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Blind Image Quality Assessment via Adaptive
Graph Attention

Huasheng Wang, Jiang Liu, Hongchen Tan, Jianxun Lou, Xiaochang Liu, Wei Zhou, and Hantao Liu

Abstract—Recent advancements in blind image quality assess-
ment (BIQA) are primarily propelled by deep learning tech-
nologies. While leveraging transformers can effectively capture
long-range dependencies and contextual details in images, the
significance of local information in image quality assessment can
be undervalued. To address this challenging problem, we propose
a novel feature enhancement framework tailored for BIQA.
Specifically, we devise an Adaptive Graph Attention (AGA)
module to simultaneously augment both local and contextual
information. It not only refines the post-transformer features into
an adaptive graph, facilitating local information enhancement,
but also exploits interactions amongst diverse feature channels.
The proposed technique can better reduce redundant informa-
tion introduced during feature updates compared to traditional
convolution layers, streamlining the self-updating process for
feature maps. Experimental results show that our proposed
model outperforms state-of-the-art BIQA models in predicting
the perceived quality of images. The code of the model will be
made publicly available.

Index Terms—Image quality assessment, no-reference, graph,
convolutional neural networks, deep learning.

I. INTRODUCTION

Mage quality assessment (IQA) aims to gauge the overall

quality of an image as perceived by human viewers. While
obtaining an IQA measure from human subjects is the most
reliable mean, it entails time-consuming and expensive con-
duct of psychovisual experiments. There is an urgent need to
establish accurate and robust image quality assessment (IQA)
models, which align with the perception and judgment of
human subjects. These IQA models play a fundamental role
in various perception-based vision applications [1]. In general,
IQA models can be categorised into three types based on their
requirement of the reference/pristine image, including full-
reference IQA (FR-IQA) [2], [3], [4], reduced-reference IQA
(RR-IQA) [5], and no-reference/blind IQA (BIQA) [6], [7],
[8], [9]. Although both FR-IQA and RR-IQA have demon-
strated remarkable performance, the availability of reference
is rather limited in many practical scenarios. BIQA is hence of
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Fig. 1. Illustration of limitations of relying on convolutions to enhance local
information extraction from post-ViT feature maps. The top figure shows the
use of a convolutional layer for feature updates, where the involvement of
zero-padding introduces redundancies into the feature representations. The
bottom figure shows the proposed Adaptive Graph Attention (AGA) model,
which refines post-transformer features into a graph structure. It uses a
graph attention block to enhance local information and an attention selection
mechanism to discern feature channel interactions.
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highly practical relevance as the models aim to evaluate image
quality without relying on a reference or pristine image.

In the context of deep learning, a BIQA model is derived by
learning discriminative features for perceived quality through a
progressively complex neural network architecture. The recent
advances include the application of the vision transformer
(ViT), which has the architectural advantages of capturing con-
textual information in images. A popular architecture design
approach for BIQA models is to employ a hybrid combination
of convolutional neural networks (CNNs) and transformer
features to harness their respective capabilities in modelling
local and global feature representations. This approach effec-
tively applies the transformers in the IQA models, however,
there remains untapped potential to further enhance the feature
representation for the feature maps following the transformer
module. To unleash the potential, we devise a novel Adaptive
Graph Attention (AGA) module, aiming to enhance the post-
transformer feature maps for a refined feature expression
of local intricacies. Figure 1 illustrates the limitations of
relying on convolutions to extract local information from post-
ViT feature maps. Convolution operations that involve zero-
padding around feature maps can detrimentally affect the up-
date of features in the central region, introducing redundancies
into the feature representations. Moreover, zero-padding might
cause information loss on the edges of the feature maps. To
overcome these challenges and augment the representational
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ability of post-ViT feature maps, we develop an adaptive graph
attention module which consists of a graph attention block
(GAB) and attention selection mechanism (ASM). This mod-
ule not only prevent the introduction of unnecessary redundant
information during feature updates but also comprehensively
enhance local and distant interactions when updating feature
maps.

More specifically, for the purpose of enabling local inter-
actions amongst feature maps, GAB conceptualises all feature
maps as a graph structure, in which each pixel within a feature
map corresponds to a node, and the channel information of
feature maps is represented as node features within the graph.
By considering adjacent nodes as connected through edges
and self-connecting each node, we derive an adjacency matrix.
We assign a weight of 1 to the central node, complementing
it with weighted insights from neighboring nodes during the
node updating process. By doing so, the feature maps are
transformed into an adaptive graph. Importantly, during the
central node’s update, the sum of weights assigned to other
adjoining nodes equals 1, which allows further enhancement
of local interactions between nodes. Then, the ASM is devel-
oped to amplify comprehensive interactions spanning across
all channels within the feature structure. To achieve faster
convergence and higher consistency, we propose a Patch-wise-
based Hierarchical Perceptual (PHP) regression module for the
inference of quality scores. PHP regression allows the IQA
model to consider the relative ordering between scores on
the perceptual quality scale, leading to a perceptually more
relevant mechanism for an IQA model. The contributions of
this work are:

o« We devise a novel Adaptive Graph Attention module for
deep learning-based IQA. This module not only optimise
the utilisation of local features within post-transformer
feature maps but also mitigates the introduction of re-
dundant information during feature updates, introducing
novel adaptations tailored to the BIQA problem. The
synergy between the GAB and ASM modules allows
for the selection of the most advantageous attention
information for refining feature maps.

« We propose a Patch-wise-based Hierarchical Perceptual
regression module to combine MSE and deep ordi-
nal (DO) regression for inferring scores from different
patches at various depths of the network. The combina-
tion of the DO loss and the PHP is contextually distinct,
enhancing the regression ability specifically for the BIQA
task.

o« We show the substantial superiority of the proposed
BIQA model over existing alternative models, through
extensive experiments on many benchmark datasets.

It is worth noting that the proposed adaptive graph at-
tention (AGA) module can be effortlessly integrated with
other transformer-based methods, enhancing the expressive
capability of their features for vision tasks.

II. RELATED WORK

A. Blind Image Quality Assessment

Blind image quality assessment (BIQA) aims to emulate the
capabilities of the human visual system (HVS) in accurately
assessing the perceived quality of images. Despite humans
can adeptly evaluate image quality, this proves challenging
for machines due to the absence of sufficient knowledge
about the HVS. Conventional approaches seek to replicate
the responsiveness of the HVS to diverse image signals by
integrating explicit human vision models in a BIQA model.
These models include the simulation of perceived structural
information in natural scenes as described in Wang et al. [2],
as well as the exploration of natural scene statistics (NSS) as
detailed in studies by Mittal et al. [10], Moorthy et al. [11], and
Gao et al. [12]. However, these approaches that are based on
hand-crafted features of images face challenges in generalising
to the intricacies of real-world scenarios. Especially, the IQA
features are often specifically optimised for specific types
of distortions, therefore they are constrained in dealing with
unseen data.

Fortunately, the advancement of deep learning and con-
volutional neural networks (CNNs) has paved the way for
approaching more reliable BIQA; and CNN-based models
have remarkably surpassed their predecessors using traditional
approaches, particularly when confronting real-world distor-
tions. The improved performance is primarily attributed to
the deep learning techniques that allows directly deriving
discriminative features for image quality perception [13], [14],
[15], [6]. Hyper-IQA [16] partitions features into low-level
and high-level attributes, subsequently transforming the latter
to redirect the former. However, CNNs exhibit few prominent
limitations for the IQA tasks. First, their inherent difficulty
in capturing non-local features and their notable locality bias
hinders the models’ capacity to leverage information across
all regions of an image for IQA prediction. In addition, the
spatial translation invariance imposed by shared convolutional
kernel weights makes CNNs inadequate for handling intricate
amalgamations of features. Inspired by the recent technologi-
cal breakthrough in natural language processing (NLP), where
Transformers [17] are invented at capturing global feature
dependencies, the area of computer vision has experienced
substantial advancements via the application of the Vision
Transformer (ViT) [18]. You et al. [19] implement the ViT
in the context of BIQA, leveraging the success of the ViT
architecture. TReS [20] integrates relative ranking and self-
consistency loss mechanisms to harness the abundant self-
supervisory information and diminish the network’s suscep-
tibility. DOR-IQA [6] integrates the deep ordinal loss (DO-
loss) function into the IQA model to enhance the accuracy of
prediction.

Li et al. [8] conducted a theoretical analysis, demonstrating
that embedded normalisation stabilizes the gradients of the loss
function, leading to faster convergence of the IQA model.

MANIQA [7] employs multi-dimensional feature interac-
tions and leverages spatial and channel attention mechanisms
to enhance the performance of image quality prediction.
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Nevertheless, how to best unleash the potential of post-ViT
features remains unexplored, which is the focus of this work.

Fuzzy-QA [21] uses a fuzzy neural network to predict
the opinion score distribution (OSD) of image quality. This
approach aims to capture the diversity and uncertainty inherent
in subjective evaluations. TempQT [22] utilizes a pre-trained
Transformer model to generate an error map. It then integrates
a vision Transformer branch to extract perceptual quality
tokens for feature fusion with the error map, followed by
regressing the fused features to the final image quality score.
AFF-QA [23] introduces a model to integrate feature fusion
with an attention mechanism. By extracting multilayer features
and employing a hierarchical approach, the model effectively
captures diverse image distortions. StairlQA [24] introduces
a specialised model for in-the-wild images, tackling issues
regarding feature representation and training sample diversity.
It achieves this goal by employing a hierarchical feature
integration method and an iterative mixed database training
strategy. DEIQT [25] presents a method that efficiently gen-
erates quality-aware feature representations with reduced data
requirements by incorporating a Transformer decoder to refine
perceptual information and introducing a novel attention panel
mechanism.

B. Feature Enhancement

In recent years, the integration of feature enhancement
techniques within deep learning architectures has emerged
as a pivotal approach to improve model performance and
generalisation capabilities. Feature enhancement involves the
incorporation of supplementary information, data transforma-
tions, or domain expertise to enhance the representational
capacity of input data, thereby augmenting model robustness
and efficacy. Many BIQA methods utilise a multi-task learning
framework to improve the feature expression for the BIQA
task. Xu et al. [26] use a single CNN architecture for image
quality estimation and distortion identification simultaneously.
The model aims to compress the parameters of the CNN
model, therefore no interactions between these two sub-tasks
are explored. By decomposing the BIQA task into two sub-
tasks with different priorities, the distortion type information
becomes transparent to the primary quality assessment sub-
network. Ma et al. [9] concurrently optimized a pair of image
and language encoders across multiple IQA datasets for tasks
encompassing BIQA, scene classification, and distortion type
identification. To adequately capture the interplay amongst dis-
tortion types and the distribution of samples featuring the same
distortion type but varying distortion levels, GraphlQA [27]
introduces the concept of Distortion Graph Representation
(GDR). This approach possesses the capability to encapsulate
the distinctive attributes of individual distortions and their
underlying structural relationships. Consequently, GraphIQA
not only creates Distortion Graph Representations (DGRs) as
prior knowledge during the assessment of familiar distortions,
but it also enhances the model’s feature representation. By
doing so, the primary sub-network can obtain more robust
features to predict quality. In contrast to GraphIQA, our newly
introduced adaptive graph attention (AGA) module is added

as an attachment to the transformer module, addressing the
decay of local information. Critically, we characterise the post-
transformer feature maps as an internal graph configuration
without invoking graph neural networks.

III. METHOD

In this section, we first describe the proposed AGA frame-
work as illustrated in Figure 2. Then we provide detailed infor-
mation regarding the three core components of the framework,
including the Graph Attention Block (GAB), Attention Se-
lection Mechanism (ASM), and Patch-wise-based Hierarchical
Perceptual (PHP) regression.

A. Overall Framework

The key concept of the proposed adaptive graph attention
(AGA) module as shown in Figure 2 is to augment the
capabilities of vision transformers (ViT), preventing local
information decay while maintaining the strong ability of
capturing contextual information in images. Given a distorted
image I € R3>*H*W _where H and W denote height and
width, let fy represent the ViT with learnable parameters ¢,
F; € RV*eixHiWi denote the features from the i** layer of
VIiT, where i € {1,2,---,12}, b denote the batch size, and ¢;,
H;, and W; denote the channel size, width, and height of the
ith feature, respectively. To extract the information amongst
different channels, we concatenate the features from 4 to 12
layers and denote the output as F' € R*2-i¢*HiWi ywhere
i€ {7,8,9,10}. Then, we use a Transposed Attention Block
(TAB) [7] to enrich the interaction between local and global
regions. Compared to the traditional self-attention applied
only within patches in the spatial dimension, TAB can build
connections across channels, enabling the encoding of global
contextual information. In implementation, the concatenated
feature F' is firstly transformed into three different groups of
vectors, the query group (Q), the key group (K) and the value
group (V), which allow encoding the pixel-wise cross-channel
context. Then we compute the dot product of Q and reshaped
K, divide each by o, and apply a softmax function to obtain
a transposed-attention map. In addition, a residual connection
is added to strengthen the flow of information and improve
the performance. We denote the output of TAB as F,which is
computed as:

F = W, Attention(Q, K, V) + F, (1)

T
Attention(Q, K, V) = softmax(Q )V, (@)

g

where W) is the linear projection matrix, o is the spatial
dimension of Q, K and V.

Next, the feature F will be sent to the adaptive graph
attention (AGA) module which consists of a Graph Attention
Block (GAB) and an Attention Selection Mechanism (ASM)
to enhance the local representational capacity of feature maps.
More details of GAB and ASM are described below.

Furthermore, to collaboratively enhance spatial information,
we use the Scale Swin Transformer Block (SSTB) [7], which
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Fig. 2. Outline of our framework. A distorted image is segmented into patches of size 8 X 8. These patches are then input into ViT and TAB for feature
extraction. The newly introduced module, comprising GAB and ASM, elaborated in Sec.III-B and Sec.III-C, is applied twice to reinforce channel attention
between feature maps and node attention between the feature maps. An SSTB is employed to collaboratively enhance spatial information between two adaptive
graph attention modules. Lastly, a PHPR module is introduced to compute the average of scores obtained using MSE regression and DO regression.

consists of two Swin Transformer Layers (STL), a convolu-
tional layer and a scale factor «. Given the input feature Fj,,
the process of SSTB is defined as:

Fout = - HCONV(HSTB(Fin)) + —Firu (3)

where F,,: is the output of SSTB, Heonv(+) is the con-
volutional layer, and Hsrp(-) denotes two successive Swin
Transformer Blocks.

To further amplify feature expression capabilities, the adap-
tive graph attention (AGA) module is applied twice. Finally,
the Patch-wise-based Hierarchical Perceptual (PHP) regression
module is employed to achieve faster convergence and higher
consistency for the prediction of quality scores. More details
of PHP is described in 3.4.

B. Graph Attention Block

To enhance local feature expression in feature maps, the
convolution operation is often employed to exact local in-
formation. However, as mentioned above, zero-padding can
potentially introduce redundant information during feature
updates. Alternatively, a graph structure provides a suitable
solution since there is inherent connectivity between pixels
in the spatial dimension that contains rich local informa-
tion. However, the conventional graph convolutional network
(GCN) [27] only considers binary connection relationships
between nodes, which can downplay the strength of con-
nections. Thus, we propose Graph Attention Block (GAB)
to not only convert post-transformer feature maps into a
connected topology graph but also capture the importance of
connections between these connected feature maps. As shown
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Fig. 3. Illustration of graph attention block (GAB).

in Figure 3, given an input X € RE*HW we regard each

feature vector of the post-transformer feature maps as a node
in a graph. The number of nodes is defined as N, where
N = HW = 768. According to the position of each node
in the spatial dimension, we build edges between adjacent
nodes and the nodes themselves to obtain the adjacency matrix
A € R768%768 Then, to learn the significance of the connectiv-
ity relationship adaptively, we define a trainable weight matrix
as W € R768%768 'which is adjusted during the training phase
to optimise the performance of the model. In addition, these
learned weights are not fixed in the final inference model,
instead, they remain adjustable during inference, allowing the
model to adapt and optimise its performance based on the
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input data during deployment. The GAB can be calculated as:
GAB(A, X, W)= X -SoftMazx(A® W), ()

where © denotes the element-wise Hadamard product.

C. Attention Selection Mechanism

GAB as mentioned above can establish adaptive connectiv-
ity between post-transformer feature maps and extract local
features from the spatial dimension. However, it ignores the
rich information between different channels. As shown in
Figure 4, we propose an ASM to learn the significance of
different channels, aiming to obtain enhanced representational
ability. Firstly, we denote a weight matrix W ¢ REx¢
to assign importance scores to different channels. Let W;;
represent the probability that channel ¢ is important relative to
channel j. To ensure the probabilities sum up to 1 for each
row, the W is normalised to W = (1 ;) = —p22(ei)

S emp(wny)
_1exp(wyg,;
The ASM can be defined as: h=t

Fasy = ReLU(XT -W). (5)

D. Patch-wise Hierarchical Perceptual Regression

Each pixel in the deep feature map is extracted from
various patches of the input image, and each patch has a
unique impact on the perception of overall image quality.
To fuse contributions from different patches, we employ a
patch-wise strategy for quality prediction rather than utilising
a pooling strategy to obtain a single quality score, which
may ignore interactions amongst various patches. To this end,
we propose a patch-wise-based hierarchical perceptual (PHP)
regression module as illustrated in Figure 5 to combine MSE
and ordinal regression for aggregating scores from different
feature maps across various depths, which aims to augment
the model’s adaptability and generalisation capabilities. The
PHP regression module consists of two blocks including the
MSE regression block and deep ordinal (DO) regression block.

For the MSE regression block, given an input Fi/sg,
we use an SSTB to enhance the spatial information; and
the embedding dimension of SSTB,, is set to D; = 384.
Then we fed it into two linear projection branches, with one
branch computing the probability score for each pixel in the
feature map and the other branch calculating the attention map
corresponding to each generated probability score. MSE loss
between the predicted score and the ground truth score is

Fyse
_______ _————" _—————n"
' |
: SSTB, |
|
' |
- !
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Fig. 5. Illustration of patch-wise-based hierarchical perceptual (PHP) regres-
sion module, including an MSE regression block (left) and a deep ordinal
(DO) regression block (right).

utilised for the training process in our proposed method. The
Score, can be obtained by weighted summation of individual

patch scores:
sOw

Yw’
where s with dimensions 28 x 28 x 384 represents the prob-
ability maps of the scores, w with dimensions 28 x 28 x 384
corresponds to the corresponding attention map, and & denotes
the element-wise Hadamard product. It should be noted that
the Hadamard product preserves the dimensionality of the
channels.

For the deep ordinal (DO) regression block, given an input
Fpo, we incorporate the recently proposed deep ordinal
regression [6]. This method has been proven effective in
boosting the baseline BIQA model’s performance by enabling
the model to factor in the relative ordering of quality scores
on a perceptual image quality scale. In the DO regression
block, the produced probabilities are transformed into quality
scores using a soft ordinal inference. Similar to the MSE
regression block, the embedding dimension of SST Bg is set
to Dy = 384. We feed Fpp into two convolution branches
and calculate the Scoreg by weighted summation of individual
patch scores:

(6)

Score, =

EXOX)
Sdo = = >

S
where § with dimensions 28 x 28 x 30 represents the probability
map of the scores, while @ with dimensions 28 x 28 x 30
corresponds to the associated attention map. The symbol ®
denotes the element-wise Hadamard product. The predicted
score’s probability, denoted as sq, € R1*1*39 is emphasized.
It’s crucial to note that the Hadamard product preserves the
dimensionality of the channels, ensuring that the resulting s4,
maintains a 30-dimensional confidence distribution of score
probabilities. In order to get a continuous variable for image
quality, denoted as scoreg, we employ soft ordinal inference

)
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to transform the predicted probabilities. The final score can be
calculated by taking the element-by-element average of score,
and scoreg.

For the loss function, we combine MSE loss and DO loss
to constrain the final score, which can be defined as:

Lol = Luse(scoreq, scoregt)

(®)
+ A X Lpo(scoreg, scoregt),

where scoregy; denotes the discretized ground truth labels
used during the training process. A is set to 0.5 in our
experiments. An empirical approach is taken in our study to
assign weights to individual losses, with the overall guiding
principle being that very imbalanced loss contributions will
cause the model representations to be optimised preferentially
for the target with the largest individual loss, at the expense
of the other targets. To remedy this, we assign different levels
of importance to the loss values in their contribution to the
final loss, as the losses’ values use different scales (e.g., one
loss takes value around 3-5, whereas the other loss can be
as low as 0.1). For the overall loss, A is utilised to provide
different levels of importance to the sub-losses (i.e., Lysg
and Lpp) to balance their contribution to the final loss as
the sub-losses’ values use different scales as observed in
our experiments. For instance, during training, if Lysg takes
value around 1 while Lpo takes value around 2, introducing
A helps balance their individual contribution to the overall
loss, thus enabling more stable training of the model. The
coefficient preceding Lpo is introduced to ensure that the
values computed by all sub-loss functions during training
remain within a consistent magnitude. The specifics of the
deep ordinal loss are extensively explained in DOR-IQA [6].

IV. EXPERIMENTS
A. Datasets and Performance Metrics

We perform a series of experiments using widely recognised
IQA datasets including LIVE [28], CSIQ [29], TID2013 [30],
KADID-10k [31], and PIPAL [32]. These datasets exhibit
diversity in the nature of image quality perception, hence
provide the opportunity to capture different characteristics of
IQA models. It should be noted that these IQA databases
focus on artificial/synthetic distortions, which are often used
to establish a baseline evaluation of BIQA algorithms under
controlled simulation of visual stimuli. In a nutshell, LIVE,
CSIQ, TID2013 and KADID-10k include only traditionally
distorted images via well-defined signal processing filters,
while PIPAL includes a portion of distorted images generated
by generative adversarial network (GAN)-based algorithms.
The baseline evaluation based on artificial distortions cannot
fully capture the complexity and diversity of real-world sce-
narios. Hence it is important to evaluate BIQA algorithms
on authentic/natural distortions. To this end, we extend our
experiments to the datasets of authentic distortions, includ-
ing SPAQ [33], CLIVE [34], and KonlQ-10k [35]. SPAQ
comprises 11,125 images captured by 66 types of mobile
devices, covering a diverse range of scene categories. CLIVE
consists of 1,162 images with various authentic distortions
captured by different mobile devices. KonIQ-10k contains

10,073 images selected from an extensive public multimedia
database, covering a broad and uniform range of distortions.
Table I summarises the structure of these datasets.

TABLE I
SUMMARY OF IMAGE QUALITY ASSESSMENT (IQA) DATASETS FOR
PERFORMANCE EVALUATION.

IQA Database # Distorted Images Distortion Type

LIVE [28] 779 artificial/synthetic
CSIQ [29] 866 artificial/synthetic
TID2013 [30] 3000 artificial/synthetic
KADID-10k [31] 10.1k artificial/synthetic
PIPAL [32] 23.2k artificial/synthetic
CLIVE [34] 1162 authentic/natural
KonlQ-10k [35] 10.0k authentic/natural
SPAQ [33] 11.1k authentic/natural

The Pearson Linear Correlation Coefficient (PLCC) and
Spearman Rank-order Correlation Coefficient (SROCC) are
employed for evaluating the IQA models’ performance. Both
PLCC and SORCC values range from O to 1; and a higher
value indicates a better performance.

B. Implementation Details

We implement our proposed adaptive graph attention based
IQA model, namley AGAIQA by PyTorch, where both training
and testing are conducted on a single NVIDIA GeForce
RTX4090 GPU. Firstly, the input image is randomly cropped
into 224 x 224 pixels. Then the ViT-B/8 [18] is employed as
the pre-trained model for feature extraction. In this study, we
set the patch size P as 8 and the embedding dimension as 768.
We concatenate the features of 4 layers {7,8,9, 10} in ViT and
apply TAB to enrich the global context for obtaining the post-
transformer feature maps F € ROXHXW where ' = 768,
H =28 W =28.

Next, the post-transformer feature maps are fed into two
successive adaptive graph attention (AGA) modules for feature
augmentation. In the AGA module, the GAB and ASM are
applied twice and the embedding dimensions of two ASMs
are set to C; = 384, Cy = 768, respectively. The parameters
a and 3 are both set to 0.9. Following [7], we use SSTB to
further enhance local features. The embedding dimension of
SSTB is set to D = 768.

Following the approach taken in [36], we randomly split
each dataset into 6:2:2 for training, validation and testing.
During the training stage, data augmentation including random
horizontal flip with a probability of 0.5 is employed. We sct
batch size B to 16. We use ADAM optimizer with a learning
rate [ of 1 x 1075, weight decay of 1 x 1075, cosine annealing
learning rate T),,; and eta,,;, of 50 and 0. The training
loss is computed using the proposed Lr,:e loss function
as mentioned above. During the validation and testing stage,
we randomly crop each image 20 times, and use the average
output of as the final score.

C. Comparison with State-of-the-art

We compare the performance of the proposed AGAIQA
model against existing state-of-the-art BIQA models in terms
of accuracy and generalisation. It should be noted that we
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TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED AGAIQA VERSUS STATE-OF-THE-ART BIQA MODEL ON FOUR STANDARD IMAGE QUALITY
ASSESSMENT DATASETS. BOLD ENTRIES INDICATE THE BEST PERFORMANCE.

Method LIVE CSIQ TID2013 KADID-10k
PLCC SROCC | PLCC SROCC | PLCC SROCC | PLCC SROCC
DIVINE [37] 0.908 0.892 0.776 0.804 0.567 0.643 0.435 0.413
BRISQUE [38] 0.944 0.929 0.748 0.812 0.571 0.626 0.567 0.528
ILNIQE [39] 0.906 0.902 0.865 0.822 0.648 0.521 0.558 0.528
BIECON [40] 0.961 0.958 0.823 0.815 0.762 0.717 0.648 0.623
MEON [41] 0.955 0.951 0.864 0.852 0.824 0.808 0.691 0.604
WaDIQaM [42] 0.955 0.96 0.844 0.852 0.855 0.835 0.752 0.739
Fuzzy-QA [21] - - 0.948 0.933 0.852 0.844 - -
DBCNN [43] 0.971 0.968 0.959 0.946 0.865 0.816 0.856 0.851
TIQA [19] 0.965 0.949 0.838 0.825 0.858 0.846 0.855 0.85
MetalQA [15] 0.959 0.96 0.908 0.899 0.868 0.856 0.775 0.762
P2P-BM [44] 0.958 0.959 0.902 0.899 0.856 0.862 0.849 0.84
AFF-QA [23] 0.965 0.964 0.961 0.948 0.920 0.901 0.933 0.934
HyperIQA [16] 0.966 0.962 0.942 0.923 0.858 0.84 0.845 0.852
TReS [20] 0.968 0.969 0.942 0.922 0.883 0.863 0.858 0.915
StairlQA [24] 0.970 0.966 0.941 0.920 - - 0.875 0.867
DOR-IQA [6] 0.978 0.977 0.961 0.945 0.901 0.887 0.885 0.883
TempQT [22] 0.977 0.976 0.960 0.950 0.906 0.883 - -
DEIQT [25] 0.982 0.980 0.963 0.946 0.908 0.892 0.887 0.889
MANIQA [7] 0.983 0.982 0.968 0.961 0.943 0.937 0.943 0.937
AGAIQA (Ours) | 0.989 0.988 0.978 0.973 0.958 0.951 0.952 0.947
TABLE III TABLE IV

PERFORMANCE COMPARISON OF THE PROPOSED AGAIQA VERSUS
STATE-OF-THE-ART BIQA MODEL ON THE PIPAL DATABASE (PUBLICLY
AVAILABLE DATA). BOLD ENTRIES INDICATE THE BEST PERFORMANCE.

Validation Test
Method PLCC _ SROCC | PLCC__ SROCC
BRISQUE [38] | 0015 0.059 | 0.087 _ 0.097
NIQE [10] 0.005  0.115 | 0030  0.112
PI [45] 0079 0133 | 0123  0.153
MA [46] 0129  0.131 | 0173 0224
SSIM [47] 0332 038 | 0377 0407
FSIM [48] 0473 0575 | 0528 0610
LPIPS-Alex [49] | 0.581  0.616 | 0.584  0.592
DBCNN [43] 0643  0.631 | 0635  0.628
MetalQA [15] | 0.651  0.642 | 0.647  0.638
HyperIQA [16] | 0679  0.662 | 0671  0.657
TReS [20] 0685 0677 | 0677  0.661
DOR-IQA [6] | 0.687 0679 | 0.683  0.673
StairlQA [24] | 0.692  0.688 | 0.685  0.674
DEIQT [25] 0695  0.690 | 0.685  0.676
MANIQA [7] | 0721 0713 | 0704  0.740
AGAIQA (Ours) | 0.748 0737 | 0735  0.729

replicate the experimental protocol as described in [7] to
conduct the comparative study, ensuring consistent results are
reported to facilitate IQA model comparisons.

Table II illustrates the performance comparison of our
proposed AGAIQA model versus other state-of-the-art BIQA
models across four standard datasets including LIVE, CSIQ,
TID2013, and KADID-10k. It can be seen from the reported
PLCC and SROCC values that that AGAIQA achieves su-
perior performance, as evidenced by consistently producing
the highest PLCC and SROCC values (highlighted in bold)
across all IQA datasets. The results reported on the lab-
based datasets (i.e., LIVE, CSIQ and TID2013) demonstrate
the high perceptual relevance of the our AGAIQA model,
outperforming the other state-of-the-art models. The results
reported on the crowdsourcing-based dataset (i.e., KADID-
10k) show the superiority of the our AGAIQA model in

COMPARISON OF STATE-OF-THE-ART NR-IQA ALGORITHMS ON CLIVE,
KONIQ-10K, AND SPAQ DATASETS, SORTED BY PLCC ON CLIVE WITH
THE HIGHEST SCORE AT THE BOTTOM.

Method CLIVE KonlQ-10k SPAQ
PLCC SRCC | PLCC  SRCC | PLCC _ SRCC
TIQA [19] 0.600 0590 | 0.600  0.590 . -
BRISQUE [38] | 0623 0619 | 0687 0678 | 0806  0.802
MetaIQA [15] | 0700  0.690 | 0.700  0.690 - -
PieAPP [4] 0785 0782 | 0.822  0.820 . .
DBCNN [43] | 0.800 0790 | 0.800 0790 | 0915 0911
AFF-QA [23] | 0838 0828 | 0932 0919 - -
HyperlQA [16] | 0.849 0846 | 0.846 0845 | 0919 0916
Fuzzy-QA [21] | 0.864  0.829 | 0921  0.901 - -
TempQT [22] | 0.886  0.870 | 0.920  0.903 - -
DEIQT [25] 0.894 0875 | 0934 0921 | 0923 0919
TReS [20] 0906 0902 | 0.883 0877 | 0909  0.905
MANIQA [7] | 0907 0902 | 0932 0931 | 0916 0911
DOR-IQA [6] | 0911 0908 | 0901 0889 | 0921 0916
StairlQA [24] | 0917 0892 | 0936 0921 | 0927 0924
AGAIQA(Ours) | 0.919 0918 | 0939 0936 | 0933  0.929

generalising to real-world IQA scenarios and complexities.

Given that the PIPAL dataset is curated to encompass
images distorted by various techniques, including the GAN-
based algorithms. This database introduces challenges in terms
of assessing novel distortions that exhibit distinctive char-
acteristics compared to those encompassed by the standard
datasets as shown in Table I. This unique attribute necessitates
a dedicated assessment for IQA models. To this end, we
perform a comparative study on the PIPAL database; and the
results are listed in Table III. For the sake of fairness for
IQA comparison, we follow the same experimental setup and
training strategy as described in [7]. Note, we use the publicly
available data of the PIPAL dataset for reporting on results of
IQA models. It can be seen that our AGAIQA demonstrates
considerable efficacy when evaluating challenging distortions
e.g., from GAN-based algorithms. The PIPAL is so far the
largest and most diverse IQA database of artificial/synthetic
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TABLE V
RESULTS OF STATISTICAL SIGNIFICANCE TESTING FOR MODEL PERFORMANCE ON ARTIFICIAL/SYNTHETIC DATASETS. M-DE-T-S-DO REPRESENTS
STATE-OF-THE-ART MODELS INCLUDING MANIQA, DEIQT, TRES, STAIRIQA, AND DOIQA. “1” MEANS THAT THE DIFFERENCE IN PERFORMANCE IS
STATISTICALLY SIGNIFICANT (P<0.05 AT THE 95% CONFIDENCE LEVEL). “0” MEANS THAT THE DIFFERENCE IN PERFORMANCE IS NOT STATISTICALLY

SIGNIFICANT.
LIVE TID2013 CSIQ KADID-10k PIPAL
M-DE-T-S-DO | M-DE-T-S-DO | M-DE-T-S-DO | M-DE-T-S-DO | M-DE-T-S-DO
AGAIQA (ours) 1-1-1-1-1 1-1-1-1-1 1-1-1-1-1 1-1-1-1-1 1-1-1-1-1
TABLE VI

RESULTS OF STATISTICAL SIGNIFICANCE TESTING FOR MODEL PERFORMANCE ON AUTHENTIC/NATURAL DATASETS. M-DE-T-S-DO REPRESENTS THE
STATE-OF-THE-ART MODELS INCLUDING MANIQA, DEIQT, TRES, STAIRIQA, AND DOIQA. “1” MEANS THAT THE DIFFERENCE IN PERFORMANCE IS
STATISTICALLY SIGNIFICANT (P<0.05 AT THE 95% CONFIDENCE LEVEL). “0” MEANS THAT THE DIFFERENCE IN PERFORMANCE IS NOT STATISTICALLY

SIGNIFICANT.
SPAQ KonIQ-10k CLIVE
M-DE-T-S-DO | M-DE-T-S-DO | M-DE-T-S-DO
AGAIQA (ours) 1-1-1 1-1-1 1-1-1
distortions, and the reported results reveal the robustness of TABLE VII

AGAIQA in handing unseen data.

In addition, we conduct a comparative experiment of BIQA
models on three IQA datasets of authentic/natural distortions,
namely CLIVE, KonlQ-10k, and SPAQ, to validate the effec-
tiveness of our proposed AGAIQA model in more demanding
real-world scenarios. The experimental results of Table IV
demonstrate that AGAIQA remains the top-performing IQA
model in handling authentically distorted images.

To critically evaluate the generalisation ability of the pro-
posed AGAIQA model, we conduct a cross-dataset validation
experiment. This entails training an BIQA model on the
PIPAL dataset and subsequently subjecting it to testing on
the LIVE and TID2013 datasets, without engaging in any
form of fine-tuning or parameter adaptation. By doing so,
the bad performance of an BIQA cannot be masked. We
select top-performing deep learning-based NR-IQA models
that have made the implementation code transparently avail-
able in our study, including DBCNN, TReS, MetalQA, Hy-
perlQA, StairlQA, DEIQT and MANIQA. The experimental
results in terms of the PLCC and SROCC values are shown
on Table VIIL It is evident that the AGAIQA significantly
outperforms the top-ranked BIQA models. Especially, there is
an average increase of 3% in the performance when compar-
ing the AGAIQA to MANIQA. These findings demonstrate
the good generalisation capability of our proposed AGAIQA
model.

D. Statistical Significance Testing

To verify whether the observed differences in the model
performance results (i.e., as shown in Table II, III and IV) are
statistically significant, we perform hypothesis testing using
the statistical methods as prescribed in [50]. By doing so,
we can better interpret the meaningfulness of the performance
gain achieved by our proposed AGAIQA model in comparison
to other models. To conduct realistic and efficient testing, we
select the top-performing deep learning-based IQA models
that have their implementation code transparently available in
our study. More specifically, this is to demonstrate that our
proposed AGAIQA model is statistically significantly better

ABLATION STUDY TO VERIFY THE CONTRIBUTION OF INDIVIDUAL KEY
COMPONENTS (I.E., GAB, ASM AND PHP) PROPOSED IN OUR MODEL
TOWARDS THE OVERALL PERFORMANCE IMPROVEMENT. THE
KADID-10K DATASET IS USED.

# | GAB ASM PHP | PLCC SROCC
1 0.939 0.939
2 v 0.947 0.943
3 v v 0.946 0.942
4 v 0.945 0.940
5 v v v 0.952 0.947

than the IQA models that exhibit comparative performance.
The selected models are MANIQA, DEIQT, TReS, StairlQA,
and DOIQA. The statistical significance test is based on the
test set (20% of the entire data) of each of the IQA datasets
used in our experiments, i.e., LIVE, TID2013, CSIQ, KADID-
10k, PIPAL, SPAQ, KonlQ-10k, and CLIVE. For instance, on
the test set of the TID2013 dataset, each model generates 600
data points for performance residuals between the ground truth
and predicted quality scores. The comparison of performance
between two IQA models is based on their produced residuals
(i.e., 600 data points each). When both residual samples
under consideration are normally distributed, we perform an
independent samples t-test. In the case of non-normality, a
non-parametric version, i.e., Mann-Whitney U test, analogous
to an independent samples ¢-test, is conducted. The results of
the statistical evaluation are presented in Table V and Table VI.
The tables indicates that our proposed AGAIQA model is
statistically significantly (P<0.05 at the 95% confidence level)
better than any of the other top-performing IQA models in
predicting perceived image quality.

E. Ablation Study

To verify the contribution of individual key components
(i.e., GAB, ASM and PHP) proposed in our model towards
the overall performance improvement, we carry out a series
of ablation studies on the KADID-10k dataset, as detailed in
Table VIIIL. The reason of using KADID-10k for this particular
study is that this dataset is the largest and most challenging
standard dataset as shown in Table I, hence the evaluation is
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TABLE VIII
RESULTS OF CROSS-DATASET VALIDATION. MODELS ARE TRAINED ON
PIPAL AND TESTED ON LIVE AND TID2013.

Train on PIPAL
Test on LIVE TID2013
PLCC SROCC | PLCC SROCC

DBCNN [43] 0.638 0.625 0.518 0.511
TReS [20] 0.646 0.658 0.523 0.545
Method MetalQA [15] 0.712 0.704 0.622 0.589
HyperIQA [16] 0.756 0.739 0.637 0.601
StairlQA [24] 0.773 0.758 0.661 0.645
DEIQT [25] 0.798 0.776 0.682 0.659
MANIQA [7] 0.839 0.825 0.712 0.626
AGAIQA (Ours) | 0.869 0.856 0.734 0.653

critical. Table VII lists the results of the ablation study, include
#1 being the baseline model where none of the aforementioned
components is employed. Models #2, #3 and #4 are model
variants; and each include only a single component, i.e., GAB,
ASM or PHP. Model #5 represents the proposed AGAIQA
model that integrates all three key components. Note that the
ASM module cannot function independently and is inherently
dependent on the GAB module for effective attention selection,
as it operates based on the graph’s connectivity. Thus, in #3,
we conducted ablation study to evaluate the ASM component
with GAB+ASM alone, excluding PHP. The results show
that all AGAIQA variants give better performance than the
baseline model, demonstrating the contribution of the proposed
components. Also, the final AGAIQA model provides the
best results, suggesting the importance of combing all three
components in a BIQA model.

Input
Image

weight maps
w/ AGA

weight maps
w/o AGA

Fig. 6. Visualization of the weight map for the weighting branch with the
test dataset of KADID-10k. “w/ AGA” indicates the use of the adaptive graph
attention module, whereas “w/o AGA” signifies the absence of the adaptive
graph attention module.

TABLE IX
COMPARISION OF MODEL TRAINING TIME AND PARAMETER COUNT.

Model Training Time (per epoch)  Parameter Count
DEIQT 25 mins 40.51M
DOR-IQA 31 mins 107.32M
StairlQA 32 mins 122.47TM
MANIQA 34 mins 135.62M
AGAIQA (ours) 36 mins 148.77TM

To provide further insights into the contribution of GAB
and ASM components (i.e., the AGA module) in boosting
local representational capacity of post-ViT feature maps, we
visualise the intermediate weighting maps as produced after
the AGA module and situated in the PHP module. The
weighting map is already illustrated in Figure 5 at the end of
the left branch of the MSE regression block. Figure 6 shows
some examples of the weighting maps with and without using
the AGA module. It can be seen that with the application of the
AGA module, the model becomes adept at focusing on more
perceptually meaningful regions for the IQA task, enhancing
its performance in predicting perceived image quality.

V. DISCUSSION

In many real-world applications, it is crucial to understand
the practical implications and performance characteristics of
IQA methods in relation to runtime efficiency and com-
putational complexity. We provide below measurements of
runtime, encompassing both time consumption and parameter
count, for our proposed method in comparison to some state-
of-the-art (SOTA) methods (note this selection is limited to
the top-performing deep learning-based NR-IQA models that
have made the implementation code transparently available in
our study) on the KADID-10k dataset, as depicted in Table IX.
The results reveal that while our model’s runtime performance
and parameter count are comparable to MANIQA, StairlQA
and DOR-IQA models and that our model is more com-
plex than the DEIQT model, the proposed AGAIQA exhibits
superior prediction accuracy compared to its counterparts.
However, it should be noted that a comprehensive analysis of
computational complexity is nontrivial, and it often involves
additional factors such as algorithmic efficiency and resource
requirements. Furthermore, in many practical scenarios, there
exists a delicate balance between model’s complexity and
its prediction accuracy, necessitating careful considerations of
trade-offs for specific circumstances.

VI. CONCLUSION

In this paper, we have presented the AGAIQA, a novel
model for blind image quality assessment (BIQA). The key in-
novation of this model is to incorporate our proposed Adaptive
Graph Attention (AGA) module with Transformers. The AGA
module can successfully enhance the post-transformer feature
representations by leveraging the local information through
a graph-based structure, while preventing the introduction
of redundant information during feature updates in learning.
The proposed AGAIQA also benefits from the integration
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of a patch-wise hierarchical perceptual (PHP) regression to
infer image quality scores aligned with the human judge-
ments. Experimental results demonstrate the superiority of
AGAIQA over state-of-the-art methods cross popular image
quality assessment datasets. Critically, our AGAIQA model
exhibits robust generalisability. We conclude that by harness-

ing

transformers for extracting contextual information and

AGA structure to enhance the local feature expression can
significantly improve image quality assessment.
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