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A B S T R A C T

The performance of a spectral element method in the DEVSS-G formulation for the solution of non-Newtonian
flows is assessed by means of a systematic analysis of the benchmark lid-driven cavity problem. It is first
validated by comparison with the creeping Newtonian and Oldroyd-B flows, where in the latter case a lid
velocity regularisation scheme must be employed to remove the singularity at the lid-wall interfaces. In both
instances, excellent agreement is found with the literature for stable, time-independent flows, and in fact it is
shown that higher Weissenberg numbers can be obtained using the present methodology for these types of flow.
Some physical aspects of the solutions are also presented and discussed, however at increasing Weissenberg
numbers, the methodology breaks down due to a lack of convergence in the BDF/FPI time advancement
scheme. By systematically assessing the effects of the levels of ℎ𝑝-refinement and temporal refinement on the
flow fields, as well as the introduction of the extension-limiting Giesekus mobility parameter in the constitutive
equations, it is demonstrated that in each instance the inability to accurately resolve the stress gradients leads
to a compounding of errors in the BDF/FPI regime, ultimately causing it to diverge.
. Introduction

The computational study of viscoelastic flows presents difficulties
redominantly on two fronts; the rheological model used to relate the
lastic stress to the deformation, and the numerical method used to
pproximate the solution. The practice of using benchmark problems
o validate the accuracy of numerical methods owes itself to the fact
hat there are very few analytical solutions available for viscoelastic
lows. Being of simple geometry, the lid-driven cavity is one such
umerical benchmark that has been extensively studied, however more
o in the Newtonian regime. In two dimensions, the geometry of the
roblem is that of a closed rectangle of height 𝐻 and length 𝐿, with
ne wall moving parallel to itself whilst keeping the domain in tact
s shown schematically in Fig. 1. The fluid within forms the closed
ystem to be studied. The flow is characterised by the Reynolds number,
e = 𝜌𝑈𝐻∕𝜂, with density 𝜌, dynamic viscosity 𝜂 and characteristic
elocity and length scales 𝑈 and 𝐻 ; all of these are kept constant
ere. Beginning with the work of Kawaguti in 1961 [1], the Newtonian
roblem has been used not only as a numerical benchmark for many
ecades [2,3], but as insight into the plethora of fundamental fluid
echanical phenomena which arise due to its discontinuous velocity

oundary conditions where the lid and two of the stationary walls meet,
s observed experimentally [4].

The predominant feature of the flow is the primary recirculation
egion. Under creeping flow conditions Re → 0, due to the linearity
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of the Stokes flow equations this region is fore-aft symmetric about
the line 𝑥∕𝐿 = 0.5. Further to the main circulation, there exists
a mathematically infinite geometric sequence of increasingly smaller
Moffat eddies [5] in both of the lower corners C and D in Fig. 1; the
debate as to whether this sequence is indeed physically infinite is not
the subject of this study. Increasing the Reynolds number breaks the
fore-aft symmetry by moving the primary vortex centre towards corner
B, until a critical Reynolds number at which experimentally the flow
becomes three-dimensional and then time-dependent [6].

The literature for the study of viscoelastic fluids is more sparse
than that of the Newtonian problem. Viscoelasticity introduces two
further flow parameters which define the flow, namely the Deborah
number De = 𝜆𝑈∕𝐿 and the Weissenberg number We = 𝜆𝑈∕𝐻 , where
𝜆 is the relaxation time of the fluid. In the case of the square cavity
𝐿 = 𝐻 , these two definitions are identical. The effect of viscoelasticity
on the system has also been shown experimentally to break the fore-aft
symmetry by increasing the wall velocity (thus increasing De and We),
however moving the primary vortex centre towards corner A rather
than B as in the increased Re case, and will eventually lead to a purely
elastic flow instability which causes the stable flow to break down [7].

While there exist several numerical studies concerned with the
lid-driven cavity flow of viscoelastic fluids with constant viscosity,
they overwhelmingly use finite difference (FD) [8,9], finite element
vailable online 31 May 2024
377-0257/© 2024 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

ttps://doi.org/10.1016/j.jnnfm.2024.105263
eceived 31 October 2023; Received in revised form 27 May 2024; Accepted 28 M
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ay 2024

https://www.elsevier.com/locate/jnnfm
https://www.elsevier.com/locate/jnnfm
mailto:fentond@cardiff.ac.uk
mailto:e.deangelis@unibo.it
https://doi.org/10.1016/j.jnnfm.2024.105263
https://doi.org/10.1016/j.jnnfm.2024.105263
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2024.105263&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Non-Newtonian Fluid Mechanics 330 (2024) 105263D. Fenton et al.
Fig. 1. Schematic of the lid-driven cavity with length 𝐿 and height 𝐻 .

(FE) [10,11] or finite volume (FV) [12,13] methods, which rely on
incredibly fine meshes in order to obtain convergence. In this study,
a high-order spectral elements method (SEM) will be employed. While
there have been SEM Newtonian studies utilising the lid-driven cav-
ity, for example the adaptive mesh refinement validation of Hender-
son [14], literature on such a SEM viscoelastic study could not be
found at the time of writing. Techniques for improving stabilisation in
the referenced FD, FE and FV studies include log-conformation, kernel-
conformation and the first-order upwind approximation; the approach
of the present work, however, was to utilise a variation of the DEVSS-G
formulation of the constitutive equations and employ the discontinuous
Galerkin method on the discretised elastic stress. The code used is
adapted from that of Kynch [15], the original version of which is
available at: https://github.com/rosskynch/DG_DEVSSG_SEM_Axi.

2. Governing equations

2.1. Navier–Stokes and rheology

An incompressible, isothermal, viscoelastic flow is considered in the
present study. The conservation of momentum in dimensionless form
with no external forces acting is given by

Re𝐷𝐮
𝐷𝑡

= −𝛁𝑝 + 𝛽𝛁2𝐮 + 𝛁 ⋅ 𝝉 , (1)

where the fields are velocity 𝐮, pressure 𝑝 and elastic stress 𝝉. The
dimensionless quantity 𝛽 is the ratio of solvent to total solvent-plus-
polymer viscosity. The statement of incompressibility can be formu-
lated as per Gwynllyw and Phillips [16] by consideration of the pres-
sure average on the domain 𝛺, and is given by

− 𝛁 ⋅ 𝐮 = 𝜇 ∫𝛺
𝑝d𝛺, (2)

where 𝜇 > 0 is a constant. This is shown to be equivalent to the typical
statement of incompressibility, 𝛁 ⋅ 𝐮 = 0, by integrating both sides
of Eq. (2) over 𝛺 and implementing Green’s theorem on the right hand
side. This formulation is used in order to remove the indeterminacy in
the pressure, and so that the pressure decomposition is consistent with
the solution space upon discretisation.

In order to close the system, a constitutive equation is required
relating the elastic stress to the rate of deformation, 𝐝 = 1 ((𝛁𝐮)+(𝛁𝐮)𝑇 ).
2

2

The rheology used for the present study is the Oldroyd-B model [17]
for a viscoelastic fluid,

𝝉 +We
𝛁
𝝉 = 2(1 − 𝛽)𝐝 (3)

where
𝛁
𝝉 is the upper-convected derivative of the elastic stress tensor,

given by
𝛁
𝝉 = 𝜕𝝉

𝜕𝑡
+ 𝐮 ⋅ 𝛁𝝉 − 𝝉 ⋅ (𝛁𝐮) − (𝛁𝐮)𝑇 ⋅ 𝝉 . (4)

It is worth noting that the Oldroyd-B model exhibits an infinite ex-
tensional viscosity 𝜂𝑒𝑥𝑡 = 𝑁1∕4�̇� at a finite extensional strain rate �̇�,
where 𝑁1 = 𝜏𝑥𝑥 − 𝜏𝑦𝑦 is the first normal stress difference, occurring
at �̇� = 1∕2We. This implies an infinite first normal stress difference,
which is clearly unphysical, and an undesirable property of the model
particularly when dealing with highly extensional flows such as the
lid-driven cavity. For this reason, the Giesekus model is also briefly con-
sidered [18], as it does not suffer this issue. The constitutive equation
is given by

𝝉 +We
(

𝛁
𝝉 + 𝛼

1 − 𝛽
𝝉2
)

= 2(1 − 𝛽)𝐝, (5)

where 𝛼 > 0 is the mobility parameter, and the Oldroyd-B model is
recovered by setting it equal to zero.

2.2. DEVSS-G formulation

In order to improve the stability of the discretised system, the
governing equations are written in a modified form. The velocity
gradient tensor, here denoted 𝛁𝐮 = 𝐆, is introduced as a variable in
the momentum Eq. (1) as per a variation of the DEVSS-G [19] method,
proposed by Bogaerds et al. [20], leaving the constitutive equation to
be solved directly. This improves the ellipticity of the system, thus
improving stability. The momentum Eq. (1) under this formulation
becomes

Re𝐷𝐮
𝐷𝑡

= −𝛁𝑝 + 𝛁 ⋅ 𝝉 + (𝛽 + 𝜃)𝛁2𝐮 − 𝜃𝛁 ⋅𝐆, (6)

where 𝜃 is chosen to be equal to (1−𝛽) in order to make the coefficient
of 𝛁2𝐮 unity; since 𝛁 ⋅ 𝐆 = 𝛁2𝐮, it is straightforward to see that
Eqs. (1) and (6) are identical. This is different to the original DEVSS-
G formulation in that the stabilising term is the velocity gradient as
opposed to the rate of strain tensor 𝐝. This choice appears more natural
than the original formulation for this problem, since the enforcement of
incompressibility ensures that 𝛁 ⋅ (𝛁𝐮)𝑇 = 0 in the momentum Eq. (1);
otherwise, the Laplacian in the momentum Eq. (1) would contain the
rate of strain tensor 𝛁 ⋅

(

𝛁𝐮 + (𝛁𝐮)𝑇
)

instead. Thus, the enforcement
of incompressibility encourages the use of this alternative DEVSS-G
formulation.

3. Geometry and problem formulation

The geometry of the present work is that of the two-dimensional
lid-driven cavity on the domain 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑦 ≤ 𝛬𝐿. For the present
work, the aspect ratio 𝛬 is equal to one; it is worth noting that in this
case and only this case, the Weissenberg number and Deborah number
are equivalent, since De = 𝛬We. The boundary 𝛤 is decomposed into
two distinct regions,

𝛤 = 𝛤𝑊 ∪ 𝛤𝐿, (7)

where 𝛤𝑊 and 𝛤𝐿 are the stationary wall and moving lid boundaries
respectively. In the case of the single-lid cavity, the boundary 𝛤𝑊 lies
on 𝑥 = 0, 𝑥 = 𝐿 and 𝑦 = 0, and the boundary 𝛤𝐿 on 𝑦 = 𝐿.

No-slip velocity conditions are prescribed on the entire boundary 𝛤
such that

𝐮 = 𝟎 on 𝛤𝑊 , (8)

https://github.com/rosskynch/DG_DEVSSG_SEM_Axi
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and

𝐮 = 𝐮𝐿(𝐱) on 𝛤𝐿, (9)

where 𝐮𝐿(𝐱) is the velocity of the lid. The classic lid-driven cavity
problem consists of a lid of constant non-zero velocity in the 𝑥-direction
only, however the singularities that arise on the interface between 𝛤𝑊

and 𝛤𝐿 with the boundary conditions given by (8) and (9) if 𝐮𝐿 is
constant and non-zero would cause exceedingly strong numerical in-
stabilities due to the infinite acceleration at these points. Theoretically,
this leads to an infinite extensional rate 𝑑𝑢∕𝑑𝑥 locally, and even though
the numerical approximation introduces a degree of local smoothing
dependent on the mesh resolution (as the velocity increases from 𝟎 to
𝐮𝐿 over a finite distance 𝛿𝑥), for the viscoelastic models considered
here previous studies have been unable to deal with the resulting
stress peaks in these localised regions, and fail to converge for all but
essentially-Newtonian fluids of near-zero Weissenberg number [12].
For this reason, the lid velocity is regularised such that the velocity
vanishes on the interface between 𝛤𝑊 and 𝛤𝐿. A generalisation of the
common quartic regularisation is as follows:

𝑢𝐿(𝑥) =

⎧

⎪

⎨

⎪

⎩

[𝑈∕𝛿2(1 − 𝛿)2](𝑥∕𝐿)2(1 − 𝑥∕𝐿)2 for 0 ≤ 𝑥∕𝐿 ≤ 𝛿
𝑈 for 𝛿 < 𝑥∕𝐿 < 1 − 𝛿
[𝑈∕𝛿2(1 − 𝛿)2](𝑥∕𝐿)2(1 − 𝑥∕𝐿)2 for 1 − 𝛿 ≤ 𝑥∕𝐿 ≤ 1,

(10)

where 𝑢𝐿(𝑥) is the 𝑥-component of the lid velocity 𝐮𝐿 = 𝑢𝐿(𝑥)�̂� and 𝑈 is
the peak lid velocity. The dimensionless quantity 𝛿 is the fraction of 𝐿
over which each quartic velocity region occurs, with 𝛿 = 0 correspond-
ing to the unregularised problem and 𝛿 = 0.5 to a smooth quartic lid
velocity profile. It is the peak velocity 𝑈 that is used to characterise
flow quantities such as the Weissenberg number. For completeness, the
𝑦-component of the lid velocity 𝑣𝐿 is zero in all cases. As 𝛿 → 0 one
would anticipate a stronger similarity with the idealised problem and a
reduction in the maximum attainable Weissenberg number. In the regu-
larised instances, the velocity and velocity gradient vanish at the walls
and the velocity profiles are continuous, however the velocity gradient
of any regularisation except for 𝛿 = 0.5 is not continuous at the points
where the quartic sections of the velocity profile transition to a constant
— that is to say, the boundary conditions exhibit a 𝐶1 discontinuity at
𝑥∕𝐿 = 𝛿. This is significant when choosing the discretisation scheme in
a spectral elements study, since 𝐶1 continuity is naturally not enforced
across elemental boundaries anyway, as discussed in Section 4.2.

4. Numerical discretisation

The following description of the temporal and spatial discretisation
schemes used follows those presented by Kynch and Phillips [15].

4.1. Temporal discretisation

The system is discretised uniformly in time by considering a time
step 𝛥𝑡 such that the 𝑛th time step is 𝑡𝑛 = 𝑛𝛥𝑡. The evaluation of a
function 𝐟 (𝐱, 𝑡) at the 𝑛th time step is denoted 𝐟𝑛 = 𝐟 (𝐱, 𝑡𝑛). The velocity–
pressure equations are decoupled from the constitutive equation by
evaluating 𝛁 ⋅ 𝝉 in the momentum equation explicitly. The DEVSS-G
term in (6) is further decoupled from the velocity–pressure equations
and also treated explicitly. These explicit terms are extrapolated using
a second-order method (EX2) such that an arbitrary function 𝐅(𝐱, 𝑡) at
time 𝑡𝑛+1 is approximated by

𝐅𝑛+1 ≈
1
∑

𝑞=0
𝛽𝑞𝐅𝑛−𝑞 , (11)

where 𝛽0 = 2, 𝛽1 = −1 are the second order extrapolation coefficients.
The material derivative present in the DEVSS-G momentum equa-
3

tion is approximated by a second-order Operator-Integration-Factor
Splitting scheme (OIFS2), which reduces multiple operator problems
to an associated set of initial value subproblems [21], given by

𝐷𝐮
𝐷𝑡

≈ 1
𝛥𝑡

(

𝛾0𝐮𝑛+1 −
1
∑

𝑞=0
𝛼𝑞 �̃�𝑛+1𝑞

)

, (12)

where 𝛾0 = 3∕2, 𝛼0 = 2 and 𝛼1 = 1∕2 are the OIFS2 coefficients. The
terms �̃�𝑛+1𝑞 are solutions to the pure-advection initial value problems
ssociated with the OIFS scheme, and their solutions are obtained using
n RK4 scheme. In effectively decoupling the convection and Stokes
perators in this OIFS scheme, a larger CFL number is allowed than
ore traditional semi-implicit schemes such as BDF while maintaining

tability [22], improving computational time-to-solution by allowing
arger time step sizes. Furthermore, this characteristic-based formula-
ion is well suited for convection-dominated problems, which occur in
he instance of high Reynolds and Weissenberg numbers, the latter of
hich is of interest for this study [21].

The resulting hybrid OIFS2/EX2 temporally-discretised velocity–
ressure equations are thus given by
Re𝛾0
𝛥𝑡

𝐮𝑛+1 − (𝛽 + 𝜃)𝛁2𝐮𝑛+1 + 𝛁𝑝𝑛+1 =
1
∑

𝑞=0

(

Re
𝛥𝑡

𝛼𝑞 �̃�𝑛+1𝑞 + 𝛽𝑞(𝛁 ⋅ 𝝉𝑛−𝑞 − 𝜃𝛁 ⋅𝐆𝑛−𝑞)
)

, (13)

⋅ 𝐮𝑛+1 + 𝜇 ∫𝛺
𝑝𝑛+1𝑑𝛺 = 0. (14)

A similar methodology can be used to derive the temporally-discre
ised constitutive equation from (3), utilising a second-order backward
ifference formula (BDF2) in place of OIFS2. The resulting second-order
DF/EX scheme leads to the semi-discrete constitutive equation given
y

1 +We
𝛾0
𝛥𝑡

)

𝝉𝑛+1 −We
(

𝝉𝑛+1 ⋅ 𝛁𝐮𝑛+1 + (𝛁𝐮𝑛+1)𝑇 ⋅ 𝝉𝑛+1
)

= 2(1 − 𝛽)𝐝𝑛+1 +We
1
∑

𝑞=0

(𝛼𝑞
𝛥𝑡

𝝉𝑛−𝑞 − 𝛽𝑞𝐮𝑛+1 ⋅ 𝛁𝝉𝑛−𝑞
)

− We 𝛼
1 − 𝛽

1
∑

𝑞=0
𝛽𝑞(𝝉𝑛−𝑞)2.

(15)

n additional stability improvement is implemented via a fixed-point
teration (FPI) within each time step, which increases the maximum
ttainable Weissenberg number while making only a minor addition to
he computational resources required compared to the more straightfor-
ard BDF/EX methodology [15]. One defines �̃�0 = 𝝉𝑛, and iteratively

olves the BDF2/FPI system

1 +We
𝛾0
𝛥𝑡

)

�̃� 𝑖+1 −We
(

�̃� 𝑖+1 ⋅ 𝛁𝐮𝑛+1 + (𝛁𝐮𝑛+1)𝑇 ⋅ �̃� 𝑖+1
)

= 2(1 − 𝛽)𝐝𝑛+1 +We
( 1
∑

𝑞=0

(
𝛼𝑞
𝛥𝑡

𝝉𝑛−𝑞
)

− 𝐮𝑛+1 ⋅ 𝛁�̃� 𝑖
)

− We 𝛼
1 − 𝛽

(�̃� 𝑖)2,

(16)

until |�̃� 𝑖+1 − �̃� 𝑖| < 𝜙, where 𝜙 is some threshold value. Once this has
been reached, 𝝉𝑛+1 is set equal to �̃� 𝑖+1. The time-marching algorithm is
terminated when 𝑆𝑛 < 𝜖, where 𝑆𝑛 is a convergence parameter given by

𝑆𝑛 = 1
𝛥𝑡

√

‖𝑝𝑛 − 𝑝𝑛−1‖2 + ‖𝐮𝑛 − 𝐮𝑛−1‖2 + ‖𝝉𝑛 − 𝝉𝑛−1‖2

‖𝑝𝑛‖2 + ‖𝐮𝑛‖2 + ‖𝝉𝑛‖2
(17)

and 𝜖 is a threshold value used to determine when a steady-state
solution has been reached.
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4.2. Spatial discretisation

4.2.1. Momentum equation
The spatial discretisation is obtained by implementing the spectral

element method (SEM). The global physical domain 𝛺 is discretised
nto 𝐾 non-overlapping elements, such that 𝛺 = ∪𝐾

𝑘=1𝛺𝑘, allowing any
ntegral across the global domain to be decomposed into contributions
ver each local element. Each contribution is then transformed to a
eference element, 𝐷, via the Jacobian 𝐽𝑘 [23,24]. The field variables
re then decomposed within the reference element into a spectrum of
asis functions interpolated with respect to the Gauss–Lobatto-Legendre
oints for improved stability with respect to a uniform spacing, such
hat

𝑘
𝑎(𝜉, 𝜂) =

𝑁
∑

𝑖=0

𝑁
∑

𝑗=0

(

𝑢𝑘𝑖𝑗
)

𝑎ℎ𝑖(𝜉)ℎ𝑗 (𝜂), (18)

𝑝𝑘(𝜉, 𝜂) =
𝑁−1
∑

𝑖=1

𝑁−1
∑

𝑗=1
𝑝𝑘𝑖𝑗 ℎ̃𝑖(𝜉)ℎ̃𝑗 (𝜂), (19)

where 𝑢𝑘𝑎 represents the 𝑎-component of the vector field within an
element 𝑘. ℎ𝑖(𝜉) and ℎ̃𝑖(𝜉) are respectively the velocity and pressure
basis functions, defined in terms of the Legendre polynomial of degree
𝑁 , 𝐿𝑁 (𝑥), by

ℎ𝑖(𝜉) = −
(1 − 𝜉2)𝐿′

𝑛(𝜉)
𝑁(𝑁 + 1)𝐿𝑁 (𝜉𝑖)(𝜉 − 𝜉𝑖)

0 ≤ 𝑖 ≤ 𝑁, (20)

and

ℎ̃𝑖(𝜉) = −
(1 − 𝜉2𝑖 )𝐿

′
𝑛(𝜉)

𝑁(𝑁 + 1)𝐿𝑁 (𝜉𝑖)(𝜉 − 𝜉𝑖)
1 ≤ 𝑖 ≤ 𝑁 − 1, (21)

where 𝜉𝑞 is the 𝑞th GLL point in one direction.
The spectral decomposition within each element of the velocity

gradient 𝐆 is obtained by consideration of the internal GLL nodes only,
1 ≤ 𝑞 ≤ 𝑁−1, in the same manner as the pressure, such that the spectral
representation of the 𝑎𝑏 component of 𝐆 within a local element is given
by

𝐆𝑘
𝑎𝑏(𝜉, 𝜂) =

𝑁−1
∑

𝑖=1

𝑁−1
∑

𝑗=1
(𝐺𝑘

𝑖𝑗 )𝑎𝑏ℎ̃𝑖(𝜉)ℎ̃𝑗 (𝜂). (22)

This means that 𝐆 itself can be calculated within each element inde-
pendenly of adjacent elements, improving computational efficiency and
stability [25]. Multiplying the definition 𝐆 = 𝛁𝐮 by a test function 𝝓,
integrating over the global domain and decomposing into contributions
over each local element, one obtains for the 𝑎𝑏 component
( 𝐾
∑

𝑘=1
∫𝛺𝑘

𝐆 ∶ 𝝓𝑑𝛺
)

𝑎𝑏
=
( 𝐾
∑

𝑘=1
∫𝛺𝑘

(𝛁𝐮) ∶ 𝝓𝑑𝛺
)

𝑎𝑏
. (23)

y use of the GLL quadrature rules, which accurately approximate the
efinite integral of a function as a weighted sum of function values at
he GLL points, the spectral representation of 𝐆 can be written locally
s a linear system for each component 𝑎𝑏 as

�̃�𝑘𝐆𝑘
𝑎𝑏 = 𝐝𝑘𝑎𝑏, (24)

here �̃�𝑘 is the local mass matrix and the vector 𝐝𝑘𝑎𝑏 contains the
ontributions of the 𝑎𝑏 velocity gradient component at each GLL point.
he solution to the local 𝐆 is then fed back into the velocity–pressure
ystem.

.2.2. Constitutive equation
The constitutive equation is solved spatially at each GLL point sepa-

ately within each local element, with the values of the velocity gradi-
nt and the previous time step elastic stress determining the constituent
arameters of the rheological system. The spectral decomposition of the
lastic stress can therefore be represented as

𝑘
𝑎𝑏(𝜉, 𝜂) =

𝑁
∑

𝑁
∑

(

𝜏𝑘𝑎𝑏
)

𝑖𝑗ℎ𝑖(𝜉)ℎ𝑗 (𝜂). (25)
4

𝑖=0 𝑗=0
This leaves the convective term 𝐮 ⋅𝛁𝝉, which by construction of the ve-
locity decomposition possesses a coupling between the elements. This is
treated by utilising the Discontinuous Galerkin (DG) method [26,27], in
particular the streamline upwind method, which allows the stress to be
discontinuous across the elements. Thus, the only interaction of stress
between elements is that which occurs on the elemental boundary.
Multiplying the convective term by a test function 𝐒, integrating over
𝛺 and applying the decomposition principle, the convective derivative
can be written

∫𝛺
(𝐮 ⋅ 𝛁𝝉) ∶ 𝐒𝑑𝛺 =

𝐾
∑

𝑘=1
∫𝛺𝑘

(𝐮 ⋅ 𝛁𝝉) ∶ 𝐒𝑑𝛺𝑘. (26)

By application of the divergence theorem to the right hand side, one
obtains

𝐾
∑

𝑘=1
∫𝛺𝑘

(𝐮 ⋅𝛁𝝉) ∶ 𝐒𝑑𝛺𝑘 =
𝐾
∑

𝑘=1
∫𝛤𝑘

(𝐧 ⋅ 𝐮)𝝉 ∶ 𝐒𝑑𝛤𝑘 −
𝐾
∑

𝑘=1
∫𝛺𝑘

(𝐮 ⋅𝛁𝐒) ∶ 𝝉𝑑𝛺𝑘.

(27)

Since the stress is allowed to be discontinuous across an element
boundary, the value of the stress on a particular boundary point is not
necessarily the same when evaluated using the approximations in either
adjoining element. Denoting the value of the stress on the boundary
as evaluated in one element by 𝝉𝑒 (external stress) and the value as
evaluated on the same point in the adjacent element by 𝝉 𝑖 (internal
stress), one can define the boundary stress as

𝝉 =

{

𝛼𝐷𝐺𝝉𝑒 + (1 − 𝛼𝐷𝐺)𝝉 𝑖 on 𝛤−
𝑘

𝛼𝐷𝐺𝝉 𝑖 + (1 − 𝛼𝐷𝐺)𝝉𝑒 on 𝛤+
𝑘

(28)

or DG upwinding parameter 0 ≤ 𝛼𝐷𝐺 ≤ 1, where 𝛼𝐷𝐺 = 1 corre-
ponds to the fully upwinded case. Substituting this into (27), applying
ntegration by parts and the divergence theorem again yields
𝐾
∑

=1
∫𝛺𝑘

(𝐮 ⋅ 𝛁𝝉) ∶ 𝐒𝑑𝛺𝑘 =
𝐾
∑

𝑘=1
∫𝛺𝑘

(𝐮 ⋅ 𝛁𝝉) ∶ 𝐒𝑑𝛺𝑘

+ 𝛼𝐷𝐺

𝐾
∑

𝑘=1
∫𝛤−

𝑘

(𝐧 ⋅ 𝐮)[𝝉] ∶ 𝑑𝛤𝑘

+ (1 − 𝛼𝐷𝐺)
𝐾
∑

𝑘=1
∫𝛤+

𝑘

(𝐧 ⋅ 𝐮)[𝝉] ∶ 𝑑𝛤𝑘,

(29)

here [𝝉] = 𝝉𝑒 − 𝝉 𝑖 is the difference in stress between elements.
Introducing the intermediate variable �̂� = 𝐮 ⋅ 𝛁𝝉, discretisation of

he DG convective term leads to the linear system
𝑘�̂�𝑘𝑎𝑏 = 𝐸𝑘𝝉𝑘𝑎𝑏 + (𝐵𝑘

𝐷𝐺)𝑎𝑏, (30)

here

𝑘�̂�𝑘𝑎𝑏 ≈
(

∫𝐷
�̂�𝑘(𝜉, 𝜂) ∶ 𝐒 det𝐉𝑘𝑑𝜉𝑑𝜂

)

𝑎𝑏
, (31)

̂𝑘𝝉𝑘𝑎𝑏 ≈
(

∫𝐷
(𝐮𝑘 ⋅ 𝛁𝝉𝑘) ∶ 𝐒 det𝐉𝑘𝑑𝜉𝑑𝜂

)

𝑎𝑏
, (32)

nd

𝐵𝑘
𝐷𝐺)𝑎𝑏 ≈

( 4
∑

𝑚=1
∫𝐷−

𝑚

(𝐧𝑘𝑚 ⋅ 𝐮𝑘)[𝝉𝑘] ∶ 𝐒 det𝐉𝑘𝑚𝑑𝜉
)

𝑎𝑏
. (33)

ere, the sum over 𝑚 is over the four edges of the parent element
nd the Jacobian 𝐉𝑘𝑚 is that of the mapping of edge 𝑚 of the physical
lement edge to the parent element, since (𝐵𝑘

𝐷𝐺)𝑎𝑏 contains the term
ver the boundary integral. For a detailed treatise and full derivation
f the above, see the description of Owens and Phillips [28]. The matrix
𝑘 is diagonal, thus making the system trivial to solve. The global
atrix for the velocity–pressure system is then assembled by summing

ontributions over each element, accounting for the shared boundaries,
nd inserting the known boundary conditions where necessary.
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Fig. 2. Representative GLL meshes.

5. Results

5.1. Mesh and parameterisation

In order to capture the effects at the walls and lid more accurately,
the elemental mesh is refined at these surfaces. For a mesh of 𝐾 = 𝑚×𝑚
elements, a mapping from a uniform set of elemental gridpoints 𝑎𝑖 =
𝑖∕(𝑚+1) to a graded set 𝑞𝑖, both on the interval [0, 1], is used to achieve
this in both the 𝑥 and 𝑦 directions, where 𝑖 are the integers running from
0 to 𝑚 + 1. In the present study, the symmetrical refinement mapping
is given by

𝑞𝑖 =
1
2

(

1 +
tanh (𝛽𝑎(2𝑎𝑖 − 1))

tanh 𝛽𝑎

)

, (34)

where 𝛽𝑎 is a constant stretching parameter. The choice of 𝛽𝑎 is made
such that for a given number of elements the 𝐶1 discontinuities in the
velocity profile at 𝑥∕𝐿 = 𝛿 and 1− 𝛿 falls upon an elemental boundary.
The number of elements in each direction 𝑚 is also kept even to ensure
that an elemental boundary falls on the centrelines.

Three meshes are used in the present study, with 𝑚 = 8, 16 and 20,
each with 𝛽 chosen to place the 𝑖 = 2, 4 and 6 elemental gridpoints
5

𝑎

Table 1
Comparison of the literature with the current study for a creeping Newtonian flow with
the unregularised lid 𝛿 = 0. Minimum values of 𝑢 are computed along 𝑥∕𝐿 = 0.5, and
maximum values of 𝑣 are computed along 𝑦∕𝐿 = 0.5. The centre of the primary vortex
for each study is also compared.

Reference 𝑢𝑚𝑖𝑛∕𝑈 𝑣𝑚𝑎𝑥∕𝑈 𝑥𝑐∕𝐿 𝑦𝑐∕𝐿

Sahin, Owens [13] −0.207754 0.186273 0.5000 0.7626
Yapici et al. [8] −0.207738 0.184427 0.5000 0.7651
Sousa et al. [12] −0.207762 0.184449 0.5000 0.7647
Current study −0.207639 0.182273 0.5000 0.7628

Table 2
Effect of regularisation on 𝑢𝑚𝑖𝑛∕𝑈 along 𝑥∕𝐿 = 0.5 and 𝑣𝑚𝑎𝑥∕𝑈 along 𝑦∕𝐿 = 0.5, and
comparison data with Sousa et al. [12].
𝛿 𝑢𝑚𝑖𝑛∕𝑈 Sousa et al. 𝑣𝑚𝑎𝑥∕𝑈 Sousa et al.

0.1 −0.207607 −0.207663 0.182397 0.184589
0.5 −0.168859 −0.168899 0.145097 0.146735

on 𝑥∕𝐿 = 0.1 respectively so as to progressively refine the mesh (ℎ-
refinement) between 0 ≤ 𝑥∕𝐿 < 0.1 and 0.9 < 𝑥∕𝐿 ≤ 1 for each increase
in 𝑚. The polynomial order is varied between 𝑁 = 8 and 𝑁 = 16
(𝑝-refinement) for the least resolved elemental mesh 𝑚 = 8. Due to
computational limitations only 𝑁 = 8 and 𝑁 = 10 are considered for
𝑚 = 16, and 𝑁 = 8 for 𝑚 = 20. Fig. 2, demonstrates two representative
simulation meshes with the same degrees of freedom but varied ℎ- and
𝑝-refinement.

The fluid dynamic constants were set as Re = 10−6 for the New-
tonian study, Re = 0 and 𝛽 = 0.5 for the viscoelastic studies and
𝛼 = 0.001 for the Giesekus model. The pressure integral coefficient
is set to 𝜇 = 1 across all simulations. The time step size was also
varied to study the effect of temporal refinement, with the largest time
step size at 𝛥𝑡 = 0.001, which was sufficient for stability convergence
to at least 𝑆𝑛 < 𝜖 = 10−9 provided there was convergence in the
constitutive system defined in Eq. (16). This is to be expected, since
the CFL condition,

𝐶 = 𝛥𝑡
(

∑

𝑖

|𝑢𝑖|
𝛥𝑥𝑖

)

≤ 𝐶𝑚𝑎𝑥, (35)

is satisfied for all meshes and lid velocity profiles considered with a
time step of the order 10−3 or less, where 𝐶𝑚𝑎𝑥 can be slightly higher
than one for the semi-implicit method used in this study [22]. The
maximum value of 𝐶 in this study is approximately 0.5, which occurs
in the mesh 𝑚 = 20, 𝑁 = 8 for time step 𝛥𝑡 = 0.001 along the lid at
𝑥∕𝐿 = 𝛿.

5.2. Newtonian

To ascertain the viscoelastic effects on the fluid flows by comparison
with their Newtonian counterparts, a creeping Newtonian study was
first performed in the limit Re → 0 for 𝛿 = 0, 0.1 and 0.5. Comparison of
the data with the existing literature for finite volume studies, presented
in Table 1, shows a majority agreement in the value of the minimum 𝑢
velocity along 𝑥∕𝐿 to within 0.06%, and between the value of the max-
imum 𝑣 velocity along 𝑦∕𝐿 to within 1.1%. The discrepancy between
these results and those of Sahin and Owens [13] of approximately 2%
for 𝑣∕𝐿 may be due to their use of leaky boundary conditions at the
corners to reduce the effect of the singularities.

Table 2 quantitatively shows how the strength of the primary vortex
is reduced in the regularised regime, with the reduction in the mag-
nitude of 𝑢𝑚𝑖𝑛∕𝑈 being approximately 20% between 𝛿 = 0, shown in
Table 1, and 𝛿 = 0.5. This quantity essentially shows the maximum
speed of the lower edge of the vortex along the centre line, and thus
the greater its magnitude, the stronger the vortex is. Regularisation
𝛿 = 0.1 is thus shown to increase the vortex strength back towards
the unregularised value, however from Fig. 3 one can see that the
regularisations introduce an extensional flow along the lid which is not
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Fig. 3. Flow type parameter for creeping Newtonian flow. 𝜉 = 1 (white) represents
pure extensional flow, 𝜉 = 0 (orange) represents pure shear flow and 𝜉 = −1 (brown)
represents solid-body rotation. 𝑚 = 20, 𝑁 = 8, 𝛥𝑡 = 0.001.

present in the unregularised case, which is furthermore discontinuous
along the lid in the 𝛿 = 0.1 regularisation.
6

Fig. 4. Streamlines for the 𝛿 = 0, 0.1 and 0.5 Newtonian flows. 𝛿 = 0 is displayed in
black, 𝛿 = 0.1 in red and 𝛿 = 0.5 in blue. 𝑚 = 20, 𝑁 = 8, 𝛥𝑡 = 0.001.

By comparison of the streamlines presented in Fig. 4, one can see
that qualitatively, the greater differences between each regularisation
regime occur nearer the top two corners — as would be expected. In
order to quantify these differences, one can introduce the local frame
invariant flow type parameter 𝜉 based on the criterion of Astarita [29]
as 𝜉 = |𝐝|−|𝜴|

|𝐝|+|𝜴|

, where |𝐝| and |𝜴| are the magnitudes of the rate of
deformation tensor and the vorticity tensor respectively. Thus 𝜉 = 1
represents pure extensional flow, 𝜉 = 0 represents pure shear flow and
𝜉 = −1 represents solid-body rotation. As shown in Fig. 3, the flow close
to the walls is mainly shear-dominated, however in the regularised
schemes the flow towards the top corners becomes more extensional
due to the regions of local fluid acceleration. As this acceleration region
becomes smaller (𝛿 = 0.5 → 0.1), so does the region of extensional
flow, approaching the unregularised flow field, whose extensional flow
region is negligible at the wall-lid boundaries.

It is also worth noting the secondary Moffat vortices [5] visible in
the lower two corners of Figs. 4 and 3(a)–3(c), inflated in Fig. 5, which
do not depend on the regularisation scheme as their absolute size and
distance from the corner are dependent only on the Reynolds number
and the angle between the walls, which is identical in all cases. The
relative sizes and centre distances from the corner of each subsequent
vortex in the cascade are also dependent only on the angle between the
walls. One can confirm that the distance of the centres of consecutive
Moffat eddies from the corner drops off at a ratio of approximately 𝑒2.8

between the secondary vortex and the tertiary vortex, as predicted for
an internal angle of 𝜋∕2 [5], however the mesh is not refined enough
to resolve any vortices beyond this.

5.3. Oldroyd-B

The viscoelastic study of a broad range of regularisations 𝛿, ℎ-
refinements, 𝑝-refinements, temporal refinements and Weissenberg
numbers was performed by the running and analysis of over 400 simu-
lations, and therefore it is sensible only to present some representative
data resulting from the investigation which highlight the key features
of interest in the most straightforward and concise way. To that effect,
unless explicitly stated otherwise, the presented results utilise the mesh
𝑚 = 20, 𝑁 = 8 with time step 𝛥𝑡 = 0.001.

Comparison of the data obtained in this study with the literature for
an Oldroyd-B fluid is presented in Table 3 for the maximum value of the
natural logarithm of the dimensionless quantity 𝜏𝑥𝑥 on the centreline
𝑥∕𝐿 = 0.5, with We = 0.5, and the positions of the centres of the primary
vortices.

Elasticity serves to modify the velocity field, in particular by break-
ing the fore-aft symmetry about the centreline 𝑥∕𝐿 = 0.5 as demon-
strated by the shift in position of the primary vortex towards the
upper-left corner with increasing We, as shown qualitatively by means
of computed streamlines for 𝛿 = 0.5 in Fig. 6 and quantified in
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Fig. 5. First two Moffat eddies for the unregularised Newtonian fluid, visualised using
the flow type parameter 𝜉.

Table 4. This is in agreement with the experimental work of Pakdel
et al. [7,30,31], who performed studies on the creeping flow of two
Boger fluids [32]. The flow type parameter for the Oldroyd-B fluid
with 𝛿 = 0.5 is shown in Fig. 7, further demonstrating the greater
breaking of fore-aft symmetry with increasing We. It can also be seen
that the flow is significantly affected by the increase in We close to the
lid by comparison with each regularisation’s Newtonian counterpart,
shifting the region of pure extension on the lid away from the top-left
(upstream) corner.

A study into the effects of elemental and spectral refinement was
performed for the Oldroyd-B fluid with the regularisation 𝛿 = 0.1 and
time step size 𝛥𝑡 = 0.001. Table 5 shows that the We = 0.15 velocity
fields for each of the GLL meshes are virtually identical. Table 6 shows
the maximum attainable Weissenberg numbers alongside quantities
representative of the level of elemental and spectral refinement (known
as ℎ𝑝-refinement) at the walls, with 𝛥(𝑥∕𝐿) being the distance
7

0,𝐺𝐿𝐿
Fig. 6. Streamlines for 𝛿 = 0.5: black for Newtonian, yellow for We = 0.2, red for We
= 0.4 and blue for We = 0.6.

Table 3
Comparison of representative results with literature for Oldroyd-B model with 𝛿 = 0.5,
𝛽 = 0.5, Re = 0 and We = 0.5.

Reference We MAX(ln 𝜏𝑥𝑥(𝑥 = 0.5)) 𝑥𝑐∕𝐿 𝑦𝑐∕𝐿

Pan et al. [10] 0.5 ≈5.5 0.469 0.798
Sousa et al. [12] 0.5 5.57 0.467 0.801
Present study 0.5 5.55 0.468 0.799

Table 4
Centre of the primary vortex for a representative range of We and 𝛿.
𝛿 We 𝑥𝑐∕𝐿 𝑦𝑐∕𝐿

0.1 0.05 0.500 0.765
0.1 0.1 0.498 0.767
0.1 0.15 0.495 0.770
0.5 0.2 0.494 0.786
0.5 0.4 0.474 0.794
0.5 0.6 0.461 0.803

Table 5
Velocity profile data for a range of ℎ𝑝-refinements with 𝛿 = 0.1 and We = 0.15.
𝑚 𝑁 𝑢𝑚𝑖𝑛∕𝑈 𝑦𝑚𝑖𝑛∕𝐿 𝑣𝑚𝑎𝑥∕𝑈 𝑥𝑚𝑎𝑥∕𝐿

8 8 −0.199988 0.53675 0.174255 0.20850
8 10 −0.199876 0.53675 0.174117 0.20850
8 12 −0.199901 0.53675 0.174147 0.20850
8 14 −0.199909 0.53675 0.174156 0.20850
8 16 −0.199902 0.53675 0.174146 0.20850
16 8 −0.199935 0.53909 0.175953 0.20539
16 10 −0.199933 0.53909 0.175950 0.20539
10 8 −0.199934 0.53858 0.175970 0.20540

Table 6
Maximum attainable Weissenberg number for varying number of elements and polyno-
mial order for regularisation 𝛿 = 0.1. The distance between the wall and the first GLL
point is 𝛥𝑥0,𝐺𝐿𝐿, while the average resolution in the first element is 𝛥𝑥0,𝑎𝑣𝑔 ; these give
an indication of the spatial resolution in the region of rapid stress growth.
𝑚 𝑁 𝛥(𝑥∕𝐿)0,𝐺𝐿𝐿 𝛥(𝑥∕𝐿)0,𝑎𝑣𝑔 We𝑚𝑎𝑥
8 8 0.00142 0.00354 0.16
8 10 0.00093 0.00283 0.18
8 12 0.00066 0.00235 0.20
8 14 0.00049 0.00202 0.21
8 16 0.00038 0.00177 0.22
16 8 0.00054 0.00135 0.21
16 10 0.00036 0.00108 0.21
20 8 0.00016 0.00040 0.19



Journal of Non-Newtonian Fluid Mechanics 330 (2024) 105263D. Fenton et al.
Fig. 7. Flow type parameter for an Oldroyd-B fluid, with 𝛿 = 0.5 and We from 0.2 to
0.6.

between the wall and the first GLL point and 𝛥(𝑥∕𝐿)0,𝑎𝑣𝑔 being the
average resolution within the first element. One can see that for meshes
with an identical number of degrees of freedom (𝑚 = 8, 𝑁 = 16 and
8

𝑚 = 16, 𝑁 = 8; 𝑚 = 16, 𝑁 = 10 and 𝑚 = 20, 𝑁 = 8), those with the higher
polynomial order are better resolved near the elemental boundaries,
where the features of interest reside at the wall and 𝐶1 discontinuity,
due to the non-uniformity of the GLL points. It is clear from these data
that higher spatial resolution through a combination of elemental and
spectral refinement plays a role in increasing the maximum attainable
Weissenberg number, implying that this quantity is one of numerical
origin, rather than a representation of the physical onset of elastic
instability.

The breakdown of the flow in the present study occurs prior to the
absence of a steady state solution due to divergence in the BDF/FPI
constitutive system above a maximum Weissenberg number We𝑚𝑎𝑥
which is dependent on the level of ℎ𝑝-refinement. This implies the
compounding of errors in the iterative scheme, which are seen to be
reduced by means of refinement allowing higher Weissenberg numbers
to be reached; Mendelson et al. [33] indeed ruled out the loss of
steady, two-dimensional flow fields by the existence and uniqueness of
the solution to a second-order fluid in a driven cavity, attributing the
numerical breakdown of a finite element method to the error in stress
gradient approximation. While the addition of the 𝑝-refinement that
separates the spectral element method from the finite element method
does enable a more accurate method of capturing the stress gradient,
it is logical to conclude that it fails for the same reason. The impli-
cation therefore is that in order to continue raising the Weissenberg
number, one must perform ever increasing ℎ𝑝-refinement, which in
turn will demand ever increasing computational resources; however,
the methodology is still shown to be very successful for sub-maximal
Weissenberg numbers even at low resolutions. The maximum attainable
Weissenberg numbers of the present study for the two regularisations
𝛿 = 0.5 and 𝛿 = 0.1 with 𝑚 = 20, 𝑁 = 8 and 𝛥𝑡 = 0.001 are, respectively,
0.81 and 0.19; for a similar level of spatial and temporal refinement,
Sousa at al reported maximum Weissenberg numbers of 0.63 and 0.18
under the same regularisation schemes [12].

While the 𝛿 = 0.1 regularisation drives the bulk flow closer to the
unregularised case than 𝛿 = 0.5, the choice of regularisation scheme
leaves a discontinuity in the velocity gradients, which in the non-
Newtonian instance leads to discontinuities in the stress gradients.
While the present methodology succeeds in recreating the results of
Sousa et al. [12] and even achieving higher Weissenberg numbers,
these discontinuities are naturally unphysical, and for this reason in
the analysis of the elastic stresses the 𝛿 = 0.1 regularisation is omitted.
Fig. 8 shows the effect of increasing Weissenberg number on the elastic
stress tensor components for regularisation 𝛿 = 0.5, for the mesh
𝑚 = 20, 𝑁 = 8. A full assessment of the stress tensor component
profiles was performed for all mesh refinements used in this study
in this regularisation, and it was found that for refinements beyond
𝑚 = 8, 𝑁 = 14, with We = 0.5, their profiles overlap exactly. Therefore,
in continuing the analysis with the 𝑚 = 20, 𝑁 = 8 mesh, there is
confidence that this is well enough refined. However, it is noted in
Fig. 8 that the downstream peaks become much steeper with increasing
We, such that in the limiting case approaching the maximum attainable
Weissenberg number the specific levels of ℎ𝑝-refinement will play a
significant role, as previously observed for 𝛿 = 0.1 in Table 6.

The presence of the regularisation alters dramatically the structure
of the flow type parameter, in particular as without regularisation the
flow experienced by the polymers along the lid would be of pure shear
(see Fig. 3 for the changes at various regularisations for a Newtonian
flow). Namely, the introduction of the variation of the horizontal
velocity along the lid introduces a strong elongational flow in the
two top corners of the cavity, which changes the structure of the
flow type parameter. For these reasons the primary peak in the 𝜏𝑥𝑥
component appears in the position where the extensional flow caused
by the boundary conditions ceases - this can be inferred to occur
in any regularisation considered in this study, as all possess regions
of positive and negative acceleration. It is worth mentioning that the
peak is not exactly central because the extensional flow is modulated
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Fig. 8. Components of the elastic stress tensor 𝝉 along the lid 𝑦 = 1 with 𝛿 = 0.5 for
𝑊 𝑒 = 0.2 (red), 𝑊 𝑒 = 0.4 (green), 𝑊 𝑒 = 0.6 (blue) and 𝑊 𝑒 = 0.8 (black).

by the shear that is also experienced on the lid. The values of 𝜏𝑥𝑥
increase sharply with increasing Weissenberg number. The presence of
the shear at the lid is also responsible for the large values of the shear
stress 𝜏𝑥𝑦 that are observed near the top right corner of the domain,
see the middle panel of Fig. 8, where it is shown to have a single
sharp peak-trough feature in this region. It is worth mentioning that
the observed values increase in magnitude with Weissenberg number
for both regularisations. One can argue that these behaviours are all
related to the large extensions achieved in the first part of the lid
during the stretching. Furthermore, the sharply increasing oscillations
and peaks in the 𝜏𝑥𝑦 and 𝜏𝑦𝑦 components respectively will inevitably
lead to greater difficulty in accurately determining the stress gradients,
which may contribute to the breakdown of the BDF/FPI scheme at
higher Weissenberg numbers.

Further insight is gained by the direct assessment of the stress
gradients, which are coupled with the momentum equation via the term
𝛁 ⋅ 𝝉. It is evident from Fig. 9 that the magnitude of the oscillations in
all elastic stress component derivatives increase sharply with increasing
Weissenberg number, while the distance over which these oscillations
occur decreases. It is therefore clear that beyond a certain Weissenberg
number dependent on the resolution in this region, the spectral de-
composition will indeed be unable to accurately capture these stress
gradients.

Temporal refinement was also shown to increase the maximum
attainable Weissenberg number across a range of regularisations, as dis-
played in Table 7. The elastic stresses for flows of the same Weissenberg
number were identical for the two temporal refinements reported, sug-
gesting that the increase in maximum attainable Weissenberg number
is due to a reduction in the compounding of errors in the BDF/FPI
system, preventing divergence at the higher Weissenberg numbers.
9

Fig. 9. Components of the 𝑥-derivatives of the elastic stress tensor 𝝉 contributing to
𝛁 ⋅ 𝝉 along the lid 𝑦 = 1 with 𝛿 = 0.5 for 𝑊 𝑒 = 0.2 (red), 𝑊 𝑒 = 0.4 (green), 𝑊 𝑒 = 0.6
(blue) and 𝑊 𝑒 = 0.8 (black).

Table 7
Maximum attainable Weissenberg number for varying time step size and regularisation,
mesh 𝑚 = 20, 𝑁 = 8.
𝛿 𝛥𝑡 We𝑚𝑎𝑥
0.1000 0.001 0.19
0.1000 0.0001 0.26
0.0811 0.001 0.14
0.0811 0.0001 0.24
0.0592 0.001 0.09
0.0592 0.0001 0.16
0.0336 0.001 0.04
0.0336 0.0001 0.07

Table 8
Velocity profile data for the Oldroyd-B and Giesekus fluids for a range of mobility
parameters 𝛼 at We = 0.81.

Model 𝑢𝑚𝑖𝑛∕𝑈 𝑣𝑚𝑎𝑥∕𝑈 𝑥𝑐 𝑦𝑐
Oldroyd-B −0.116970 0.112206 0.44683 0.81087
𝛼 = 0.0001 −0.117124 0.112289 0.44684 0.81087
𝛼 = 0.001 −0.118321 0.112959 0.44684 0.81087
𝛼 = 0.01 −0.124435 0.116391 0.46013 0.86415

Further temporal refinement was performed, but this only marginally
increased the maximum attainable Weissenberg number at the cost of
substantially greater computation time.

The sole contribution of the stress gradients to the breakdown of
the BDF/FPI scheme can be confirmed by returning to Eq. (16). In
the Oldroyd-B scheme 𝛼 = 0, the only iterative contribution to �̃� 𝑖+1
is the term −We(𝐮𝑛+1 ⋅ 𝛁�̃� 𝑖), for which in turn only the stress gradient
is iterated. Therefore any compounding of errors that lead to the
divergence of the scheme must come from the gradients of the stress
tensor.

5.4. Giesekus

Since the Giesekus model rheologically reduces the extensional
viscosity, it was worth investigating the Giesekus fluid with 𝛼 = 0.01,
0.001 and 0.0001 and comparing the results with those of the Oldroyd-
B fluid. Fig. 10 demonstrates that the flow types between the Oldroyd-B
and 𝛼 = 0.001 rheologies are close to identical, barring a minor dif-
ference in the extensional flow near the top-right corner. The velocity
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Fig. 10. Flow type parameter for an Oldroyd-B fluid and a Giesekus fluid with 𝛼 = 0.001
for regularisation 𝛿 = 0.5 at the maximum attainable Weissenberg number for the
Oldroyd-B fluid in this regularisation, We = 0.81.

fields are also shown in Table 8 to be virtually identical between the
two rheological models up to 𝛼 = 0.01, whereupon the primary vortex
becomes marginally stronger and its centre shifts moderately towards
the 𝑥 = 0.5 centreline and towards the lid.

Across a range of mobility parameters, the elastic stress components,
shown in Fig. 11, are reduced by comparison with their Oldroyd-B
counterpart with increasing 𝛼. It can be seen that the effect of this
is incredibly slight for 𝛼 = 0.0001, and drastically more pronounced
for each tenfold increase. There is also a greater breaking of the
fore-aft symmetry along the velocity-regularised lid, skewing all peaks
slightly towards the upstream corner 𝑥 = 0. This behaviour is also
displayed in the gradients of the elastic stress components, here not
shown, reducing the peaks in the downstream corner oscillations and
also stretching them slightly in the upstream direction, making them
easier to resolve at this Weissenberg number. This leads to a higher
10
Fig. 11. Stress tensor components along the lid for the Oldroyd-B and Giesekus fluids
with 𝛼 = 0.01, 0.001 and 0.00010 for regularisation 𝛿 = 0.5 at the maximum attainable
Weissenberg number for the Oldroyd-B fluid in this regularisation, We = 0.81.

Fig. 12. Elastic stress 𝑥-derivatives along the lid 𝑦∕𝐿 = 1 near the downstream wall
𝑥∕𝐿 = 1 for the Oldroyd-B (red) and Giesekus fluid 𝛼 = 0.001 (green) with 𝛿 = 0.5 at
their respective maximum Weissenberg numbers, We𝑚𝑎𝑥,𝑂𝑙𝑑 = 0.81 and We𝑚𝑎𝑥,𝐺𝑖𝑒 = 1.33.

maximum attainable Weissenberg number for the Giesekus fluid than
the Oldroyd-B fluid, for example in the 𝛼 = 0.001 case, We𝑚𝑎𝑥,𝐺𝑖𝑒 = 0.33
for 𝛿 = 0.1 and We𝑚𝑎𝑥,𝐺𝑖𝑒 = 1.33 for 𝛿 = 0.5. Components of the stress
gradient for the Oldroyd-B and Giesekus fluid with 𝛼 = 0.001 at their
respective maximum Weissenberg numbers are plotted in Fig. 12 for
the 𝛿 = 0.5 regularisation to demonstrate that the stress gradients are
similar for both rheologies at their maximum attainable Weissenberg
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numbers, suggesting that the same breakdown mechanism occurs for
both rheologies.

6. Conclusions

A systematic analysis of the performance of a DEVSS-G spectral
element method for simulating a non-Newtonian flow was performed
by means of the study of a square lid-driven cavity. The method was
first validated by assessing the creeping Newtonian flow of the idealised
lid-driven cavity, showing excellent agreement with the literature. In
the non-Newtonian regime, the singularity due to the discontinuous
velocity boundary conditions on the lid-wall interfaces meant that the
idealised cavity could not be assessed. The existing literature utilised
a quartic regularisation scheme to navigate this, guaranteeing zero
velocity and velocity gradient on the lid-wall interfaces, and the present
study again showed excellent quantitative agreement with existing
numerical studies, and qualitatively behaved as per the experimental
studies of Boger fluids. The methodology of the present study was
able to obtain higher Weissenberg numbers than the existing literature;
Sousa et al. [12] obtained maximum Weissenberg numbers of 0.63 and
0.18 for the 𝛿 = 0.5 and 0.1 quartic regularisations respectively, while
he present study was able to achieve Weissenberg numbers of 0.81
nd 0.19 at similar levels of temporal and spatial refinement for the
ldroyd-B fluid. The effects of changing the Weissenberg number, the

egularisation parameter 𝛿, the level of ℎ𝑝-refinement and temporal
refinement were all studied over a large number of simulations. The
breakdown of the numerical system was shown to occur in all cases be-
fore the breakdown of a steady-state solution, owing to the inability to
accurately resolve the high stress gradients. This led to a compounding
of errors in the BDF/FPI time advancement scheme, ultimately causing
the methodology to become unstable. This was further shown by briefly
considering the Giesekus extension to the Oldroyd-B model; for a range
of mobility parameters 𝛼, the resulting progressively shallower stress
gradients predicted with increasing 𝛼 enabled the Weissenberg numbers
to be increased across all regularisations, before the same breakdown
eventually occurred. This difficulty in accurately resolving the steep
stress gradients implies that the methodology would not be effective in
the study of, for example, purely elastic turbulence in the 2D lid driven
cavity, without significantly greater ℎ𝑝-refinement in order to fully and
accurately resolve these gradients.
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