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Abstract—Estimating battery states such as State of Charge
(SOC) and State of Health (SOH) is an essential component in
developing energy storage technologies, which require accurate
estimation of complex and nonlinear systems. A significant
challenge is extracting pertinent spatial and temporal features
from original battery data, which is crucial for efficient battery
management systems. The emergence of digital twin (DT) tech-
nology offers a novel opportunity for performance monitoring
and management of lithium-ion batteries, enhancing collaborative
capacity among different battery state estimation techniques
and enabling optimal operation of battery storage units. In
this study, we propose a DT-supported battery state estimation
method, in collaboration with the temporal convolutional network
(TCN) and the long short-term memory (LSTM), to address
the challenge of feature extraction. Firstly, we introduce a 4-
layer hierarchical DT to overcome computational and data
storage limitations in conventional battery management systems.
Secondly, we present an online algorithm, TCN-LSTM for battery
state estimation. Compared to conventional methods, TCN-LSTM
outperforms other cyclic networks in various sequence modelling
tasks and exhibits reduced reliance on the initial state conditions
of the battery. Our methodology employs transfer learning to
dynamically adjust the neural network parameters based on
fresh data, ensuring real-time updating and enhancing the DT’s
accuracy. Focusing on SOC, SOH and Remaining Useful Life
(RUL) estimation, our model demonstrates exceptional results.
When testing with 90 cycle data, the average root mean square
error (RMSE) values for SOC, SOH, and RUL are 1.1%, 0.8%,
and 0.9% respectively, significantly outperforming traditional
CNN’s 2.2%, 2.0% and 3.6% and others. These results un-
equivocally demonstrate the contribution of the DT model to
battery management, highlighting the outstanding robustness of
our proposed method, showcasing consistent performance across
various conditions and superior adaptability compared to other
models.

Index Terms—Battery energy storage system, battery state
estimation, deep learning, digital twin, transfer learning.

I. INTRODUCTION

BATTERY Energy Storage System (BESS) has emerged as
a fulcrum within the prevailing energy face, specifically
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amid the global shift towards renewable energy sources such
as wind and photovoltaic (PV) generation. However, this
shift is not just a technological development if it responds
to increasingly urgent issues of universal nature such as
climate change, energy security, and sustainable development.
As nations grapple with the imperative of reducing carbon
emissions, the role of BESS in ensuring energy reliability
and grid stability becomes paramount [1]. The shift towards a
carbon-neutral power system, a goal of paramount importance,
is laden with a spectrum of technical challenges. Improving
energy management under uncertainties in power distribution
and reserve coordination has become increasingly important,
highlighting the necessity for precise and adaptive state estima-
tion of energy storage [2]. BESS presents a practical solution
to address specific issues within this spectrum. The project’s
main challenges are controlling intermittent renewable energy
resources, maintaining the real-time supply-demand balance,
and preserving the reliability and stability of the power grid.
BESS is crucial in overcoming these obstacles, facilitating a
smoother transition to carbon-neutral energy systems.

Lithium-ion batteries, among the array of emerging stor-
age technologies, have been at the forefront due to their
inherent technological attributes and economic considerations.
This versatility has been proven in the field as diverse as
the portable issue mobile phones, online-pop-frass grid-scale
energy storage, electric vehicles et al. Using these attributes
of the batteries i.e. quick charging capacity, long cycle life,
high specific energy; high specific power, rechargeable and
without a memory effect, both their large and wide set has
wider application and wide research on their optimization and
safety [3]. Monitoring parameters such as State of Charge
(SOC) is not a mere operational requirement but a safety
imperative. Furthermore, the derivation of health indicators,
such as State of Health (SOH) and Remaining Useful Life
(RUL), through capacity or resistance measurements is of
paramount importance [4]. However, the landscape of direct
online measurements for battery state estimation is complex.
Achieving reliable and real-time estimation in this domain is
an ongoing challenge and a key research focus area. This
complexity is primarily due to the dynamic nature of battery
behaviours and the need for high-precision data for accurate
estimation [5], [6]. Data-driven approaches using real-time and
historical data have been used to optimize operation of energy
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storage system such as data driven predictive voltage control
for improved system performance without relying on explicit
physical models [7]. Consequently, data-driven methods are
used in order to extract meaningful temporal and spatial
features from battery data for accurate state estimation. Our
research addresses this gap by developing methodologies that
increase the accuracy and reliability of battery state estimation
in real time, thereby contributing to the field.

In the domain of battery management systems (BMS), the
accurate estimation of SOC and SOH is critical for operational
efficiency and ensuring the longevity and safety of the battery
systems. These metrics are vital indicators of the battery’s op-
erational status and degradation trajectory, respectively. Over
the years, many methodologies have been proposed for SOC
estimation, encompassing traditional techniques and more re-
cent computational approaches [8]–[15]. The indirect nature
of SOC measurement presents significant challenges, which
require advanced methodologies for accurate estimation. This
complexity has driven substantial research into developing
reliable and robust SOC estimation methods, encompassing
look-up tables, ampere-hour integration, and strategies based
on filtering, observation, and data analytics. While the sim-
plicity of look-up table and ampere-hour integral methods is
appealing, their accuracy and robustness are compromized by
sensor inaccuracies [16], [17].

In contrast, filter-based and observer-based methods offer
high precision, self-correction, and noise resistance but require
detailed battery testing for model calibration [18], [19]. Wang
developed a neural network model AdaBoost-AOA-BPNN
with a cascade structure for state-of-charge (SOC) estimation
of lithium-ion batteries, which showed better estimation ac-
curacy and stability under different temperature conditions,
reflecting the promise of data-driven approaches in battery
management [20]. Data-driven methods utilize machine learn-
ing algorithms to reduce the necessity for deep knowledge of
a battery’s electrochemical properties, focusing on the correla-
tion between input and output [21]. However, these approaches
contend with potential overfitting or underfitting, tied to the
quality of training data and the algorithmic framework, which
can hinder their practical application.

The intricacies associated with battery ageing mechanisms
assess SOH as a complex endeavour. Direct capacity measure-
ment, while being the most straightforward indicator of battery
health, is challenging in real-world scenarios. This has shifted
towards indirect measurements, with parameters like internal
resistance emerging as potential degradation indicators. The
research community has been actively exploring these indi-
rect measurements, focusing on their potential for predicting
SOH and RUL [22], [23]. However, the dynamic nature
of battery operations, influenced by many factors including
environmental conditions, usage patterns, and manufacturing
inconsistencies, often poses challenges to these methodologies.
These challenges include the difficulty in accurately predicting
battery life, variability in performance under different envi-
ronmental conditions, and the need to constantly adapt to
varying usage patterns. Additionally, manufacturing inconsis-
tencies can lead to significant variations in battery behaviour,

further complicating the developing of universally applicable
estimation methods.

While traditional methodologies have demonstrated effec-
tiveness within this field, they commonly utilise static model’s
incapable of incorporating the dynamic data and environmental
effects which impact battery performance. This deficiency is
notably pronounced during instances when batteries experi-
ence unpredictable operational shifts. Moreover, most methods
rarely provide a holistic framework that concurrently addresses
SOC estimation, SOH monitoring, and RUL prediction. This
landscape focuses on improving individual aspects without
considering their synergy and influence on battery manage-
ment systems. Such a segmented method might result in
inefficiencies in contexts demanding a strategy for optimal
battery operation and lifecycle.

In recent years, the digital twin landscape has undergone
transformative advancements, with the emergence of cloud
computing and the Internet of Things (IoT) [24] leading the
way. These innovations have presented novel solutions to
the challenges traditionally faced by the BMS. Among these
solutions is the concept of cloud-based digital twins, which
involves crafting digital replicas of physical battery systems.
These replicas, virtual mirrors of their physical counterparts,
transmit real-time battery data to cloud platforms. The synergy
between these digital twins and cloud platforms’ robust data
processing, analytics, and storage capabilities unlocks many
applications, ranging from real-time monitoring, diagnostics,
and anomaly detection to predictive maintenance and op-
timization [25], [26]. However, the journey to seamlessly
integrate digital twins into BMS is not without hurdles. As-
sembling precise digital models of batteries requires a diverse
range of full-scale real-world datasets that are rarely available.
Additionally, battery degradation, which is highly variable due
to many factors, creates additional layers of complexity in the
modelling process.

In this study, a Digital Twin (DT) for battery systems is in-
troduced, encompassing its structure, operational mechanisms,
modelling, and state estimation with a particular focus on SOC
estimation, SOH monitoring, and RUL prediction for lithium-
ion batteries via the optimized TCN-LSTM network. Its ef-
fectiveness is corroborated through comprehensive validation.
The contributions of this paper are the development and vali-
dation of a DT framework that integrates TCN-LSTM models
enhanced by transfer learning. This integration enables the DT
to dynamically adapt its parameters in response to real-time
data, thereby improving its predictive accuracy and adaptabil-
ity over successive cycles. The notable work of this research
encompasses: 1) Established DT for computing SOC, SOH,
and RUL across diverse operational conditions, obviating the
requirement for multiple models or reference tables. 2) Es-
tablished the TCN-LSTM network which directly captures
measurements from the battery, thus facilitating streamlined
SOC estimation. 3) Introduced an approach that considers the
impact of local regeneration on SOH monitoring, utilizing
the LSTM-TCN network for enhanced battery performance
prediction. 4) The incorporation of transfer learning, allows
the digital twin to be configured for various battery conditions,
thereby mitigating modelling costs and dataset prerequisites.
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Section II synthesizes the prevailing literature on battery
digital twins and provides an in-depth analysis of state estima-
tion. Section III articulates the proposed framework and rele-
vant algorithms associated with battery digital twins. Also, the
data-driven methodologies for SOC and SOH estimation and
RUL prediction using the TCN-LSTM network are detailed.
Section IV is complemented by a case study on lithium-ion
battery datasets, highlighting the framework’s practicality and
prompting discussion on the experimental results. Section V
presents conclusions and outlines potential directions for fu-
ture academic research.

II. BATTERY DIGITAL TWIN AND STATE ESTIMATION

A. Battery Digital Twin

Digital twin technology harnesses sophisticated physical
models, intelligent sensor readings, and comprehensive oper-
ation and maintenance data history, amalgamating multidis-
ciplinary insights for a simulation process that spans various
physical quantities, temporal scales, and probability scenarios.
Such twins authentically represent energy storage systems
within a virtual domain, capable of real-time updates and
dynamic evolution, thereby mirroring the full lifecycle of the
pertinent energy system [27].

While research into batteries has deepened and advanced
over the years, numerous challenges persist. State estimation
for Li-ion batteries serves as a foundational element for both
battery and equilibrium management systems are crucial in
averting overcharge or over-discharge situations. Nevertheless,
crafting accurate models for lithium-ion batteries remains an
intricate task, given the pronounced non-linearity and tight in-
terrelation of internal battery dynamics [28]. DT technologies
have demonstrated notable efficacy in the aerospace domain,
particularly in SOC estimation, RUL predictions, and optimal
controls, suggesting their potential applicability to battery state
management issues.

The integration of DT with BMS commenced recently,
further enhanced by incorporating cloud computing and IoT
frameworks [29]. Present-day investigations into battery digital
twins primarily address three core challenges inherent to
contemporary BMS: the complexities in data integration from
diverse BMS providers, the constrained computing power of
embedded systems, and the restricted data storage capabilities.
To address the data-sharing challenges in battery management,
Li [25] integrated DT technology, consolidating all battery-
related data into a cloud-based platform to enhance the BMS
structure. This integration is critical as the volume of battery
data surges, resulting in exponential increases in computational
and storage demands for BMS. Machine learning approaches,
particularly data scarcity models, are utilized to predict and
refine system states to navigate these complexities, offering
new insights into battery ageing processes. A notable example
is the study [30], which combines a Health Indicator (HI) with
the Long Short-Term Memory (LSTM) algorithm for precise
estimation of battery discharge capacities.

However, the digital twins’ real-time and self-evolving
capabilities warrant further improvement. Research [31] in-
troduces a ‘Hybrid Twin’, a pioneering digital twin model

for lithium-ion batteries in the automotive sector, employing
techniques such as Proper Orthogonal Decomposition (POD),
sparse-proper Generalized Decomposition and Dynamic Mode
Decomposition. These methods significantly boost the real-
time performance and flexibility of BMS. Similarly, a study
establishes a digital battery twin and data pipeline for electric
vehicle batteries, leveraging a cloud-based system for health
and performance analysis, underscoring digital twins’ role
in enhancing battery system management in vehicles. Tang
[32] proposes a digital twin-supported framework to surmount
BMS constraints, using a joint HIF-PF online algorithm for
precise SOC estimation and efficient real-time monitoring.
This approach exemplifies the transformative impact of digital
twin technology in BMS. Paper [33] details a digital twin
framework for real-time SOH assessment of lithium-ion bat-
teries under variable conditions, utilizing a unique method that
incorporates energy discrepancy-aware cycling synchroniza-
tion and time-attention modelling, facilitating accurate SOH
predictions without complete discharge cycles. Lastly, another
study [34] models a large-scale, grid-connected lithium-ion
battery system through a digital twin methodology, focusing
on the influence of system design and ancillary controls on
degradation and efficiency, thereby highlighting digital twins’
effectiveness in optimizing battery system performance.

B. Battery State Estimation
The management of batteries is crucial for the optimal

operation, safety, reliability, and cost efficiency of prevalent
battery-powered energy systems, including electrified trans-
portation and renewable-integrated smart grids [35]. A central
technological advancement for advanced battery management
lies in precisely and consistently estimating and monitoring
vital internal states. Reliable data on SOC and SOH are es-
sential for proficient charging, thermal regulation, and overall
health upkeep of batteries. Fundamental battery behaviours are
typically delineated by a synergized electrochemical-thermal-
aging framework, with each subcomponent of the multi-
physics model operating on its distinct timescale. Certain
battery states, such as SOC, fluctuate contemporaneously due
to rapidly evolving microscopic electrochemical attributes.
Conversely, the battery’s SOH, associated with gradual param-
eter variations like internal impedance augmentation and ca-
pacity degradation, exhibits minor shifts over brief durations.
The overarching safety state of a battery can be ascertained
through the assessment of the states previously mentioned.
Fig. 1 shows a general procedure of DT-supported battery state
estimation that, using data, mechanisms, and semi-empirical
models, the dynamic model of the complex coupling system
of the battery and environment was accurately identified and
evaluated.
1) SOC Estimation

Within the purview of BMSs, the SOC stands as a pivotal
parameter and can be represented through diverse mathe-
matical formulations [3]. Fundamentally, SOC delineates the
available capacity Qa as a fraction of the nominal capacity
Qn, with Qn denoting the peak charge a battery can retain.
Given a current I that is positive during charging and negative
during discharging, a standard formulation for SOC is:
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Fig. 1. State estimation for the battery-environment coupled systems.

SOC(t) = SOC(t0) +
∫ t

t0

I(t)− η
Qn

dt (1)

Here, SOC(t) and SOC(t0) represent the SOC values at
instances t and the commencement time t0, respectively. The
parameter η signifies the coulombic efficiency, mirroring the
quotient of energy discharged fully to the requisite energy for
restoring original capacity.

For BMSs, precise SOC data is imperative, signifying the
residual accessible energy within a battery during operational
phases. Pertaining to the battery, such state intel furnishes
foundational insights for charging/discharging modalities, en-
suring operation within bounded safety and dependability mar-
gins. Under controlled lab environments, post-ascertainment of
the initial SOC, the benchmark SOC values are predominantly
derived through a rigorously managed coulomb counting tech-
nique that aggregates the transmitted charge [8]. Nonetheless,
owing to multifaceted electrochemical interplays and pro-
nounced interactive traits, direct measurement of battery SOC
in practical settings proves challenging. As such, real-time
SOC estimation emerges as an essential competency within
BMSs, garnering significant attention.
2) SOH Estimation and RUL Prediction

During their operational lifespan, electrochemical batteries
invariably undergo incremental performance attrition due to
side reactions [36]. This leads to the ageing phenomenon
characterized by the depletion of lithium inventory and loss
of active materials [37]. The SOH is a pivotal metric that
quantitatively assesses battery ageing, specifically in relation
to capacity diminution and internal resistance alterations [38].
Mathematically, SOH is articulated as:

SOH =
Ca

Cr
× 100% or SOH =

Ra −Rr

Rr
× 100% (2)

In this equation, Ca and Cr present and nominal capacity
values. Rr and Ra present Nominal and present internal
resistances.

For battery management, demarcations for a battery’s End-
of-Life (EOL) typically include a 20% capacity reduction
or a 100% surge in internal resistance. SOH of a battery
underscores its safety, reliability, and operational efficacy [39].

The RUL is defined as:

RUL(t) = t− tEOL (3)

where tEOL Denotes the cycle count upon the battery’s EOL
and t represents the ongoing cycle iteration.

RUL is deduced from the variance between the extant capac-
ity and EOL. The overarching challenge is to devise strategies
that enable multi-step RUL forecasts utilizing archived datasets
[40].

C. Deep Learning and Its Application in Li-ion Battery State
Estimation

Deep learning, a specialized branch of machine learning,
has gained prominence across various scientific disciplines,
primarily due to its exceptional capability to model complex
non-linear relationships. Utilizing architectures like neural
networks, and deep learning algorithms autonomously extract
feature representations from raw data, eliminating the ne-
cessity for manual feature engineering. This unique strength
has elevated deep learning to a pivotal role in numerous
applications, ranging from computer vision to natural language
processing.

Within the context of Li-ion battery research, deep learn-
ing’s integration has marked a significant paradigm shift. The
inherent complex dynamics and non-linear behaviours of Li-
ion batteries pose challenges that often surpass the capabilities
of traditional modelling techniques. However, deep learning,
adept at unravelling these complex patterns, provides a novel
solution to these intricacies.

LSTM, a specialized form of Recurrent Neural Networks
(RNN), is particularly lauded for its proficiency in processing
sequential data. A testament presented the Auto-CNN-LSTM
model. By merging convolutional neural networks with LSTM,
this model offers enhanced predictions for the remaining useful
life of lithium-ion batteries, marking a milestone in battery
prognostics [41]. Reinforcing this, a study highlighted the
superiority of LSTM-based models over traditional neural
networks in predicting the RUL of such batteries [42].

Temporal Convolutional Networks (TCN), characterized by
their sequence-focused convolutional design, have also made
significant strides in Li-ion battery research. For instance,
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Bi et al. undertook a comparative analysis of LSTM and
TCN to estimate the SOH of lithium-ion batteries. Their
research accentuated the advantages of TCN in recognizing
long-term data patterns, indicating a promising avenue for
subsequent studies [43]. Further emphasizing the adaptability
of TCNs, Liu delved into combining TCN with transfer learn-
ing, revealing breakthroughs in SOC estimation for lithium-ion
batteries [44].

To conclude, adopting deep learning architectures, espe-
cially LSTM and TCN, has undeniably advanced the domain
of Li-ion battery research. Their advanced methodologies in
analysing sequential data forecast a bright future for devel-
oping battery management systems, prognostics, and health
monitoring.

III. DIGITAL TWIN-SUPPORTED BATTERY STATE
ESTIMATION

In this section, we delve into the framework’s virtual aspect,
which integrates model-driven and data-driven algorithms.
These algorithms work in tandem, and their combined opera-
tion is central to the framework. As battery capacity decreases,
an iterative learning methodology is employed to update the
model parameters, ensuring the continuous updating of the
digital twin.

A. Framework

The digital twin framework is distinguished by its hierarchi-
cal structure, bidirectional interaction capability, and inherent
ability to evolve autonomously. Within this structure, specific
models are designed for various objectives, including state

estimation, RUL prediction, and energy management. It is
essential that data, regardless of its multi-dimensional nature,
can flow smoothly across these hierarchical divisions.

Our research’s primary objective is to leverage the digital
twin to uncover the underlying relationship between the SOC
and measured variables. Fig. 2 presents a detailed battery
digital twin framework, which forms the backbone of our
entire system. This system is organized into four key segments:

Physical End: This pertains to the real-world components of
the system, such as battery packs, motors, BMS, and sensors.
It enables real-time monitoring of parameters like open-circuit
voltage, current, and temperature.

Virtual End: This is the digital reflection of the physical
components, designed to emulate real-world systems to meet
specific objectives. At its core, it employs a mix of model-
driven and data-driven algorithms to integrate objectives from
different hierarchical levels and timeframes.

Cloud End: This segment is reserved for storing the sys-
tem’s initial and historical data. Additionally, it sets the
optimization objectives and defines the time scales for the
entire digital twin.

Output: This section provides essential outputs like cell
status monitoring, SOC estimation, and reliability recommen-
dations, aiding technicians in making well-informed decisions.

In the proposed experimental framework, the digital twin of
the BESS is conceived as a dynamic, multi-dimensional entity.
This entity continuously evolves by integrating data from its
physical, virtual, and cloud-based components. Central to this
system is the Information Flow mechanism, which enables a
bidirectional data exchange among these components. Such an
exchange is crucial for the autonomous evolution of the digital

Battery digital twin

Non-real-time data
(data for storage)

Physical end
Eentities of the system in the real world

Including battery packs, motors, BMS
systems, seNsors

Such as open-circuit voltage, and current and
temperature, etc…

Feedback control
(such as decision making support)

Parameters can be measured in real-time

Output

Cell V, I, T monitoring

SOC estimation (as stated in equations)
SOH estimation

RUL prediction

etc…

Data-driven

Model-driven

Virtual end

Collaboration

Setup data (objectives)

Cloud end

Voltage, current,
temperature, etc

Input battery data
/historical data

Initialization

Objective-SOC estimation

Time scales (T)

Fig. 2. The proposed battery digital twin framework.
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twin, allowing it to adapt and enhance its performance progres-
sively. The virtual segment of the system is of paramount im-
portance. It employs model-driven and data-driven algorithms
to predict and simulate the system’s future states accurately.
This predictive modelling is vital for developing pre-emptive
maintenance strategies, optimizing operational efficiency, and
extending the lifespan of the BESS. By integrating real-time
and historical data from the cloud, the virtual component
conducts a thorough analysis of the system’s performance and
health. This integration significantly improves the efficiency
and adaptability of the BESS. Moreover, the output from this
system is not limited to data collection; it provides actionable
insights. These insights are essential for technicians and en-
gineers, enabling them to make informed decisions and drive
innovation in battery storage technologies. In summary, this
paper highlights the synergistic effect of the virtual component
within the digital twin framework, emphasizing its critical role
in enhancing the BESS’s overall functionality and resilience.

B. Approaches

1) Battery Modelling
Several model-driven methodologies are available, such as

the internal resistance, n-RC, PNGV, and GNL models [45],
[46]. In this study, we have chosen the Thevenin model,
commonly known as the 2-RC model, for its adeptness at
simulating both the steady-state and transient behaviours of
the battery [47]. While more complex models might increase
computational demands, their selection becomes redundant.
This is because the TCN-LSTM [48] can effectively mitigate
errors arising from model uncertainties.

Figure 3 illustrates the 2-RC equivalent circuit model. In
this representation, Uoc denotes the open-circuit voltage, while
R0 indicates the ohmic resistance. The circuits R1 and C1,
which represent electrochemical polarization resistance and
capacitance, capture the rapid increase in discharge voltage.
On the other hand, the R2 and C2 circuits, symbolizing con-
centration polarisation resistance and capacitance, depict the
slow stabilization phase of the discharge voltage. Notably, the
elements R1, R2, C1, and C2 reflect the battery’s polarisation,
with Ut representing the terminal voltage.

Uoc Ut

R0

R1 R2

C1 C2

Fig. 3. The 2nd-order ECM structure.

Theoretically, these parameters undergo dynamic changes
influenced by factors like SOC state, temperature, and ageing
state, leading to potential estimation errors. However, within
the digital twin paradigm, such errors are adeptly rectified by
the TCN-LSTM neural network.
2) TCN-LSTM for SOC Estimation

Due to its merits of expediency and swift response, the
extended Kalman filter (EKF) method for SOC estimation

aligns well with the real-time demands of digital twin systems
[48]. However, its accuracy is heavily influenced by the initial
SOC and the impedance model, highlighting the need for
accurate initial SOC values and precise sensors. Addressing
this, the LSTM algorithm adjusts the initial SOC before the
EKF estimation stages. The LSTM algorithm, while adept at
estimating the battery’s charge state amidst initial state un-
certainties, encounters a significant drawback due to its com-
putational intensity, leading to time inefficiencies. To address
this, the TCN emerges as a viable alternative. TCN’s primary
advantage lies in its flexibility in adjusting the receptive field
size and effectively managing the model’s memory duration.
This combination preserves accuracy in charge state estimation
and significantly enhances computational efficiency. One of its
key advantages is the ability to address issues such as gradient
explosion or vanishing gradients, often seen in RNN.

Additionally, TCN requires less memory during training, es-
pecially with long input sequences. This efficiency is credited
to its unique dilated causal convolution and the inclusion of
the residual model. Combining the strengths of both TCN and
LSTM can potentially optimize input parameters and reduce
training time.

Figure 4 depicts the process for SOC estimation. A com-
bined TCN-LSTM network captures the non-linear relation-
ship between SOC, current, voltage, and temperature, ensuring
accurate initial SOC values for real-time EKF-based SOC
estimation. A rolling learning approach [49] is implemented
to continuously adjust the TCN-LSTM model parameters to
further adapt to varying environments.

R0, R1,

R2, C1,

C2

Updating

Working time t

t >T

t = 0；
Data collected

from time 0 to t
train the network

Fine-
tuning

Battery raw data

X = (V, I, T)

TCN-LSTM

SOC

EKF

SOC_Estimated

Parameter
estimation

Fig. 4. Flowchart of the SOC estimation in virtual end.

Selecting the right inputs for an estimation algorithm is a
complex task. It’s worth noting that current, temperature, and
voltage, as directly measurable parameters, have been proven
to significantly influence battery state estimations [3]. As a
result, these parameters serve as inputs for the equivalent cir-
cuit model (ECM) and TCN-LSTM in this study. To enhance
accuracy, the TCN-LSTM is first initialized and trained using
data from the battery’s early operational cycles. The EKF then
provides the final adjustment for SOC. Compared to traditional
EKF estimation, this methodology delivers improved SOC
estimation and reduces the uncertainties in initial battery state
data.
3) TCN-LSTM for SOH Estimation and RUL Prediction

The TCN model employs 1-D causal convolution to ex-
tract historical data, ensuring the preservation of temporal
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Fig. 5. The framework for SOH estimation of TCN-LSTM.

sequences. This model benefits from the inclusion of residual
connections, promoting faster convergence. Additionally, its
utilization of dilated convolution is pivotal for temporal feature
extraction. In parallel, the LSTM model, characterized by its
nonlinear nature, functions as a complex component within
a comprehensive deep neural network. This characteristic
empowers the LSTM to exhibit robust nonlinear fitting capa-
bilities, optimizing its feature extraction proficiency. As illus-
trated in Fig. 5, data features are conveyed to the TCN layer
for convolutional computations during the feature extraction
procedure. After these calculations, parameters are normalized
across each layer. The Rectified Linear Unit (ReLU) function
is then employed to map these normalized features. Post-
computation, the derived sequence features are refined in the
TCN layer by combining expansion and causal convolution
techniques. This combination ensures a more exhaustive ex-
traction of sequence features, tapping into a wider spectrum
of information dependencies. Following this, the TCN layer’s
output feeds into the LSTM network layer. Here, an additional
feature extraction layer takes place, consolidating features
from the TCN and LSTM. This combined methodology aids
in preventing potential feature degradation. The amalgamated
features are then channelled into the fully connected layer.
A dropout layer is integrated to ensure the model remains
generalized and avoids overfitting. The TCN-LSTM estimation
process can be categorized into two phases: offline training and
online estimation. In the offline training phase, the network
is trained with an extensive set of battery data to identify
the nonlinear associations between battery metrics and the
corresponding SOH and RUL.
4) Rolling Transfer Learning

Due to the need for regular updates to the battery digi-
tal twin, particularly given the significant impact of battery
ageing on accurate SOC estimation, a rolling transfer learn-
ing approach focusing on updating the TCN-LSTM network
parameters to address ageing effects is introduced. Transfer
learning involves adapting a model trained for one application
to another. Given that lithium-ion battery measurement param-
eters exhibit varied but related spatial features, a primary TCN-

LSTM model is trained for SOC estimation. This model then
acts as the base for training another SOC estimation model.
During the transfer learning process, the network’s parame-
ters are adjustable, allowing constant refinement throughout
the training period. Fig. 6 illustrates this transfer learning
approach, showing the analogous structures of both models,
where the target model is initialized with the source model’s
parameters and subsequently refined with a new dataset. As the
battery digital twin runs, it consistently collects data. When the
cumulative operational time surpasses a predefined threshold
T, the secondary TCN-LSTM network is subject to remote
retraining and recalibration. The primary TCN-LSTM network
then integrates these updated parameters, ensuring the DT’s
continuous adaptation and consideration of historical data.
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Input data Input data

TCN layer
parameters has been
trained and locked

LSTM layer
parameters has been
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Output layer

Fine-tune

Fine-tune the
running model

with the
parameters of the
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TCN layer
parameters has been
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LSTMM layer
parameters has been
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Output layer

Fig. 6. The rolling transfer learning approach.

5) Validation of the Predictive Model
At the physical end, the digital twin and battery state estima-

tion algorithm will be evaluated experimentally using lithium-
ion batteries. This approach aims to validate the precision and
robustness of the model and algorithm within the digital twin
framework.

The Mean Absolute Percentage Error (MAPE) has been
selected for the cloud end as the primary metric to assess
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estimation accuracy. It is defined as:

MAPE(%) =
100

K

K∑
k=1

|l(k)− l̇(k)|
l(k)

(4)

Here, l(k) denotes the actual capacity, l̂(k) represents the
estimated value, and K is the total number of cycles. Further-
more, other metrics such as the Mean Absolute Error (MAE)
and the Root Mean Square Error (RMSE) are computed as:

MAE =
1

K

K∑
k=1

|l(k)− l̇(k)| (5)

RMSE =

√√√√ 1

K

K∑
k=1

(l(k)− l̂(k))
2

(6)

The RMSE serves as an indicator of the disparity between
predicted and actual values. It is expressed as:

RMSE =

√√√√ 1

n

n∑
i=1

(SOCei − SOCti)2 (7)

In this equation, n signifies the total number of observations,
while SOCei and SOCti correspond to the ith estimated SOC
and true SOC, respectively. SOH and RUL are calculated in
the same way.

IV. VALIDATION AND DISCUSSION

In this section, experimental validations and discussions
are conducted to validate the feasibility of the proposed
framework.

A. Data Preprocessing

In this section, we present experimental validations and
engage in discussions to validate the effectiveness of the
proposed framework. Our case study leverages data from
the National Aeronautics and Space Administration’s (NASA)
dataset on lithium-ion battery charge and discharge experi-
ments to verify the digital twin model [50]. An observation

was made regarding the battery tester’s logging mechanism:
several drive cycles were consolidated into a single extensive
file due to its inconsistencies, causing some data repetition.
To ensure data integrity, expunging these redundant entries,
which could indicate data-logging anomalies is critical. Within
the supervised learning framework, Ah quantifies the TCN-
LSTM’s capacity loss, which serves as the foundation for the
reference SOC.

Drawing from the calibrated battery digital twin model
detailed earlier, we can incorporate a range of state estimation
algorithms, distinguished by their accuracy and resilience, into
the virtual endpoint. The process commences with the input of
parameters such as voltage (V), current (I), and temperature
(T), followed by the extraction of ECM parameters like R0,
R1, R2, C1, and C2. Thereafter, the state and measurement
equations for the equivalent circuit model are formulated.

In this experiment, the dataset was divided into two sets:
one designated as offline data stored in the cloud end for
pre-training models, and the other simulated as real-time data
collected from the physical end for model validation. Fig. 7
is the schematic diagram of DT running. The three models,
SOC estimation, SOH monitoring and RUL prediction, are
intricately linked, working collaboratively to provide real-time
updates and comprehensive insights throughout the battery’s
operational phase. This synergy ensures a more holistic un-
derstanding and efficient management of the battery system.
Specifically, the DT’s effective synergy in collating real-time
and offline data from the physical end and cloud end and
processing it through machine learning algorithms in the
virtual end. Then the virtual end of the DT could update the
parameters of equivalent circuit models, thus improving SOC
estimates which are helpful for subsequent SOH and RUL
predictive modelling. The TCN-LSTM network is periodically
retrained and refined as part of this cyclical mechanism,
assimilating real-time data at predefined intervals T. At the
cloud end, the DT plays the role of data analytics and storage,
ensuring that substantial volumes of battery operational data
are processed efficiently. The DT’s ability to recalibrate param-
eters dynamically in real time enables adaptation to fluctuating
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The DT running structure

As a input
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algorithms
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Output
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T T
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Fig. 7. Schematic diagram of DT running.
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operational conditions and battery decay. The DT keeps a
reliable link between the virtual and physical ends, ensuring
the battery’s performance and health are accurately shown in
real-time. This ability to reflect the battery’s state underlines
the DT’s role in supporting decisions, allowing early actions
to improve battery life and address issues before they occur.

B. SOC Estimation in the Digital Twin

Utilizing the Jupyter Notebook platform, equipped with
a deep learning environment, this investigation was centred
on developing and assessing the TCN-LSTM network. This
network comprises an input layer with a single time series
and three specific features: voltage, current, and temperature.
After repeated tests and verifications, the relatively optimal
parameter is selected based on the operating time and test
results. This method ensures a more precise and effective
approach to parameter optimization. While the output layer
is tailored for SOC estimation, the hidden layer integrates
150 nodes. For refining the model, we adopted the MAE loss
function and the Adam optimizer, with an operational batch
size of 32. The primary role of both the loss function and
the optimizer is to hone the model, driving the loss closer to
0. As presented in Fig. 8, post 20 epochs, the model’s loss
during training and testing phases converges, not surpassing
0.04. The training set exhibits a particularly low loss of under
0.005, indicative of the model’s robust performance. However,
a slight elevation in the validation loss compared to the training
loss points to a potential overfitting issue.
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Fig. 8. The model loss of TCN-LSTM at training and test.

Figure 9 provides a comparative analysis of the SOC, as
determined by the EKF after the TCN-LSTM correction,
against a reference SOC. The graphical representation includes
three distinct lines symbolizing the reference value, estimated
value during training, and estimated value during testing.
While the model aligns well with the training data, there are
discernible deviations in the SOC estimation when processing
new data. The RMSE is recorded at 1.1% for training and
2.7% for testing. It is generally understood that a model with
a lower RMSE indicates better SOC estimation precision.

The observed discrepancy in RMSE values between our
study’s training and testing data can be attributed to overfitting,
which might affect the model’s handling of previously unseen
data. The RMSE values mentioned in the table were calculated
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Fig. 9. The SOC estimation by TCN-LSTM.

based on a dataset using the pervasive network structures. This
dataset was also the basis for the reference methods introduced
in the analysis. When benchmarked against other algorithms
in Table I, the proposed method showcases the least RMSE
across the four algorithms evaluated. This underscores the
algorithm’s enhanced accuracy, particularly once overfitting
issues are rectified. The introduction of the reference meth-
ods for the same dataset further supports the reliability and
robustness of our findings.

TABLE I
THE COMPARISON OF SOC ESTIMATION FOR DIFFERENT METHODS

Methods RMSE
EKF 3.9%
SVM 3.2%
CNN 2.2%
LSTM-EKF 1.7%
TCN-LSTM 1.1%

C. SOH Monitoring in the Digital Twin

Using the capacity series data outlined in the manuscript,
this study subjected the model’s parameters and structure to
an intensive experimental analysis. The study focuses on the
SOH of battery B0005, starting from its nth (30th, 60th and
90th) cycle. The first n cycles are thus treated as the training
set, and the following cycles are the prediction set. The model
systematically incorporates predicted values by adopting the
method, which is similar to the sliding window technique.
This process aids in predicting the SOH value, leveraging the
aggregated SOH data until the complete test set is covered. The
choice of parameters mainly draws from the control variable
method, a standard practice in neural networks to ascertain
optimal parameters. Such a method requires the modification
of only one parameter during each tuning phase. The model’s
core parameters include 1000 iterations, a mini-batch size
of 128, a 3 × 1 kernel dimension, 256 convolution kernels,
dilation factors of [1, 2, 4, 8, 16, 32, 64], and it utilizes the
Adam optimizer.

Accurate SOH monitoring, marked by a minimal error in
predicting subsequent SOH values, is crucial for dependable
RUL prediction. Such precise estimations further facilitate.
Such precise estimations further facilitate proactive battery
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maintenance. Therefore, monitoring commenced from the 30th
cycle to closely emulate real-world scenarios. In addition,
the SOH was assessed at various starting points to validate
the predictive precision and resilience of the model. Table II
compares the TCN-LSTM model’s prediction capabilities for
three specific battery cycles (30th, 60th, and 90th) against es-
tablished methods. For a fair comparison, models like LSTM,
TCN, and CNN were all designed with two hidden layers.
The model maintained a consistent parameter setup throughout
the prediction stage, having been fine-tuned through multiple
experiments.

Data from Table II affirms the model’s consistent perfor-
mance, regardless of the prediction start point. For complex
neural networks, ample training data typically bolsters predic-
tion accuracy. Fig. 10 visually represents battery cells B0005
under different models and starting points. These visuals
emphasize the TCN-LSTM model’s proficiency in tracking
the degradation trend of the capacity series, surpassing current
models and adeptly highlighting local regeneration instances.

D. RUL Prediction in the Digital Twin

This section evaluates the TCN-LSTM model’s performance
in RUL prediction using offline data and compares it with
other models. Accurate RUL prediction is essential for timely
battery replacement and maintaining system stability and
safety. In the context of this analysis, batteries B0006 and
B0018 were used for offline training, while battery B0005
was designated as the test data. To gauge the accuracy of
the TCN-LSTM model, we defined several starting points
and compared the results with those from different models.
During the prediction process, the model, already trained with
offline data, was further refined using a selected portion of
available online data to bolster its predictive precision. The
presented results encapsulate the best outcomes from multiple
experimental iterations. Data from Table III indicates that the
LSTM model outperforms the CNN model regarding RUL
prediction. While the TCN model enhanced iteration of CNN
might not excel in early prediction stages, its integration with
LSTM consistently delivers optimal RUL outcomes. Notably,
predictions’ accuracy increases as they draw closer to the
battery’s failure point. In real-world scenarios, the accuracy
of predictions made closer to the end of the battery’s life is
paramount. The TCN-LSTM model’s prediction accuracy for
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Fig. 10. The SOH monitoring of B0005 with 30th, 60th and 90th start cycles.

the 90th cycle reaches an impressive 0.9%, highlighting the
model’s effectiveness. Fig. 11 corroborates this, showing the
TCN-LSTM model’s alignment with the degradation trend of
the volume sequence during the 90th cycle. Finally, Table III
contrasts the prediction accuracies, underlining the proficiency

TABLE II
PERFORMANCE OF SOH MONITORING

Training
cycle

RMSE MAE
CNN LSTM TCN TCN-LSTM CNN LSTM TCN TCN-LSTM

30C 4.8% 12.3% 10.1% 1.4% 4.6% 11.1% 9.2% 0.9%
60C 3.1% 12.0% 8.7% 1.3% 2.8% 11.4% 8.3% 0.8%
90C 2.0% 4.4% 1.9% 0.8% 1.5% 4.0% 1.5% 0.6%

TABLE III
COMPARISON OF EVALUATION RUL PREDICTION AMONG DIFFERENT METHODS

Training
cycle

RMSE MAE
CNN LSTM TCN TCN-LSTM CNN LSTM TCN TCN-LSTM

30C 3.7% 2.9% 3.0% 2.0% 3.3% 2.3% 2.3% 1.7%
60C 4.4% 2.7% 1.8% 1.5% 4.2% 2.4% 2.5% 1.2%
90C 3.6% 2.4% 1.5% 0.9% 3.4% 2.1% 1.3% 1.6%
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Fig. 11. The RUL prediction of B0005 with 30th, 60th and 90th start cycle.

of our model in reliably predicting the RUL of lithium
batteries.

E. Validation of Transfer Learning Model

In this section, we conduct a detailed comparative analysis
using two distinct TCN-LSTM models, with the primary dis-
tinction being the application of transfer learning, to validate
the real-time updating ability. We use the NASA dataset to
train both models by the first 30th cycles, with subsequent data
reserved for the validation. The analysis revealed RMSE for
SOH predictions at 1.4% for the model incorporating transfer
learning and 1.42% for its counterpart, indicating a slight dif-
ference. However, as Fig. 12 demonstrates, initial assessments
of both TCN-LSTM algorithms during the early battery cycle
tests showed significant consistency. As the study progressed
beyond 105 cycles, an apparent disparity emerged: the model
without transfer learning displayed notable jitter in its SOH
estimations, contrasting to the model that employed transfer
learning. This performance gap underscores the models’ vary-
ing adaptation to the complex, evolving nature of battery data
through successive cycles and highlights transfer learning’s
crucial role in enhancing battery state estimation stability. The
transfer learning-augmented model’s ability to dynamically
adjust its parameters and neural networks in reaction to real-
time data showcases its exceptional adaptability and resilience,
which is important for accurate state estimation.
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V. CONCLUSION AND FUTURE WORK

In conclusion, this study has presented a novel methodology
for battery state estimation and RUL prediction. Utilizing an
equivalent circuit as its foundational basis, a DT model has
been developed, integrating factors such as voltage, current,
and ambient temperature. Recognizing the complexities of bat-
tery state estimation, we introduced the TCN-LSTM approach.
This innovative method reduces dependence on initial values,
especially in scenarios with limited training data. To support
this, we incorporated the battery digital twin framework and
used transfer learning techniques to ensure continuous model
refinement during operational phases through rolling learning.

This research offers a comprehensive analysis of the dig-
ital twin framework, focusing on its complex structure and
key stages in the learning process. The empirical results
confirm the efficiency of combining online SOC estimation,
SOH monitoring, and RUL prediction. Importantly, the model
demonstrates exceptional adaptability and superiority in bat-
tery digital twins, achieving average RMSE values of 1.1%,
and maximum errors of 0.8% and 0.9% in these respective
areas.

Underlining the practical implementation aspect of the
method, forming a multi-layered digital twin structure enables
the integration of SOC estimation, SOH monitoring, and RUL
prediction. Consequently, battery operations are minimized,
thereby improving the life cycle of the battery and elevating
system efficacy. Integrating TCN-LSTM techniques with the
digital twin paradigm is a novel and innovative combination
that contributes to breakthroughs in battery management and
storage system optimization in various applications.

In the near-term horizon, our focus will be directed towards
addressing key research challenges that hold the potential to
further refine the digital twin framework for battery storage.
This includes the development of a comprehensive digital
twin that synergizes both dynamic and static models (aims
at historical data and real-time data) for enriched situational
awareness. This integrated approach might require overcoming
the challenge of merging heterogeneous data sources and
formats through advanced data integration techniques, em-
ploying deep learning algorithms for comprehensive analysis.
Additionally, optimizing the digital twin to achieve reduced
latency will be pivotal, ensuring its capability for real-time
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synchronous updates and adaptive feedback control. This may
necessitate adopting high-performance computing (HPC) and
edge computing solutions to process complex simulations and
perform localized data analysis. Assessing battery state esti-
mation methods under various operational conditions is also
a potential direction. It is important to evaluate the models’
adaptability and resilience beyond the uniform charging and
discharging environments initially outlined. Exploring these
research dimensions will undoubtedly augment the capabilities
and impact of battery digital twin technologies.
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Sauer, “Digital twin for battery systems: cloud battery management sys-
tem with online state-of-charge and state-of-health estimation,” Journal
of Energy Storage, vol. 30, pp. 101557, Aug. 2020.

[26] M. Grieves, “Digital twin: manufacturing excellence through virtual
factory replication,” White Paper, vol. 1, no. 2014, pp. 1–7, 2014.

[27] M. K. Zhou, J. F. Yan, and D. H. Feng, “Digital twin framework and
its application to power grid online analysis,” CSEE Journal of Power
and Energy Systems, vol. 5, no. 3, pp. 391–398, Sep. 2019.

[28] C. Rae and F. Bradley, “Energy autonomy in sustainable communities—
a review of key issues,” Renewable and Sustainable Energy Reviews,
vol. 16, no. 9, pp. 6497–6506, Dec. 2012.

[29] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of
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