (generators) simultaneously.
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To improve the robustness of the smart grid, the common strategies include (1) hard-
ening the power transmitting infrastructures; (2) managing the trees and flora near the
transmitting lines; and (3) introducing substitute/redundant system design [88].

4.4.2. Resourcefulness

The resourcefulness capability of a smart grid during cyber–physical events is a
critical element to mitigate the damage, which refers to the time period from t2 (restoration
preparation start) to t3 (recovery process start). Gathering and analysing useful grid
information to judge which part of the infrastructure is the attack/failure surface and
which part is suffering the most, prioritizing every instruction, and applying suitable
mitigation methods are the main steps in this period. The state estimation process plays a
very important role in supporting the resourcefulness capability.

In [77], the author proposed a security assessment model CPINDEX, which relies on
information flows in between assets, to develop a cyber-originated vulnerability ranking
model for physical power system assets. First, they made use of information flows among
system assets (files and processes) collected from IDS logs as the learning phase’s input.
Next, they generated the Dependency Graph (DG) to demonstrate interactions and depen-
dency relationships (a source object, a sink object, and their security contexts) between
files and processes. Then, they used Bayesian network formalism to store probabilistic
dependencies in DG. At last, all variables will be added to the Conditional Probability
Table (CPT) and associated with vertexes, which provide CPINDEX with the calculated
probability values of the critical computing assets.

In [27], the author proposed a two-step vulnerability ranking model. First, they
developed a cybersecurity vulnerability ranking model to identify asset (power generators)
vulnerabilities, and this model has 6 evaluating attributes: Discovery, Feasibility, Access,
Detection, Threat, and Connection Speed. Secondly, for the physical vulnerability, they
contributed a topology model, which uses the concept of vertex centrality, which is closeness
centrality (shortest path matrix), to calculate coefficients to vertices changes in topology,
which indicates the severity of state changes after the outrage happened. The closeness
centrality algorithm is also capable of the “N-X” case.

4.4.3. Rapid Recovery

Rapid recovery refers to restoring the grid back to its normal operating state as soon
as possible. Quickly adapt the system topology accordingly, and use the spare extra-high
voltage transformers or transmission towers to reestablish the connections and services.
In quantitative resilience metrics, the value restoration efficiency index (REI) is used to
measure how efficient restoration progress is [87].

REI =

∫ t4
t3
(M(t)− M2)dt

(M0 − M2)(t4 − t3)
(12)

In [7,89], the authors proposed several solutions to have better restoration perfor-
mance and strengthen smart grid resiliency 1. utilizing renewable energy resources and
distributed voltage regulators, capacitor banks, and DERs to recover the electric service,
2. analysing customer demand and recovering the grid accordingly, 3. using electric
vehicles to support the recovery process, 4. using self-generated electricity from local
microgrids and enclaves, and 5. developing comprehensive operation-oriented measures
and planning-oriented measures.

4.5. Smart Grid Testbed
4.5.1. Power System Simulators/Tools

Real Time Digital Simulator (RTDS) allows physical hardware-integrated and real-time
power grid simulation. It can accurately simulate the physical response of the devices
facing various attack scenarios [90].
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DIgSILENT PowerFactory, on the contrary, is a software platform that only provides
non-real-time simulation. It integrates different algorithms for state estimation and contin-
gency response [91].

Power System Analysis Toolbox (PSAT) and YALMIP toolbox in Matlab can be used
to analyse networks in small- and medium-scale power systems [53,92].

4.5.2. Real-World Testbed

Most of the real-world smart grid testbeds involve several research areas. As a
result, for one specific testbed, it is hard to classify which type of testbed it belongs to;
however, according to different smart grid configurations, the testbeds can be roughly
divided based on their research bias. Nowadays, existing testbeds can be classified into
the following categories: wide-area situational awareness; load balancing; decentralised
power system structure; power storage; power transportation; cyber–physical threats;
network communication; and AMI. In the cyber–physical study range, the related smart
grid research areas are 1. large hardware-based testbeds, 2. cyber security analysing
testbeds, 3. network communication testbeds, and 4. agent-based control testbeds [93].

Large hardware-based testbed uses real data acquisition and actuator devices like RTU,
PMU, PLC, etc., which are really close to the real-world scenario. It is usually sponsored
by nations due to its complexity and high expense. Some famous large hardware-based
testbeds are the Idaho National Laboratory [94], the Jeju Island Smart Grid [95], and
National Renewable Energy Laboratory [96].

Cyber security analysing testbeds mainly study potential security vulnerabilities and
attack detection methods in all different aspects of the smart grid. For example, different
devices like PLC, HMI, IED, etc., and different communication protocols like Modbus,
DPN3, C37.118, etc. Some famous cyber security analysing testbeds are University College
Dublin the intrusion and defense testbed [97], Queen’s University Belfast testbed [98],
and SCADASim [99].

Network communication testbeds study various communication protocols, load
balancing, and contingency responses, which focus on the resiliency of the smart grid.
The testbeds are usually built on the simulation platforms (RTDS or PowerFactory) using
actual devices like PMU and IED. Some famous network communication testbeds are
Kansas State University testbed [100] and the University of North Carolina testbed [101].

5. Challenges in Smart Grids
5.1. Challenges in Communication Channels

As this paper discussed in Section 4.1, the communication security in the power
grid needs to be reconsidered in many old/isolated infrastructures. The smart grid will
be secure enough to face the new cyber–physical environments, from secure protocol
cryptography [102–104] to physical layer security [105,106].

Smart grid communication reliability and scalability, as well as transmission delay
(high QoS), are prioritised features in guaranteeing smart grid communication resilience.
Especially, decentralised power infrastructures like electrical vehicles, renewable energy,
and microgrids are proliferating nowadays; in many scenarios, the communication channels’
resiliency is difficult to guarantee in limited power, bandwidth, or adverse transmission en-
vironments [107–112]. For this challenge, mixing wired and wireless hybrid communication
methods may provide more resiliency [113].

5.2. Challenges in State Estimation

As one of the most critical components in energy management systems, state estima-
tion has been challenged through more dispersed generation, demand-responsive loads,
data-rate devices, and advanced cyber attacks [114]. On the one hand, extending the
conventional SE approaches to distribution system state estimation (DSSE) is challenging
because the radial or weakly meshed topology will cause observability problems, high R/X
ratios for cable, few real-time measurements lead to low estimation accuracy, and unbal-
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anced loads result in high computational complexity [71,115]. On the other hand, cyber
attacks like replay attacks, stealthy FDI attacks, and other advanced attacks continuously
challenge state estimation.

Future research in the field of distribution system state estimation (DSSE) should
focus on the integration of Demand Response (DR) programs and the price sensitivity of
active distribution networks, addressing the challenges of uncertainty and variability [114].
Exploring data-driven methods for system monitoring and learning before, during, and af-
ter high-impact, low-frequency (HILF) events is essential. These efforts aim to improve
the distribution system observability and develop effective system restoration strategies
that leverage the real-time knowledge of system states, thereby ensuring resilience and
efficiency in future distribution systems with high penetration of renewable resources and
DR capabilities [116].

5.3. Challenges in Attack Detection

Implementing accurate and robust detection methods across different scales of power
systems presents a daunting task, compounded by the need for cost and resource efficiency.
Moreover, these systems must be straightforward to integrate, maintain, and upgrade with
the existing infrastructure, ensuring minimal disruption and maximum compatibility.

Additionally, the increasing sophistication of cyber attacks, fueled by the advance-
ments in AI and machine learning, necessitates the continuous adaptation and improvement
of detection technologies. This calls for a collaborative effort between researchers, industry
experts, and policymakers to develop standards and practices that enhance the security and
resilience of smart grids against the evolving threats. In [117], the author points out that
game theory and reinforcement learning approaches may be the future research directions
because they use minimum data to analyse complex power system models.

5.4. Challenges Regarding Contingency Responses

The challenges regarding the contingency responses within smart grids are multi-
faceted, primarily due to the absence of a real-time, convincing qualitative resilience index
or a reliable metric that can accurately reflect the grid’s resilience or reliability in the face of
disruptions. The traditional approaches to measuring grid resilience have relied heavily on
historical high-impact, low-frequency (HILF) events, utilizing metrics such as the SAIFI
(System Average Interruption Frequency Index), SAIDI (System Average Interruption
Duration Index), and LOLP (Loss of Load Probability) [118].

Furthermore, the integration of renewable energy sources, the proliferation of elec-
tric vehicles, and the advent of microgrids have significantly increased the complexity
and volatility of power systems [119]. These developments require a shift towards more
adaptive, real-time resilience assessment tools that can accommodate the rapidly changing
energy landscape and ensure robust contingency response mechanisms. Future research
could benefit from incorporating Explainable Artificial Intelligence (XAI) into performance-
based resilience and reliability assessments. This integration aims to enhance user compre-
hension by offering clear insights into the system states before, during, and after events
and ensuring that the users are well-informed in terms of system management and contin-
gency responses.

6. Conclusions and Discussion

In conclusion, this survey paper has provided a comprehensive overview of the vul-
nerabilities in smart grids, along with secure and resilient techniques by leveraging the
secure architecture NISTIR 7680 and the resilient framework NIAC. This survey analysed
the latest cyber–physical attacks and representative real-world attack scenarios. Addition-
ally, this survey has introduced research results on secure and resilient communication
channels, state estimations, attack detection methods, and contingency responses, while
also providing information on simulation and real-world testbeds.
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Despite the existing solutions, challenges remain in the quest for a more secure and
resilient smart grid. Nonetheless, we hope that this survey has provided valuable insights
and knowledge that can help researchers to better navigate the complex landscape of
smart grids.
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