
A variational approach to
frame-indifferent quasistatic
viscoelasticity of rate type

Yasemin Şengül
School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK

 YŞ, 0000-0001-5923-3173

The three-dimensional dynamical model for
nonlinear viscoelasticity of strain-rate type is
investigated in a quasistatic setting under the
assumption of higher-order regularity of the
deformation, which in the literature is referred
to as the case of non-simple materials. The
existence of weak solutions is proven using a
time-discretization technique while respecting the
condition of dynamical frame indifference. Some
observations on frame indifference for strain-rate-
type stresses are made, and corrections are proposed
for some related work in the literature. Finally, a
counterexample is given to show that the assumed
higher-order regularity is necessary in order to obtain
the required compactness.

This article is part of the theme issue ‘Non-smooth
variational problems with applications in mechanics’.

1. Introduction
The requirement for a well-posed qualitative mathemat-
ical theory for properly formulated dynamics, based
on fundamental physical principles, has been recog-
nized for a long time. In order to realize this pur-
pose, one needs to have answers to some questions
that can be stated generally for any evolution equation
associated with a non-elliptic variational integral. This
paper aims to address the question of the existence of
solutions for frame-indifferent viscoelastic models of
rate type. An extensive overview of such models can
be found in a study by Şengül [1]. These dynamical
models have been successfully studied in the literature,
including the one-dimensional case [2–5], the general
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three-dimensional case [6–8] and the thermodynamical case when temperature dependence is
also taken into account [9].

In a study by Şengül [10], for the first time, quasistatic approximation was considered in
the context of nonlinear viscoelasticity of rate type and a variational approach was introduced
in a three-dimensional setting for the existence of solutions while handling the dynamical
frame indifference of the stress. Following the study by Şengül [10], in Ball & Şengül [11],
the one-dimensional problem was studied, which was proved to be equivalent to a gradient
flow owing to the quasistatic nature of the governing equations resulting from neglecting the
inertia term. Similarly, in Mielke et al. [12], the quasistatic case was considered and a variational
approach was adopted via metric gradient flows. After the study by Şengül [10], approximating
dynamical models by the corresponding quasistatic equations has been adopted by many
studies in various contexts. However, none of the studies for such rate-type viscoelastic models
have been successful in obtaining well-posedness while dealing with the requirement of frame
indifference.

The main difference between the current work and the model investigated by Şengül [10] is
that here a higher-order gradient term is included in the equation of linear momentum balance
in order to obtain the necessary compactness while passing to the limit after the application
of a time-discretization method. More precisely, a term including the second gradient of the
deformation is added to the system, representing the strain gradient. Materials with such models
are called non-simple materials. These models have been successfully studied in the literature in
various contexts, the most relevant to the current work being by Friedrich & Kružík [13], Badal
et al. [14], Krömer & Roubíček [15] and Mielke & Roubíček [16]. More precisely, in [13] and
[15], the same model considered here is investigated. However, the focus of the first work is
more on the linearized case rather than large strains, while the latter one focuses on possible
self-contact in deformed configuration. In [16], the same model is coupled with a suitable heat
equation so that thermal effects are also taken into account. While this makes the system to be
studied more general, the analysis is more complicated, and some restrictions are put into place,
including regularization of the mechanical equation with a strain-rate term in order to handle
the necessary compactness. More recently, [14] studied thermoviscoelasticity in a quasistatic
setting by refining the results obtained in [16].

The present work contributes to the above-mentioned literature in three ways. Firstly, new
investigations are proven for frame-indifferent stresses of rate type as well as the correspond-
ing dissipation potentials. Also, some expressions of frame indifference in the literature are
proven to be incorrect. Secondly, weak solutions to frame-indifferent quasistatic viscoelasticity
in the context of non-simple materials are proven to exist using a variational approach and by
applying a time-discretization method. While this can be seen to be less general as a special case
of the systems investigated in [16] and [14] owing to being isothermal, the analysis is rather
clear, focusing solely on the mechanical equation, in particular, on a specific viscoelastic part of
the stress tensor. Thirdly, a counterexample is given in the static case, which can be viewed as
the state at each fixed time step, showing that without the inclusion of the strain-gradient term
in the model, it is not possible to obtain compactness, leading to the existence of solutions.

The content of the paper is as follows. In §2, we describe some preliminary notions that
will be used throughout the paper. Then, in §3, we introduce the governing equations to be
studied. §4 is devoted to frame indifference, with some observations about rate-type stresses
and dissipation potentials and corrections to some statements in the literature. In §5, we state
the assumptions, introduce the time-discretization scheme and prove the main result. Finally, in
§6, we give our counterexample before the concluding remarks in the last part.
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2. Preliminaries
For a homogeneous elastic body with a reference configuration Ω ⊂ ℝ3 and with unit reference
density, a motion is an evolution of diffeomorphisms y( ⋅ , t):Ω ℝ3, where t ∈ [0,T] ⊂ ℝ. The
deformation gradient at time t is written as ∇y(x, t), or equivalently F, and can be identified with
the n × n matrix of partial derivatives given as

∇y iα = yi,α =
∂yi
∂xα .

We would like our model to be physically realistic, and hence it is necessary to avoid interpene-
tration of matter so that two distinct material points cannot simultaneously occupy the same
position in space. In order to ensure this, it is required that for (almost) every t, the actual
position field y( ⋅ , t) is injective. This is equivalent to saying that the deformation y is invertible
in Ω. We can still allow some cases where, for example, self-contact occurs on the boundary (see
[17] for more information). Therefore, it is enough to assume that the admissible deformations
satisfy the constraint

(2.1)det ∇y x, t > 0,

ensuring that the admissible deformations are orientation-preserving and locally invertible. As
discussed by Ball [17] via some examples, however, local invertibility does not imply global
invertibility.

An elastic material is hyperelastic if there exists a function W :Ω × GL+(3) ℝ differentiable
with respect to the variable F ∈ GL+(3) for each x ∈ Ω such that the first Piola–Kirchhoff stress
tensor is given by

(2.2)TR x, F = ∂W∂F x, F .

Here, GL+(3) denotes the set of matrices in ℝ3 × 3 with positive determinant. The function W  is
called the stored-energy function. Naturally, if the material is homogeneous, it is a function of F
only (cf. [18,19]), which is the case we consider in this work. As noted by Ball [17], this is more
restrictive than saying that Ω is occupied by the same material at each point, since it is possible
to have some pre-existing stresses. We can also define the second Piola–Kirchhoff stress tensor as

(2.3)T(x, F) = F−1TR(x, F),

and the Cauchy stress tensor as

(2.4)T x, F = det F −1TR x, F FT .

The elastic energy corresponding to the deformation y is defined as

(2.5)I y =
  Ω
W ∇y x, t dx .

Unless stated otherwise, we will make the following convention that the initial free energy is
finite, that is,

  Ω
W ∇y x, 0 dx < ∞ .

The matrix

(2.6)C = ∇yT∇y
is called the right Cauchy–Green strain tensor. It is symmetric and is positive-definite where ∇y is
non-singular.
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3. Modelling
We use the Lagrangian formulation in the domain Ω ⊂ ℝ3 bounded with a smooth boundaryΓ. We consider the time variable t ∈ [0,T]. A generalization of Kelvin–Voigt type viscoelasticity
can be modelled as

(3.1)ÿ −Div DW(∇y) −Div S(∇y, ∇ẏ) − f(t) = 0,

where the constitutive equation for the first Piola–Kirchhoff stress tensor readsTR = W(∇y) + S(∇y, ∇ẏ) with S being the viscoelastic part, and f(t) is the external mechanical
loading, which might consist of a dead force and boundary traction. Here, the superposed dot
stands for the time derivative.

In this paper, we have two main postulates: firstly, we consider the quasistatic approxima-
tion for (3.1), meaning that the inertial effects are neglected; secondly, in order to gain enough
regularity to handle the physical nonlinearities, we make the assumption that there is an energy
contribution coming from the strain gradient. As a result, the total free energy (2.5) becomes

(3.2)E y t : =
  Ω

W ∇y +H(∇2y) dx,

where H = H ∇F  is the potential corresponding to the elastic hyperstress. As mentioned in

the Introduction, materials with such elastic energy are referred to as second-grade or non-simple
materials in the literature. Unfortunately, the problem of the existence of solutions for simple
materials, that is, without having the higher-order gradient term, is still open both in the
quasistatic and dynamical cases. We can introduce the dissipation potential Ψ  as

(3.3)DHΨ(F,H) = S(F,H) .

As a result, the balance of linear momentum in the quasistatic case implies

(3.4)Div DW F −DivH′ ∇F + Div S F, Ḟ = f t .

In this paper, we are interested in the existence of solutions of (3.4), which can also be viewed as
an abstract gradient flow. In the case of simple materials in one space dimension, it is explicitly
shown by Ball & Şengül [11] that this model is equivalent to the equation of gradient flows.

We impose the following initial conditions

(3.5)y(x, 0) = y0 on Ω .

For boundary conditions, for simplicity and without loss of generality, we only consider f(t)
being a time-dependent dead force given as

(3.6)f: [0,T] × Ω ℝ3 .

The reader is referred to a recent paper by Mielke & Roubíček [16] for the treatment of
boundary conditions including traction.

4. Frame indifference
(a) Definition and mathematical expression
The mechanical behaviour of materials is governed by some general principles, one of which is
the principle of frame indifference. As a general axiom in physics, it states that the response of a
material must be independent of the observer (e.g. [20]). In particular, it restricts the form of the
constitutive functions and thus plays an important role in nonlinear continuum mechanics. We
state it as follows:
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The Principle of Frame Indifference (Objectivity): Constitutive functions are invariant under rigid motions.

In order to express this principle as a mathematical condition, we first note that a change
of observer can be seen as the application of rigid-body motions on the current configuration.
Since a rigid-body motion consists of a translation and a rotation, in each of these motions, the
relative positions of the points of the material remain the same. As the deformation gradient is
not affected by the translations of the origin, if the body undergoes a rigid body motion, then
the corresponding expression for the stress becomes

T~R(x, t~) = R(t)TR(x, t), t~ = t + a, a ∈ ℝ .

A formal mathematical statement can be given by the following result.
Lemma 4.1. Any frame-indifferent stress tensor S(F, Ḟ) can be written as

(4.1)S(F, Ḟ) = R S(U , U̇),

where R ∈ SO(3) and U is the right Cauchy–Green stretch tensor. Here, SO(3) denotes the set of
rotations in ℝ3.

Proof. By the polar decomposition theorem (refer e.g. [21]), we have

RTS(F, Ḟ) = S(RTF,RTF˙ ) = S(RTRU , ṘTF + RTḞ)

= S(U , ṘTRU + RT(ṘU + RU̇))

= S(U , (ṘTR + RTṘ)U + U̇) = S(U , U̇)

as required. ∎
We can obtain a more convenient form of (4.1) by using the second Piola–Kirchhoff stress

tensor as follows:

T(F, Ḟ) = F−1 S(F, Ḟ) = U−1 S(U , U̇) = :G(C, Ċ) .

Thus, we have

(4.2)S(F, Ḟ) = F G(C, Ċ) .

It is also worth mentioning that rotations are involved in both material symmetry and frame
indifference, but they act differently. More precisely, in material symmetry, the rotation acts
in the reference configuration, and in frame indifference, the rotation acts in the deformed
configuration. Therefore, it is not possible to obtain one variant by rotating another. In other
words, given symmetric matrices U1 and U2, it is not possible to find a rotation R such thatRU1 = U2, since this would be inconsistent with the uniqueness property stated in the polar
decomposition theorem.

(b) Further observations on frame indifference
This section is devoted to some trivial but crucial observations we make on frame indifference.

Lemma 4.2. Any frame-indifferent stress S(F, Ḟ) should satisfy

S(F, Ḟ): Ḟ = 1
2 G(C, Ċ): Ċ .

Proof. We know by (4.2) that any frame-indifferent S(F, Ḟ) takes the form S(F, Ḟ) = F G(C, Ċ).
Therefore, using the fact that G(C, Ċ) is symmetric, we get

S(F, Ḟ): Ḟ = F G(C, Ċ): Ḟ = G(C, Ċ):FTḞ = G(C, Ċ): ḞTF
= G(C, Ċ): 1

2  ḞTF + FTḞ = 1
2 G(C, Ċ): Ċ

5
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as required. ∎
Lemma 4.3. The condition

(4.3)G(C, Ċ): Ċ ≥ γ | Ḟ |2 ,    γ > 0    a constant,

contradicts frame indifference.
Proof. Assume for contradiction that there exists a frame-indifferent S satisfying (4.3). By

lemma 4.2, we have

S(F, Ḟ): Ḟ ≥ γ | Ḟ |2     ⇔     G(C, Ċ): Ċ ≥ 2 γ | Ḟ |2 .

Choosing F = R t = exp Kt  ∈  SO 3 , where K is skew, we get

Ḟ = K exp(Kt)    and    | Ḟ |2 = |K |2 ≠ 0.

However, C = FTF = RTR = 1 implies Ċ = 0, giving a contradiction. ∎
Remark 4.1. The condition

G(C, Ċ): Ċ ≥ γ | Ċ|2 ,    γ > 0    a constant,

does not contradict frame indifference as can be seen easily by choosing G(C, Ċ) = Ċ in (4.3).
In contradiction to the claim of Tvedt [7], we have that
Lemma 4.4. The assumption

(4.4)S(F, Ḟ) − S(F, Ḣ) : (Ḟ − Ḣ) ≥ γ | Ḟ − Ḣ |2  ,   γ > 0

is incompatible with frame indifference.
Proof. If, for contradiction, the claim was true, then there would exist a frame-indifferent S

satisfying (4.2) so that (4.4) would give

(4.5)(F G(C, Ċ) − F G(C, ḢTF + FTḢ)): (Ḟ − Ḣ) ≥ γ | Ḟ − Ḣ |2 .

Let us define A: = G(C, Ċ) − G(C, ḢTF + FTḢ) so that we get

(F G(C, Ċ) − F G(C, ḢTF + FTḢ)): (Ḟ − Ḣ) = A : FT(Ḟ − Ḣ) =

= 1
2 A + AT : FT(Ḟ − Ḣ) = 1

2 A:FT(Ḟ − Ḣ) + AT :FT(Ḟ − Ḣ)

= 1
2 A:FT(Ḟ − Ḣ) + A: (Ḟ − Ḣ)T F = 1

2 A : FT(Ḟ − Ḣ) + (Ḟ − Ḣ)T F
= 1

2 A : FTḞ − FTḢ + ḞTF − ḢTF = 1
2 A : Ċ − (FTḢ + ḢTF) .

Therefore, (4.5) is now equivalent to

1
2 G(C, Ċ) − G(C, ḢTF + FTḢ) : Ċ − (FTḢ + ḢTF) ≥ γ | Ḟ − Ḣ |2 .

However, for any given G, we can choose F = I in this inequality and obtain

1
2 G(1, ḞT + Ḟ) − G(1, ḢT + Ḣ) : ḞT + Ḟ − Ḣ − ḢT ≥ γ | Ḟ − Ḣ |2 .

Choosing Ḟ = 0 now gives

1
2 G(1, 0) − G(1, ḢT + Ḣ) : ( − Ḣ − ḢT) ≥ γ | − Ḣ |2 .

Finally, choosing Ḣ to be a non-zero and skew matrix makes the left-hand side vanish, whereas
the right-hand side remains positive. This gives a contradiction proving the claim. ∎

Contradicting the claim of Antman [22] we have that
Lemma 4.5. The following statement is incompatible with frame indifference.
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(4.6)S(F, Ḟ + Ḣ) − S(F, Ḟ) : Ḣ > 0 ; ∀ Ḣ ≠ 0,∀ Ḟ .

Proof. If, for contradiction, the claim was true, then there would exist a frame-indifferent stress
tensor S satisfying (4.2), and (4.6) would be equivalent to

F[G(FTF, (Ḟ + Ḣ)TF + FT(Ḟ + Ḣ)) − G(FTF, ḞTF + FTḞ)] : Ḣ > 0,∀ Ḣ ≠ 0 and ∀ Ḟ .

Taking F = I in this inequality gives

G(1, (Ḟ + Ḣ)T + (Ḟ + Ḣ)) − G(1, ḞT + Ḟ) : Ḣ > 0.

Letting Ḟ be skew reduces it further to

G(1, ḢT + Ḣ) − G(1, 0) : Ḣ > 0.

We can choose Ḣ to be a non-zero and skew matrix, which will make the left-hand side vanish,
giving a contradiction. ∎
(c) Dissipation potentials
In this section, we aim to show that it is possible to have convex (in Ḟ) potential functionsΨ(F, Ḟ) leading to frame-indifferent viscoelastic stress S(F, Ḟ) as a result of the relation (3.3).

Lemma 4.6. Let

(4.7)Ψ(F,H) = 1
4  |FT H + HTF |2 .

Then, Ψ(F,H) is convex in H, and

S(F, Ḟ): = ∂Ψ
∂Ḟ  (F, Ḟ) = F ḞT F + FT Ḟ = F Ċ,

which is frame-indifferent.
Proof. The convexity of Ψ(F,H) follows immediately from the fact that it is a non-negative

quadratic form in H . We now show that S(F, Ḟ) = F Ċ . We have
∂Ψ
∂H (F,H) = 1

4
∂

∂Hkβ |FTH + HTF |2 =

= 1
2 FαiHαj + Hαi Fαj Fαi δkα δjβ + δkα δiβ Fαj

= 1
2 FTH + HTF ij Fki δjβ + δiβ Fkj

= 1
2 (FTH + HTF)iβ Fki + (FTH + HTF)βj Fkj

= 1
2 (FTH + HTF)βiT FikT + (FTH + HTF)βjFjkT

= 1
2 ((FTH + HTF)T FT)βk + ((FTH + HTF) FT)βk

= 1
2 (FTH + HTF)T + (FTH + HTF) FT kβ

T
= 1

2 HTF + FTH + FTH + HTF FT T
= (FTH + HTF) FT T = F FTH + HTF T
= F (HTF + FTH) .
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As Ċ = ḞTF + FTḞ, putting H = Ḟ above proves the claim. Frame indifference of S(F, Ḟ)
follows immediately from (4.2). ∎

Lemma 4.7. Let

(4.8)Ψ(F,H) = 1
4  |H F−1 + F−T HT |2 .

Then, Ψ(F,H) is convex in H, and

S(F, Ḟ): = ∂Ψ
∂Ḟ (F, Ḟ) = Ḟ F−1 + (Ḟ F−1)T  F−T = F C−1 Ċ C−1,

which is frame-indifferent.
Proof. Following the proof in lemma 4.6 , one can easily show that Ψ(F,H) is convex with

respect to H . Therefore, we skip it here and prove only that S F, Ḟ = F C−1 Ċ C−1, whose frame
indifference follows from (4.2) again. In order to calculate S, we adopt a different approach
from that of the previous result.1 We have

Ψ(F, A + εB) = 1
4 |(A + εB) F−1 + F−T (A + εB)T|2 .

Therefore, we obtainddε ε = 0
Ψ(F, A + εB) = ddε ε = 0

1
4 (AF−1 + F−TAT) + ε(BF−1 + F−TBT)

2

= 1
2(AF−1 + F−TAT): (BF−1 + F−TBT)

= 1
2(AF−1 + F−TAT):BF−1 + 1

2(AF−1 + F−TAT):F−TBT
= 1

2 AF−1F−T + F−TATF−T :B + 1
2 F−1AF−1 + F−1F−TAT :BT

= 1
2 AF−1F−T + F−TATF−T :B + 1

2 F−TATF−T + AF−1F−T :B
= (AF−1F−T + F−TATF−T):B .

This gives

∂Ψ
∂A (F, A) = F−T AT F−T + A F−1 F−T

and hence

∂Ψ
∂Ḟ (F, Ḟ) = F−T ḞT F−T + Ḟ F−1 F−T

= FF−1  F−T ḞT FF−1  F−T + FF−1  F−TFT  Ḟ F−1 F−T
= F F−1F−T  ḞTF  F−1F−T + F F−1F−T  FTḞ  F−1F−T
= F C−1 Ċ C−1

as required. ∎
Remark 4.2. Strict convexity of Ψ(F, ⋅ ) is incompatible with frame indifference (see [6]).
As a result, we conclude that there exist dissipation potentials Ψ  that not only satisfy

convexity but also give frame-indifferent S in (3.3).

1I thank Gero Friesecke for this proof, which is much simpler than the original one.
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5. Existence of solutions
In this section, we prove the existence of weak solutions to (3.4) complemented with initial and
boundary conditions using a time-discretization method as first introduced in Şengül [10] and
Mielke et al. [12], and more recently followed in Mielke & Roubíček [16].

(a) Assumptions and auxiliary results

Throughout the paper, we use the standard notation for Lp as Lebesgue spaces and similarly
for Wk,p Sobolev spaces of functions whose k-th order weak derivatives are in Lp . SpacesWk,p 0,T ; X  denote Banach spaces of mappings from Lp 0,T ; X  whose k-th order weak
derivatives with respect to time variable are also in Lp 0,T ; X  . Also, Hk = Wk, 2 .

We make the following assumptions on the free energy density, the strain-gradient function
and the dissipation potential. It is important to note that, as indicated in Friedrich & Kružík
[13], as a result of the inclusion of the higher-order gradient term, it is not necessary to have any
kind of convexity condition on the stored-energy density function W .

(i) W :GL+(3) → ℝ+ is C2, frame-indifferent and satisfies

(5.1)W(F) ≥ α|F |s + α
( det F)q ,  ∀F ∈ GL+(3),

where α > 0 is a constant, s > 2, q ≥ 3p/(p − 3) (with p > 3) and GL+(3) is as before.
(ii) H:ℝ3 × 3 × 3 → ℝ+ is convex, frame-indifferent and C1 with

(5.2)α|G|p ≤ H(G) ≤ K (1 + |G|p ),  ∀G ∈ ℝ3 × 3 × 3,

where K is a constant, possibly very large, and p > 3.
(iii) Ψ :ℝ3 × ℝ3 ℝ+ is continuous and given by (4.7) so that S(F, Ḟ) = FĊ.
(iv) f(t) ∈ L2([0,T];ℝ3) and y0 ∈ W1, 2(Ω).
We will make use of the following auxiliary results proven in [16] (see also [23]). We include

them here for the convenience of the reader.
Proposition 5.1. Assume that the components W  and H of the energy function E:W2,p(Ω;ℝ3) ℝ

satisfy assumptions (5.1) and (5.2). Then, for each constant C > 0 there is a constant Ĉ > 0 such that all y
with E(y(t)) ≤ C satisfy

‖y‖W2,p ≤ Ĉ,     ‖y‖C1, 1 − 3/p ≤ Ĉ,  det ∇y x ≥ 1/Ĉ,  ‖ ∇y −1‖C1, 1 − 3/p ≤ Ĉ .

Proposition 5.2. For fixed λ ∈ (0, 1) and positive constant K > 1 define the set

SK : = F ∈ Cλ(Ω;ℝ3 × 3); ‖F‖Cλ ≤ K, minx ∈ Ω
det F x ≥ 1/K .

Then, for all K > 1, there exists a constant cK > 0 such that for all F ∈ SK we have

∀v ∈ W1, 2(Ω;ℝ3) :  
  Ω

|FT∇v + ∇v TF |2dx ≥ cK‖v‖W1, 2 .

Combining propositions (5.1) and (5.2), one can obtain the following corollary.
Corollary 5.1. Given C > 0, there exists a CK > 0 such that for all y with E(y(t)) ≤ C we have

∀v ∈ W1, 2 Ω;ℝ3  :  
  Ω

| ∇y T∇v + ∇v T∇y|2dx ≥ CK‖v‖W1, 2 .

We give the definition of a weak solution as follows:
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Definition 5.1. A function y: [0,T] × Ω ℝ3 is called a weak solution of (3.4) with initial
conditions (3.5) and boundary conditions (3.6) if y ∈ L2([0,T];W2,p(Ω,ℝ3)) satisfying det ∇y > 0 as
well as the identity

(5.3)
  0

  T
  Ω

S(F, Ḟ) + DW(F):∇z +H(∇2y) ⋮ ∇2z dx dt =
  0

  T
  Ω
f ⋅ z dx dt,

for all smooth z: [0,T] × Ω ℝ3.
As a result of assumption (iii), testing (3.4) by ẏ and integrating over Ω, we obtain the energy

equality as

  Ω
DW(∇y):∇ẏ dx +

  Ω
| Ċ|2 dx + ddt   Ω

H (∇2y) dx =
  Ω
f(t) ⋅ ẏ dx .

Integrating this equality with respect to time and using (3.2), we obtain

(5.4)E(y(T)) +
  0

  T
  Ω

| Ċ|2 dxdt = E(y(0)) +
  0

  T
  Ω
f t ⋅ ẏ dx dt .

This relation is vital for the a priori estimates we obtain for the solutions in the following
sections.

(b) Time-discretization
In this section, we introduce the variational approach we adopt for the existence of weak
solutions of the equation

(5.5)Div DW(∇y) + S(∇y,∇ẏ) −DivH ′(∇2y) − f = 0,

and define approximate solutions to (5.5) by means of the following implicit time-discretization
scheme. For a fixed time step size τ > 0 and initial data y0 ∈ W1, 2(Ω), we inductively define

        yτ0: = y0

        yτk: = a minimizer of the functional  Jτk y    k ∈ ℕ ,

where

(5.6)Jτk y =
  Ω

W(∇y) + τ Ψ ∇yτk − 1,
∇y −∇yτk − 1τ −DivH (∇2)  dx −

  Ω
fτk ⋅ y dx,

where fτk: = 1τ   k − 1 τ
  kτ f t dt. Note that for k ≥ 1, the minimizers yτk satisfy the Euler–Lagrange

equations

(5.7)
  Ω

DW(∇yτk):∇z + Ψq ∇yτk − 1,
∇yτk −∇yτk − 1τ :∇z + DH (∇2yτk) ⋮ ∇2z − fτk ⋅ z  dx = 0,

for all z ∈ C0
∞ Ω , which represent a weak, time-discretized version of (5.5) for Ψq p, q = S p, q .

For the last term in the integrand, we used Gateaux differentiability of the strain-gradient
density (see [16]).

(c) Existence result
We can now state the result of the existence of minimizers for the discrete scheme.
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Theorem 5.1. Let the assumptions (i), (ii) and (iii) be satisfied. Let yτ0 = y0 be as in (iv), N ∈ ℕ
and τ = T /N. Then for k = 1, 2, …,N, yτk can be found by solving the minimization problem (5.6) whose
minimizers satisfy the time-discretized version of the problem (5.5) in the weak sense as in (5.7).

Proof. By assumptions (5.1) and (5.2), the minimization problem (5.6) is coercive onW2,p(Ω,ℝ3). By assumption (iii), we know that Ψ  is given as in (4.7). By lemma 4.6, we obtain
that

Ψ ∇yτk − 1, ∇y − ∇yτk − 1τ
is convex in y. This implies lower semi-continuity in W1, 2(Ω,ℝ3). As a result, we obtain a
minimizer yτk with E yτk < ∞. Hence, by proposition 5.1, we know that the minimizer satisfies
det  ∇y x ≥ δ > 0. So, yτk satisfies the Euler–Lagrange equation (5.7), which completes the proof.∎

We now define piecewise constant interpolants using the discrete approximations yτk fork = 0, …,N, which is standard in the convergence of discrete schemes. They are given as

(5.8)yτ x, t : = yτk x     for    t ∈ k − 1 τ, kτ .

Now, we prove the a priori estimates for the solutions.
Proposition 5.3. Let assumptions (i)–(iv) be satisfied. Also, assume that Ψ( ⋅ , 0) = 0. Then, there

exists a constant C > 0 such that the piecewise constant interpolants yτ ∈ W2,p given in (5.8) satisfy the
following a priori estimates:

(5.9)

yτ L∞([0,T];W2,p(Ω;ℝ3)) ∩ H1([0,T];H1(Ω;ℝ3)) ≤ C
det∇yτ ≥ 1/C .

Proof. Substituting y = yτk − 1 in (5.6) and using both the assumption that Ψ( ⋅ , 0) = 0 and the fact
that y = yτk is a global minimum, we obtain

  Ω
W(∇yτk) −W(∇yτk − 1) dx +

  Ω
τ Ψ ∇yτk − 1,

∇yτk −∇yτk − 1τ dx
−

  Ω
Div H (∇2yτk) −Div H (∇2yτk − 1) dx ≤ τ

  Ω
fτk ⋅ yτk − yτk − 1τ  dx .

Using Ψ ≥ 0 and

fτk ⋅ yτk − yτk − 1τ ≤ ‖fτk‖H−1
yτk − yτk − 1τ H1

≤ Ĉ ‖fτk‖H−1
∇yτk −∇yτk − 1τ L2

,

we obtain the recursive estimate

E(yτk) − E(yτk − 1) ≤ τC1‖fτk‖H−1
2 + τC2

∇yτk −∇yτk − 1τ L2

2

,

where C,C1 and C2 are generic constants. Using a discrete Grönwall-type estimate for the total
energy together with its definition (3.2), we obtain the desired estimate in L∞([0,T];W2,p(Ω;ℝ3)).
Moreover, by assumption (iii), we know that Ψ  is given as in (4.7). By invoking corollary 5.1 ,
we obtain the desired estimate in H1([0,T];H1(Ω;ℝ3)). ∎

By this proposition, one can conclude that the constant interpolants defined in (5.8) satisfy a
suitable discretized version of (5.5). Now we can prove convergence as τ 0.

Theorem 5.2. Let the assumptions (i)–(iv) hold. Then, as τ 0, there exists a limit function y such
that

11

royalsocietypublishing.org/journal/rsta 
Phil. Trans. R. Soc. A 382: 20230307

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 J

ul
y 

20
24

 



(5.10)yτ y  weakly*  in L∞([0,T];W2,p(Ω;ℝ3)) ∩ H1([0,T];H1(Ω;ℝ3)) .

Also,

(5.11)∇yτ ∇y strongly  in L∞([0,T] × Ω;ℝ3 × 3),

and any such y is a weak solution to (5.5) complemented with the initial and boundary values as in (3.5)
and (3.6). Moreover, it satisfies the energy balance (5.4).

Proof. By the a priori estimates obtained in proposition 5.3, we can extract a subsequence
(which we do not relabel for simplicity) such that (5.10) holds. To obtain (5.11), we argue as
follows (refer also to [16]). By the continuous embedding W1,p(Ω) ⊂ Cγ(Ω) with γ = 1 − 3/p, we
have ∇yτ Cγ ≤ C. Moreover, (5.9) gives the Hölder estimate

∇yτ(t1) − ∇yτ(t2) L2(Ω;ℝ3) ≤ C1 t1 − t2 1/2 ,

for all t1, t2 ∈ [0,T]. Using the interpolation ⋅ Cβ ≤ C ⋅ Cγ1 − α ⋅ L2
α  and the a priori estimated in

proposition 5.3, we can conclude that ∇yτ is uniformly bounded in Cα, leading to the desired
convergence (5.11) by an application of the Arzelá–Ascoli theorem. For the convergence in the
energy balance, we use the form of S given in assumption (iii) and apply Minty’s trick to the
strain-gradient part as a result of (5.11). ∎

We can state the following corollary.
Corollary 5.2. Considering time-discretization for Ċ = (∇ẏ)T∇y + ∇ẏ(∇y)T, where C = FTF is the

right Cauchy–Green stretch tensor, and defining the appropriate constant interpolant Cτ, we obtain

Cτ C strongly in H1([0,T]; L2(Ω)),

where C = (∇y)T∇y.

6. A counterexample
We prove the following result and the counterexample showing that the assumption of strong
convergence is necessary for compactness (refer also to [10]).

Theorem 6.1. Consider the sequence y(j) j = 1
∞  and assume that the following assumptions hold:

(i) y(j) ⇀∗ y in W1,∞ Ω;ℝ3 × 3 as  j→ ∞
(ii) det ∇y,  det ∇y(j) > 0  for a.e. x ∈ Ω and for all j,

(iii) U (j) = ∇y(j)T∇y(j) → U  for a.e. x ∈ Ω  as  j→ ∞ .

Then, ∇yT∇y = U2 holds.
Proof. Assumption (i) immediately gives, by Theorem 3.4 in [24], that

(6.1a)det∇y(j) * det∇y in L∞(Ω)

(6.1b)cof ∇y(j) * cof ∇y in L∞(Ω) .

By assumption (ii) and polar decomposition theorem, we have ∇y j = R j  U j , whereR(j) ∈ SO(3) and U (j) is the right stretch tensor. This gives

det∇y(j) = detR(j) detU (j) = detU (j) .

Therefore, by assumption (iii), we obtain

(6.2)det ∇y j → det U   for a.e.  x ∈ Ω .

Convergences (6.1a) and (6.2) immediately give
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(6.3)det ∇y = det U .

Similarly, we have

cof ∇y j = cof R j  cof U j = R j  cof U j ,

and hence, by (6.1b), we obtain

R(j) cofU (j) * cof ∇y in L∞(Ω) .

This shows that cofU (j) is uniformly bounded, which together with assumption (iii) gives

(6.4)cof U j → cof U   in   Lq Ω ,  1 ≤  q < ∞ .

Without loss of generality, we can say that R(j) * R in L∞ Ω , which implies

(6.5)R j ⇀ R   in   Lp Ω ,  1 ≤  p < ∞ .

Choosing q = p′ in (6.4) thus gives

(6.6)R(j) cofU (j) R cofU in L1(Ω) .

Convergences (6.1b) and (6.6) imply that

(6.7)cof∇y = R cof U .

By (6.3) and (6.7) and the fact that cof F = detF  F−T, for any F ∈ GL+ 3 , we obtain

det U  ∇y−T = det ∇y  ∇y−T = cof ∇y = R cof U = R det U  U−T,

giving

(6.8)∇y−T = RU−T .

As we do not know whether R is a rotation and U is symmetric or not, (6.8) is still not enough.
However, by boundedness of ∇y(j) and R j  and assumption (iii), we deduce that

U j → U   in   Lr Ω ,  1 ≤ r < ∞ .

Choosing p = r′ in (6.5) thus gives

(6.9)R(j) U (j) RU in L1(Ω) .

Assumption (i) and (6.9) imply that

(6.10)∇y = RU .

Therefore, by (6.8) and (6.10), we have

(6.11)∇yT ∇y = UT R−1 RU = UT U .

Equations (6.10) and (6.11) prove that R ∈ SO 3 . Hence, by assumption (ii) and the polar
decomposition theorem, we can conclude that U is symmetric, which, by (6.11), immediately
gives the result. ∎

We now state the following crucial remark, which shows that without the inclusion of the
strain-gradient term in the model, we would not be able to obtain theorem 5.2.

Proposition 6.1. If assumption (iii) is not satisfied, then the conclusion of theorem 6.1 does not hold.
Proof. We give the following counterexample in order to prove the claim. Consider the simple

laminate in a two-well problem as shown in Figure 1 formed from gradients A, B satisfyingA − B = a⊗ n with separating interfaces with normal n, the A layers having thickness λ/j and B
layers (1 − λ)/j for 0 < λ < 1.

Let A ∈ SO(3)U1, B ∈ SO(3)U2 and choose
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A = U1 and B = U1 + a⊗ n .

Then, ∇y(j) satisfies (e.g. [17,25])

∇y(j) * λU1 + (1 − λ)(U1 + a⊗ n) = U1 + (1 − λ) a⊗ n = : ∇y .

Therefore,

U = ∇yT∇y = (U1 + (1 − λ) n⊗ a)(U1 + (1 − λ) a⊗ n) .

On the other hand, we could also choose

UAj = U1    and    UBj = U2,

where UA(j) = U (j)(x) x ∈ A and similarly for B . In this case, we would get

U (j) * λU1 + (1 − λ)U2 = :U .

However, λU1 + (1 − λ)U2

and

(U1 + (1 − λ) n⊗ a)(U1 + (1 − λ) a⊗ n)

are not necessarily equal, contradicting the conclusion of theorem 6.1. ∎
7. Conclusion
In this contribution, a very long-standing open problem of the well-posedness of nonlinear
viscoelasticity of strain-rate type in high space dimensions while obeying the conditions of
frame indifference is revisited. As a result of the adopted modelling postulates, including
neglecting the inertia term as well as adding a higher-order regularity term for deformation,
the existence of weak solutions is obtained as a result of the application of a time-discretization
method together with a minimization argument. However, the problem of the existence of
solutions for the fully dynamical case without assuming additional regularity of the deforma-
tion is still open. We hope that the observations made, however small, and the counterexample
given will be able to shed some light on the discovery of new methods to be developed or new
approaches to be adopted in order to tackle this problem.

Data accessibility. This article has no additional data.
Declaration of AI use. I have not used AI-assisted technologies in creating this article.

Dy(j)=

l/j (1–l)/j

U1

U2

U1 + aÄn

A B A B A AB

Figure 1. Laminate in a two-well problem. Here Dy stands for ∇y.
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