
Proceedings of the Royal Society of Edinburgh, 135A, 689–702, 2005

Absence of high-energy spectral concentration for
Dirac systems with divergent potentials

M. S. P. Eastham
Department of Computer Science, Cardiff University,
PO Box 916, Cardiff CF24 3XF, UK

K. M. Schmidt
School of Mathematics, Cardiff University,
Cardiff CF24 4AG, UK (schmidtkm@cardiff.ac.uk)

(MS received 14 May 2004; accepted 13 January 2005)

It is known that one-dimensional Dirac systems with potentials q which tend to −∞
(or ∞) at infinity, such that 1/q is of bounded variation, have a purely absolutely
continuous spectrum covering the whole real line. We show that, for the system on a
half-line, there are no local maxima of the spectral density (points of spectral
concentration) above some value of the spectral parameter if q satisfies certain
additional regularity conditions. These conditions admit thrice-differentiable
potentials of power or exponential growth. The eventual sign of the derivative of the
spectral density depends on the boundary condition imposed at the regular end-point.

1. Introduction

By the classical results of Titchmarsh (see [23, § 5.7] and [24, § 5.10]) and Hartman
[14], the spectrum of a one-dimensional Schrödinger operator

l := − d2

dx2 + q(x) (0 � x < ∞) (1.1)

fills the whole real line if limx→∞ q(x) = −∞ subject to the growth condition

q(x) = O(x2) (x → ∞) (1.2)

and certain further restrictions. Thus, for example, Titchmarsh imposes conditions
on q′ and q′′, while Hartman requires q to be decreasing with (1.2) tightened to
o(x2) (see also [5], [12, § 33] and [17]). An example by Halvorsen [13] shows that if
only (1.2) is imposed, the spectrum may have gaps and eigenvalues. On the other
hand, in the presence of suitable regularity, Titchmarsh [23, 24] and Hinton [15]
showed that the spectral measure � is absolutely continuous on the whole real line
(see also [22,25]).

However, this absolute continuity does not necessarily mean that the spectrum is
completely homogeneous; indeed the spectral density �′ may vary and in particular
have local maxima, which are known as points of spectral concentration. Such points
have been observed computationally to be associated with eigenvalues of an unper-
turbed problem which disappear after addition of a perturbation tending to −∞,
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as in the Stark effect, for example [2]. Under certain conditions on the potential,
it is known that the set of spectral concentration points is bounded, that is, the
spectral density is monotonic for large values of the spectral parameter [9].

In this paper, we consider the relativistic analogue of (1.1), the Dirac operator

h := −iσ2
d
dx

+ σ3 + q(x)I2, (1.3)

where

σ2 =
(

0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)

are Pauli matrices,

I2 =
(

1 0
0 1

)

is the unit matrix, and q ∈ L1
loc(0,∞) satisfies

lim
x→∞

q(x) = −∞. (1.4)

At x = 0 we impose a boundary condition

y1(0) cos α − y2(0) sinα = 0, (1.5)

with fixed α ∈ R. At infinity, the Dirac system is in the limit-point case. Hence, the
operator h with boundary condition (1.5) has a unique self-adjoint realization in
the Hilbert space L2(0,∞)2. Its domain is the space of locally absolutely continuous
functions y : [0,∞) → C

2 satisfying (1.5) and such that y, hy ∈ L2(0,∞)2.
Although the Dirac operator has qualitatively similar spectral properties to the

Schrödinger operator, there are also some fundamental differences. For example,
the main part of (1.3) is unitarily equivalent to its negative, so the operators with
potentials q and −q have the same spectra, only with reversed sign of the spectral
parameter. Thus, the condition (1.4), but with +∞ in place of −∞, gives a Dirac
operator with identical qualitative spectral properties but, in contrast, (1.1) then
has a purely discrete spectrum.

It was shown by Erdélyi [10] that the spectrum of (1.3), with (1.4) imposed, is
purely absolutely continuous and covers the whole real line if∫ ∞ |q′|

q2 < ∞ (1.6)

for absolutely continuous q. More recently, it was shown by Schmidt [19] that (1.6)
can be weakened to the condition that 1/q be a function of bounded variation. This
includes eventually monotonic though not necessarily continuous q, thus vindicat-
ing a conjecture of Rose and Newton [18]. This type of criterion also extends to
spherically symmetric three-dimensional Dirac operators, even with a variable mass
term, provided the latter is dominated by the potential [21]. On the other hand,
(1.4) alone, without a condition of type (1.6), is not sufficient for the spectrum to
fill the real line [20].

In view of these results, it seems a natural question to ask whether the spectral
density of such Dirac operators with purely absolutely continuous spectra can have
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local maxima. Our main result (theorem 4.1) shows that there are no points of
spectral concentration beyond some value of the spectral parameter provided that
q satisfies certain regularity conditions in addition to (1.4) and (1.6). In particu-
lar, we include thrice-differentiable potentials of power or exponential growth. As
a preparatory step for the proof, we develop an integral formula for the spectral
density �′ in § 2, involving the Prüfer angle of a solution of the eigenvalue equa-
tion (theorem 2.3). Along the way, we also find an asymptotic estimate for the
derivative of the Prüfer angle with respect to the spectral parameter (theorem 2.2).
In § 3, we introduce the detailed conditions on q which we require to show that
�′′ is ultimately of one sign, which turns out to depend on the boundary condi-
tion at 0. Section 4 contains the main result and its proof for boundary conditions
with 2α �= π/2 mod π. The exceptional values 2α = π/2 mod π require slightly
stronger regularity of potentials of exponential growth and are dealt with in section
5, leading to an analogous result (theorem 5.1).

2. Asymptotics of solutions and the spectral density

In the case of the Schrödinger operator (1.1) considered in, for example, [1, 3, 7, 8,
11, 24, §§ 5.7 and 5.10], an integral formula for the spectral density is derived as
a consequence of the asymptotic form of the solutions of the equation ly = λy as
x → ∞ (see [6]). Here λ is the complex spectral parameter. A similar approach could
be applied to the Dirac operator (1.3); however, we follow a different strategy here,
motivated by the method used in [19] to prove the boundedness of the solutions of
the corresponding eigenvalue equation with a real spectral parameter; it will in fact
not be necessary to study the complex eigenvalue equation.

Throughout this section, we assume that q satisfies the conditions (1.4) and (1.6).
By (1.4) we can assume that q is bounded from above on [0,∞). Furthermore, since
we are concerned with µ in an interval [µ0,∞), we can assume that µ0 is already
so large that

Q(x, µ) := µ − q(x) > 1 (0 � x < ∞, µ0 � µ < ∞). (2.1)

In order to obtain the asymptotics of the solutions of the eigenvalue equation

hy = µy (2.2)

with µ ∈ R, it proves convenient to introduce the Prüfer transformation

y1(x, µ) = u(x, µ) sin ϑ(x, µ), y2(x, µ) = u(x, µ) cos ϑ(x, µ),

where

y =
(

y1

y2

)
and u =

√
y2
1 + y2

2 > 0.

The eigenvalue equation (2.2) is then equivalent to the pair of differential equations

ϑ′ = µ − q + cos 2ϑ (2.3)

and

(log u)′ = sin 2ϑ. (2.4)
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The second equation gives

u(t, µ) = u(0, µ) exp
(∫ t

0
sin 2ϑ(x, µ) dx

)
(2.5)

directly. The boundary condition (1.5) leads to the initial condition ϑ(0, µ) = α.

Theorem 2.1. Let q satisfy (1.4) and (1.6), and let ϑ, u be Prüfer variables of a
solution of (2.2) with initial values

ϑ(0, µ) = α, u(0, µ) = 1. (2.6)

Then

(i) there are positive constants C and c such that c � u(x, µ) � C on [0,∞) ×
[µ0,∞);

(ii) u(x, µ) = 1 + o(1) (µ → ∞), where the o(1) term is uniform in x;

(iii) u(∞, µ) := limx→∞ u(x, µ) exists and u(∞, µ) = 1 + o(1) (µ → ∞).

Proof. Observing that
(

log
q − µ − cos 2ϑ

q − µ

)′
=

q′ cos 2ϑ

(q − µ)(q − µ − cos 2ϑ)
− 2 sin 2ϑ,

we find, using (2.5), that

2 lim
x→∞

log u(x, µ) =
∫ ∞

0
2 sin 2ϑ

= log
q(0) − µ − cos 2α

q(0) − µ
+

∫ ∞

0

q′ cos 2ϑ

(q − µ)(q − µ − cos 2ϑ)
; (2.7)

the integral, and hence the limit in (iii), exists by virtue of (1.6) and (2.1). It is
clear that both the logarithm and the integral are bounded for µ ∈ [µ0,∞); the
former is O(1/µ) (µ → ∞), whereas the latter is bounded above by

∫ ∞

0
|q′|(µ0 − q − 1)−2

and tends to 0 as µ → ∞ by Lebesgue’s dominated convergence theorem.

For later use, we observe that theorem 2.1 also yields an asymptotic estimate for
the derivative of the Prüfer angle ϑ with respect to the spectral parameter.

Theorem 2.2. Under the hypotheses of theorem 2.1,

∂ϑ

∂µ
(x, µ) = x(1 + o(1)) (µ → ∞),

where the o-term is uniform in x ∈ [0,∞).
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Proof. Together with (2.4), differentiation of (2.3) with respect to µ gives(
∂ϑ

∂µ

)′
= 1 − 2(log u)′ ∂ϑ

∂µ
,

from which it follows that
∂ϑ

∂µ
(x, µ) =

1
u2(x, µ)

∫ x

0
u2(t, µ) dt, (2.8)

the two sides agreeing at x = 0 because of (2.6). Hence,

1
x

(
x − ∂ϑ

∂µ
(x, µ)

)
=

1
x

∫ x

0

(
1 − u2(t, µ)

u2(x, µ)

)
dt → 0 (µ → ∞)

uniformly in x, by theorem 2.1 (ii).

We now proceed to derive the following convenient formula for the spectral den-
sity.

Theorem 2.3. Let q satisfy (1.4) and (1.6), and let ϑ, u be the Prüfer variables
for a solution of (2.2) with the initial values (2.6). Then the spectral density of h
satisfies

π�′
α(µ) =

1
u2(∞, µ)

= exp
(

−2
∫ ∞

0
sin 2ϑ(x, µ) dx

)
. (2.9)

Proof. We use the definition of the spectral function �α as a limit of the spectral
functions of regular problems on a finite interval. For b ∈ (0,∞), the boundary-value
problem for h on (0, b) with the boundary condition

y(b) ·
(

cos β

− sin β

)
= 0

has the spectral (step) function

�αβ(b, µ) =
∑

λ e.v.

1∫ b

0 u2(x, λ) dx
, (2.10)

where the sum extends over all eigenvalues λ of this restricted boundary-value
problem which lie in the interval (µ0, µ] (see [16, ch. 3, § 1]).

For a given b, we denote these eigenvalues by λK(β), λK+1(β), . . . , λL(β) and we
consider β to be varying between 0 and π. The Prüfer angle at b is a monotonically
increasing function of the spectral parameter (see, for example, (2.8)) and, in view
of the boundary condition at b,

ϑ(b, λr(β)) = β + rπ (2.11)

holds. Hence λr(β) varies monotonically between λr−1(π) and λr(π) as β varies
between 0 and π. Therefore, integration of (2.10) with respect to β gives∫ π

0
�αβ(b, µ) dβ =

∫ π

λ−1
K (µ0)

1∫ b

0 u2(x, λK(β)) dx
dβ +

∫ π

0

1∫ b

0 u2(x, λK+1(β)) dx
dβ

+ · · · +
∫ λ−1

L (µ)

0

1∫ b

0 u2(x, λL(β)) dx
dβ
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=
∫ λK(π)

µ0

1∫ b

0 u2(x, λ) dx

∂ϑ(b, λ)
∂λ

dλ

+
∫ λK+1(π)

λK(π)

1∫ b

0 u2(x, λ) dx

∂ϑ(b, λ)
∂λ

dλ

+ · · · +
∫ µ

λL−1(π)

1∫ b

0 u2(x, λ) dx

∂ϑ(b, λ)
∂λ

dλ,

by a change of variables. Hence, by (2.8), we obtain
∫ π

0
�αβ(b, µ) dβ =

∫ µ

µ0

dλ

u2(b, λ)
. (2.12)

We now wish to let b → ∞ under the integral sign on each side of (2.12), and
we shall justify this process by dominated convergence. We consider the left-hand
side of (2.12) first. As a consequence of theorem 2.1, equation (2.2) has no L2(0,∞)
solutions and hence (1.3) has a purely continuous spectrum and is in the limit-point
case at ∞; thus

�α(µ) = lim
b→∞

�αβ(b, µ) (2.13)

for all µ � µ0 independently of β (see [4, ch. 9, theorem 3.1]). Next we observe that
�αβ(b, µ) is bounded uniformly with respect to both b and β. Indeed, by (2.11),
(2.8) and theorem 2.1 (i), we have

(L − K)π = ϑ(b, λL(β)) − ϑ(b, λK(β))

=
∫ λL(β)

λK(β)

∫ b

0 u2(t, λ) dt

u2(b, λ)
dλ

� (λL(β) − λK(β))
bC2

c2

� (µ − µ0)b
C2

c2 .

Hence, by (2.10),

�αβ(b, µ) � L − K + 1
bc2 � (µ − µ0)C2

πc4 +
1

bc2 .

Thus, by dominated convergence in (2.13), the left-hand side of (2.12) converges to
π�α(µ) as b → ∞.

On the right-hand side of (2.12), we again apply theorem 2.1 and dominated
convergence to obtain finally

�α(µ) =
1
π

∫ µ

µ0

dλ

u2(∞, λ)
.

Thus, �α is absolutely continuous with its derivative given by (2.9); the exponential
form in (2.9) follows using (2.5) and (2.6).
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The expression (2.9) has obvious similarities with the case of (1.1) considered
in [1,3,7,8], but here the conditions on q are quite different. On the face of it, (2.9)
presents an additional difficulty for large µ because, in contrast to the formula used
in [1, 3, 7, 8], it does not contain inverse powers of µ. However, in the next two
sections we develop a new and efficient method of dealing with (2.9). The aim is to
show that �′′

α(µ) > 0, implying that the spectral density has no local maximum, for
sufficiently large µ. Since, therefore, a µ-derivative of (2.9) is involved, the estimate
for ∂ϑ/∂µ in theorem 2.2 will play an essential role.

3. Conditions on q

We give now some more detailed conditions on q which, in addition to (1.4) and
(1.6), lead to estimates as µ → ∞ for certain integrals involving q and its first three
derivatives. These estimates will be required in our main result in theorem 4.1. We
give two sets of conditions, which, apart from a common lower growth estimate for
|q|, represent power growth of q and exponential growth of q, respectively.

Condition (P). For x in some interval (X, ∞), let

|q(x)| � cxa (3.1)

and
|q(k)(x)| � Cxa−k (k ∈ {1, 2, 3}),

where a, c and C are positive constants.

Condition (E). Let (3.1) hold again and, for some δ < 1 and for any ε > 0, let

xq(k)/|q|1+δ ∈ L(0,∞) (k ∈ {1, 2, 3}),

and

q′(x)/|q(x)|1+ε = O(1) (x → ∞).

Remarks.

(1) Both conditions imply that (1.6) holds. This is obvious in the case of (P).
For (E), note that

q′

q2 =
xq′

q1+δ

1
xq1−δ

= o

(
xq′

q1+δ

)
∈ L(0,∞),

where we have used δ < 1.

(2) Both conditions imply that

xq′′

q2 = o(1),
xq′

q2 = o(1) (x → ∞). (3.2)

This is again obvious in the case of (P). For (E), we have
(

xq′′

q1+δ+ε

)′
=

xq′′′

q1+δ+ε
+

q′′

q1+δ+ε
− (1 + δ + ε)

xq′q′′

q2+δ+ε
.
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Each of the three terms on the right is integrable at infinity, and hence
xq′′/q1+δ+ε approaches a finite limit as x → ∞. Choosing ε < 1 − δ gives
the first result in (3.2), and the second is proved similarly.

(3) Condition (E) allows both subexponential and superexponential growth of |q|,
such as exp(

√
x) and exp(x2).

In the following lemma, we give the estimates that we require on the basis of
either set of conditions.

Definition 3.1. Let m, n, s1, s2, s3 be non-negative integers with m, n � 1. Let
Q be as in (2.1), ϑ a solution of (2.3), and let f be either sin 2nϑ or cos 2nϑ. Then
the integral

I(µ) :=
∫ ∞

0

(q′)s1(q′′)s2(q′′′)s3

Qm
f (3.3)

is said to be of type (m; s1, s2, s3).

The integrals I(µ) which arise in §§ 4 and 5 all have s2, s3 ∈ {0, 1}, but part (a)
of the following lemma holds in greater generality.

Lemma 3.2. Let I(µ) be as in (3.3), and define σ :=
∑3

j=1 sj, τ :=
∑3

j=1 jsj.

(a) Let condition (P) hold, let m > 2, and let

m − σ +
τ − 2

a
> 2. (3.4)

Then
dI(µ)
dµ

= o(µ−2) (µ → ∞). (3.5)

(b) Let condition (E) hold, and let the pair (s2, s3) be one of (0, 0), (1, 0) and
(0, 1). Also, let

m − σ > 2 + δ if σ �= 0, (3.6)

m > 2 +
2
a

if σ = 0. (3.7)

Then (3.5) again holds.

Proof. The derivative dI(µ)/dµ is a linear combination of the integrals
∫ ∞

0

(q′)s1(q′′)s2(q′′′)s3

Qm+1 f and
∫ ∞

0

(q′)s1(q′′)s2(q′′′)s3

Qm
f̃

∂ϑ

∂µ
, (3.8)

where f̃ is also either sin 2nϑ or cos 2nϑ. Because of theorem 2.2, the first integral
in (3.8) is dominated by the second in both cases, and we therefore focus on the
latter.

(a) Using theorem 2.2, we can estimate the second integral in (3.8) by a multiple
of ∫ ∞

0

(xa−1)s1(xa−2)s2(xa−3)s3x

(µ + cxa)m
dx,
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which, on splitting the integration at the point X and substituting x = µ1/at,
becomes

O(µ−m) + µ−m+σ−(τ−2)/a

∫ ∞

µ−1/aX

taσ−τ+1

(1 + cta)m
dt.

This integral converges at t = ∞ in view of (3.4), and its value converges or diverges
as µ → ∞ accordingly as aσ − τ + 2 is positive or otherwise. In either case, we
obtain the estimate O(µ−m) + o(µ−2) = o(µ−2) because of (3.4) and m > 2.

(b) In the case σ = 0 (and hence τ = 0), the assertion is proved as in part (a),
using assumption (3.1).

Otherwise, we consider first s2 = s3 = 0, making σ = s1 � 1. Then we obtain
the estimate of the second integral in (3.8),

∫ ∞

0

(
|q′(x)|

Q(x, µ)1+ε

)σ−1
x|q′(x)|

Q(x, µ)1+δ

1
Q(x, µ)m−(σ−1)(1+ε)−1−δ

dx. (3.9)

The power of Q in the denominator is positive if ε is small enough, because m −
(σ − 1) − 1 − δ = m − σ − δ > 2 by (3.6). Now Q � µ + |q| by (2.1), and we use
both Q � µ and Q � |q| to find that (3.9) is estimated by

µ−m+(σ−1)(1+ε)+1+δ

∫ ∞

0

(
|q′(x)|

|q(x)|1+ε

)σ−1
x|q′(x)|
|q(x)|1+δ

dx.

The integral here exists by the assumptions of condition (E), and the estimate
o(µ−2) follows from (3.6), again by suitable choice of ε.

In the cases s2 = 1, s3 = 0 and s2 = 0, s3 = 1, we have σ = s1 + 1 and proceed
as before, the only difference being that x|q′(x)| in (3.9) is replaced with x|q′′(x)|
and x|q′′′(x)|, respectively.

4. Absence of spectral concentration

Theorem 4.1. Let q be a potential satisfying (1.4) and (1.6); furthermore, assume
that q is twice continuously differentiable and q′′ ∈ ACloc(0,∞), and that either
condition (P) or condition (E) holds. Suppose further that

cos 2α �= 0. (4.1)

Then
π�′′

α(µ) = µ−2(cos 2α)(1 + o(1)) (µ → ∞). (4.2)

In particular, there is an interval (M, ∞) which does not contain any points of
spectral concentration.

To prove this theorem, we use (2.9) to consider

π�′′
α(µ) = −2

(
d
dµ

∫ ∞

0
sin 2ϑ

)
exp

(
−2

∫ ∞

0
sin 2ϑ

)
. (4.3)

However, before differentiating under the integral sign in (4.3), we replace this
integral by others which are more obviously convergent. We do this by a process of
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integration by parts, observing that, by (2.3),

1 =
ϑ′ − cos 2ϑ

Q
.

Thus, because of the boundary condition ϑ(0, µ) = α, we have∫ ∞

0
sin 2ϑ =

∫ ∞

0

ϑ′ − cos 2ϑ

Q
sin 2ϑ

=
cos 2α

2Q(0, µ)
+ 1

2

∫ ∞

0

q′

Q2 cos 2ϑ − 1
2

∫ ∞

0

1
Q

sin 4ϑ. (4.4)

We then repeat the process with the new integrals arising in this way, until integrals
emerge whose derivative with respect to µ can be estimated by means of lemma 3.2,
thus yielding the o(1) term in (4.2). We formalize this process in the following
lemma.

Lemma 4.2. Let I(µ) be an integral of type (m; s1, s2, 0). If

lim
x→∞

(q′(x))s1(q′′(x))s2

Q(x, µ)m+1 = 0, (4.5)

then I(µ) is a linear combination of the following terms:

(i) integrals of types (m + 1; s1, s2, 0), (m + 1; s1 − 1, s2 + 1, 0) (if s1 � 1), (m +
1; s1, s2 − 1, 1) (if s2 � 1) and (m + 2; s1 + 1, s2, 0);

(ii) a boundary term Q−(m+1)(0, µ);

(iii) an integral term ∫ ∞

0

(q′(x))s1(q′′(x))s2

Q(x, µ)m+1 dx.

Proof. Indeed, applying the same method as in (4.4), we find that

I(µ) =
∫ ∞

0

(q′)s1(q′′)s2

Qm+1 (ϑ′ − cos 2ϑ)f

=
(q′)s1(q′′)s2

Qm+1 f̃ |∞0 −
∫ ∞

0

s1(q′)s1−1(q′′)s2+1 + (q′)s1s2(q′′)s2−1q′′′

Qm+1 f̃

+
∫ ∞

0

(m + 1)(q′)s1+1(q′′)s2

Qm+2 f̃ −
∫ ∞

0

(q′)s1(q′′)s2

Qm+1 f cos 2ϑ,

where 2nf̃ is either − cos 2nϑ or sin 2nϑ. Because of (4.5), the integrated term
here is the boundary term in (ii). If f = cos 2ϑ in the last integral, we write
f cos 2ϑ = 1

2 (1 + cos 4ϑ) to produce the integral term in (iii) together with an
integral of the type (m+1; s1, s2, 0). Otherwise, f cos 2ϑ produces either one or two
integrals of this type. This completes the proof of the lemma.

Proof of theorem 4.1. Starting from the original integral∫ ∞

0
sin 2ϑ,
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Table 1. Types of integrals arising in the proof of theorem 4.1

integral type generates types

(0; 0, 0, 0) (1; 0, 0, 0), (2; 1, 0, 0)

(1; 0, 0, 0) (2; 0, 0, 0), (3; 1, 0, 0)

(2; 0, 0, 0) (3; 0, 0, 0), (4; 1, 0, 0)E

(2; 1, 0, 0) (3; 1, 0, 0), (3; 0, 1, 0), (4; 2, 0, 0)

(3; 0, 0, 0) (4; 0, 0, 0), (5; 1, 0, 0)E

(3; 1, 0, 0) (4; 1, 0, 0)E, (4; 0, 1, 0)E,P, (5; 2, 0, 0)E,P

(3; 0, 1, 0) (4; 0, 1, 0)E,P, (4; 0, 0, 1)E,P, (5; 1, 1, 0)E,P

(4; 0, 0, 0) (5; 0, 0, 0), (6; 1, 0, 0)E

(4; 1, 0, 0) (5; 1, 0, 0)E, (5; 0, 1, 0)E,P, (6; 2, 0, 0)E,P

(4; 2, 0, 0) (5; 2, 0, 0)E,P, (5; 1, 1, 0)E,P, (6; 3, 0, 0)E,P

(5; 0, 0, 0) (6; 0, 0, 0), (7; 1, 0, 0)E

(5; 1, 0, 0)E (6; 1, 0, 0)E, (6; 0, 1, 0)E,P, (7; 2, 0, 0)E,P

which is of type (0; 0, 0, 0), we obtain two integrals of types (1; 0, 0, 0) and (2; 1, 0, 0)
as shown in (4.4). We then recursively apply lemma 4.2; the types of the resulting
integrals in statement (i) of the lemma are summarized in table 1. The superscript
‘P’ or ‘E’ indicates that integrals of this type satisfy the hypotheses of lemma 3.2
under condition (P) or (E), respectively, and there is therefore no further need to
apply lemma 4.2 to them. The process indicated in table 1 stops fairly quickly
except for integrals of the types

(1) (m; 0, 0, 0) under both conditions (P) and (E);

(2) (m; 1, 0, 0) under condition (P).

In case (1) we have to continue until we reach a value of m > 2 + 2/a by (3.7).
In case (2), we need m > 3 + 1/a by (3.4). (All integrals of other types which are
produced along the way with m � 6 directly satisfy lemma 3.2.)

We now turn to the boundary terms in statement (ii) of lemma 4.2. Apart from
the one given explicitly in (4.4), these terms are all const./Qm+1(0, µ) with m � 1.
The µ-derivative of these terms thus contributes O(µ−3) = o(µ−2) to (4.2).

Turning finally to the integral terms in statement (iii) of lemma 4.2, we note that
such a term first arises because of the cos 2ϑ in an integrand in (4.4) and, explicitly,
this term is

−1
4

∫ ∞

0

q′

Q3 =
1

8Q2(0, µ)
. (4.6)

Other similar terms which arise later in the process have a higher power of Q and
are negligible in comparison as µ → ∞. Thus, after the µ-differentiation, these
terms again contribute only O(µ−3) to (4.2).

It remains to check that (4.5) is satisfied for the relevant terms. These terms are
multiples of q′/Qm with m � 3, q′′/Q4 and (q′)2/Q5, and (4.5) is clearly satisfied
either directly from conditions (P) and (E) or from (3.2).

Altogether, then, the dominant term in (4.4) for large µ is 1
2µ−1 cos 2α and, as

we have shown, it continues to provide the dominant term − 1
2µ−2 cos 2α after the
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Table 2. Types of integrals arising in addition if o(µ−3) is required

integral type generates types

(4; 1, 0, 0) (5; 1, 0, 0)E, (5; 0, 1, 0)E,P, (6; 2, 0, 0)E,P

(4; 0, 1, 0) (5; 0, 1, 0)E,P, (5; 0, 0, 1)E,P, (6; 1, 1, 0)E,P

(4; 0, 0, 1)P (5; 0, 0, 1)E,P, (5; 0, 0, 0, 1)E,P, (6; 1, 0, 1)E,P

(5; 2, 0, 0) (6; 2, 0, 0)E,P, (6; 1, 1, 0)E,P, (7; 3, 0, 0)E,P

(5; 1, 1, 0)P (6; 1, 1, 0)E,P, (6; 0, 2, 0)E,P, (6; 1, 0, 1)E,P, (7; 2, 1, 0)E,P

(6; 3, 0, 0)P (7; 3, 0, 0)E,P, (7; 2, 1, 0)E,P, (8; 4, 0, 0)E,P

µ-differentiation. Now (4.2) follows from (4.3). This concludes the proof of theo-
rem 4.1.

5. Concluding remarks

5.1. The case cos 2α = 0

If cos 2α = 0, the boundary term in (4.4) vanishes and, to obtain the asymptotic
formula corresponding to (4.2), we need to exhibit the new dominant terms which
arise from the integrals of types (2; 1, 0, 0) and (1; 0, 0, 0) in (4.4). For the first
integral, we have the term 1

8Q−2(0, µ) as explained in (4.6). For the second integral,
integration by parts produces the boundary term

− 1
8 (cos 4α)Q−2(0, µ) = 1

8Q−2(0, µ)

since cos 2α = 0. Thus, we expect the new dominant term in (4.3) to be

−1
2

∂

∂µ
Q(0, µ)−2 = µ−3(1 + o(1)) (µ → ∞).

This can indeed be proved by the method used to prove theorem 4.1, and we are
now looking for o(µ−3) estimates in place of the previous o(µ−2) estimates.

Under condition (P), we observe that in lemma 3.2(a) we can conclude that
dI(µ)/dµ = o(µ−3) if we have m > 3 and

m − σ + (τ − 2)/a > 3 (5.1)

in place of (3.4). The integrals of types (4; 0, 1, 0) and (5; 2, 0, 0) in table 1 do not
satisfy this stronger condition, and so we must apply lemma 4.2 to them, resulting
in integrals all of which fulfil (5.1) (see table 2). The additional boundary terms
are multiples of q′′/Q5 and (q′)2/Q6, which clearly vanish at infinity and have
µ-derivative O(µ−6) at x = 0.

In the case of condition (E), however, a slight complication ensues from the fact
that the stronger condition for o(µ−3) behaviour corresponding to (3.6) is

m − σ > 3 + δ, (5.2)

and this condition now excludes the integral of type (4; 0, 0, 1). In order to apply
integration by parts to this integral, we require the existence of a fourth derivative
of q. We therefore extend definition 3.1 and lemmas 3.2 and 4.2 to include the
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fourth derivative q(4), and we also allow k = 4 in condition (E). We then note that,
corresponding to (3.2), we now also have xq′′′(x)/q2(x) = o(1) (x → ∞) and, in
particular, q′′′(x)/q5(x) = o(1) (x → ∞).

Then we can continue the process of recursively applying lemma 4.2 until all inte-
grals satisfy (5.2), where now σ =

∑4
j=1 sj (see table 2). The boundary terms which

appear are multiples of q′/Q5, q′′/Q5, q′′′/Q5, (q′)2/Q6, q′q′′/Q6 and (q′)3/Q7,
and all have the required behaviour. Thus, we have established the following result.

Theorem 5.1. Let q be a potential satisfying (1.4) and (1.6); furthermore, assume
that either

(a) q is twice continuously differentiable and q′′ ∈ ACloc(0,∞) and condition (P)
holds, or

(b) q is thrice continuously differentiable and q′′′ ∈ ACloc(0,∞) and condition (E)
holds with k ∈ {1, 2, 3, 4}.

Suppose further that cos 2α = 0. Then

π�′′
α(µ) = µ−3(1 + o(1)) (µ → ∞). (5.3)

In particular, there is an interval (M, ∞) which does not contain any points of
spectral concentration.

5.2. Piecewise smooth q

Suppose that q is continuous in (0,∞) but that there are a finite number of
points xi (i ∈ {1, 2, . . . , n}), where q fails to be differentiable. We still assume that,
in each interval (xi−1, xi) (with x0 = 0), q is three times differentiable and satisfies
condition (P) or (E). Then integration by parts in (4.4) produces an additional
term

1
4

n∑
i=1

[
q′

Q3 sin 2ϑ

]
(i) (5.4)

on the right-hand side, where [·](i) denotes the saltus at xi. The subsequent inte-
grations produce similar additional terms of order O(µ−4).

After taking the µ-derivative and using theorem 2.2, the effect of (5.4) is to
introduce a generally indeterminate O(µ−3) term into the right-hand side of (4.2),
meaning that (4.2) continues to be valid. In the case of theorem 5.1, we would also
need q′ to be continuous in (0,∞) to make (5.4) vanish; then (5.3) continues to
hold.
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