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We study an aged-based replacement policy with two control limits. The first triggers opportunistic 
replacement and the second triggers a guaranteed replacement. The policy is novel because: the instances 
for component replacement are restricted to instances of time, which we call slots, that arise periodically; 
and a slot provides an opportunity for replacement with a particular probability. The policy models 
contexts in which maintenance is periodic, and resources are limited or execution of maintenance is not 
guaranteed. The policy is important for practice because it is simple and reflects the common reality of 
time-based maintenance planning. Long-run cost per unit time and average availability are calculated 
in a renewal-reward framework. Numerical study indicates that, if opportunities are rare, guaranteed 
replacement is beneficial and opportunities should be taken early in the life of a system. Using the policy, 
a maintainer can evaluate the cost–benefit of investing more resources to reduce the time between slots. 
Specific analysis and policy comparisons can be carried out using a web-application developed by the 
authors. 
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2 C. CAVALCANTE ET AL.

1. Introduction 

1.1. Motivation 

There are very many mathematical maintenance policies in the published literature. These policies are 
becoming increasingly complicated and there is little evidence that they are used in practice (Fraser 
et al., 2015). Thus, as theory develops, the gap between modelling and its practical application widens 
(Holmström et al., 2009). We aim to close this theory-practice gap by developing a model of a policy that 
is motivated by the practical necessities of simplicity and applicability. To this end, we propose and study 
a policy with a periodic structure that possesses the positive attributes of block-replacement, age-based 
replacement, and opportunistic replacement. Also, we develop a web-application that makes it possible 
for non-expert users to calculate decision variables for a range of different parameters. This is a step 
towards bridging the gap, making policies more accessible and applicable. 

In the policy we study, a system is visited when it is aged is (i = 1,2, . . . ) but not in between. The 
instances is (i = 1, 2, . . .  ) are called slots (Budai et al., 2006; Cavalcante et al., 2021; Melo et al., 2023), 
and at a slot an opportunity to maintain the system arises with probability q. In this way, q models limited 
availability of resources or unforeseen conditions that prevent the execution of maintenance. Thus, one 
can imagine a vessel periodically visiting a wind farm with limited time and spares, and in changeable 
weather, and selecting to maintain only some turbines (and selected components therein) (Ma et al., 
2022; Irawan et al., 2023; O’Neil et al., 2023). In this way, opportunities are a subset of the slots, and 
we might call a slot that is an opportunity a “visit”. Alternatively, in a different similar practical context, 
a maintenance team may be visiting installations in remote locations, such as groundwater well-heads 
or power or telecoms systems (Manco et al., 2022; Alotaibi et al., 2023; Sanoubar et al., 2023), with a 
finite stock of spares and limited time and personnel for the execution of component replacement. Or, 
an OEM or third-party maintainer may be contracted to visit sites periodically (Wang, 2010). 

The system ages and its lifetime is a random variable, X. Further, at a slot, the state (either operating 
or failed) of the system is known precisely. Then, a sensible policy replaces the system at the first 
opportunity on or after min (X, Ws), for some W, the decision variable. At the W-th slot, the window 
for preventive maintenance opens. Prior to this slot, replacement, if carried out, is corrective only. 
Nonetheless, preventive replacement at age Ws is not guaranteed because not all slots are opportunities. 
Practically, the policy provides decision support for a maintainer, with many assets, limited resources, 
and limited access to the assets, who wish to plan interventions that are neither too early nor too late in 
the life of the system. 

1.2. Importance 

The policy is important because it is operationally simple. Unlike the classic age-based replacement 
policy, replacements of assets cannot become unsynchronised (Barlow & Proschan, 1964). Also, the 
policy has more in common with modified block replacement (Berg & Epstein, 1976) than block 
replacement, the latter being made cost-inefficient by premature replacement. This simplicity means the 
policy is scalable. The policy is also flexible because replacement is opportunistic. Thus, a maintainer can 
prioritise production or missions (e.g. Broek et al., 2021; Wei et al., 2023) by postponing interventions 
(e.g. De Jonge et al., 2015; Berrade et al., 2017; Alotaibi et al., 2020; Wang et al., 2020; Bautista et al., 
2022), achieve economies of scale when there exist fixed set-up costs (Li et al., 2020; Do et al., 2022), 
and reduce inventory costs (e.g. Basten & Ryan, 2019). 

Slots may correspond to seasonal stoppages or reduced demand. For example, assets used in 
agricultural production are scarcely studied but interesting because usage is intermittent and intensive
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PLANNING MAINTENANCE WHEN RESOURCES ARE LIMITED 3

(Hu et al., 2020). The timing of overhauls for large energy-production assets is an old problem (e.g. Hara 
et al., 1966) much studied (Kralj and Petrovic, 1987), but tactical maintenance planning for small-scale 
power-grids is emerging (Korkovelos et al., 2020). Slots may be determined by the number of assets, 
geographical location, and transportation resources (e.g. Gundegjerde et al., 2015). The frequency of 
slots itself might be optimised, with s chosen to minimise a cost-rate. The decision-maker may control 
the frequency of slots (1/s), e.g. a maintainer could lease additional vessels for windfarm maintenance. 
In this paper we assume s is fixed. Finally, the notion of fixed periodicity of maintenance interventions 
is relevant to many maintenance planning scenarios, particular where interventions can be delayed (e.g. 
Ahmadi et al., 2023). 

In our modelling framework, the lifetime of the system need not be specified in continuous time. We 
could use a discrete distribution that is “IFR”, e.g. a negative binomial distribution. This can simplify 
computation. But we will cost downtime continuously, so that if the system fails at time t and is replaced 
at slot j then the downtime is (js − t)and the unavailability (downtime-rate) for the period [0, js] (renewal 
cycle) is {(js − t) /js}. Costing downtime in this way requires X to be specified continuously. 

In summary then, the policy proposed in this study is important because it is simple to apply in 
practice, both technically and managerially. We think the simplification that the fixed frequency of slots 
provides is very useful for practice and that the model is a step towards bridging the gap between theory 
and practice in maintenance planning. The policy is to our knowledge also new, demonstrating that non-
simplicity and generality are not necessary requirements for novelty. 

1.3. Literature review 

Recent works on opportunistic maintenance modelling consider many industrial contexts: offshore wind 
turbines (Li et al., 2020; Wang et al., 2021; Xia et al., 2021a); railway infrastructure (Bakhtiary et al., 
2021); power transmission (Dong et al., 2022); machining (Gan et al., 2021); nuclear power plant (Zhang 
et al., 2023a); battery systems (Chen et al., 2022), manufacturing (Salmasnia & Shabani, 2023; Shi et al., 
2023; Zhang et al., 2023b), and so on. Furthermore, different configurations and concepts are adopted, 
including multi-component systems (Vu et al., 2020; Najafi et al., 2021; Shen et al., 2021; Jamali & 
Pham, 2022; Dinh et al., 2023; Dinh et al., 2024), series–parallel systems (Zhou & Shi, 2019; Xia et al., 
2021b), economic dependence (Jiang et al., 2022), imperfect maintenance (Zhou et al., 2015; Liu et al., 
2021), reinforcement learning (Valet et al., 2022), spare-parts provisioning (Zhang et al., 2021; Zhu & 
Zhou, 2023; Zhu et al., 2024). The fundamentals of the policies modelled in these works can be traced 
back to Sethi (1977). For recent reviews of opportunistic maintenance, see De Jonge & Scarf (2020). 
Moreover, a practical framework for implementing opportunistic maintenance is presented by Ab-Samat 
& Kamaruddin (2019). 

Our approach is different from these works in the following two aspects. Firstly, opportunities 
arise only at predetermined time slots, so that maintenance actions can occur only at discrete times. 
Secondly, we model two phases, both subject to opportunistic replacement, but in the first phase action 
(replacement) depends on the state while in the second it does not. The former aspect, the notion of 
discrete, periodic slots, was proposed and studied by Melo et al. (2023) and the latter aspect (corrective 
and preventive phases) was modelled recently by Misaii et al. (2022). However, as we indicate above, 
we draw together both these strands into a flexible maintenance policy that is relevant and practical. 

Discrete time policies themselves have received little recent attention, but classic works do consider 
them (e.g. Nakagawa & Osaki, 1977). In this regard, discretizing provides predictability and makes 
managing activities easier, and reduces the computational burden of optimization (Briš et al., 2017). 
Further, periodic maintenance remains the dominant maintenance strategy in many industries e.g. marine
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4 C. CAVALCANTE ET AL.

(Lazakis et al., 2018), nuclear (Khurmi et al., 2021), aerospace (Meissner et al., 2021), manufacturing 
(Mehmeti et al., 2018). 

Regarding the practical application of maintenance policy modelling generally, there is limited 
evidence of impact (Alsyouf, 2009). While there is evidence that industry seeks to implement novel 
maintenance strategies (Pinjala et al., 2006), the effectiveness of innovation in maintenance upon 
productivity is difficult to measure and claims that the implementation of novel maintenance policies 
can reduce operational costs, improve workplace safety, and increase of production efficiency are not 
supported in the published literature (Da Costa & Cavalcante, 2022). The gap between theory and 
application is wide, and there is little evidence that it is closing, despite the existence of works that seek to 
close the gap (e.g. Scarf et al., 2024c). Therefore, and notwithstanding the large growth in sophisticated 
maintenance policy solutions (Zonta et al., 2020), which can be costly to implement, there remains a 
need for models that can deliver maintenance solutions that are practical and relevant. Thus, this paper 
attempts to bridge this gap with a simple, intuitive model of periodic visits to a system or fleet of systems 
by a maintainer with limited resources. 

1.4. Structure of the paper 

The structure of the paper is as follows. Next, we describe the system, the failure model, and the policy. 
Then in Sub-section II.A, we develop expressions for decision criteria in a renewal-reward framework. 
Sub-section II.B discusses policy variations and special cases. Section III describes a numerical study of 
the behaviour of the policy. We point there to the web-application that allows users to explore practical 
contexts. The paper ends with a summary of the policy and discussion of limitations of the study and 
future work. 

2. The replacement policy 

We consider a two-state (operating or failed), critical (failure immediately apparent), one-component 
system. On failure, the component is replaced (instantaneously) and the system is as-new (renewal). The 
time in the good state (age at failure) is a random variable X with density f (x), distribution function F(x), 
and reliability function R(x). 

The policy has two phases, a corrective replacement phase followed by an opportunistic replacement 
phase. Slots (potential opportunities for replacement) arise periodically every s time units. The policy, 
called the {W, M} −policy, has two integer-valued decision variables (control limits), W and M, 
(0 < W ≤ M). The first phase [0, Ws) is the interval from when the system is aged 0 until immediately 
before the W-th slot. The second phase is the interval [Ws, Ms]. In the first phase, the system (component) 
is replaced (renewal) at a slot if and only if the system is failed and an opportunity arises at the slot. 

In the second phase, the system is replaced (renewed) at a slot regardless of the state of the system 
(good or failed) if and only if an opportunity arises, with the exception of the final slot at Ms, at which it is 
replaced with probability 1 if the system attains that age. Note, the replacement at Ms may be corrective 
(on failure) or preventive. Thus, the policy is opportunistic over the interval [0, Ms), non-opportunistic at 
Ms, and in the first phase a replacement (if it occurs) is corrective, and in the second phase replacement 
may be corrective or preventive. As replacements can occur only at opportunities at the periodic slots, 
we say the policy is “quasi = periodic”. The decision process for the policy is illustrated in Fig. 1. Note, 
although failures are immediately revealed, replacement is not immediate. Instead, the system waits in the 
failed state until a subsequent opportunity arises and an opportunity can only arise at a slot. Downtime 
(the period of time the system is failed) is costed (see below). Furthermore, the costs incurred at an
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PLANNING MAINTENANCE WHEN RESOURCES ARE LIMITED 5

FIG. 1. The replacement decision process at a slot for the quasi-periodic opportunistic policy. 

opportunistic replacement and at the age limit (final slot at Ms) vary because the system may have failed 
prior to the replacement. The logic in Fig. 1 does not show costs. 

Now we describe the process of opportunities in detail. An opportunity arises at the j-th slot 
(j = 1, ..., M − 1) with probability q, regardless of the phase and the state of the system, and indepen-
dently of the history of opportunities. Thus, opportunities arise as a pure Bernoulli process. Thus, if the 
system fails at age t such that (i − 1) s < t < is, that is, it fails between the (i − 1)-th and the i-th slots, 
then the system is renewed at the i-th slot (at age is) with probability q, or renewed at the next slot at 
age (i + 1) s with probability (1 − q) q, or at age (i + 2) s with probability (1 − q)2q, and so on, until 
age Ms when it is renewed regardless of whether an opportunity arises at the final slot at age Ms or not. 
Note, “at age js” is synonymous with “at slot j” and “at the j-th slot”. 

Thus, the policy models the reality in which the maintainer can only visit the system periodically, 
and even so, and despite the state of the system, maintenance may not be possible because resources 
are limited. This limitation on resources may arise because the maintainer manages many assets with 
finite capacity for spares and personnel. Furthermore, the maintainer is inclined to preventively replace 
older assets (in the second phase) and places an age-limit (Ms) on replacement. The existence of such an 
age-limit implies that the maintainer must prioritise maintenance for assets aged Ms. 

The cost parameters are assumed fixed. The rate of cost of downtime is cD (cost per unit of time); 
the cost of a corrective replacement at an opportunity is cF. The cost of a preventive replacement 
at an opportunity is cP. The cost of a replacement at age M incurs an additional (unit) cost cM, to  
guarantee replacement. Thus, cost of a corrective replacement at age Ms is cF + cM and the cost 
a preventive replacement at age Ms is cP + cM. Modelling costs in this way (with three different 
factors) provides flexibility. The policy can model realities in which: high availability is important or 
prevention of failure events themselves is important or both; scheduled interventions are prioritised 
above unscheduled interventions. In regard of the latter, this is a different way of looking at opportunistic 
interventions. Typically, these are merely assumed to cost-saving. However, in our model, it is uncertainty 
that characterises opportunistic interventions. 

2.1. Derivation of the cost-rate 

We seek the value of (W,M) that minimises the long-run cost per unit time (cost-rate). Exactly four 
renewal scenarios are possible. In each renewal scenario k = 1, ..., 4, we find: (i) the probability that 
the renewal scenario occurs, denoted by Pk; (ii) the contribution to the expected age of the system at 
renewal (contribution to the length of a renewal cycle), denoted by Lk; and (iii) the contribution to the
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6 C. CAVALCANTE ET AL.

expected cost of renewal (system replacement) and downtime over the renewal cycle (contribution to 
the cost of a renewal cycle), denoted by Ck. We then use these to calculate the cost-rate and operational 
reliability. Each renewal scenario has distinct events and unit costs associated with these events. Note, 
the contribution to the expected downtime over a renewal cycle, denoted by Dk, can be calculated by 
setting cF = 0 and cD = 1 in the expressions for Ck. 

In the first renewal scenario, the system fails in an interval between slots and is correctively replaced 
at a subsequent slot, but not necessarily the immediately following slot (because an opportunity for 
replacement is required and an opportunity arises with probability q < 1). Thus, the age at failure, x, is 
such that (i − 1) s < x < is, (i = 1, ..., M − 1), and the renewal cycle length is an integer multiple of s, 
js, (j = 1, ..., M − 1), the downtime is js − x, and the cost is cF + cD (js − x). This scenario occurs with 
probability, 

P1 =
∑W−1 

i=1
∑M−1 

j=i (1 − q)j−iq
∫ is 

(i−1)s f (x)dx 

+ ∑M−1 
i=W

∑M−1 
j=i (1 − q)j−Wq

∫ is 
(i−1)s f (x)dx. 

Note, there are two terms here because the two phases are different in respect of corrective 
opportunistic replacement. In the first phase, corresponding to the first term, failure arises in the i-th 
interval in the first phase, and then the replacement occurs at the j-th slot such that the firstj − i slots 
following failure are not opportunities (with probability (1 − q)j−i) and the j-th slot is necessarily an 
opportunity (with probability q). In the second phase, corresponding to the second term, failure arises 
in the final interval in the first phase or in any interval except the last in the second phase. For this to 
occur the slots in the second phase preceding failure could not have provided opportunities, otherwise 
the system would have been replaced preventively (because this is demanded by the policy—see Fig. 1). 
Thus, all slots in this second phase that precede the slot at which replacement occurs must be non-
opportunities. This accounts for the coefficient (1 − q)j−W in the second term. Note, calculated this way, 
the W-th slot is necessarily the first slot at which a preventive opportunistic replacement can occur, so 
the second phase starts precisely at Ws. In this scenario, the renewal cycle length contribution is 

L1 =
∑W−1 

i=1
∑M−1 

j=i (1 − q)j−iq js
∫ is 

(i−1)s f (x)dx 

+ ∑M−1 
i=W

∑M−1 
j=i (1 − q)j−Wqjs

∫ is 
(i−1)s f (x)dx, 

and the renewal cycle cost contribution is 

C1 =
∑W−1 

i=1
∑M−1 

j=i (1 − q)j−iq
∫ is 

(i−1)s

{
cF + cD (js − x)

}
f (x)dx 

+ ∑M−1 
i=W

∑M−1 
j=i (1 − q)j−Wq

∫ is 
(i−1)s

{
cF + cD (js − x)

}
f (x)dx. 

In the second renewal scenario, preventive opportunistic replacement occurs at slot j in the second 
phase,(j = W, ..., M − 1). Necessarily, the system must survive to this j-th slot and the preceding slots in 
the second phase must not have been opportunities. Note, preventive opportunistic replacement cannot 
occur in the first phase, and in this scenario there is no downtime. Thus, the probability of this scenario 
is 

P2 =
∑M−1 

j=W 
(1 − q)j−WqR(js).
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PLANNING MAINTENANCE WHEN RESOURCES ARE LIMITED 7

Further, the renewal cycle length contribution is 

L2 =
∑M−1 

j=W 
(1 − q)j−WqjsR(js), 

and the renewal cycle cost contribution is 

C2 =
∑M−1 

j=W 
(1 − q)j−WqcP R(js), 

recalling that R(js) is the probability that the system survives to the j-th slot at age js. 
The third scenario is another failure scenario, but here replacement occurs at Ms. That is, if the failure 

arises in the first phase, then there are no subsequent opportunities, and if the failure arises in the second 
phase the slots in the second phase that both precede it and follow it must not be opportunities. Thus, the 
phases must be handled slightly differently, and we obtain two terms in the probability of this renewal 
scenario. Thus, 

P3 =
∑W−1 

i=1 
(1 − q)M−i

∫ is 

(i−1)s 
f (x)dx +

∑M 

i=W 
(1 − q)M−W

∫ is 

(i−1)s 
f (x)dx. 

In this scenario, the renewal cycle length contribution is 

L3 =
∑W−1 

i=1 (1 − q)M−iMs
∫ is 

(i−1)s f (x)dx 

+ ∑M 
i=W(1 − q)M−WMs

∫ is 
(i−1)s f (x)dx, 

And the renewal cycle cost contribution is 

C3 =
∑W−1 

i=1 (1 − q)M−i
∫ is 

(i−1)s

{
cF + cM + cD (Ms − x)

}
f (x)dx 

+ ∑M 
i=W(1 − q)M−W

∫ is 
(i−1)s

{
cF + cM + cD (Ms − x)

}
f (x)dx. 

In the fourth and final scenario, the guaranteed preventive replacement occurs at Ms. Thus, the system 
must survive to Ms (with probability R(Ms)) and the slots in the second phase must not be opportunities. 
This scenario occurs with probability 

P4 = (1 − q)M−WR(Ms), 

and the renewal cycle length contribution is 

L4 = (1 − q)M−WMsR(Ms), 

and the renewal cycle cost contribution is 

C4 = (1 − q)M−W (
cP + cM

)
R(Ms). 
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8 C. CAVALCANTE ET AL. 

Then, we can check that no other scenarios can arise (
∑4 

k=1Pk = 1). Next, we can calculate the value 
of our decision criterion, the cost-rate: 

C∞ (W, M) =
∑4 

k=1 
Ck/

∑4 

k=1 
Lk. (1)  

Also, the average unavailability is given by 

U∞ (W, M) = (
D1 + D3

)
/
∑4 

k=1 
Lk, 

and the operational reliability is 

μ∞ (W, M) =
∑4 

k=1 
Lk/

(
P1 + P3

)
, 

by defining the operational reliability as the mean time between failures, and on the basis that the mean 
time between failures is the ratio of the expected cycle length to the probability that a renewal cycle ends 
in failure ( Scarf et al., 2005). The operational reliability is useful when setting a reliability constraint, so 
that the cost-rate can be minimised subject to meeting a specified level of “safety”. 

2.2. Related policies 

If W = M = ∞, then the policy is failure-based replacement, albeit with replacements occurring only 
at the periodic slots. For this policy there is only one renewal scenario, scenario 1 above, whence the 
renewal cycle length is js, (j = 1, 2, ...), the downtime is js − x, the cost is cF + cD (js − x), and the 
cost-rate is given by 

CF∞ =
∑∞ 

i=1
∑∞ 

j=i(1 − q)j−iq
∫ is 

(i−1)s

{
cF + cD (js − x)

}
f (x)dx∑∞ 

i=1
∑∞ 

j=i(1 − q)j−iq js
∫ is 

(i−1)sf (x)dx 
. 

Here, for evaluation, the limits on the summations must be finite, L say, but sufficiently large that 
F(Ls) ≈ F ((L − 1) s). The unavailability is given by 

UF∞ =
∑∞ 

i=1
∑∞ 

j=i(1 − q)j−iq
∫ is 

(i−1)s (js − x) f (x)dx∑∞ 
i=1

∑∞ 
j=i(1 − q)j−iq js

∫ is 
(i−1)sf (x)dx 

, 

and the operational reliability (mean time between operational failures) is given by 

μF∞ =
1∑∞ 

i=1
∑∞ 

j=i(1 − q)j−iq js
∫ is 

(i−1)sf (x)dx 
. 

Other policies are also special cases. When M = ∞, there are the two renewal scenarios 1 and 2 only. 
We call this the W-policy. The cost-rate for this policy is most simply evaluated by letting M → ∞  in
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PLANNING MAINTENANCE WHEN RESOURCES ARE LIMITED 9

Equation 1. This policy is interesting despite its cost-inefficiency relative to the general policy because 
it is simpler. 

When W = M, there is one phase of corrective replacement and then preventive replacement at Ms. 
We call this the quasi-periodic age-replacement policy. Practically, the policy operates in the following 
way: when the maintainer visits the site of the systems, scheduled preventive replacements are executed 
and unscheduled (corrective) replacements are executed if time and resource remains. The cost-rate, the 
unavailability, and the mean time between operational failures, can be calculated given the expected 
renewal cycle length, which is 

LA = ∑M−1 
i=1

∑M−1 
j=i (1 − q)j−iq js

∫ is 
(i−1)s f (x)dx 

+ Ms
{∫ Ms 

(M−1)s f (x)dx + R(Ms)} , 

and the expected cost of a renewal cycle, which is 

CA = ∑M−1 
i=1

∑M−1 
j=i (1 − q)j−iq

∫ is 
(i−1)s

{
cF + (is − x) cD

}
f (x)dx 

+ ∫ Ms 
(M−1)s

{
cF + cM + (Ms − x) cD

}
f (x)dx + (

cP + cM

)
R(Ms)

}
. 

Further, when q = 1, the policy with W = M is a modified (discretised) age-based replacement 
policy. That is, replacement would occur correctively at the first slot following failure or at the M-th 
slot, whichever is sooner. Replacement at the M-th slot could be corrective (if the system fails after the 
(M − 1) −th slot) or preventively (otherwise). Setting cF >> cP and cM = 0 allows the evaluation of 
the cost-disbenefit (relative to the classic age-based replacement policy) of restricting replacements to 
the periodic slots is (i = 1, 2, ...). Such an evaluation can be made for differing values of cD. Thus, Scarf 
et al. (2024a) compares the cost-rate of discretised age-based replacement, which is 

CP∞ =
∑M 

i=1

∫ is 
(i−1)s

{
cF + (is − x) cD

}
f (x)dx + cPR(Ms)∑M 

i=1 is
∫ is 

(i−1)sf (x)dx + MsR(Ms) 
, 

with the cost-rate of the classic policy, which is 

CClassic∞ = 
cFF(T) + cPR(T)∫ T 

0 R(x)dx 
. 

The {W, M} −policy, and hence its special cases, do not need to distinguish a critical system from 
a protection system. That is, the model can be used for both. Thus, at a slot, test the system. If failed, 
replace at next opportunity. Once system reaches age Ws, replace at next opportunity regardless of its 
state. The difference is merely how the rate of cost of downtime, cD, is evaluated. 

The policy might also be generalised so that opportunities arise with different probabilities in the 
event of failure replacement and preventive replacement. Thus, qF > qP in an obvious notation. In this 
way, a maintainer may put more resources towards corrective replacement than preventive replacement.
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10 C. CAVALCANTE ET AL.

TABLE 1. Parameter values in the base case 
β η cP cD cM cF q s 
3 10 1 0.5 1 1 0.2 1 

Then, setting qF = 1 would allow a fair comparison of the policy with the classic opportunistic 
policy set in continuous time proposed by Dekker & Plasmeijer (2001), wherein opportunities arise 
according to a Poisson process with rate λ and the critical age limits for opportunistic and preventive 
replacements are t and T , respectively. Nonetheless, we briefly compare this continuous policy with our 
proposed policy (with fixed q) in the next section. This comparison goes some way towards assessing 
the marginal cost of discretisation in opportunistic age-based replacement, that is, of maintenance only 
at slots. This marginal cost of discretisation has been evaluated for age-based replacement by Scarf et al. 
(2024a). 

Finally, we make a point about extension of the model to a multi-component system: discretisation 
of instances for maintenance simplifies the grouping problem (Do et al., 2015; Vu et al., 2015). 

3. Numerical study 

This section describes the numerical study of the behaviour of the policy. Parameter values for the base 
case are shown in Table 1. A range of parameter values are studied; these are the cases in Table 2; the  
base case is case 3. These values are used for two main reasons: firstly to demonstrate interesting policy 
behaviour, and secondly because these values are somewhat motivated by the context of a non-repairable 
component in a wind turbine in a windfarm (Kang & Soares, 2020). The unit of time is arbitrary, and 
in the base case we set s, the interval between slots, to unity, noting that it is the ratio of η to s that 
determines how fast time “passes”. The unit of cost is also arbitrarily chosen so that cP, the cost of a 
preventive replacement at an opportunity, is unity. A Weibull distribution is used to describe the lifetime 
of a component: R(x) = exp

{−(x/η)β
}
. 

In the base case, we set cP = cF. In this way, downtime (unavailability) cost
(
cD

)
accounts for the 

financial impact of failure. Nonetheless, there are other risks associated with a failure beyond downtime. 
These may include reputational damage, safety concerns, and unforeseen consequences of failure. It may 
be important to consider these additional risks, whence cP < cF (cases 9–10, 19–25). We set q (q = 0.2) 
as quite small, with the interpretation that resources are scare and consequently opportunities are rare. 
This is the likely reality when owners seek to reduce maintenance costs. Characteristic lifetime (of a 
component) is moderately long (relative to s) (η = 10) and moderately variable (β = 3). The cases in 
Table 2 then explore alternatives, broadly halving or doubling values in the base case. 

Optimal policy is found using a crude search over (M, W) : W < M ∈ {1, ..., 50}. The search is 
coded in Python code including the libraries SciPy and NumPy. The optimisation step takes 10 minutes 
on a standard PC. For M > W ≥ 50 increments in the cost-rate are < 10−4. Note, search over this large 
range is necessary despite the very unlikely survival of the system to old age (e.g.R(33) <  10−15). This 
is because renewal can be delayed for quite some time after failure when q is small. For example, when 
q = 0.2, the probability that a failure persists for at least 20 slots is > 0.01 (0.820 = 0.012). 

A web-application (see the data statement at the end of the paper) makes it possible for non-expert 
users to calculate decision variables for parameter values motivated by their own contexts. This has two 
purposes: to bridge the gap between model development of policy and the use of policy in practice; and to
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PLANNING MAINTENANCE WHEN RESOURCES ARE LIMITED 11

TABLE 2. Study of the cost-minimum policy 

parameters {W, M} −policy {∞, ∞} −policy 

case β cD cM cF q s W∗ M∗ C∗∞ U∗∞ μ∗∞ CF∞ UF∞ μF∞ 

1 1 0.5 1 1 0.2 1 ≥49 ≥50 0.225 0.310 14.5 0.224 0.311 14.5 
2 2 0.5 1 1 0.2 1 8 20 0.237 0.275 15.2 0.243 0.337 13.4 
3∗ 3 0.5 1 1 0.2 1 6 14 0.223 0.193 17.3 0.242 0.335 13.4 
4 3 0.0 1 1 0.2 1 ≥49 ≥50 0.074 0.335 13.4 0.074 0.335 13.4 
5 3 0.25 1 1 0.2 1 10 ≥50 0.157 0.305 14.7 0.158 0.335 13.4 
6 3 1 1 1 0.2 1 5 9 0.292 0.099 21.2 0.410 0.335 13.4 
7 3 0.5 0.5 1 0.2 1 7 11 0.208 0.154 16.3 0.242 0.335 13.4 
8 3 0.5 2 1 0.2 1 6 ≥50 0.225 0.245 18.3 0.242 0.335 13.4 
9 3 0.5 1 2 0.2 1 5 ≥50 0.277 0.227 19.7 0.316 0.335 13.4 
10 3 0.5 1 4 0.2 1 3 ≥50 0.371 0.195 23.0 0.465 0.335 13.4 
11 3 0.5 1 1 0.1 1 5 11 0.259 0.184 16.8 0.312 0.515 18.4 
12 3 0.5 1 1 0.4 1 9 ≥50 0.176 0.139 14.3 0.183 0.183 10.9 
13 3 0.5 0.5 1 0.4 1 9 ≥50 0.176 0.139 14.3 0.183 0.183 10.9 
14 3 0.5 2 1 0.4 1 9 ≥50 0.176 0.139 14.3 0.183 0.183 10.9 
15 3 0.5 1 2 0.4 1 6 ≥50 0.232 0.094 21.0 0.274 0.183 10.9 
16 3 0.5 1 4 0.4 1 4 ≥50 0.313 0.064 30.7 0.457 0.183 10.9 
17 3 0.5 1 1 0.2 0.5 16 ≥50 0.182 0.146 15.4 0.190 0.201 11.2 
18 3 0.5 1 1 0.2 2 3 6 0.260 0.214 16.2 0.307 0.502 17.9 
19 2 0.25 1 2 0.2 1 9 ≥50 0.229 0.298 15.1 0.234 0.337 13.4 
20 2 0.25 1 4 0.2 1 4 ≥50 0.318 0.210 21.4 0.382 0.335 13.4 
21 3 0.25 1 2 0.4 1 7 ≥50 0.207 0.110 18.0 0.229 0.183 10.9 
22 3 0.5 1 1 1.0 1 15 16 0.132 0.051 9.70 0.133 0.053 9.4 
23 3 0.5 1 2 1.0 1 8 ≥9 0.205 0.026 18.2 0.239 0.053 9.4 
24 2 0.12 1 1.5 0.2 1 21 ≥50 0.153 0.336 13.4 0.153 0.337 13.4 
25 2 0.12 1 2 0.2 1 12 ≥50 0.189 0.318 14.1 0.190 0.337 13.4 
26 2 0.12 1 2 0.4 1 11 ≥50 0.203 0.160 12.9 0.206 0.184 10.9 
Cost-rate, average unavailability, and mean time between operational failure for various cases for the {W, M}−policy and 
failure-based replacement (W = M = ∞). In all cases: η = 10, cP = 1 (unit of cost). ∗base case. 

address the limitation of a numerical study that can only investigate some parameter values and describe 
some behaviours in a specific rather than a general way. 

3.1. Interpretation of the results 

We interpret the results in Table 2 case by case. Generally, here, we can get a sense of the existence 
of a cost-minimising {W, M} −policy or otherwise (finite W∗ or M∗), the advantages (or otherwise) of 
the optimum policy relative to failure-based replacement (in terms of the differences in the cost-rates, 
average unavailabilities and MTBOFs). 

Throughout, the average unavailabilities are quite high (of the order of 20%). This is because s is 
quite large relative to η. It reduces in case 17, (s = 0.5), and cases 12–16,21,26 (q = 0.4), being cases 
with greater resource for maintenance; notice here the {W, M} −policy is not preferred to the W−policy 
(M∗ ≥ 50). This is because more frequent slots and/or a larger opportunity probability imply more
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12 C. CAVALCANTE ET AL.

opportunities so that scheduling a final replacement at Ms is unnecessary. This effect persists for different 
values of cM(cases 13,14), noting that cMis a redundant parameter when M is large. 

A similar effect (related to the existence of M∗) is seen when cF is larger (cases 9,10,19-21,24–26). 
As cF increases W∗ decreases, negating the need for the scheduled replacement. We might conclude 
broadly that the W−policy is preferable to the {W, M} −policy for practice, because it is simpler and 
almost always as good as the {W, M} −policy. 

When resources are not scarce (q = 1), cases 22,23, the policy is indifferent to M. In this case, 
provided W∗ exists, replacement is guaranteed at W∗s. Now the average unavailability is small because 
the system never waits long in the failed state. Furthermore, if an opportunity is guaranteed at every slot 
(q = 1), then it does not make sense that the cost of replacement at early slots is less than replacement at 
the M-th slot. This point is relevant to the justification of the costs, so that an interesting cost formulation 
may set cM = 0 and cF, cP ∼ g(q), that is, replacement costs depend on the opportunity probability, so 
that a maintainer who has more resources (larger q) spends more on maintenance. 

Notice also in case 22, the cost-rate is low while the MTBOF is also low. Again, the system never 
waits too long in the failed state and the maintainer is not concerned about failure beyond the resulting 
downtime (because cP = cF). Therefore, the MTBOF is not a very good metric for measuring policy 
performance, and it is better to focus on the cost-rate and the average unavailability. Other contexts, 
which the reader can explore in the web-application may be different. 

Some other effects are also apparent. If the cost of failure is large, the second phase starts sooner 
(small W∗) (cases 9,10). The same effect is seen as the rate of cost of downtime varies (cases 4–6). 
Further, when cD is small the W−policy is preferred to the {W, M} −policy. Indeed, when cD = 0 (case 
4), it appears that neither W∗ nor M∗ to exist, so that the preferred policy is failure-based replacement 
and the only renewal scenario is corrective replacement at an opportunity. This is what we would expect 
when there are no consequences of failure. Of course, in practice the case cD = 0 and cP = cF is absurd 
because there is no requirement for the system, but the policy insists on replacement of the system 
when it is failed. So, we can regard this case as providing confirmatory evidence of expected behaviour. 
The same point applies for case 1, when lifetime is exponential and there is no benefit to preventive 
replacement. 

Robustness of the cost-minimum policy is studied in Fig. 2. Broadly, this shows that the cost-rate is 
less sensitive to W than to M when q is small, and the effects are opposite when q is larger. This is as 
we would expect because when opportunities are rare, knowing exactly when the window of opportunity 
should open is less important than when the final scheduled replacement should take place, and vice 
versa. We can also see that the {W, M} −policy is very much preferred to failure-based replacement when 
the rate of cost of downtime is high and the difference between the policies is greatest when opportunities 
are rare (small q). 

Policy metrics are studied in detail in Fig. 3. Here, for the cost-minimum {W, M} −policy, we 
show the length of the first phase (W∗s), the relative lengths of the first (corrective) and second 
(preventive) phases (W∗/M∗), and the cost-rate and the average unavailability, for various values of 
the time between visits (s), the rate of cost of downtime

(
cD

)
, and the opportunity probability (q). 

When the opportunities are more frequent, the window of opportunity opens later, and the cost-rate 
and unavailability are both lower, as expected. When cD is lower, the effects are likewise, except for 
the unavailability which is higher, obviously, because unavailability is less important. These effects are 
the same for different values of s. The overall picture in respect of (W∗/M∗) is more complicated. 
However, broadly, when q is small, the window of opportunity opens relatively sooner (small W∗) 
than when q is larger. The interaction between cD and q is perhaps because the value of M∗ is highly 
variable.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/advance-article/doi/10.1093/im

am
an/dpae015/7685191 by guest on 27 June 2024



PLANNING MAINTENANCE WHEN RESOURCES ARE LIMITED 13

FIG. 2.  For  the {W, M}−policy, cost-rate versus W (with M = M∗) (top row) and cost-rate versus M (with W = W∗) (bottom row) 
for various values of q (opportunity probability) and cD (downtime cost-rate). 

Figure 4 confirms the insensitivity of the policy to values of cM when q is large, as discussed above. 
When q is small, varying cM has the expected effect. When cM is largest, the window of opportunity for 
preventive replacement opens earliest.
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14 C. CAVALCANTE ET AL.

FIG. 3.  For  the {W, M}−policy, behaviour of optimal policy as a function of q (opportunity probability) for various values of cD 
and s. Other parameter values as in the base case. 

FIG. 4.  For  the  {W, M}−policy, behaviour of optimal policy as a function of q (opportunity probability) for s = 1 and various 
values of cM. Other parameter values as in the base case. 

3.2. Comparison of policies 

In Fig. 5 we compare the performance of the {W, M} −policy with policies that are special cases. The 
extent to which the {W, M} −policy is preferred depends on cD. The threshold at which preventive 
maintenance is preferred to corrective maintenance is quite high, cD ∼0.25, whence the cost of a 
replacement is equivalent to 4 time-periods (e.g. years) of downtime.
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PLANNING MAINTENANCE WHEN RESOURCES ARE LIMITED 15

FIG 5. Cost-rate versus cD (rate of cost of downtime) for various values of q (opportunity probability) for the {W, M}−policy 
(____) (quasi-periodic opportunistic replacement) and policies that are special cases: M = ∞  (_. _) (W−policy); W = M(---) 
(quasi-periodic age-based replacement); W = M = ∞  ( . . . .) (failure-based replacement). Other parameter values as base case. 

For moderately large q, the W−policy performs as well as the {W, M} −policy, so that preventive 
replacement is carried out only if resources permit, noting that finite M∗ implies otherwise (guaranteed 
replacement at M∗s). This makes practical sense. For example, for a fleet of turbines in an offshore 
windfarm, with periodic visits to the farm and limited resources, lost production may not be large enough 
to justify the additional resource that guaranteed availability would require. Thus, the operator may be 
prepared to tolerate some turbines that are unavailable for relatively long periods. As the rate of cost of 
downtime increases, or opportunities are rarer, or both, the less the operator will be prepared to wait for 
an opportunity for replacement. In a finite horizon context, where a fleet has a limited operational life, 
then the W−policy would become even more attractive because in the {W, M} −policy M∗ would likely 
be very sensitive to the horizon length. 

3.3. Comparison with a continuous policy 

Dekker & Plasmeijer (2001) study the classic (continuous) opportunistic age-replacement policy in 
which an item (a critical one-component system) is replaced on failure, at an opportunity if that arises 
when the item is aged at least t, and preventively at age T , whichever occurs soonest. Opportunities 
arise according to a Poisson process with rate λ (the expected number of opportunities per unit of time). 
Figure 6 shows some results when this policy is compared with our proposed quasi-periodic policy. In 
the comparison, the slot interval s and the downtime cost-rate cD vary. In so doing, for a fair comparison, 
it is necessary to set λ = q/s since q/s is the expected number of opportunities per unit of time for the 
quasi-periodic policy. 

Firstly, we observe that as s decreases the cost-rates converge. This is because when s is small the 
quasi-periodic policy is near-continuous, and we would expect the cost-rate for the continuous policy and 
the quasi-periodic policy to be similar. Also, there is negligible downtime in the quasi-periodic policy, 
so that variation in the downtime cost-rate has little effect. 

Secondly, when the downtime cost-rate is reasonably large, the cost-inefficiency of the quasi-
periodic policy is apparent. This is of the order of 10% for moderate s. This is the marginal cost of 
discretisation. Note, the quasi-periodic policy does not replace on failure immediately, so comparison 
with the continuous policy must be treated with caution. This is apparent particularly when cD = 0, 
wherein less frequent maintenance (larger s) has lower cost-rate because downtime, and hence a period 
in the failed state prior to renewal is not penalised.
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16 C. CAVALCANTE ET AL.

FIG. 6. Cost-rates for the continuous policy (---) and quasi-periodic policy (– – – –  cD = 0; ������� cD = 0.25; � — � — 
cD = 0.5) as a function of s, with q = 0.2 fixed and λ varying. Other parameters: η = 10, β = 3, cP = 1 (unit of cost), cM = 1 
and cF = 4. 

4. Discussion 

This paper develops a model for a novel replacement policy motivated by practical necessities of 
simplicity and applicability. The policy has periodic structure. Times (slots) at which replacement can be 
executed, if resources permit, occur periodically with frequency 1/s. A proportion q of slots provides an 
opportunity for corrective or preventive replacement. The model mimics the reality in which resources 
are limited or execution of maintenance is not guaranteed, due to, for example, bad weather, lack of 
spares or personnel, etc. An offshore windfarm or remote telecommunications installations or power 
micro-grids, and the non-repairable components therein, provide motivating contexts. 

The system is modelled as a one-component, critical system. The policy has two phases: the first in 
the early life of the system is corrective; the second in the later life is preventive. Decision variables W 
and M define the durations of these phases. Failures are corrected (by component replacement) at the 
first opportunity following failure. Any downtime incurred is measured. In the second phase, preventive 
replacement occurs at an available opportunity regardless of the system state. This is the {W, M} −policy. 
The cost-rate and average availability are calculated. Contributions to the cost arise from downtime and 
replacements. 

We study the behaviour of optimal policy numerically for a range of values of model parameters. 
In particular, interest lies in broad decision support regarding the efficacy of preventive replacement 
and how the availability of opportunities (and hence resources for maintenance) impact upon policy 
performance. We compare the {W, M} −policy to policies that are special cases, indicating circumstances 
in which preventive replacement out-performs corrective replacement. Modified (discretised) age-based 
replacement is a special case of the {W, M} −policy. 

Generally, we find that if slots are infrequent and/or opportunities are rare, the operator must tolerate 
quite high average unavailability. Conversely, more maintenance resources are required to achieve lower 
unavailability, and the model can quantify this resource-availability trade-off. Furthermore, the rarer are 
opportunities the more beneficial it is to impose some certainty on replacement through a guaranteed 
replacement and the sooner, in the life of a system, the maintainer would favour taking opportunities 
for preventive replacement. Conversely, when opportunities are not rare, guaranteed replacement is not
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PLANNING MAINTENANCE WHEN RESOURCES ARE LIMITED 17

cost-beneficial. Specific analysis and policy comparisons can be carried out using a web-application 
developed by the authors. 

For practice, the W−policy may be preferred to the {W, M} −policy because it performs nearly as 
well for a range of parameter values and it is simpler to operationalise. Indeed, all the policies we 
describe are operationally simple, because the schedule of slots is fixed. Such a fixed schedule is justified 
when regulation prescribes it or when limited resources imply it. The simplicity of the policy means the 
models can facilitate the transfer of knowledge to managerial practice in the manner discussed by Tayur 
(2024). Furthermore, the model can inform broad decisions about whether preventive replacement is 
effective and what is an appropriate level of resourcing for replacement, for the former by comparing the 
{W, M} −policy and W−policy with failure-based replacement, and for the latter by quantifying how the 
cost-rate and average availability vary with q, the resource-dependent opportunity probability. 

There is some scope to measure the marginal cost of discretisation, by comparing the cost-rate of 
the {W, M} −policy with that of opportunistic age-replacement, the {t, T} −policy, which is continuous. 
However, the marginal cost of discretisation varies with the downtime cost-rate, noting that there is no 
downtime in the continuous policy. So, the comparison must be treated with some caution. Nonetheless, 
we demonstrate that the {W, M} −policy and the {t, T} −policy have similar cost-rates when the slot 
interval s is small. 

It is clear that q is an important aspect of the proposed quasi-periodic policy. In reality, this parameter 
may be difficult to estimate. Further, a maintainer may prioritise corrective replacement over preventive 
replacement, putting more resources towards the former. This generalisation can be accommodated by 
specifying qF and qP. However, W influences the ratio of corrective to preventive replacement which in 
turn would, in practice, influence qF and qP. This problem could be simulated by specifying a fleet of 
systems, a fixed resource, and rules that prioritise corrective replacement over preventive replacement. 
This would be a different but worthwhile study, as would a study of the policy with qF = 1. Also, in a non-
stationary framework (finite horizon), q may decrease as demand for maintenance grows, and a dynamic 
version the policy could be interesting. Nonetheless, we can justify the current study because it provides 
both broad decision support and guidance about how fuller, more specific studies might be developed. 

Finally, we note that fixing the period of slots has further advantages for modelling a multi-component 
extension. Indeed, it would be interesting to study a case in which different critical components have 
different replacement costs. Then, with limited resources, one would obviously prioritise less costly 
replacements. The interaction with spare-parts provisioning (Scarf et al., 2024c) and flexible repair 
policies (Cha et al., 2023) would also be interesting. The model of the policy can also be used in the 
context of a protection system; Scarf et al. (2024b) consider this type of system but without opportunities. 
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Data statement 
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