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A B S T R A C T

The use of knowledge-based information systems to improve human performance has been limited by a lack
of comprehension of how an individual’s performance diminishes when fatigue accumulates, which might
vary between individuals depending on their working environment. Although the rise in automation has been
witnessed, there are still some physically demanding and exhausting jobs in the manufacturing environment
that, if not appropriately managed, can result in long-term issues including musculoskeletal disorders and
impairments to psychological well-being. To detect, comprehend and manage the development of solutions for
fatigue detection, Machine Learning (ML) has been a useful tool. This paper presents a review of the use of
ML techniques for the detection and monitoring of an operator’s work-related physical fatigue in repetitive
work and Human–Robot Collaboration (HRC) settings. The novel review offers an overview of the detection
complexity of human fatigue in manufacturing-related contexts. The review has three major components: First,
the level of fatigue detection complexity with the help of ML, which presents only specific influencing factors
in terms of features selected that vary concerning tasks in the context of human fatigue. Second, the features
generated in relation to human performance while operating under fatigue conditions are included — in the
human worker and the detecting technology. Finally, the challenges and limitations of the complexity of holistic
approaches in the monitoring/recovery of human fatigue in essence to the physical exertion of an individual
are critically discussed.
1. Introduction

The paradigm of the industrial revolution has grown at an unprece-
dented speed. Industrial (I5.0) has brought advancements in intelligent
agent systems, sensing devices and automation. Greater automation has
increased the usage of robotic systems in manufacturing and ware-
housing activities and virtual assistance systems for job optimization.
Despite the undeniable fact that automation has caused some job losses,
this new era of I5.0 is distinguished by its reliance on highly trained
workers that can benefit from technological improvements [1,2]. The
future of the industry will be judged on how successfully it manages
its three main resources; By utilizing its three main resources to the
fullest, I5.0 will depict the industry’s future, they are: a labor force,
resources, and enabling technologies [3]. The absence of trustworthy
and tailored models that can measure the impact of work tasks on
a worker’s performance is causing the inability to optimize the three
resources mentioned above jointly [4]. Expert systems are now utilized
in some situations to automate or optimize decision-making processes
by learning from human behavior; nevertheless, they must consider
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the impact of automation and supporting technology on human perfor-
mance [5]. Many reasons have been outlined by, Zahra et al. [6]; (1)
human performance varies depending on an individual’s demographic
characteristics, time of the day, and task complexity; (2) many studies
on human performance in occupational settings have gathered data
through surveys, with gaps in quantitative data on and understanding
of how an individual’s performance changes over a day/work shift [7];
and (3) there is a disconnect between predictive and prescriptive mod-
els (prescriptive analytics assists you in formulating precise suggestions
for improvement, predictive analytics projects likely future results.)
that attempt to model workplace fatigue [8].

Inspired by human-in-loop advancement, automation has led to the
development of collaborative robots (Cobots). Although many collabo-
rative robots are highly automated, these advanced manufacturing jobs
(jobs such as aerospace/medical and pharmaceutical equipment man-
ufacturing) are still highly fatiguing [6]. Fatigue has been identified
as one of the leading causes of quality inefficiencies and accidents.
Workplace fatigue is a multidimensional term that affects a worker’s
productivity. Despite the fact that cobots are implemented to reduce hu-
man workload, repetitive and daily physical activities develop fatigue.
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Furthermore, it is connected to impacting psychological, economic, and
environmental factors [9]. Fatigue is recommended to be dealt with in
consideration with occupational health and safety since it has serious
short- and long-term repercussions. Occupational fatigue includes a
variety of characteristics, according to the many works of literature,
including mental and physical fatigue.

This paper focuses on physical fatigue as it has many detrimen-
tal effects on individuals, socially and economically. Physical fatigue
reduces one’s ability to execute a physical task due to past physical
exertion [10]. Physical fatigue can cause discomfort, reduced motor
control, and a loss of physical capacity in the short term, making it
especially harmful in production scenarios. The consequences could
include declining performance and productivity, rising job quality con-
cerns, an increase in accidents and human error frequency. Physical
fatigue can lead to long-term health problems such as chronic fatigue
syndrome and lowered immune function [11]. Several studies have
suggested that fatigue is caused by numerous factors, including lack of
sleep, which contributes to tiredness [12]; disorders such as depression,
anxiety, and diabetes [13]; heavy physical activities – linked to whole-
body fatigue [14]; and repetitive tasks – linked to localized muscle
fatigue [15]. Fatigue impacts an individual’s social life and economic
area. Employee fatigue, for example, in the US costs businesses $136.4
billion (about $420 per person in the U.S.) a year in lost productivity
and other health-related expenses [16].

Despite plenty of research, there is yet to be a single unified defini-
tion and measurement of fatigue. This is largely due to disagreements
over its nature and quantifying its dimensionality [17,18]. Our pro-
posed review allows us to comprehend the study of the onset of fatigue
modes. As mentioned above, fatigue is multidimensional and varies
from person to person. Every occupation will have different causes for
the onset of fatigue for different demographics. The current review
— focused on workplace fatigue, is divided into two stages. The first
stage aims to try and better understand the critical features used in
ML for predicting fatigue. The second stage identifies the fundamental
challenges in choosing the correct characteristics to predict fatigue.

The paper is organized in the following manner: Section 2; includes
background and understanding of the concept of fatigue concerning
its prediction of fatigue. Additionally, it includes a background un-
derstanding of demographic variables and human fatigue during HRC
settings. Section 3 consists of the search framework employed to review
the different fatigue papers. Section 4 involves a critical review of
the literature addressing issues concerning the detection, monitoring
and classification of fatigue and additionally identifying it in an HRC
setting. Section 5 includes a discussion of the key outcomes of the
critical review, followed by concluding remarks and future directions.

2. Studies

2.1. Fatigue

According to several studies that have been published, 20% of
all working people report feeling fatigued [19–21]. Fatigue is com-
prehended as the sense of being exhausted or sleepy. However, the
situation is different among professionals; there is an extensive discus-
sion within and between the numerous related disciplines, but there is
not yet a universal agreement on the definition [22]. Researchers use
a wide range of supplemental measures and experimental techniques
to evaluate and study fatigue because there is no universally accepted
definition. We note these points because they are presented throughout
the entire review of research on fatigue, making it challenging to
address it in total capacity adequately. Although the advancement of
technology, both in hardware and software, has opened the doors to
new possibilities, the subjective nature of (often measuring as well as
experiencing) fatigue makes it difficult to classify the root cause of it
fully. However, and crucially, our ability to fully appreciate the concept

of fatigue can aid in creating technology and intervention processes
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that will help employees manage 24/7 operations and lower hazards
associated with fatigue [23].

The dichotomy between fatigue being a physical, mental, or both
states of being is considered one of the most basic. However, the
concept of fatigue as a physical condition phenomenon is the most
researched in the field of industrial medicine. As a result, it is possi-
ble to precisely analyze the conditions of fatigue because of physical
exhaustion. In essence, fatigue research has been concentrated towards
physiological and visual data analysis such as blood pressure [24],
heart rate [25], actigraphic (Actigraphy is a recognized technique for
employing a noninvasive accelerometer to measure sleep character-
istics over a span of days to weeks.) [26], and through using tests
including e.g. the logical reasoning and numerical amplitude test [27]
and the Psychometric Vigilance Test (PVT) [28]. According to early
studies, sleep disorders are one of the main causes of sleeplessness; for
instance, failing the PVT test is typically associated with an insufficient
sleep cycle [29]. It is adventurous in benchmarking a standard of
identifying and measuring fatigue, but it has a significant drawback. In
addition to the assumption that other variables do not cause changes
in the indicator, it also overlooks individual differences in how people
respond to fatigue. For instance, research found that even during long
work shifts, heart rate did not rise. Workers arguably reduced their pro-
duction to meet the needs of the long shifts, which was the explanation
for this, nonetheless. Moreover, performance changes might result from
illness or adverse pharmaceutical side effects [19].

However, among the various definitions provided by researchers,
according to Brown 1993 (p. 240), the definition of fatigue is sub-
jectively experienced disinclination to continue executing the activity
at hand because of simply reflecting on individual efficiency [30].
This approach has advantages in that it acknowledges the individual
differences in how people experience fatigue, but it also has drawbacks.
It raises the issue that fatigue is a psychological condition and offers
no explanation for what would explain or induce disinclination. In this
literature, the researchers view fatigue as a subjective phenomenon.
The issue with this conclusion is that it needs to be clarified if fatigue
refers to a mental or physical condition. Thus, making the distinction
between the two is crucial. These variations are significant from a
practical standpoint because they affect how quickly people recover
and, consequently, how well they manage their fatigue [31].

Furthermore, the literature does not distinguish between acute and
chronic forms of fatigue [19]. Various literature with varying degrees
of success has combined subjective and objective metrics. Rosa (1991)
revealed that 12-hour day shifts were associated with more significant
fatigue, increased drowsiness, and lower sleep quality [27] and Baulk
et al. observed that long work shifts decreased subjective and objective
performance tasks evaluated through actigraphy [20]. The extended
work week had no adverse effects on blood pressure, heart rate, or
salivary cortisol levels. Van der Hulst (2003) concluded that subjective
(as opposed to objective) measurements are more frequently associated
with fatigue following an examination of extended working hours [32].

In the end, however, we want to emphasize how the study method-
ology affects the validity of published research. Most research ex-
amines correlations between specific variables using cross-sectional
approaches [19]. It is crucial to establish a link between variables
and features. Since longitudinal designs can rarely randomly assign
participants to groups and have a high dropout rate over time, often
resulting in small samples and underpowered studies [27]. The complex
nature of the relationship between the independent and dependent
variable(s) is better highlighted by observational studies, but they also
do not enable the determination of causal factors; the odds ratio reflects
the factor most strongly correlated with the dependent variable but
does not allow for theory testing [33]. We also want to stress that most
research generally reflects the fundamental demographic factors of age
and sex. Other demographic characteristics are not always investigated
or, if they are, may not be considered as possible predictors of outcomes

due to space restrictions in the investigators’ intrinsic emphasis. In
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the other sections, we talk about a few of these factors. As they are
not utilized directly to measure the dependent variable, demographic
characteristics cannot be directly used to determine how they affect a
manufacturing environment. Instead, they are often utilized as covari-
ates in statistical analysis to divide the variation attributable to them
and better ascertain the main effects of the research variables of pri-
mary interest under stated assumptions. Literature would considerably
improve if all demographic factors were considered essential in more
expansively framed hypotheses.

2.2. Worker performance and demographic variables

This section focuses on work practices that are less common than
shift work but can nonetheless lead to fatigue. The duration of working
time, shift length and schedule, and the number of off days are only a
few factors affecting work schedules. Numerous fatigue-related effects
are produced by interactions between these elements and the work
undertaken, administrative or physical job control, sleep needs, indi-
vidual traits, and e.g., non-work (e.g., domestic) circumstances [34].
Experts agree that combining at least three categories of factors –
including time spent on a specific task, sleep patterns in physical and
psychological state, and the quantity and quality of preceding sleep –
causes work-related fatigue [35].

Several research papers have been reviewed in this paper to exam-
ine the role of fatigue concerning conventional demographic charac-
teristics, as we believe that they can be a leading cause due to the
subjective nature of fatigue. There has never been a research study
that looked at the impact of a vast number of demographic variables
simultaneously, age, gender, such as socioeconomic status, circadian
cycle, etc. [36]. Although, the reviewed research indicates relationships
between specific demographic traits and sleep duration, quality, and
fatigue in the context of sporadic driving accidents, these relationships
still require clarification as to how they affect when all other factors
are taken into account. Typically, these studies do not investigate the
impact and weighting of each demographic variable on the dependent
variable(s) in the same research population. The study samples are
clinical convenience samples that may need to be sufficiently repre-
sented [37]. As a result, literature frequently indicates methodological
faults, limiting the ability to be conclusive.

Understanding the connection between sex and fatigue is difficult
since men and women have different employment, levels of super-
vision, depths of training for work obligations, and specific socio-
demographic factors. According to a survey of 1180 Swedish employ-
ees, women in low socio-economic levels were 1.4 times more likely
to complain of fatigue than women in higher socio-economic positions.
In men, there was no evidence of this relationship. In the same study,
taking care of children at home was not considered in female employ-
ees’ fatigue [38]. Sleep (lack of and/or poor quality) is one of the key
reasons for people’s fatigue. The shift pattern, on the other hand, is
impacted. This study compared gender inequalities in ‘total’ working
hours. Despite working more weekly hours, women spent more time
on domestic tasks than men. Although the study uses logistic regression
for analysis, it could not distinguish between gender disparities in total
work hours, it was still helpful in drawing patterns There was, however,
a connection between total weekly hours worked and reduced work
capability in women. According to some studies, women may take
longer to recuperate from shiftwork than men, although the difference
is minimal [36]. However, considering that women are more likely than
males to experience and acknowledge fatigue, it is unclear whether the
gap is sex generated.

In many developed countries, age is also a highly studied demo-
graphic characteristic. Although fatigue affects employees of all ages,
it seems to affect elderly individuals the most. There is no specific age
for becoming exhausted, although it is thought that as one age, the
human body becomes more fatigued. In most research, age is used as a

sequential variable [19]. Job ability is defined as the dynamic interplay
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between an individual’s cognitive and physical resources (e.g., health,
motivation), workplace (e.g., workload, work schedules), and social
mores [36]. If the studies, methodological faults that make it impossible
to draw firm conclusions regarding cause and effect, and various factors
can influence the relationship between age and fatigue. Overall, how
different demographics will impact the manufacturing industry is still
to be determined. However, demographic characteristic variables are
generally considered in a survey or questionnaire format; this results in
delayed results in understanding the role of demographics in the onset
of fatigue. However, a research study by Lambay et al. [39] showed
the significance of individual demographic characteristics. It used the
demographic characteristics variables in a machine learning model to
predict fatigue. This helps determine the variables used to assess fatigue
prediction. The paper helps to determine the significance of using the
demographic characteristics of humans as a variable to comprehend the
development of fatigue.

2.3. Human-robot collaboration

Although industrial revolution 5.0 has seen significant progress in
the field of human-centric research, where human–robot collaboration
has been successful, it is critical to understand the various applications
of this collaboration. Section 2.3 introduces and highlights the nu-
merous applications of human–robot collaboration, allowing readers to
better grasp the various usage scenarios. The applications shown in this
section have been chosen based on the repetitive movements involved
in completing tasks, which are one of the primary causes of human
physical fatigue. Additionally, the most significant degree of human–
robot collaboration (HRC) involves both parties working together to
complete tasks [40]. This may not be limited to physical interaction
between the human and the robot. It is also considered to be a complex
kind of contact to program and develop a seamless interaction [41].
HRC’s primary objective is to link humans’ intellect, flexibility, and
adaptability with the accuracy, quickness, and adaptability of robots to
gain the best from both worlds [42]. As a result, task planning and allo-
cation concentrate on finding the best solution based on various factors.
Tasks are distributed more than just according to resource availability.
The presence of a human worker adds a further layer of uncertainty
and unpredictability compared to purely automated systems [42]. This
considers the different degrees of worker knowledge, their actual condi-
tion, fatigue, and their comfort and ergonomic needs [43]. Therefore, it
is anticipated that these criteria would result in ongoing and dynamic
adjustments to job allocations and task performance which can then
be adapted by the robot accordingly. Overall, this emphasizes the
necessity of realistic human models so that the collaborative robot can
comprehend its counterpart depending upon their fatigue level.

Fig. 1 depicts examples of how collaborative robots are employed
in four working areas where maximum repetitive movements are in-
volved. All of these require human attention and physical exertion
(perhaps not as much as without robot assistance) in repetitive tasks. As
aforementioned in the above section, fatigue induced in an operator can
hinder cognitive ability. For instance, from the Fig. 1 ‘A’, a study [48]
shows how fatigue is induced due to repetitive motion which causes
physical exertion eventually leading to fatigue during working on a
assembly task. This could lead to accidents and quality deficiency in
the manufacturing process. We observed that various research in the
field of HRC had been dedicated to intention recognition, trust building,
decision making, task recognition, etc. [49]. However, all these factors
studied in HRC research can change when a person is fatigued, making
the detection of fatigue is important.

In the paragraph mentioned above (in 2.3), the presumption that
a person has a consistent degree of physical endurance is present in
most HRC situations. This presumption can be regarded as accurate
for simple jobs requiring little physical effort or time to complete.
However, other complicated and unpredictable interaction situations
can impact how well people function. In these mentioned scenarios
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Fig. 1. Human–robot collaboration work settings. A — Assistance in Assembly work like positioning or supporting heavy components [44], B — Assistance in quality
inspection [45], C — Collaborate with humans with manual material handling [46], D — Assistance in several machining processes such as drilling, polishing, etc. [47].
(Fig. 1), due to the nature of the procedure, the effort put in by the
human was minimized; nonetheless, fatigue was not measured nor
tracked. In contrast to human–robot collaboration, the human partner
is susceptible to physical fatigue. This phenomenon can have an abrupt
and unpredictable impact on their ability to engage physically [50].
In this situation, the robot should be able to detect human exhaustion
and modify its behavior to provide extra physical assistance with the
assigned work. Consequently, the human partner should exert less
physical effort and monitor the work cognitively.

3. Review methodology

A systematic literature review is used to find, evaluate, and analyze
the literature published between 2000 and 2024 to examine the study
and implementation of machine learning for detecting, monitoring, and
classifying fatigue. The year range is chosen as per the inclusion and
exclusion criteria such as which considers ML in it. Fig. 2 depicts
the general process in detail. First, a systematic literature review is
used to find, choose, and evaluate pertinent papers. A systematic
and transparent approach for locating, assessing, summarizing and
documenting research work generated by researchers is known as a sys-
tematic literature review. The review process typically consists of many
vital processes, such as defining the research questions, identifying the
research, and choosing and evaluating the publications that have been
gathered. The article selection and evaluation processes used a set of
rules for the exclusion and inclusion criteria to assess each possible
primary research. To understand the leading research themes and
directions in machine learning applications regarding fatigue detection.

3.1. Research questions

Table 1 presents the research questions and their motivations for
the systematic literature review.

3.2. Search strategy

3.2.1. Search term identification and resources
The search strategy used in this study covers keyword identification,

searching resources, the search procedure, and article selection criteria
to gather published articles that are qualified and pertinent to the topic.

The keywords were as follows:
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((‘‘Human Physical Fatigue’’, OR ‘‘Occupational fatigue’’ OR ‘‘Fa-
tigue’’ OR ‘‘Work fatigue’’ OR ‘‘Muscle Fatigue Index’’ and ‘‘Human–
Robot Collaboration’’ OR ‘‘HRC Settings’’ OR ‘‘Machine Learning’’ OR
‘‘Muscle Fatigue Model’’ ‘‘Reinforcement Learning’’ or ‘‘Supervised
Learning and ‘‘Functional Data Analysis’’ OR ‘‘Human Performance
Modeling’’ OR ‘‘Feature Selection’’))

Different databases, such as the IEEE Xplore digital library, Science
Direct, ACM digital library Springer Link, Scopus, and Google Scholar,
were used to search for pertinent publications. These databases con-
tain a vast amount of material, including journal papers, conference
proceedings, and books. They are the most representative databases of
scientific research directly relevant to the subject of this review.

3.2.2. Article screening
The procedure for choosing articles is outlined in the above figure

(Fig. 2). The initial step in the search procedure is to search for articles
by the given keywords in the preset databases, which leads to finding
9524 published research works. Five thousand three hundred forty-
three publications were left after these publications underwent an
initial screening procedure based on the suggested exclusion criteria.
Sixty-eight papers were included after the publications were chosen
using the proposed inclusion criteria in Section 3.2.3. A manual search
technique was also employed to find any new sources pertinent to the
review not identified during the database search stage. The exclusion
and inclusion criteria were also applied again. The manual search
procedure resulted in the selection of 33 additional publications. The
following criteria were used to evaluate the quality of the selected
papers during the quality assessment step, and 210 publications were
ultimately found.

3.2.3. Inclusion exclusion criteria
The inclusion and exclusion guideline for the article selection pro-

cess is based on the research questions (shown in Table 1) and the
keywords. While inclusion criteria were implemented on the whole
text, exclusion criteria were applied to the publication’s title, abstract,
and keyword list. The study’s exclusion criteria used are as follows:

The article emphasizes various techniques for detecting fatigue,
such as using only subjective measures.

Articles published in a language other than English.
Articles that utilized ML techniques were more concerned with
other human factors other than physical fatigue.
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Table 1
Research questions and motivations for the systematic review.

Research questions Motivations

RQ1. How can ML address the current Human Fatigue
detection, monitoring, and classification issues?

To consider the difficulties in recognizing and keeping track of physical fatigue in the
workplace and to comprehend how ML technology can be applied to address them.

RQ2. What ML algorithms have been used to address these
challenges in HRC settings?

To outline the ML techniques used in the previous research to address the challenges
of fatigue. The review will provide researchers comprehend and choose suitable ML
techniques for handling similar problems in fatigue detection.

RQ3. What are the benefits and drawbacks of these ML
algorithms in HRC settings?

Assessing the benefits and challenges of using a specific ML technique to address the
challenges. Answering this question will help researchers weigh the pros and cons of
ML-based versus traditional methods to address fatigue.
Fig. 2. The framework for article selection.
The study’s inclusion criteria used are as follows:
All the English-language papers published on ML techniques used

to detect, monitor, and classify human physical fatigue.
Articles that present novel methods for enhancing the effectiveness

of machine learning techniques used for detecting physical fatigue in
HRC settings.

4. Machine learning for human fatigue

4.1. Detection of human fatigue

In Section 4.1, numerous approaches used by researchers to detect
and monitor human physical fatigue are introduced and discussed.
Section 4 provides an in-depth review of the many methodologies used
by the research community for fatigue detection. The methodologies
used by various researchers to assess and quantify human physical
fatigue are revealed through in-depth investigation and analysis. By
delving into the subtleties of these procedures, readers obtain a bet-
ter understanding of the breadth and depth of fatigue detection and
monitoring strategies. Furthermore, Section 4.1 acts as an introductory
structure for the remainder of the sub-sections, preparing the way for a
more in-depth examination of machine learning techniques and their
application in fatigue detection in later sections. Many researchers
over the decades have used three main types of procedures to detect
fatigue. These are (1) physiological changes in the body, (2) gait and
facial behavior and (3) questionnaire and interview type. The first two
types of detection techniques are often enabled with ML, directly or
indirectly to predict fatigue state. As was previously noted, fatigue
is a common symptom, but its recurrence can be a serious warning
sign for serious health issues. Considering the numerous approaches
to detect fatigue that have already been made and employed, tools
for quantifying fatigue are not a novel idea [51]. For instance, as
suggested by Chalder et al. [52,53], subjective questionnaires were
created in the early 1990s to measure physical exhaustion in the
5

general population. Subsequently, similar attempts were made with
the same objective. However, multiple scale measures were employed
to evaluate fatigue, making it hard to compare the findings of vari-
ous investigations because there was no standardized scale devised to
quantify it. Additionally, although being a low-cost tool, the subjective
quantification technique is prone to recall errors [54] and is seen
negatively since it demands workers’ time and attention. Perhaps one
of the greatest limitations is that it is unable to accurately detect
fatigue or its effects in real-time. Researchers have tried to gather and
analyze multiple vital quantifiable indicators to identify the existence of
fatigue to get around all the aforementioned questionnaire’s limitations.
However, as mentioned above, in the exclusion criteria, we only include
the first two types for this study.

Numerous models and dimensions are utilized in various evalua-
tion procedures, to understand how fatigue manifests itself differently
depending on the workplace and individual. A proper assessment of
fatigue aids in preventing worker injuries, lowering associated costs,
and designing appropriate shifts and work-rest schedules [57]. Many
pieces of literature study/research the detection of fatigue. Much of the
work is also focused on the transportation or sports industries. Fig. 3
shows the different physiological sensors used to detect fatigue. All
these sensors shown are used the majority of time to detect fatigue in a
manufacturing or industrial environment, except the pupillometry and
muscle activity sensors, primarily used in driver fatigue prediction [56].

The data collected from these sensors are then utilized in a ma-
chine learning process to classify whether a person is fatigued or
not. The main ML methods used for the detection and monitoring
of human fatigue include supervised learning, unsupervised learning,
neural networks, fusion or composite methods (which incorporate two
or more processes to develop a model), and statistical analysis applied
to the collected data. Fig. 4 provides an overview of the number of
publications utilizing these methods for detection.

Machine learning modeling goes through various steps to create an
effective and accurate system for detecting human physical fatigue.
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Fig. 3. Physiological sensors used in the detection of fatigue [55,56].
Fig. 4. Graph for the number of studies showing the use of different ML methods for training and detection of fatigue.
ig. 5 demonstrates an overview of the general method followed by
esearchers for detecting human physical fatigue in various scenarios
ncluding HRC. Initially, data is collected using a variety of sensors ca-
able of detecting physiological, biomechanical, and behavioral signals
ssessing fatigue. These sensors may include heart rate monitors, EMG,
EG sensors, IMUs, and others, depending on the parameters being
easured. Once collected, the data is preprocessed to reduce noise and
6

extract essential features that represent various elements of fatigue.
Methods for extracting features may include supervised/unsupervised
form of learning, deep learning neural networks etc.

Following preprocessing, the data is separated into training and
testing sets, which are used for model building and evaluation. During
the training phase, different machine learning algorithms are applied
to the labeled data to create predictive models. These algorithms can
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Fig. 5. General process flow of human physical fatigue detection including HRC scenario.
range from basic statistical methods like logistic regression to more
advanced techniques like support vector machines (SVMs), random
forests, and deep learning neural networks; or in some cases statistical
analysis [58]. The nature of the data, the complexity of the task, and
the desired performance indicators all influence the algorithm selection
process.

Once trained, the models are evaluated using the testing dataset to
determine their accuracy in identifying fatigue. Accuracy, precision,
recall, and F1-score are standard evaluation metrics used to quantify
model effectiveness. Furthermore, procedures such as cross-validation
may be used to confirm the model’s robustness and generalizability
across multiple datasets. After analyzing the model’s performance, it
may be further refined using approaches such as hyperparameter tuning
or feature selection to improve its performance. Finally, the trained
and validated model is used in real-world scenarios to continually
monitor and detect indicators of fatigue in people participating in
physical activities, especially in Human–Robot Collaboration (HRC)
situations. Continuous monitoring enables prompt actions to minimize
fatigue-related incidents while also improving workplace safety and
productivity.

4.2. Fatigue detection through physiological changes in the body

The central nervous system’s electrical pulses are utilized by the
physiological sensors for detecting physical fatigue. Electrodes con-
nected to the body are then used to detect these electrical pulses.
These electrodes transform the electrical pulse that is detected into
signals that are examined for fatigue detection. The most used sensor
is Electromyography (EMG). The other commonly used ones are force
sensors, electrodermal activity (EDA), electroencephalograms (EEG)
and electrocardiograms (ECG or EKG). The sensors are attached to
the body part for which the fatigue is to be detected by detecting
the changes in the electrical pulse generated in the body. The signal
acquisition device records a signal produced by these sensors. A filter
is then used to remove any unwanted noise or errors from the signal.
The preprocessed signal’s quantifiable/functional features can then be
extracted. Machine learning can then be used to classify human states,
such as weariness, using the derived information. Table 2 shows the
generally extracted features from physiological sensors.

Jasper built an electromyograph and utilized it to demonstrate novel

research on epilepsy and neurology [59]. Since 1960, sEMG has often
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been employed in clinical studies. Basmajian and De Luca significantly
impacted EMG research [60]. Electrodes are used in EMG to track
electrical currents produced by contracting muscles [61]. Since the
signal produced by EMG is usually complex and noisy, it typically needs
to be filtered. The signal’s amplitude, and frequency, as a function of
time, are some other parameters that can be used to describe it [62].

Electrodes can be applied to the skin’s surface to gather EMG signals
non-invasively or invasively (using needle electrodes). Surface EMG
(sEMG), the latter of which is non-invasive, is a popular technique
for gathering signals from tired muscles during static and dynamic
contractions [59]. Although sEMG can be captured from various body
locations, electrode placement is crucial for obtaining accurate and con-
sistent data [63]. Various one- and two-dimensional multi-electrodes’
propensity to offer the best selectivity and minimize crosstalk were
researched by Dimitrov et al. [64] They discovered that the new
bi-transversal double differentiating electrodes provided the highest
sensitivity and minimum crosstalk, especially when positioned above
the end of the muscle section. The electrode’s location impacts the sig-
nal that is collected because it affects the contracting muscle electrical
activity that is recorded.

To achieve a dependable and steady surface electrode signal, it is
also crucial to position the electrodes to minimize crosstalk with the
signal from other surrounding muscles [65]. A background noise level
can be set, and the electrode positions and spacing can be optimized
to reduce crosstalk. According to Gerdle et al. [66], the ideal spacing
between electrodes is when the standard deviation of the noise in the
signal should be less than the radius around the electrode with the
maximum signal amplitude. One of the EMG’s drawbacks is the many
noise sources that are picked up with the signal. Electrical circuits
inside the EMG emit electromagnetic radiation, as do the surfaces
of all, including artificial things and human beings. EMG electrodes
transducer noise when they touch the skin [59]. Furthermore, several
other factors hinder the quality of an EMG signal. The blood flow rate,
diameter, location and depth of muscle fiber, the number of tissues
between the muscle surface and place electrode, etc. [66]. These factors
vary from person to person, increasing the complexity of detecting the
signal.

Although the complexity mentioned earlier is present, EMG has
been employed in several studies concerning the accumulation of lo-

calized muscle fatigue (LMF). Ollivier et al. [67] employed EMG to
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Table 2
Features extracted from physiological sensors.

Sensors signal Features extracted

EMG Mean & Medium of Frequency and amplitude, Zero
Crossings, Root Mean Square, Riemann, Wavelet.
Transform.

EDA Amplitude, mean and medium frequency,

IMU Gait — stride length, time and force, jerk, acceleration,
velocity

EEG Alpha, Beta & Gamma waves — power spectral density
(PSD)

ECG P-Q R S-T waves used for generating pattern to distinguish.

Heart Rate Sensor
and Respiration

H.R., HRV, Respiration rate, amplitude

understand the localized muscle fatigue accumulated during elbow
flexion. The authors used root mean square (RMS) values to analyze
and detect fatigue. The research is concentrated on different bipolar
electrodes and the differences in the force values. Similarly, MLs Inde-
pendent Component Analysis (ICA) techniques were applied to detect
LMF when standard load exerts isometric contractions (I.C.) [68]. The
study found that the motor unit’s conduction velocity is reduced com-
pared to high-level contractions during a low bicep contraction. These
studies were conducted in the lab, and in real-life scenarios, the factors
affecting are different. Like Renberg et al. (2020) implemented the EMG
analysis in cold conditions. They found that there were no significant
changes in the activations of motor units in cold conditions [69].
However, when applied in the field research by Chowdhury et al. they
found that dynamic isometric exertions are higher by 19.63% when
compared with static contractions [70].

4.2.1. Feature extracted and analysis methods of physiological sensor signal
Identifying muscle fatigue through sEMG signals can be analyzed

by looking at changes in EMG readings. Various literature on sEMG
demonstrates that alterations in the spectrogram or changes in EMG
signal amplitude are signs of muscle fatigue during static or dynamic
contractions [71–75]. Although sEMG signals have been examined
using a range of parameters to assess muscle fatigue, it is typical to
investigate the signal frequency at a crucial point across both time and
frequency domains.

In the time domain, the amplitude of a signal is indicated as a
function of time; signals are acquired and, in some cases, examined.
However, the signal frequency is more important for many analysis
methods. Thus, the signal should be analyzed in the frequency domain,
which involves subjecting it to a Fourier transform to portray it as a
function of frequency rather than time [59]. The raw EMG signal is
analyzed in the time domain using the average rectified value (ARV),
which calculates the average of the absolute signal value. In contrast,
the root mean square (RMS) assesses the signal power [76]. The sig-
nal’s RMS value determines the square root of the raw EMG signal’s
average power over a predetermined amount of time [75]. However,
many authors prefer RMS values over ARV, as presented in Table 3.
The moving average approach uses short-duration sampling windows
to identify the sudden changes in dynamic contractions in muscular
activity [77]. A signal is considered to have made a ‘‘zero-crossing’’
when it exceeds the zero-amplitude line. The common assumption is
that there are zero crossings more be the action potential. However,
once fatigue sets in, the zero crossing substantially decreases due to
the diminished electrical current conduction in the muscle.

Therefore, to determine the condition of the muscles, zero-crossings
are counted using geometric computations [59]. One can calculate the
signal frequency content by applying a Fourier transform to separate a
signal’s frequency components. A discrete Fourier transform calculation
approach that works well with stationary signals is the fast Fourier

transform (FFT). The dynamic nature of EMG signals requires that
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they be examined in time and frequency domains. Short-time Fourier
transform (STFT), which examines a brief temporal portion of the
signal, can be used to study the frequency and phase evolution of
the signal throughout. Several authors, such as [78–80] (table 3),
used Fourier analysis to examine the EMG signal during a repeti-
tive task isometric contraction. They evaluate the accumulation of
fatigue over a specific period. Furthermore, Marri et al. [81] used the
moving average algorithm and the multifractal singularity spectrum
combined with Information gain (I.G.) and Genetic algorithm (G.A.)
to analyze the EMG signal for repetitive movements. Similar attempts
were tried by González-Zamora et al. [82] using the Mean Frequency
(MNF) and Power Spectral Density (PSD) to analyze EMG signal in a
manual material handling task. A brief presentation of the different ML-
enabled fatigue detection processes has been presented in Table 3. It
presents the different physiological sensors employed with various ML
techniques to detect fatigue states.

4.2.2. Fusion of sensor data for feature extraction
The use of only one sensor to measure localized muscle exhaustion

has several restrictions, as was previously indicated. These restrictions
have been attempted to be solved by combining two or more sensors to
assess overall or localized muscle exhaustion. As an alternative, efforts
to use other signal analysis methods have also been made.

The features generated from various sensors can be combined and
the best set of features can be then used to achieve higher accuracy of
fatigue prediction. Techniques such as cross-validation and leave-one-
out are widely used for achieving higher results by combining them
with different supervised learning techniques [4,6].

Liu et al. [97] used an amalgamation of Force, EMG and fMRI
sensors to try and understand the patterns of the onset of fatigue
during a handgrip task. They used image recognition techniques with
statistical analysis to understand the significance of different patterns in
the onset of fatigue. They proposed an Automated Image Registration
(AIR) algorithm to train and test different patterns of the development
of fatigue. It can be observed within Table 4 that similar attempts by
several other authors are made using a force sensor and EMG together
to examine human physical fatigue [89–95,98,100]. As an alternative
to force sensors, the EMG sensor has also been coupled with other
sensors. Jun Shi et al. (2007) used sonomyography with EMG sig-
nals to detect fatigue [99]. Utilizing ultrasonography, sonomyography
(SMG) describes the physical and morphological alterations of skeletal
muscles [107]. Furthermore, the force sensor and EMG with an EEG
sensor were used to examine fatigue detection in lower limbs [104].
The additional part of this examination was that they used subjective
analysis. They used Borg Test to understand the personal evaluation
of fatigue. Equivalently, Fujisawa and the authors [101,102] used
EMG and Ultrasound to predict fatigue accumulated in the isometric
contractions of the knee at various angles. The same principles were
used by Li et al. [102] to examine the isometric contraction of upper
limbs at multiple angles.

4.3. Gait and behavioral characteristics used for fatigue detection

In 2000, Kazo Saito [108] tried to evaluate and measure industry
fatigue using a portable fatigue meter. The meter would have an
LED light indicator to display the fatigue state. It used the Critical
Flicker Fusion frequency (CFF) combined with the Visual Reaction
Test to evaluate the fatigue state. It had limitations, and a heart rate
and voice recognition headset were used to overcome them. It was
analyzed through an accurate speech recognition algorithm to evaluate
fatigue [106]. Substitute to that using an optical motion capture system
along with 13 markers and haptic gloves to track the movement of
joints and fingers to evaluate whole-body fatigue [109]. The task was
to evaluate fatigue during a manual material handling task. Addition-
ally, virtual reality maps the person and generates fatigue mitigation.
However, all these techniques are a decade old, and using them in an
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Table 3
Human physical fatigue detection techniques using physiological sensors data.

ML Tech. Task Key Result @ Fatigue State Sensor Ref

Changes in electrode analysis Maximal elbow flexions Increase in RMS value for Laplacian

EMG

[67]

ICA Isometric Contraction Reduced Motor units in high-level contractions [68]

Discrete Wavelet Transform Manual material handling Spectral change for fatigue detection [83]

Fatigue Index Model
Repetitive upper arm exertion

Fatigue detection by increase in ARV RMS & PTP [78]

STFT & CWT Detects by changes in Force signal [79]

wavelet transform & ANN High correlation coefficients 0.93 avg [80]

MFDMA & SSM function; IG & GA Repetitive curl exercises 60% features statistically significant [81]

FFT Algorithm

Manual material handling

Fatigue detection through window sizes [70]

Body Energy Model Limitations such as energy usage observed [84]

Spectral Analysis Increase in RMS &No decrease in MVC [69]

Linear regression Mean Frequency decreases [82]

ANNOVA Manual exertion exercise task Right postures of forearms analysis Potentiometer [85]

SVM Isometric Contraction task Accuracy of 83.33% EDA [86]

Amplitude of signal Time domain
analysis, SD, RMS & Classifiers

Repetitive hand exercise Significant result of compression test (ANOVA) EEG [87]

Assembly line task 67% accuracy, time domain measure Heart Rate [88]
Table 4
Human physical fatigue detection techniques through different sensor fusion data.

ML Tech. Task Key Result @ Fatigue State Sensor Ref

CWT Repetitive arm exercise No significant results

EMG & Force

[89]

CWT & Linear Regression Increase in RMS value for fatigued state [90]

ANNOVA statistical analysis
comparison

Exercise as industry actions Changes in MVC for detection [91]

MDF & MNF vs force Manual material handling
Significant difference ANOVA test [92]

pattern of +ve and −ve MDF & MNF found [93]

Back Propagation NN Screw driving task force loss — GS, DT, and PF, 32.1%, 24.2%, 26.5% [94]

Back-propagation neural network Hand Grip isometric contractions Decrease in handgrip force after fatigue [95]

Signal amplitude analysis

Repetitive contractions exercise

Significant changes through ANOVA EEG & Force [87]

Benchmarking in amplitude for fatigue EMG & MMG [96]

Automated Image Registration Patterns recognized for force loss

EMG & Ultrasound

[97]

Speckle tracking algorithm Less force = fatigue = lower frequency [98]

RMS & MDF of EMG signal Linear increase & decrease in RMS & MDF [99]

MVC RMS and cw-NIRS 75% higher MVC for sEMG & cw-NIRS [100]

Spectral Power & Peak Torque Repetitive knee exercise Higher sp & pt in men as compared with MF [101]

Ultrasound image entropy (USIE)
Repetitive contractions exercise

USIE showed clear changes in body muscle [102]

Ultrasound signal estimation 70% accuracy [103]

Cluster analysis 13% & 25% decrease @ MVC & RMS EMG & EEG [104]

Penalized Logistic & Regression

Manual material handling

Accuracy over 80% obtained

IMU & Heart

[4]

Statistical, Ensemble & Single
Classifiers

Best model-Random Forest — accuracy 87% [6]

Recurrent Neural Network Accuracy of 63% [105]

Accurate Speech recognition Reading after fatigue exercise 82% in W and 72% in M accuracy Heart & Voice [106]
actual working environment would be costly and time-consuming. Also,
it causes much discomfort to the operator. An alternative to that is to
use an IMU and heart sensors. The inertial measurement unit (IMU) is
the most used sensor for observing the gait changes in an individual.
IMU comprises accelerometers, gyroscopes, and magnetometers, which
observe gait behavior. These sensors are wireless and will cause less
body discomfort. Maman et al. [110] used an IMU and heart rate
sensor to evaluate fatigue. The sensors were attached at five locations
to understand the localized and whole-body fatigue. They use Balloon
Analogue Risk Task (BART), psychomotor vigilance task and Borg Test
to subjectively evaluate. These evaluations were then combined with
the features extracted from the data obtained. After combining, the
data set was fed through Penalized logistic and regression ML models
to classify fatigue and non-fatigued. They achieved an accuracy of over

80%. Similar hardware was used by Zahra Sedighi and authors [111]
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to understand which machine-learning models gave the highest accu-
racy. They evaluated three different types: statistical, ensemble and
single classifier models. They observed that the Random Forest model
achieved the highest accuracy of 87%. All other techniques are included
in Table 5.

4.4. ML for monitoring/recovery after human fatigue detection

Even though fatigue has been studied for decades, a complete
fatigue model still needs to be designed and produced accessible for
a variety of real-life workplaces and other scenarios. Every major de-
velopment in the field of fatigue research has been made in relation
to sports and transportation, but there is still room for advancement in
the industrial setting. Many efforts have been made to research the state

of human fatigue in an industrial environment, but minimal effort has
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Table 5
Human physical fatigue detection techniques using gait or behavioral characteristics.

ML Tech Task Key Result @ Fatigue State Sensor Ref

Critical Flicker Fusion Frequency Manipulation Light indicator intensity on the device Fatigue Meter [108]

Fatigue Index
Manual material
handling

Evaluation of posture through motion capture
Optical Motion
Capture System

[109]

Supervised, unsupervised and
LSTM

No validation found [112]

Statistical analysis Repeated endurance testing Endurance time decreased significantly Force Sensor [113]

Repeated contraction exercise COV increased significantly over time [114]

PCA, Bonferroni post hoc analysis Repetitive weightlifting exercise Significant difference between intensities Xsens acc. Sensor [115]

SVM

Manual material
handling

Accuracy of 90% predicting fatigue state

IMU

[116]

Jerk Calculations Signal-to-noise ratio of jerk used to detect [117]

Time-Series Analysis VECM model achieved best results [118]

SVM Classifier Accuracy percent-91/ 78/ 64% - 2/3/4-class [119]
Table 6
Human fatigue monitoring techniques.

ML Tech. Task Key Result @ Fatigue State Hardware Authors

M
on

ito
rin

g

Bayesian Networks computer task Facial Monitoring, eye and gaze tracking Motion Camera [120]

MD, MNF &PSD
Repetitive contractions exercise

MDF was able to monitor fatigue Dynamometer and EMG [121]

Signal Analysis Fatigue monitoring through changes in
Bicep

Ultrasound [122]

multivariate time series clustering
approach

Manual Material Handling

Change of stride length main feature IMU and Heart Sensor [123]

Cyber-physical production system Workstation scheduling when observed
fatigued

Global decisional entity, Local
decisional entity

[124]

MNF/PSD & LR Mean Frequency decreases EMG sensor [82]

Bo
th

REBA posture scores; quadratic
equation

High computational time for scheduling Posture recognition [125]

ARV & FD Repetitive contractions exercise Increase in ARV & decrease in FD values EMG — monitoring & recovery
(LEDT)

[126]

Re
co

ve
ry Handgrip workforce estimation Handgrip task force estimation Est. error is bt. 5% MVC Force Transducers and SEMG [127]

Pulse width modulation Repetitive contractions exercise Muscle fatigue is monitored & recovery
can be optimized

SEMG [128]
been made to monitor it. It is the case that fatigue is subjective, and the
onset can occur for different reasons that vary from person to person.
For example, if a person works an 8-hour shift, they can be fatigued
initially. Also, it can accumulate through the repetitive tasks performed
throughout the day. This makes it essential to monitor human fatigue
to avoid accidents or MSDs in the long run. Not only to monitor but
also to create a recovery method. Previous methods included surveys
and questionnaires to monitor. Nonetheless, this method is effective as
it considers subjective feelings but can barely produce results in real
time. Due to the intermittent recording style, the human can be in other
states till the results are out. Physiological sensors can provide real-time
monitoring of the development of human fatigue.

A simple method was proposed by using an optical camera to
record, track and monitor the fatigue levels of human operatives work-
ing on a computer table [120,121]. They employed Bayesian and
Dynamic Bayesian Networks to follow the Facial cues such as eye
and gaze monitoring. However, this system had limitations in track-
ing specific areas and specific tasks. An alternative solution was to
employ EMG and dynamometer to monitor the maximum voluntary
contractions by analyzing the MDF, MNF, and PSD generated from the
signals [122]. Analysis of MNF, MDF, and PDF was observed to change
over time, giving the estimation of fatigue level. Applying similar prin-
ciples of the hardware to monitor, proposed a recovery system by using

ARV and Fractal Dimension (F.D.). A recovery system named ‘‘light
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emitting diode therapy (LEDT) for recovery’’ was proposed [126]. In
different approaches amalgamating EMG and force transducers were
used to present a recovery after the fatigue state was detected by
comparing the MVC of pre-and post-fatigue conditions [127]. The
drawback of this system is that force estimation can vary from person
to person and different genders.

Finding the proper force can be difficult and there are many false
alarms. However, posture can say a lot about a person’s physical state.
Applying this principle, a Rapid Entire Body Assessment (REBA) pos-
tural analysis was employed through a quadratic equation to monitor
and propose a recovery plan [125]. This requires high computational
time. Signals generated from an ultrasound transducer can be used to
monitor the development of fatigue in a repetitive task [123]. The
vibrations created can be used to monitor human fatigue. However,
the system’s reliability could be better, as the vibrations can be due
to any movement and can classify as a false alarm. Baghdadi and
the authors [129] combine subjective and objective methods to mon-
itor human fatigue in a manual material handling task. They used
the Physical Activity Readiness Questionnaire and Borg test with the
features generated from an IMU and heart rate sensor to monitor.
They used multivariate time series analysis to evaluate and understand
the development patterns of fatigue in a repetitive manual material
handling task. Briefly outlined are all the monitoring and recovery

research studies in Table 6.
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Table 7
Human fatigue detection in an HRC settings.

Detection ML Tech. Human Task Robot Task Key Result @ Fatigue State Sensor Ref

Ph
ys

io
lo

gi
ca

l
Se

ns
or

s
Da

ta

GPR Polishing position Supporting the material Fatigue adapted to model with
limitations

EMG & force
transducer

[138]

DMP, LWR & AFO Support position Polishing & Sawing Fatigue was detected and adapted
accordingly

[134]

GMMs & weighted system Assembly Assembly with human The robot can adaption little
fatigue exists

[140]

MNF Light Tool Spray
painting

Support spray painting Three colors indicate fatigue [141]

Riemann geometry s; SVM
and RF

Path Planning
Supportive role

Accuracy of 91% for Riemann [142]

Human force estimation
adaption model

Posture detection for fatigue [139]

Random Forest Assembly pickup Overall Accuracy over 85%
achieved

[143]

The Overloading Joint
Torque

Operating Power
Tools

Support Pick up Reduced the overall body torque
in adaptation layer

[136]

Efficiency, Accuracy,
Precision

Guide for Surface
Polishing

Move as per human input Significant Impact compared with
subjective measures

ECG [144]

Be
ha

vi
or

al
Ch

ar
ac

te
ris

tic
s Bio-mathematical

Two-process Model
Task Allocated in
random

Task allocation in random Computer simulation only

Motion Sensor
Camera

[145]

FFT

Assembly

Assembly collaborated with human Deltoids, Biceps and Trapezius
have more fatigue

[146]

GA Assembly picks up and place Adaption to movement and
assembly accuracy

[147]

Defatigue model Pickup Support provided in picking up Accuracy of over 81% achieved Force sensors [148]
4.5. HRC settings assisted by ML for human fatigue

These cobots are designed and made keeping specific goals in mind
to overcome the barriers of conventional robots with a safety net
around them. The cobots can work together and assess the human
condition and adapt accordingly to human needs, i.e., a human-centric
manufacturing environment. Although many advancements have been
made for seamless human–robot interactions, they lack how humans
adapt and operate. Especially much research has been put into intention
detection, gesture recognition, etc. Many studies have been undertaken
to create an understanding, recognition, and adaptation to human
actions, some by human demonstration or some by robot learning. In
these, EMG has played a crucial role [130]. Although these technologies
have advanced, it is essential to detect the human fatigue state as
seeing the previous section; if a person is fatigued, it can cause a loss
in concentration, lower quality, etc. Note that there needs to be more
work completed in this area of HRC.

Nevertheless, Peternel and co-authors [131–138] undertook fatigue
detection, monitoring and adaption. They employed an EMG sensor and
force transducers to evaluate the joint angle torque while operating
a physical exertion industrial task such as polishing, drilling, etc.
They employed various machine learning techniques to understand the
fatigue pattern and evaluate it accordingly for different tasks. They used
the Gaussian Process Regression (GPR) model to classify fatigue levels
for a predetermined human and robot polishing task [138]. They also
employed ‘Dynamical Movement Primitives’ (DMP), ‘Locally Weighted
Regression’ (LWR) and ‘Adaptive Frequency Oscillators’ (AFO) to detect
and adapt according to the force generated by the human counter-
part [132]. Applying similar principles, the model was improvised
using the ‘Human force estimation adaption model’ for path planning
and process following procedure for the robot [139].

Pramanick and authors [148] developed a ‘Defatigued’ model for
the adaption of robots according to humans. They used only force
sensors attached to the end of the effector to estimate the human
working force. The major drawback of this method is that it does not

consider the physiological changes in the muscle fibers that contribute
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to human fatigue. Wang et al. [140] used a similar working model
by Peternel et al. Gaussian mixture models (GMMs) and updated it
with the weighted system for adaption for an assembly task. Instead
of only using an EMG sensor alone. Tsung-Chi et al. added the Vicon
motion capture camera to track human movement when assisted by
the robot in an assembly task [146]. A similar approach was to track
the movement, but different sensors were used. They used an EMG and
MVN Biomech suit to track humans by the robot [141]. The authors
used MDF to evaluate fatigue. The fairly new research was undertaken
by Kumar et al. by using the Riemann geometry features generated by
a ‘myoelectrical’ armband [142]. They used SVM and Random Forest
ML techniques to classify between fatigued and not fatigued. All the
undertaken HRC studies for fatigue management are shown in Table 7.
Furthermore, Fig. 6, indicates the number of studies involved in the
different form of HRC setting in order to study fatigue detection and
mitigation.

4.6. Summary for fatigue detection

Research conducted on human physical fatigue detection and in
human–robot collaboration scenario was reviewed including different
types of detection processes used, including physiological-based or
behavioral-based. ML has played a crucial role in the detection of
fatigue and in analyzing or generating features.

In the review, the three most representative fatigue detection pro-
cesses are presented which are most often used to evaluate the onset
of fatigue. Tables three to five are further segregated according to the
sensor used for the detection process. Interestingly, over 65% of the
research study used EMG for the detection process. Although, much of
the research shows that EMG is mostly coupled with force sensors to
understand the deterioration of muscle force over the testing period,
as one of the features to evaluate the onset of fatigue. However, it
is not limited to that sensor only, various researchers have employed
EMG with Ultrasound. The features generated are then compared with
the images created from the ultrasound imaging process to examine
the development of fatigue in various conditions such as pre-and post-
fatigue. Although extensive use of the convolutional neural network
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Fig. 6. No of studies involved in various HRC activities which involve fatigue detection.
(CNN), which is well known for image recognition, has not been used
to derive patterns for the onset of fatigue. Most of the researchers
have chosen to evaluate the EMG signal through Time series generated
features or Frequency generated features. In these features, the adap-
tation of statically analysis tests such as ANOVA has been extensively
used to understand the significant difference between fatigue and non-
fatigue state. In time and frequency analysis, the features generated are
mean frequency (MNF), median of frequency (MDF), root mean square
(RMS), maximum voluntary contractions (MVC), and spectral density
(SD). The alternatives used by researchers are continuous wavelet
transform (CWT) or Fast Fourier transform (FFT). Apart from these,
only one researcher used multifractal detrended moving average algo-
rithm (MFDMA) and multifractal singularity spectrum (SSM) function;
information gain (IG) and genetic algorithm (GA) techniques.

Gait or behavioral characteristics comprise the second type of de-
tection method which presents an alternative to physiological sensors.
Most of the research in this section is conducted through an inertial
measurement unit (IMU). IMU studies have used support vector ma-
chine (SVM) as their go-to ML algorithm. IMU has been employed
with different classifiers such as ensemble to predict fatigue. The most
generated feature is a jerk. The alternative to ML techniques is using
time series analysis. However, in this sector, the use of optical motion
cameras, force sensors and acceleration sensors are provided as an
alternative to IMU.

Section 4.5 investigates the use of machine learning (ML) techniques
in human–robot collaboration (HRC) contexts to detect and manage
human physical fatigue. It emphasizes the significance of developing
cobots that can analyze human circumstances and adjust accordingly,
resulting in a human-centered manufacturing environment. While ad-
vances have been made in seamless human–robot interactions, there
is still a lack of understanding about how humans adapt and operate
in fatigue contexts. Several studies have investigated intention detec-
tion, gesture recognition, and adaptability to human behaviors, with
electromyography (EMG) playing an important part. Foe instances,
Peternel and co-authors conducted an impressive study on fatigue
detection, monitoring, and adaptation utilizing EMG sensors and force
transducers during strenuous jobs like polishing and drilling. They used
machine learning techniques like Gaussian Process Regression (GPR),
Dynamical Movement Primitives (DMP), Locally Weighted Regression
(LWR), and Adaptive Frequency Oscillators (AFO) to analyze and adapt

to fatigue patterns. Another study by Pramanick and colleagues created
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a ‘Defatigued’ model for robot adaptation using force sensor data. These
studies demonstrate how various machine-learning techniques can be
used in HRC situations to control fatigue, contributing to a better
understanding of human–robot collaboration and fatigue detection.

5. Discussion

Although more ML technologies are being used in HRC systems and
fatigue detection and monitoring, there are still several challenges to
solve and opportunities to seize. Challenges are discussed in this section
in light of the earlier literature review. Opportunities for future ML for
human fatigue management and study are also addressed.

5.1. Challenges

5.1.1. Current machine learning techniques
Fatigue is very subjective and can result from numerous factors

other than physical exertion. According to the reviewed articles, ML
algorithms can be crucial in classifying or analyzing the signal for de-
tecting different fatigue levels. However, the accuracy of any given ML
algorithm depends on the data input for training and testing purposes.
Several factors can impact data collection and feature generation. One
of the examples is that profound knowledge of the domain is necessary,
especially when handling sEMG data of ML detection. Many authors
have used different signal analysis techniques, such as time–frequency
analysis. These provide valuable, usable details for machine learning.
However, there is no fixed or universally accepted method for selecting
the signal’s sample size or input windows [116].

The use of ML for detection or monitoring requires a user to set a
threshold or cut-off score for the features generated. This will enable a
user to determine fatigue if the values are above that level. However,
there is no standard for setting these scores/values and it is completely
subjective to the person conducting the study. The lack of knowledge
establishing the cut-off score of each physiological metric for physical
forms of fatigue presents a significant obstacle to employing physiolog-
ical metrics to quantify physical fatigue during physical exertion tasks.
Little is known about the threshold scores regarding the physiological
signals to signify extreme fatigue. Even though persistent physical
fatigue is assumed to increase the risk of musculoskeletal problems
and work-related injuries. Since each person responds differently to
fatigue when performing different jobs in various surroundings as
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mentioned earlier, this constitutes a significant issue when interpreting
the physiological measurements collected through any given sensor for
fatigue detection and monitoring.

5.1.2. Current data acquisition system and real-world implementations
The human physical fatigue modeling is a complex procedure to

determine the human fatigue level at any given time. The modeling
process involves many different features to be generated, which in-
volves significant sensor data accuracy. However, the current research
only involves some factors contributing to the development of fatigue.
The sensors can detect physiological changes or gait behavior but do
not consider the various external factors contributing to the onset of
fatigue. As is known very well, fatigue can be caused by multiple
factors, such as disturbed circadian rhythm, stress, etc. The sensors
cannot detect these changes. Apart from the mentioned factors, some
sensors lack the detection of changes in the human body, such as
internal changes in the body, like muscle fibers. For example, Al-
though EMG can detect changes in muscle contraction, it lacks the
identification of the changes in muscle fibers, which are one of the
contributing factors of muscle fatigue. As observed from the reviewed
papers, many researchers choose EMG sensors only. These sensors need
to be prepared before any data can be collected. For example, they must
be calibrated before use, and special care must be taken.

Furthermore, before any data can be collected, the human skin also
needs preparations. For example, the human skin area needs to be
cleaned with alcohol, and if any hair is present, that area needs to
be shaved and cleansed. This preparation in an industrial environment
raises the question of validity, usability and repeatability for every
use. Apart from the trials, using an EMG sensor needs special care
when placing the sensor at the right location, or it would generate
much noise in the signal [61]. These limitations question usability in a
manufacturing environment. Furthermore, the new wireless system of
the EMG signal requires it to be stuck onto the skin of the body part for
accurate electrode contact to generate low-noise data. This could cause
discomfort to the human operator.

Additionally, in a working environment, especially an industrial set-
ting, the EMG sensor can come loose and cause data loss for monitoring.
On the other hand, hardware such as motion capture sensors or cameras
are expensive and track a concise path for the human operator. An
alternative solution used in the reviewed papers is an IMU sensor. It
does give the edge over EMG for placement and preparations but comes
with some limitations. The IMU measures the acceleration, angular
movements, and magnetometer, which provides the gait behavior of
an operator [4]. However, it fails to detect the localized muscle activity
contributing to physical fatigue.

The reviewed paper employed force sensors for fatigue detection.
Force sensors/transducers do give accurate results when coupled with
other sensors. When used, change in human force is not necessarily
due to fatigue, although it is one of the causes. For example, Human
strength could reduce due to a lack of attention. Nonetheless, force
estimation for a job can be subjective and vary from person to person
or different genders. Lastly, ultrasounds sensors were used for fatigue
estimation, which has a drawback. Firstly, they estimate the body’s
vibrations, which could result from external factors in an industrial
environment where lots of machinery is operating simultaneously.
Secondly, accurate ultrasound sensors are big in size and cannot be
feasible in a working environment, i.e., their application is limited to
labs. To overcome these problems, data fusion from various sensors can
give full and localized body fatigue.

Challenges are not only possessed during training or developing
the model but also comes with real life implementation problems such
as; To begin, data privacy and security concerns may arise among
employees who are concerned about continual surveillance and control
of their personal information. Addressing these issues necessitates the
development of strict data protection standards, the encryption of
sensitive information, and open communication with employees about
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data usage and safeguards. Second, guaranteeing user acceptance and
comfort with wearable sensors presents a difficulty, as discomfort from
wearing sensors for long periods of time, as well as skepticism or
aversion to new technology, might impede adoption. Solutions include
creating lightweight, inconspicuous wearable sensors and integrating
workers in the design and implementation process to promote comfort
and buy-in. Furthermore, individual diversity in physiological and be-
havioral reactions to fatigue provides a hurdle, making it impossible
to develop a one-size-fits-all detection model. This difficulty can be
addressed by personalizing fatigue detection models for people or
using adaptive machine learning algorithms capable of learning and
adapting to each worker’s patterns over time. Furthermore, ensuring
system durability and reliability to reliably identify fatigue under a
variety of situations and factory settings is critical. Diversifying training
data and environments to create more resilient models, as well as
building methods for continuous model evaluation and recalibration,
are critical steps towards addressing this difficulty. Furthermore, any
possible disturbance to existing workflows caused by the integration
of new technologies must be addressed, with adaptive algorithms in
cobots allowing for real-time response to identified weariness without
requiring disruptive adaption periods.

5.1.3. Working with data
The current data sets from the reviewed papers do not represent

working populations in an industrial environment. The data collected
are generally from students and managed in a lab environment. How-
ever, when data is contained in a realistic industrial environment,
it affects the information differently compared to the lab collection.
These limitations in the current datasets need to provide conclusive
evidence about the working in the actual working environment and the
sensors or the data collection repeatability. To the authors’ knowledge,
in the current review, studies have examined less the application of
physiological sensors in measuring fatigue in a substantial sample
of manufacturing operators over an extended length of time (e.g., a
few days or weeks). The only evidence found is in terms of inter-
views/surveys which provide intermittent results, which are not good
for real-time assessment [19]. Furthermore, research comparing the
use of physiological measurements to the industry standard of physical
fatigue assessment or setting an industry standard is less explored.

ML algorithms play a crucial role in the classification of detection
and monitoring of human physical fatigue, overcoming the limitations
stated above. Thus, the amount of data used for training the ML
algorithm affects how well it will work. For example, to detect the
development of fatigue, statistical modeling is the prevailing algorithm
to classify the levels of fatigue. It is capable of learning useful infor-
mation from sparse datasets. It produces consistent results from the
signals generated by examining useful information from the features
extracted. However, the limitation is that it includes limited data.
Human fatigue modeling requires enough data that represent different
variables (demographic factors, muscle activations, etc.) for training
processes to yield high-accuracy results. However, the current data
are limited to the data extracted from the sensors only. Additionally,
when using ML for fatigue predictions, different processing parameter
combinations should be considered for higher results. Testing these
variables (demographic and anthropometric) in a manufacturing setting
requires considerable time. Therefore, gathering a lot of training data
from experiments is not always feasible. Process simulations possess an
alternative solution for training in a created virtual environment but
lack repeatability in real-life scenarios. The limited data may lead to
a high possibility of false predictions due to the lack of training. It is
difficult for a well-trained ML model to be applied in a similar physical
exertion process but with different movements where uncertainties
affect the model performance [111]. As a result, building a solid and
trustworthy ML model from a small set of training data is difficult.
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5.1.4. Data fusion
The analysis of fatigue is a complex process, where several phys-

iological, mental, and manufacturing setting factors are affected by
various correlated factors. Thus, it makes it necessary and significant
to fuse the data from multiple sensors or modalities to jointly analyze
for enhancing knowledge discovery. One of the limitations is to fuse
the heterogeneous data generated from the sensors as it normally has
different types, signals, and features extracted. To tackle this issue
several methods are adopted by researchers, such as extracting features
from raw data to reduce data dimensions or time-series or frequency
analysis techniques. As a result of the feature extraction processes,
important underlying or pertinent features from the raw data are lost.
Therefore, a crucial problem when using ML is how to combine the
diverse data for modeling and analysis when acquired from different
sensors. Additionally, much literature does not include the subjective
analysis or any demographic variable’s characteristics of the person in
the classification. It is one of the contributing factors and limitations
in the current data sets for detecting fatigue. Deep learning machine
learning modeling method can possess the alternative solution. How-
ever, the limited amount of data available in contemporary data sets
makes it difficult to use deep learning.

5.2. Opportunities

5.2.1. Opportunities in working with data
Accurately training an ML model requires a large amount of data.

The current data sets are arguably small and represent a limited popu-
lation of working people in an actual industrial environment scenario.
They are primarily students employed for data collection. One of the
key opportunities is to use an actual working population that represents
various demographic variables.

First, data is mainly collected from the age group of 18–45, and
these limitations can be overcome by increasing the population size for
different age groups. Second, most of the research is undertaken in a
laboratory environment, and researchers can aim for a working envi-
ronment like many examples from the construction industry. Lastly, if
the first two points are not feasible, they could use the application of
transfer learning. It is difficult for employers to implement practically
in real-world industry applications due to its cost. Thus, transferring
learning can help provide knowledge from a lab domain to a related
domain, which is crucial and will help improve the models and reduce
the training time. It is observed from the reviewed papers that more
than one sensor is needed to detect whole-body fatigue. Thus, an
amalgamation of various sensors would create the opportunity for
better monitoring and detection of human fatigue. It could help in a
specific application, and a more generic approach is needed. So that it
could be repeatable and reliable.

5.2.2. Opportunities in machine learning modeling techniques and imple-
menting in real life

As mentioned previously, increasing the dataset size could help
employ deep learning, a data-hungry modeling process. It would further
help in including various demographic variables, such as sleep cycle,
etc., in one. Employing deep learning can further expand the knowledge
about the development of fatigue by providing deeper insights and
developing unknown patterns. Furthermore, increasing the chances
of a seamless Human–robot collaboration interaction over different
applications. However, only a few pieces of literature are available on
fatigue detection, monitoring, and adaptation. Fatigue can hinder one’s
working process in many domains. This allows for detecting fatigue
other than human operators’ estimated force.

However, in real-world applications, low latency is the main issue
in real-time detection, monitoring and recovery. To achieve low latency
in real-world applications, it is crucial to deploy analytical models
on local devices. It is equally essential to build lightweight comput-

ing models for applying artificial intelligence to predictions. One of
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the promising methods is to improve further the use of data fusion
techniques, which can help minimize the dimensionality of raw data.
Furthermore, implementing machine learning technology for human
physical fatigue monitoring in the workplace, particularly in Human–
Robot Collaboration (HRC) contexts, provides several benefits. First,
fatigue detection can improve safety and productivity by reducing
work-related injuries and accidents. In addition, automatic job ad-
justment and robot aid can help maintain high levels of production
even when fatigue sets in. Moreover, early detection of fatigue helps
prevent chronic health problems, improving worker health and well-
being. Also, by incorporating machine learning technology into human
resource management settings, businesses can increase overall opera-
tional efficiency and market competitiveness. The capacity to recognize
and mitigate fatigue efficiently can lead to more efficient job allocation
and resource utilization, resulting in higher production output and less
downtime.

6. Conclusions

The focus of this paper has been on the research and application
of various ML technologies for the detection and monitoring of human
fatigue in a manufacturing setting with and without an HRC setting.
Fatigue has been researched for decades. It is very subjective in nature.
Despite many studies, no universal or accepted definition is present.
Furthermore, detection of the onset of fatigue is crucial and methods
to detect this are needed. If fatigue develops, it can cause attention
loss which further hinders not only the quality of the process but also
affects the socio-economic status of a person. Run over the longer term,
prolonged instances of fatigue can cause musculoskeletal disorders
(MSDs).

The prominence of ML for the prediction of human fatigue chal-
lenges served as inspiration for the paper. A significant work of current
literature advocates the use of physiological sensors to detect and
monitor the accumulation of fatigue. The paper followed a systematic
literature review process for examining and selecting the articles for
review. It has been observed that there are two general methods
adopted by researchers to detect fatigue.

The two methods are analytical modeling and signal-processing
analysis techniques for physiological sensors. In analytical modeling,
the use of three main categories of modeling techniques is used; they
are statistical, ensemble and single classifiers are used. Whereas, in
signal analysis; the use of time and frequency domain analysis is the
most employed. Apart from the mentioned the use of motion tracking
is also used. However, these methods have their advantages and disad-
vantages. Although, there are some limitations in the current detection
method, which could be overcome by further research into data fusion
by various sensor use, transfer learning and deep learning. Further-
more, the use of various sensor fusions is recommended, and different
combinations should be tried to overcome the current challenges.
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