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Luppi et al. 

Guide to pipeline selection in the Pipeline Selection Tool (Supplementary 

Data 2) 

This document provides a guide for the use of the interactive pipeline selection tool 
(Supplementary Data 2). The tool is in the form of an Excel file which allows the user to filter 
pipelines based on specific user-defined criteria. Pipelines can be filtered based on multiple 
criteria combined to allow the user to specify preferred preconditions for a pipeline choice. 
The criteria for pipeline selection: 

• Criterion (I): Avoiding spurious differences (“PDiv ranking”). Since the two networks 
that we consider are derived from different scans of the same healthy individuals 
under conditions in which no experimentally meaningful changes in functional 
network topology are expected, we aim to identify pipelines that minimise test-retest 
PDiv. We consider pipelines as candidates for optimal if they are in the top 20% in 
terms of the global PDiv rank calculated across all four test-retest intervals.  

• Criterion (II): Detecting true experimental differences (“propofol”). Suitable pipelines 
should detect a significant effect for propofol, in the right direction, in both propofol 
datasets, i.e., a pipeline is excluded if it fails to detect the expected effect in either of 
the two propofol datasets.  

• Criterion (III): Detecting inter-individual differences (“within-between”). A pipeline 
fails this criterion if the resulting networks are more similar between than within 
subjects more than 50% of the times, for any of the three test-retest datasets.  

• Criterion (IV): Avoiding motion-induced differences (“motion”). A pipeline fails this 
criterion if its PDiv has a significant correlation with differences in head motion in any 
of the three test-retest datasets.  

• Criterion (V): Non-empty networks. As a final sanity check, we also exclude any 
pipelines that remove all connections from a network, in any of the three test-retest 
datasets. 

Column B identifies pipelines that pass all selection criteria (II-V above) and are within the 
top 20% of average PDiv ranks. The same can be found in Column AX when relaxing the 
PDiv criterion to 50%. Pipelines that fulfil all of these criteria can be selected by clicking the 
option “Selected” in the filter. 

Combinations of multiple user-defined criteria can be obtained by selecting options in 

multiple filters at once. For instance, if the user wanted to identify all pipelines which fulfil the 

above five criteria, used a single scale parcellation type and no global signal regression, this 

is what the result would look like (showing one pipeline which fulfils these criteria): 
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In contrast, if the user only cared about a pipeline passing Criteria II and V above, regardless 

of portrait divergence or pre-processing choices, the result may look as follows:  

 

 
 

In this example, for the threshold slicer, option Abs0.5 can now no longer be selected 

because no pipelines with this pre-processing choice fulfil the propofol and non-empty 

network criteria. 

 

A reset can be achieved by clicking on the filter icon with the red cross in the upper right 

corner of a given filter panel.  

 

If the user wanted to include multiple options in a given filter panel (for instance if all 

pipelines with parcellation scale 200 and 400 were to be selected), the first option should be 

selected, followed by a click + command (or right click) on the second option. This would 

yield the following: 
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Alternatively, filtering and sorting of the data based on any column available in the excel 

sheet can be done by clicking the downward facing arrow next to a column name in row 2. 
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Supplementary Tables 

 

Table S1. Parcellations adopted in the present study, by scale (rows) and method (columns). 

  Anatomical multi-scale Functional multi-scale Single-scale ICA 

Scale-100 Lausanne 129 Schaefer 100 + 

Melbourne 16 

AAL 90 100 components 

Scale-200 Lausanne 234 Schaefer 200 + 

Melbourne 32 

Brainnetome 246 200 components 

Scale-400 Lausanne 463 Schaefer 400 + 

Melbourne 54 

Glasser 360 + Melbourne 

54 

300 components 
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Table S2. Edge filtering schemes adopted in the present study. 

Filtering Scheme Description 

Fixed Density 5% (FD5%) Top 5% of strongest edges 

Fixed Density 10% (FD10%) Top 10% of strongest edges 

Fixed Density 20% (FD20%) Top 20% of strongest edges 

Absolute Threshold 0.3 

(Abs0.3) 

Edges with value > 0.3 

Absolute Threshold 0.5 

(Abs0.5) 

Edges with value > 0.5 

Efficiency Cost Optimisation 

(ECO) 

Average node degree = 3, to maximise trade-off between overall efficiency 

and wiring cost 

Structural Density Matching 

(SDM) 

Proportional thresholding, with same density as the HCP group-average DTI 

data parcellated using the same parcellation 

Orthogonal Minimum 

Spanning Trees (OMST) 

Optimisation of global efficiency minus wiring cost, by combining 

independent minimum spanning trees of the network. 
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Supplementary Figures 

 

 

Figure S1. Example networks (left) and their portraits (right). From the top: Erdos-Renyi random 

network, Barabasi-Albert preferential attachment network, and lattice network. All networks are binary with 

an approximate density of 6%. A network portrait for a binary network is a matrix B whose rows each 

correspond to a histogram obtained by thresholding the matrix of shortest paths between the networks’s 

constituent nodes, at each path length l between 0 and the network’s diameter L, such that entry Bl,k 

encodes the number of nodes that have k nodes at distance l. PDiv between ER and BA networks is 0.26; 

PDiv between ER and Lattice networks is 0.90; PDiv between BA and Lattice networks is 0.93. 
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Figure S2. Additional examples of networks (left) and their portraits (right). From the top: modular 

networks with 4, 8, and 16 equal-sized modules, respectively. All networks are binary with an approximate 

density of 6%. A network portrait for a binary network is a matrix B whose rows each correspond to a 

histogram obtained by thresholding the matrix of shortest paths between the networks’s constituent nodes, 

at each path length l between 0 and the network’s diameter L, such that entry Bl,k encodes the number of 

nodes that have k nodes at distance l. PDiv between the 4-module and 8-module networks is 0.36; PDiv 

between 8-module and 16-module networks is 0.52; PDiv between the 4-module and 16-module networks 

is 0.68. Note how the two most extreme cases (4 and 16 modules) have the largest PDiv, and how the 

modular organisation of each network is reflected in the first row of its network portrait.
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Figure S3. Progression of pipeline choices as a function of node definition and average PDiv across 

all datasets. (A) Divided by parcellation type (anatomical multi-scale, functional multi-scale, or single-

scale). (b) By parcellation scale. With each subsequent bin, the next best 20 pipelines are added to 

calculate how many among this set of pipelines were constructed using each of the available options. 
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Figure S4. Progression of pipeline choices as a function of GSR use and average PDiv across all 

datasets. With each subsequent bin, the next best 20 pipelines are added to calculate how many among this set 

of pipelines were constructed using each of the available options. 
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Figure S5. Progression of pipeline choices as a function of filtering scheme and average PDiv 

across all datasets. With each subsequent bin, the next best 20 pipelines are added to calculate how 

many among this set of pipelines were constructed using each of the available options.



11 
 

 

Figure S6. Progression of pipeline choices as a function of edge construction and average PDiv 

across all datasets. (A) Binary vs weighted edges. (B) Edges quantified in terms of mutual information or 

Pearson correlation. With each subsequent bin, the next best 20 pipelines are added to calculate how many 

among this set of pipelines were constructed using each of the available options. 



12 
 

 

 

Figure S7. Portrait divergence (PDiv) by parcellation type – Cambridge test-retest dataset. Box-plot center line, median; box limits, upper and lower quartiles; 

whiskers, 1.5x interquartile range. Each data-point represents one pipeline (n=768). 
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Figure S8. Portrait divergence (PDiv) by parcellation scale – Cambridge test-retest dataset. Box-plot 

center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Each data-

point represents one pipeline (n=768). 

 

 

 

Figure S9. Portrait divergence (PDiv) by GSR use – Cambridge test-retest dataset. Box-plot center 

line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Each data-point 

represents one pipeline (n=768). 
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Figure S10. Portrait divergence (PDiv) by edge quantification method type – Cambridge test-retest 

dataset. Box-plot center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile 

range. Each data-point represents one pipeline (n=768). 

 

 

 

Figure S11. Portrait divergence (PDiv) by binarisation choice – Cambridge test-retest dataset. Box-

plot center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Each data-

point represents one pipeline (n=768). 
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Figure S12. Portrait divergence (PDiv) by edge filtering method – Cambridge test-retest dataset. Box-plot center line, median; box limits, upper and lower quartiles; 

whiskers, 1.5x interquartile range. Each data-point represents one pipeline (n=768). 
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Figure S13. Portrait divergence (PDiv) by parcellation type – NYU short-term dataset. Box-plot center line, median; box limits, upper and lower quartiles; whiskers, 

1.5x interquartile range. Each data-point represents one pipeline (n=768). 
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Figure S14. Portrait divergence (PDiv) by parcellation scale – NYU short-term dataset. Box-plot center 

line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Each data-point 

represents one pipeline (n=768). 

 

 

 

Figure S15. Portrait divergence (PDiv) by GSR use – NYU short-term dataset. Box-plot center line, 

median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Each data-point represents 

one pipeline (n=768). 
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Figure S16. Portrait divergence (PDiv) by edge quantification method type – NYU short-term dataset. 

Box-plot center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Each 

data-point represents one pipeline (n=768). 

 

 

 

Figure S17. Portrait divergence (PDiv) by binarisation choice – NYU short-term dataset. Box-plot 

center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Each data-

point represents one pipeline (n=768). 
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Figure S18. Portrait divergence (PDiv) by edge filtering method – NYU short-term dataset. Box-plot center line, median; box limits, upper and lower quartiles; 

whiskers, 1.5x interquartile range. Each data-point represents one pipeline (n=768). 
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Figure S19. Portrait divergence (PDiv) by parcellation type – NYU long-term dataset. Box-plot center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 

interquartile range. Each data-point represents one pipeline (n=768). 
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Figure S20. Portrait divergence (PDiv) by parcellation scale – NYU long-term dataset. Box-plot center 

line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Each data-point 

represents one pipeline (n=768). 

 

 

Figure S21. Portrait divergence (PDiv) by GSR use – NYU long-term dataset. Box-plot center line, 

median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Each data-point represents 

one pipeline (n=768). 
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Figure S22. Portrait divergence (PDiv) by edge quantification method type – NYU long-term dataset. 

Box-plot center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Each 

data-point represents one pipeline (n=768). 

 

 

 

 Figure S23. Portrait divergence (PDiv) by binarisation choice – NYU long-term dataset. Box-plot 

center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Each data-

point represents one pipeline (n=768). 

 



23 
 

 

Figure S24. Portrait divergence (PDiv) by edge filtering method – NYU long-term dataset. Box-plot center line, median; box limits, upper and lower quartiles; whiskers, 

1.5x interquartile range. Each data-point represents one pipeline (n=768).
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Figure S25. Portrait divergence (PDiv) by parcellation type – HCP test-retest dataset. Box-plot center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 

interquartile range. Each data-point represents one pipeline (n=768). 
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Figure S26. Portrait divergence (PDiv) by parcellation scale – HCP test-retest dataset. Box-plot center 

line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Each data-point 

represents one pipeline (n=768). 

 

 

 

Figure S27. Portrait divergence (PDiv) by GSR use – HCP test-retest dataset. Box-plot center line, 

median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Each data-point represents 

one pipeline (n=768). 
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Figure S28. Portrait divergence (PDiv) by edge quantification method type – HCP test-retest dataset. 

Box-plot center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Each 

data-point represents one pipeline (n=768). 

 

 

 

Figure S29. Portrait divergence (PDiv) by binarisation choice – HCP test-retest dataset. Box-plot 

center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Each data-

point represents one pipeline (n=768). 
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Figure S30. Portrait divergence (PDiv) by edge filtering method – HCP test-retest dataset. Box-plot center line, median; box limits, upper and lower quartiles; whiskers, 

1.5x interquartile range. Each data-point represents one pipeline (n=768). 
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Figure S31. Prevalence of specific network construction steps among the 35 optimal pipelines, when 

relaxing the PDiv criterion. Pie charts demonstrate, for each network construction step, the proportion and 

absolute number of each option that is found among the optimal pipelines. Abbreviations. FD: fixed density. 

GSR: global signal regression. OMST: orthogonal minimal spanning tree. SDM: structural density. Illustration of 

parcellations adapted from Jiang et al (2023) and Zhi et al (2022). 
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Figure S32. Optimal edge processing combinations among the top 35 pipelines, when relaxing the PDiv 

criterion. Pie chart displays the frequency of each combination of edge type definition, filtering, and binarisation 

among the 35 pipelines which fulfil all criteria for a suitable network construction pipeline. Abs03, absolute 

threshold (Edges with value > 0.3); B, binary edges; ECO, efficiency-cost optimisation; FD5, 5% fixed density 

threshold; FD10, 10% fixed density threshold; FD20, 20% fixed density threshold; OMST, orthogonal minimum 

spanning trees; P, Pearson correlation; MI, mutual information; SDM, structural density matching; W, weighted 

edges.
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Figure S33. Test-retest PDiv versus characteristic path length of the networks produced by each pipeline (averaged across all subjects), for each dataset, as a function of filtering scheme, edge 5 

binarisation, and edge type (Pearson correlation or mutual information). Each data-point represents one pipeline; shape indicates optimality (optimal under stringent criteria, optimal under the relaxed PDiv 6 

criterion, or rejected). Each data-point represents one pipeline (n=768).7 
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 8 
Figure S34. Test-retest PDiv versus mean clustering coefficient of the networks produced by each pipeline (averaged across all subjects), for each dataset, as a function of filtering scheme, edge 9 

binarisation, and edge type (Pearson correlation or mutual information). Each data-point represents one pipeline; shape indicates optimality (optimal under stringent criteria, optimal under the relaxed PDiv criterion, or 10 

rejected). Each data-point represents one pipeline (n=768). 11 
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Figure S35. Test-retest PDiv versus the size of the largest connected component (as a fraction of total number of nodes) of the networks produced by each pipeline (averaged across all subjects), for 13 

each dataset, as a function of filtering scheme, edge binarisation, and edge type (Pearson correlation or mutual information). Each data-point represents one pipeline; shape indicates optimality (optimal 14 

under stringent criteria, optimal under the relaxed PDiv criterion, or rejected). Each data-point represents one pipeline (n=768). 15 
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Figure S36. Comparing mean clustering coefficient of the network, for OMST and Minimum 

Spanning Tree filtering schemes. Separately for each test-retest datasets, each data-point represents an 

individual functional connectome, reconstructed with one of the n=72 pipelines that use OMST filtering, or 

an equivalent pipeline but using Minimum Spanning Tree filtering instead. The mean clustering coefficient is 

always zero when using Minimum Spanning Tree filtering, regardless of any other network construction 

choice. Box-plot center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile 

range. 
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Figure S37. Pipelines’ ranked performance for each criterion and dataset, sorted by overall rank. 

Left: For the Pdiv criterion, best performance refers to the smallest PDiv; for the propofol criterion, best 

performance is the greatest t-score in the correct direction; for the within-between criterion, best 

performance means the greatest proportion of participants for whom the within-subjects Pdiv is smaller than 

between-subjects Pdiv; for the motion correlation criterion, best performance is identified as the smallest 

magnitude of correlation with motion. The empty networks criterion is not included, since it is binary. Overall 

rank is the mean across all columns. Right: correlation between each pair of pipelines in terms of 

performance, sorted by overall rank. 
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Figure S38. Statistical comparison of pipelines’ performance as a function of binarization choice. 

Performance is quantified as overall rank (mean rank across all criteria and datasets, with lower rank 

indicating better performance). Top: Each data-point indicates one pipeline. The empty-networks criterion 

was not included: instead, pipelines failing this criterion were excluded from the analysis. Box-plots indicate 

the median and inter-quartile range of each distribution. Bottom: ranked performance across all datasets 

and criteria, with pipelines sorted by binarization choice. Box-plot center line, median; box limits, upper and 

lower quartiles; whiskers, 1.5x interquartile range. ***, p < 0.001 from independent samples t-test (two-

sided). 



36 
 

 

Figure S39. Statistical comparison of pipelines’ performance as a function of edge type. 

Performance is quantified as overall rank (mean rank across all criteria and datasets, with lower rank 

indicating better performance). Top: Each data-point indicates one pipeline. The empty-networks criterion 

was not included: instead, pipelines failing this criterion were excluded from the analysis. Box-plots indicate 

the median and inter-quartile range of each distribution. Bottom: ranked performance across all datasets 

and criteria, with pipelines sorted by edge type. Box-plot center line, median; box limits, upper and lower 

quartiles; whiskers, 1.5x interquartile range. ***, p < 0.001 from independent samples t-test (two-sided). 
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Figure S40. Statistical comparison of pipelines’ performance as a function of filtering scheme. 

Performance is quantified as overall rank (mean rank across all criteria and datasets, with lower rank 

indicating better performance). Top: Each data-point indicates one pipeline. The empty-networks criterion 

was not included: instead, pipelines failing this criterion were excluded from the analysis. Box-plots indicate 

the median and inter-quartile range of each distribution. Bottom: ranked performance across all datasets 

and criteria, with pipelines sorted by filtering scheme. Box-plot center line, median; box limits, upper and 

lower quartiles; whiskers, 1.5x interquartile range.  
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Figure S41. Statistical comparison of pipelines’ performance as a function of parcellation scale. 

Performance is quantified as overall rank (mean rank across all criteria and datasets, with lower rank 

indicating better performance). Top: Each data-point indicates one pipeline. The empty-networks criterion 

was not included: instead, pipelines failing this criterion were excluded from the analysis. Box-plots indicate 

the median and inter-quartile range of each distribution. Bottom: ranked performance across all datasets 

and criteria, with pipelines sorted by parcellation scale. Box-plot center line, median; box limits, upper and 

lower quartiles; whiskers, 1.5x interquartile range.  
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Figure S42. Statistical comparison of pipelines’ performance as a function of parcellation type. 

Performance is quantified as overall rank (mean rank across all criteria and datasets, with lower rank 

indicating better performance). Top: Each data-point indicates one pipeline. The empty-networks criterion 

was not included: instead, pipelines failing this criterion were excluded from the analysis. Box-plots indicate 

the median and inter-quartile range of each distribution. Bottom: ranked performance across all datasets 

and criteria, with pipelines sorted by parcellation type. Box-plot center line, median; box limits, upper and 

lower quartiles; whiskers, 1.5x interquartile range. 
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Figure S43. Statistical comparison of pipelines’ performance as a function of GSR use. Performance 

is quantified as overall rank (mean rank across all criteria and datasets, with lower rank indicating better 

performance). Top: Each data-point indicates one pipeline. The empty-networks criterion was not included: 

instead, pipelines failing this criterion were excluded from the analysis. Box-plots indicate the median and 

inter-quartile range of each distribution. Bottom: ranked performance across all datasets and criteria, with 

pipelines sorted by GSR use. Box-plot center line, median; box limits, upper and lower quartiles; whiskers, 

1.5x interquartile range. 

 


