
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/169623/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Lu, Yuqin, Deng, Bailin , Zhong, Zhixuan, Zhang, Tianle, Quan, Yuhui, Cai, Hongmin and He, Shengfeng
2024. 3D snapshot: Invertible embedding of 3D neural representations in a single image. IEEE Transactions

on Pattern Analysis and Machine Intelligence 46 (12) , pp. 11524-11531. 10.1109/TPAMI.2024.3411051

Publishers page: https://doi.org/10.1109/TPAMI.2024.3411051

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

3D Snapshot: Invertible Embedding of 3D Neural
Representations in a Single Image

Yuqin Lu, Bailin Deng Member, IEEE , Zhixuan Zhong, Tianle Zhang, Yuhui Quan, Hongmin Cai,
Shengfeng He, Senior Member, IEEE

✦

Abstract—3D neural rendering enables photo-realistic reconstruction
of a specific scene by encoding discontinuous inputs into a neural
representation. Despite the remarkable rendering results, the storage of
network parameters is not transmission-friendly and not extendable to
metaverse applications. In this paper, we propose an invertible neural
rendering approach that enables generating an interactive 3D model from
a single image (i.e., 3D Snapshot). Our idea is to distill a pre-trained
neural rendering model (e.g., NeRF) into a visualizable image form that
can then be easily inverted back to a neural network. To this end, we
first present a neural image distillation method to optimize three neural
planes for representing the original neural rendering model. However,
this representation is noisy and visually meaningless. We thus propose a
dynamic invertible neural network to embed this noisy representation into
a plausible image representation of the scene. We demonstrate promising
reconstruction quality quantitatively and qualitatively, by comparing to
the original neural rendering model, as well as video-based invertible
methods. On the other hand, our method can store dozens of NeRFs with
a compact restoration network (5MB), and embedding each 3D scene
takes up only 160KB of storage. More importantly, our approach is the
first solution that allows embedding a neural rendering model into image
representations, which enables applications like creating an interactive
3D model from a printed image in the metaverse.
Index Terms—Neural representations, invertible image processing.

1 INTRODUCTION

R ECONSTRUCTING a 3D scene from a sparse set of input
images is an essential problem in computer vision

and graphics, with a wide range of applications like the
metaverse, computer games, and content creation. Recent
advances in 3D neural rendering, especially NeRF [1] and its
variants [2], [3], enable photo-realistic synthesis of novel
views in complex scenarios. The main principle of this
line of research is to use a deep network to represent
the geometry and appearance of the scene. Despite the

The work is supported by the Guangdong Natural Science Funds for Distin-
guished Young Scholar (No. 2023B1515020097) and the National Research
Foundation Singapore under the AI Singapore Programme (No. AISG3-GV-
2023-011). (Shengfeng He is the corresponding author.)
Yuqin Lu, Zhixuan Zhong, Tianle Zhang, Yuhui Quan, and Hongmin Cai are
with the School of Computer Science and Engineering, South China University
of Technology, Guangzhou, China; Yuqin Lu, Zhixuan Zhong, and Tianle
Zhang are also with the School of Computing and Information Systems,
Singapore Management University, Singapore. E-mail: spaceluyq@gmail.com,
zxzhong20@gmail.com, terryjoy0111@gmail.com, csyhquan@scut.edu.cn, hm-
cai@scut.edu.cn.
Bailin Deng is with the School of Computer Science and Informatics, Cardiff
University, UK. E-mail: DengB3@cardiff.ac.uk.
Shengfeng He is with the School of Computing and Information Systems, Sin-
gapore Management University, Singapore. E-mail: shengfenghe@smu.edu.sg.

impressive reconstruction quality, a deep neural network is
not an ideal way for “storing” the scene in some applications.
First, it often involves a large number of parameters, which
is not transmission- and storage-friendly. In addition, the
model itself is an imperceivable information carrier that
needs to be connected with other visual forms (e.g., QR code)
in applications such as metaverse. Although previous works
attempted to decompose [3] or compress [4] a NeRF into a
lightweight representation, the derived tensor components
cannot be used for display purposes, while the resulting data
size is not optimal for large-scale storage.

In this paper, we propose an invertible neural rendering
method to conceal the 3D scene in an image representation,
to meet both the storage and visual perception requirements.
We transform an arbitrary neural rendering model to a
visualizable and invertible image form in two stages, neural
image distillation and 3D snapshot embedding. The former
decomposes the input model into three neural planes, each
representing the geometry and appearance in X, Y, and
Z dimensions, respectively. The original neural rendering
model can be easily reconstructed by the three neural planes,
and we call the combination of them a neural image. As this
intermediate representation is noisy and not visualizable,
we further embed it into a 3D snapshot in the second
stage. However, noisy images are known to be challenging
for information hiding [5]. We resolve this problem by
concealing information in the frequency domain, using a
dynamic invertible neural network (DINN) where we inject
dynamicity in two aspects. First, we set half of the output
channels (3 out of 6) as constants to reduce the output
data size, and dynamically update them for each batch
to maximize its representation power for various scenes.
Second, inspired by Dropout [6], we introduce random noises
to the constant channels to tolerate the differences across 3D
scenes. In this way, the remaining 3 channels form a 3D
snapshot that preserves the 3D scene appearance, while
being embedded with the neural image information.

Our method can transform an arbitrary neural rendering
model into a 3D snapshot. Extensive experiments show
that our inversion achieves comparable performance to the
original model. Moreover, when compared with video-based
invertible methods using continuous views as the input, our
model shows promising results while being interactive. In ad-
dition, our method can serve as a data storage tool, enabling
the storage of dozens of NeRF-based 3D representations

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Neural
Planes

X

Y

Z

Neural
Image

3D Snapshot
~160KB

Storage

Metaverse

Transmission

Fig. 1: We propose 3D Snapshot, an invertible neural rendering carrier that allows accurate 3D recomposition from a single
image. We can convert an arbitrary neural rendering model into a distilled neural image representation, such that it can be
effectively embedded into a small (around 160 KB) and visualizable 3D snapshot which allows inverting back to a 3D model.

using a compact network that only requires approximately
5MB of storage. This allows each scene to be represented as
a 3D snapshot of 160 KB, approximately 25 times smaller
than the state-of-the-art lightweight NeRF. Finally, our 3D
snapshot can be easily printed on paper or on a wall to
facilitate the reconstruction of an interactive 3D model in the
metaverse. Fig. 1 illustrates the pipeline of our method. In
summary, our contribution is threefold:
• We propose the first invertible neural rendering method

that allows reconstructing an interactive 3D model from a
single image.

• We present a neural image distillation method to ap-
proximate an arbitrary neural rendering model, and a
dynamic invertible neural network that can embed the
noisy intermediate result into a visualizable image.

• Our method can serve as a data storage tool and encode 50
scenes as snapshots (160K each) stored in a general network
(5MB), reducing the storage requirement by up to 25×
compared to existing lightweight NeRFs. Our snapshots
provide visualizable carriers of the scenes that can be used
to reconstruct the original 3D scenes.

2 RELATED WORK

Neural Rendering and Scene Representations. Earlier works
on neural rendering use neural networks to map continuous
spatial coordinates to implicit shape representations, such
as the signed distance [7], [8] or occupancy values [9],
[10]. Recently, Neural Radiance Fields (NeRF) [1] represent
a 3D scene implicitly as a continuous 5D function and
apply volume rendering for view synthesis. Despite its
high-quality rendering results and compactness, NeRF and
many follow-up works [11]–[13] suffer from slow rendering
and reconstruction due to their pure MLP-based design.
Hence, different methods have been proposed to reduce the
MLP computation by storing 3D features in an explicit data
structure, such as voxel grids [14], [15], octrees [2], point
clouds [16], triplanes [17], and multi-scale hashmap [18].
Unfortunately, this computational efficiency comes at the
cost of large memory footprints for storing the features.

To reduce the model size while maintaining high com-
putational efficiency, TensoRF [3] models the scene as a
4D tensor and factorizes it into low-rank components, dra-
matically lowering the memory consumption. CCNeRF [4]
extends this work by further enabling extra flexible control
of compression to trade off between the model size and the

rendering quality. This compressibility is achieved by low-
rank approximation of the scene tensor with a rank-residual
learning strategy. In this paper, we also leverage the idea
of factorization and compression, but go even further to
compress a scene into a visualizable image that achieves
almost 25-fold decrease of storage.

Steganography and Invertible Image Processing. Steganog-
raphy involves concealing confidential data into a host
acting as information carrier. Traditional techniques include
utilizing the Least Significant Bits (LSB) [19], pixel value
differencing (PVD) [20], histogram shifting [21], multiple
bit-planes [22], and palettes [23] to hide images. In addition,
deep learning models [24]–[29] have gained prominence
for achieving enhanced performance and bolstering anti-
steganalysis capabilities. Rather than concealing, invertible
image processing transforms visual content (such as high-
resolution images, dual-view images, and short videos) into
an embedding image to facilitate data storage and transfer,
with the embedding and restoration processes constituting a
reversible task [30]–[37]. Xia et al. [30] propose an encoder-
decoder network to convert a color image to an invertible
grayscale image, and then invert the grayscale to color. Zhu
et al. [32] embed a short video into an image with a motion
embedding network, and convert it back to a video preview
with a motion expansion network. Wu et al. [34] encode
multiplane images into a single JPEG image which can be
decoded to render novel views. Cheng et al. [35] proposed
IICNet, the first generic framework based on invertible
neural networks for solving invertible image processing tasks
including image hiding, dual-view images embedding and
spatial-temporal video embedding. However, these works are
limited to handling video/image data, and cannot be easily
generalized to invertible transformations between 3D scenes
and embedding images. In this work, we focus on concealing
a 3D scene into a carrier image in an invertible way, where
the original scene can be almost losslessly reproduced to
enable high-quality view synthesis.

3 METHOD

Given any pre-trained neural rendering model, our goal is
to convert it into an intermediate representation that can
fit to an invertible image embedding module. Specifically,
we model the 3D scene as three neural planes that encode
geometry and appearance along the X, Y and Z axes. Our

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

PX

PY

PZ

[0 : S]

X

Y

Z

k

i
j

PXi

NeRF Model Voxel Grid Neural Planes

 − g. t. 2
Density Loss

 − g. t. 2
Color Loss

[S : W]

PYj

PZk

𝑏2
𝑙

𝑏1
𝑙

𝑏2
𝑙

𝑏1
𝑙+1

𝑏2
𝑙+1

𝑏1
𝑙+1

𝜙 𝜌 𝜂

. . .
RGB Image

Neural PlanesNeural PlanesNeural Planes

RGB Image

Neural PlanesNeural Planes

3D Snapshot

Dynamic Constant

QQ

Quantization

Random PerturbationRandom Perturbation

IWTIWT

DWTDWT
IWTIWT

DWTDWT

3D Snapshot

Embedding

Neural Image

Distillation

Invertible Block

Dense Block

Forward Pass

Inverse Pass

Feature Maps

Wavelet Transform

Invertible Block

Dense Block

Forward Pass

Inverse Pass

Feature Maps

Wavelet Transform

Fig. 2: Overview of our methods. Top: the neural image distillation module aims to distill a pre-trained NeRF model into a
neural image consisting of three neural planes that encode variations of density and color along X, Y, Z axes. Bottom: the 3D
snapshot embedding module takes the optimized neural planes and embeds them into an image with the proposed DINN
framework to create a 3D snapshot, from which the embedded neural planes can be easily revealed in an invertible way.

representation is learned through querying the trained neural
rendering model to collect the volume density and color at
each location. These neural planes are then concatenated
to form a neural image, which is further embedded into
an image that depicts a specific view of the scene, creating
a 3D snapshot that is easy to visualize and transmission-
friendly. Furthermore, we utilize a dynamic invertible neural
network (DINN) to enable bijective mapping and allow the
neural planes to be easily restored from the 3D snapshot.
The restored neural planes can recompose a voxel-based
representation of the scene with little quality degradation,
enabling synthesis of arbitrary novel views using classical
volumetric rendering. Our pipeline is shown in Fig. 2.

3.1 Preliminaries on Neural Radiance Fields

A neural radiance field (NeRF) [1] represents a scene with
a 5D function fΘ whose input is a 3D location x = (x, y, z)
and a 2D viewing direction (θ, ϕ), and whose output is the
corresponding color c = (r, g, b) and volume density σ. To
predict the color Ĉ of a pixel in image, it casts a camera ray r
from the pixel into the scene and accumulate the colors of N
sampled points along the ray based on their densities:

Ĉ(r) =
∑N

i=1
Ti

(
1− exp(−σiδi)

)
ci, (1)

with Ti = exp
(
−
∑i−1

j=0 σjδj
)

where δi represents the
distance between the i-th and (i+1)-th samples, and the
term 1− exp(−σiδi) denotes the amount of light contributed
by the i-th sample. With this differentiable volume rendering
process, NeRF can be trained using only 2D image super-
vision by minimizing the difference between the predicted
pixel colors the ground-truth from the image:

LNeRF =
∑

r

∥∥C(r)− Ĉ(r)
∥∥2
2
. (2)

3.2 Neural Image Distillation

To embed a NeRF model into an image form, a straight-
forward idea is to transform it to an image-like struc-
ture and conceal it in a host image. To this end, we
propose neural image distillation to represent NeRF as a
neural image I ∈ R3×H×W consisting of three channels
PX ,PY ,PZ ∈ RH×W . Each channel is associated with
a neural plane that carries the geometry and appearance
information along the X, Y and Z axis, respectively. To
render views from a volumetric radiance field, we need
to know the volume density and view-dependent color at
each location of the scene. Since volume density and color
are unrelated features, for each neural plane we associate the
first dimension to spatial coordinates along its corresponding
axis, and divide it along the second dimension into two slices
Pσ

M ∈ RH×S and Pc
M ∈ RH×(W−S) (with M ∈ {X,Y, Z})

to model the variations in density and color, respectively. We
empirically set S to around W/4. Next, we describe how the
volume density and view-dependent color are obtained from
the neural planes and how they are optimized.

Volume Density. We model the volume density as a scalar
function σ̂(·) of the spatial location independent of the view
direction. Inspired by the idea of factorization, we define the
density function at (x, y, z) with our neural planes as:

σ̂(xi, yj , zk) =
∑S

n=0
(Pσ

X)i,n · (Pσ
Y)j,n · (Pσ

Y)k,n, (3)

where (xi, yj , zk) represents the 3D location corresponding
to the (i, j, k) index for the first dimension of the planes.
To optimize the density planes {Pσ

M | M = X,Y, Z}, we
introduce a loss function that penalizes the deviation between
σ̂(xi, yj , zk) and the ground-truth σ(xi, yj , zk) obtained from
the pre-trained NeRF fΘ for all combination of indices:

Lσ =
∑

i,j,k

∥∥σ̂(xi, yj , zk)− σ(xi, yj , zk)
∥∥2. (4)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

View-dependent Color. Different from density, the color
at a location may vary as the view direction changes. We
follow [2], [15] and represent the color as linear combination
of spherical harmonics (SH), which are bases for functions
defined over the surface of a unit sphere. In this way, the
view-dependent color at a location can be determined using
the corresponding linear combination coefficients. Let nc be
the number of SH coefficients (27 for all RGB channels using
spherical harmonics of degree 2). Then we further divide the
color slice of each neural plane into nc segments, one for
each coefficient. We predict each coefficient êp (p = 1, . . . , nc)
in a similar way as the density value prediction:

êp(xi, yj , zk) =
∑p·N

n=(p−1)·N
(Pc

X)i,n ·(Pc
Y)j,n ·(Pc

Z)k,n (5)

where N = (W−S)
nc

. Then the color ĉ at location (xi, yj , zk)
viewed from direction d is be determined using the SH
functions {Ys} and the coefficients {êp} via:

ĉ(xi, yj , zk,d) =
∑ℓ

s=1

 ês(xi, yj , zk)
ês+ℓ(xi, yj , zk)
ês+2ℓ(xi, yj , zk)

Ys(d), (6)

where ℓ = nc/3 denotes the number of coefficients for each
individual RGB channel. We optimize the color plates {Pc

M |
M = X,Y, Z} using a loss function

Lc =
∑

i,j,k

∑
d∈D

∥∥ĉ(xi, yj , zk,d)−c(xi, yj , zk,d)
∥∥2 (7)

where D is a set of sample directions, and c is the ground-
truth color obtained from the trained NeRF fΘ.

3.3 3D Snapshot Embedding
Given a neural image I, we introduce a Dynamic Invertible
Neural Network (DINN) to embed it into a host image H
that depicts the scene from a specific viewpoint, and we
call it 3D snapshot. We aim to establish a bijective mapping
between I and H so that the neural image can be easily
revealed from the 3D snapshot embedding. To this end, we
adopt an invertible neural network (INN) to enable bijective
mapping and further propose to inject dynamicity into the
process to facilitate the restoration of neural images.

Framework. As shown in Fig. 2, our 3D snapshot embedding
framework includes a hiding process and a revealing process.
These two processes can be effectively carried out in the
same network due to the adoption of INN where the
forward and backward operations can easily be reversed.
Since the optimized neural images are complicated and
semantically not meaningful, it is difficult to use off-the-shelf
INNs to effectively hide them in a host. We thus propose a
Dynamic Invertible Neural Network (DINN) to tailor INN
for embedding neural images. Mathematically, we regard the
hiding and revealing operations as a pair of inverse problems,
and formulate the processes as:

(E,C) = F(H, I), E′ = Q(E), (Ĥ, Î) = F−1(E′,C′),

where F is an invertible function, E and C have the same
dimension as H and I respectively, and Q is the quantization
operation. E′, C′, Ĥ, and Î are the embedding 3D snapshot,
dynamic constant, restored host image, and restored neural
image, respectively. Following [38]–[40], we represent F

by a succession of invertible blocks, each containing two
affine coupling layers. In the l-th block, the input bl is
divided into bl1 and bl2 along the channel dimension and
the corresponding output is bl+1

1 and bl+1
2 . Then the forward

pass can be represented as:

bl+1
1 = bl1 + ϕ(bl2), bl+1

2 = bl2 ⊙ exp(ρ(bl+1
1)) + η(bl+1

1),

where ϕ(·), ρ(·) and η(·) are arbitrary functions. For the
backward pass, bl1 and bl2 can be easily recovered by:

bl2 = (bl+1
2 − η(bl+1

1))⊙ exp(−ρ(bl+1
1)), bl1 = bl+1

1 − ϕ(bl2).

The design of an invertible block is illustrated in Fig. 2. Note
that the exp(·) computation is omitted in the figure.

Wavelet Domain Hiding. The visible noise and lack of
meaning in neural images can result in texture-copying
artifacts and distorted embeddings when directly hidden
in the spatial domain. To address this issue, we propose a
frequency-domain hiding process, particularly in the high-
frequency domain, which significantly enhances the visual
quality of the embedding images. Specifically, we use the
discrete wavelet transform (DWT) to extract low- and high-
frequency wavelet sub-bands before passing them through
the invertible blocks. We enforce a reconstruction loss that
penalizes more in the low-frequency sub-band, forcing the
network to hide information in the high-frequency domain.
As wavelet transform is bidirectional symmetric [41], we
can obtain the embedding images with the inverse wavelet
transform (IWT) without compromising the network’s invert-
ibility. In this paper, we employ the Haar wavelet kernel for
its simplicity and effectiveness to perform DWT and IWT.

Dynamic Adaptation. The optimized neural images are noisy
and semantically not meaningful, which makes the conceal-
ing tasks challenging [5]. Thus we inject dynamicity during
the training process to adapt the network to noisy inputs.
The dynamic adaptation is applied in two aspects. First, the
last half of the output channels are dynamically updated
constants, which facilitate the embedding by accumulating
information across different neural images. Additionally,
random noises are introduced to the constant channels in
the backward pass, which makes the constant channels
unreliable and thus forces the network to place useful
information in the embedding channels. Specifically, C′ is
initially fixed, and then dynamically updated after a certain
iteration count k via:

C′
i = 0.9 ·C′

i−1 + 0.1 ·C, for i ≥ k. (8)

Quantization. A quantization operation is inevitable when
saving the embedding in an image format (e.g. JPG or PNG)
that only allows 8 bits per pixel per channel. We follow [42]
and add uniform noises during training, and perform integer
rounding to quantize the embedding image during inference.
The quantized image is clamped between 0 and 255.

Loss Functions. As we aim at both concealing our neural
image into a host for a 3D snapshot as well as recovering the
neural image from it, we enforce loss functions on both ends.
For embedding, we require the 3D snapshot to resemble the
host image while carrying information of the neural image,
especially in high-frequency domain:

Le = ∥E−H∥22, Lfreq = ∥T (E)Lf − T (H)Lf∥2, (9)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

(a) GT (b) Original (c) Video Snapshot (d) IICNet (e) Ours

Fig. 3: Reconstruction comparisons with the original NeRF model (b), and other invertible video methods (c & d).

where T (·)Lf represents the operation of extracting low-
frequency sub-bands after DWT. For restoration, we require
the restored host image and neural image to both match the
original ones. Following [5], [35], [36], we use the L1 distance
as the restoration loss:

Lr1 = ∥Ĥ−H∥1, Lr2 = ∥Î− I∥1. (10)

In summary, our final loss function is:

Ltotal = λ1Le + λ2Lfreq + λ3Lr1 + λ4Lr2, (11)

where λ1, λ2, λ3, and λ4 are balancing weights.

4 EXPERIMENTS

4.1 Experimental Setup

Implementation Details. We implement our method using
Pytorch [43] and evaluate it on a single Nvidia GeForce RTX
3090. In our experiments, we set the resolution of our neural
images as H = W = 800. The hyper-parameters in Eq. (11)
are set as λ1 = 1.0, λ2 = 2.0, and λ3 = 0.5, λ4 = 10.0. It
takes about 13 hours to train our model for 15,000 epochs.

Datasets and Competitors. We use two synthetic and three
real-scene datasets, including NeRF-synthetic [1], Synthetic-
NSVF [14], LLFF [44], Tanks and Temples [45], and DTU MVS

dataset [46]. The synthetic datasets both contain eight scenes
with realistic images of size 800×800 rendered from various
viewpoints. Each scene includes 300 views with provided
camera poses distributed in the upper hemisphere, with 100
views for training and 200 for testing. We collect 50 high-
quality scenes from the above datasets to demonstrate the
capability of our model in recovering plausible views from a
single embedding image. The training and testing view split
for each dataset all follows their original papers. Note that
the Synthetic-NSVF dataset is excluded from training and
used as the unseen scenes to validate our generalizability.
We select TensoRF [3] as the original model.

Since our method is the first invertible neural rendering
method, we compare it with two video-based invertible
methods, Video Snapshot [32] and IICNet [35]. We follow
their settings and select nine views for each scene to form a
short video. We embed these input frames to an image using
these two video-based invertible methods and recover all
frames from the embedding image. Our method generates
the same viewpoints to these frames and is compared with
the invertible quality to them.

Metrics. To evaluate the success of reconstructing a 3D
scene, we adopt the widely-used metrics, PSNR, SSIM, and
LPIPS [47]. PSNR and SSIM indicate the pixel error between
our recovered results and ground-truth, but they cannot

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

(a) GT (b) NeRF (c) DVGO (d) TensoRF (e) Plenoxels (f) Ours

Fig. 4: Comparisons with NeRF models on novel view synthesis.

TABLE 1: Quantitative comparison in reconstruction and size
on 50 training scenes. Last two variants are directly tested or
after 5-mins finetuning on 6 unseen scenes.

Method NeRF TensoRF Plenoxels PlenOctrees Instant-NGP
PSNR 31.01 31.56 31.71 31.71 33.18

Size(MB) 5×50 3.9×50 778×50 1976×50 63.3×50
Method DVGO CCNeRF Ours Ours (Unseen) Ours (FT)
PSNR 31.95 30.55 28.82 26.12 27.89

Size(MB) 612×50 4.4×50 5+(0.16×50) 5+(0.16×6) 5+(0.16×6)

measure semantic similarity. LPIPS is a perceptual-based
metric that measures the perceptual similarity.

4.2 Results

Qualitative results. We show qualitative comparisons
against the baseline methods in Fig. 3. For our method,
the reconstruction results are rendered by first extracting
the embedded neural image from our 3D snapshot and then
using volume rendering to construct views from the restored
neural image. For video-based invertible methods, we treat
the views as successive frames of a video and directly embed
them into one image (the intermediate frame of the input
video), from which we decode all the embedded views. Our
model can reconstruct views with minimal degradation in
image quality when compared to both the ground-truth and
the original model. Despite the challenge of embedding noisy
neural images, our approach effectively preserves the overall
geometry and appearance of the restored scenes. Notably,
while Video snapshot and IICNet can produce plausible
results, they are limited in their ability to handle a large
number of inputs, whereas our method can theoretically
synthesize views from arbitrary viewpoints since we embed
a scene representation instead of images. In addition, we
show comparisons with serveral NeRF-based methods for
novel view synthesis in Fig. 4, and more results can be found
in our supplementary materials.

0 10 20 30 40 50
Number of Scenes

101

102

103

104

105

T
ot

al
 S

iz
e

(M
B

)

NeRF
PlenOctrees
Plenoxels
DVGO
TensoRF
Instant-NGP
CCNeRF
Ours

28

29

30

31

32

33

34

PS
N

R
 (d

B
)

Fig. 5: Our method achieves around 25x smaller storage size
and the efficiency increases as the number of scenes grows.

TABLE 2: Quantitative comparisons with video invertible
methods. Note that we can restore an interactive 3D model.

PSNR ↑ SSIM ↑ LPIPS ↓
VS [32] 28.12 0.85 0.118

IICNet [35] 26.45 0.81 0.120
Ours 29.04 0.89 0.082

Quantitative results. We conduct two sets of quantita-
tive comparisons to evaluate our performance. Firstly, we
compare our model with other NeRF models in terms of
reconstruction quality and model size. Table 1 demonstrates
that our model achieves comparable performance to existing
NeRF models. Regarding model size, we can store all 3D
scenes (50 available scenes in our settings) in a single INN
network, which occupies approximately 5MB of storage,
along with the 3D snapshot that facilitates restoring the
corresponding scene. Each individual image requires an
additional storage space of approximately 160KB, and our
efficiency increases as the number of scenes grows. Fig. 5
presents a direct comparison of our model size with others.

Secondly, in Table 2, we compare our method with video-
based invertible methods. We observe that our approach
achieves comparable results to video-based invertible meth-
ods. However, video-based invertible methods can only
restore a video, whereas our model can recover views from

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

(a) Enc.-Dec. (b) w/o FH (c) w/o DC (d) w/o DN (e) Ours

Fig. 6: Ablation evaluation on the embedding and reconstruc-
tion factors of our method. Odd rows are 3D snapshots and
even rows are restorations.

PSNR: 25.95

PSNR: 25.97

PSNR: 30.14

PSNR: 30.11

Embedding Restoration

Fig. 7: Different choice of host images and their restoration
results. PSNR value is shown in the first reconstruction.

the 3D model. This property is especially important, as it
enables us to recover views from arbitrary viewpoints, unlike
video-based methods that are limited to restoring views from
specific camera positions.

Ablation Study. We conduct a series of experiments to
evaluate the effectiveness of different components in our
method by designing four variants for comparison:
• Encoder-Decoder: an encoder-decoder architecture that

directly embeds neural images in the hosts;
• w/o Frequency Hiding: operating the hiding process in

spatial domain instead of frequency domain;
• w/o Dynamic Constant: disabling the dynamic update of

the constant channel;
• w/o Dynamic Noise: not perturbing the constant channel

during training.
The results in Fig. 6 show that our dynamic setting can
help boost the reconstruction performance, as the dynamic
constant provides embedding information in the form of
constant noise and dynamic noise enables it to tolerate the

Original Pose-edited
(a) Unseen Poses

W/o Retraining Fine-tuned for 5 Mins
(b) Unseen Scenes

Fig. 8: Testing on unseen cases.

differences between scenes. In contrast, using the encoder-
decoder structure, we cannot successfully embed and recon-
struct the 3D model, indicating that the noisy neural image
is challenging to embed with a vanilla network.

Choice of Host Image. The host image serves both as a carrier
that embeds the 3D scene and as a preview of the scene.
We have conducted experiments to investigate the impact
of the choice of host images on the reconstruction quality.
Fig. 7 shows the reconstruction results using different host
images. The minor difference in the PSNR value indicates
that the choice of host images has negligible impact on the
reconstruction quality. We provide more details and more
results in the supplementary materials.

Network Capacity and Generalizability. Once the network
is properly trained, we are able to embed and reconstruct
all NeRF models in the training set using a single model.
Although we only apply it to 50 high-quality scenes in this
paper, the underlying principle of our network allows for
more models to be encoded.

Moreover, we aim to explore the generalizability of our
model by investigating its ability to embed and invert
unseen scenes. We conducted two experiments to validate
this. The first experiment, depicted in Fig. 8a, involves a
simpler scenario where the object is present in the training
set but appears in a different pose (edited using NeRF-
Editing [48]). Our model is capable of perfectly embedding
and reconstructing the unseen 3D poses, indicating that it can
be used to embed spatio-temporal neural rendering models
into video 3D snapshots.

The second experiment, shown in Fig. 8b, involves
completely unseen scenes. Our model can reconstruct a 3D
model with minor artifacts and less details, mainly due to
the limited availability of training data. However, it is worth
noting that fine-tuning the model for only 5 minutes enables
us to incorporate the previously unseen scene into the model
for better reconstruction. The quantitative results for 6 unseen
scenes from Synthetic-NSVF [14] are presented in Tab. 1. The
performance is still comparable for unseen scenario and gets

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

even better after 5-minute fine-tuning.

5 CONCLUSION

We propose a novel approach to embed a pre-trained neural
rendering model into a plausible image representation in
an invertible way, which can be used to recover the 3D
scene if needed. Our key idea is to optimize three neural
planes that encode the information from the original neural
model along three dimensions, and then utilize a dynamic
invertible neural network to embed such representation into
a plausible carrier image. Its ability to embed neural 3D
scenes into images also enables potential further applications
in relevant domains such as data storage, VR, and AR.

REFERENCES

[1] B. Mildenhall, P. Srinivasan, M. Tancik, J. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for
view synthesis,” in ECCV, 2020.

[2] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa, “Plenoctrees
for real-time rendering of neural radiance fields,” in ICCV, 2021,
pp. 5752–5761.

[3] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su, “Tensorf: Tensorial
radiance fields,” in ECCV, 2022.

[4] J. Tang, X. Chen, J. Wang, and G. Zeng, “Compressible-composable
nerf via rank-residual decomposition,” in NeurIPS, 2022.

[5] S.-P. Lu, R. Wang, T. Zhong, and P. L. Rosin, “Large-capacity image
steganography based on invertible neural networks,” in CVPR,
2021, pp. 10 816–10 825.

[6] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” JMLR, vol. 15, no. 1, pp. 1929–1958,
2014.

[7] C. Jiang, A. Sud, A. Makadia, J. Huang, M. Nießner, T. Funkhouser
et al., “Local implicit grid representations for 3d scenes,” in CVPR,
2020, pp. 6001–6010.

[8] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“Deepsdf: Learning continuous signed distance functions for shape
representation,” in CVPR, 2019, pp. 165–174.

[9] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger,
“Occupancy networks: Learning 3d reconstruction in function
space,” in CVPR, 2019, pp. 4460–4470.

[10] K. Genova, F. Cole, A. Sud, A. Sarna, and T. Funkhouser, “Local
deep implicit functions for 3d shape,” in CVPR, 2020, pp. 4857–
4866.

[11] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla,
and P. P. Srinivasan, “Mip-nerf: A multiscale representation for anti-
aliasing neural radiance fields,” in ICCV, 2021, pp. 5855–5864.

[12] K. Zhang, G. Riegler, N. Snavely, and V. Koltun, “Nerf++: An-
alyzing and improving neural radiance fields,” arXiv preprint
arXiv:2010.07492, 2020.

[13] C. Reiser, S. Peng, Y. Liao, and A. Geiger, “Kilonerf: Speeding up
neural radiance fields with thousands of tiny mlps,” in ICCV, 2021,
pp. 14 335–14 345.

[14] L. Liu, J. Gu, K. Zaw Lin, T.-S. Chua, and C. Theobalt, “Neural
sparse voxel fields,” NeurIPS, vol. 33, pp. 15 651–15 663, 2020.

[15] S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and
A. Kanazawa, “Plenoxels: Radiance fields without neural networks,”
in CVPR, 2022, pp. 5501–5510.

[16] Q. Xu, Z. Xu, J. Philip, S. Bi, Z. Shu, K. Sunkavalli, and U. Neumann,
“Point-nerf: Point-based neural radiance fields,” in CVPR, 2022, pp.
5438–5448.

[17] E. R. Chan, C. Z. Lin, M. A. Chan, K. Nagano, B. Pan, S. De Mello,
O. Gallo, L. J. Guibas, J. Tremblay, S. Khamis, T. Karras, and
G. Wetzstein, “Efficient geometry-aware 3d generative adversarial
networks,” in CVPR, June 2022, pp. 16 123–16 133.

[18] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural
graphics primitives with a multiresolution hash encoding,” arXiv
preprint arXiv:2201.05989, 2022.

[19] C.-K. Chan and L.-M. Cheng, “Hiding data in images by simple lsb
substitution,” Pattern recognition, vol. 37, no. 3, pp. 469–474, 2004.

[20] F. Pan, J. Li, and X. Yang, “Image steganography method based on
pvd and modulus function,” in ICECC, 2011, pp. 282–284.

[21] P. Tsai, Y.-C. Hu, and H.-L. Yeh, “Reversible image hiding scheme
using predictive coding and histogram shifting,” Signal processing,
vol. 89, no. 6, pp. 1129–1143, 2009.

[22] B. C. Nguyen, S. M. Yoon, and H.-K. Lee, “Multi bit plane image
steganography,” in IWDW Workshop, 2006, pp. 61–70.

[23] M. Niimi, H. Noda, E. Kawaguchi, and R. O. Eason, “High capacity
and secure digital steganography to palette-based images,” in ICIP,
vol. 2. IEEE, 2002, pp. II–II.

[24] H. Shi, J. Dong, W. Wang, Y. Qian, and X. Zhang, “Ssgan: Secure
steganography based on generative adversarial networks,” in PCM,
2018, pp. 534–544.

[25] W. Tang, S. Tan, B. Li, and J. Huang, “Automatic steganographic
distortion learning using a generative adversarial network,” IEEE
Signal Processing Letters, vol. 24, no. 10, pp. 1547–1551, 2017.

[26] J. Yang, D. Ruan, J. Huang, X. Kang, and Y.-Q. Shi, “An embedding
cost learning framework using gan,” IEEE TIFS, vol. 15, pp. 839–851,
2019.

[27] W. Tang, B. Li, S. Tan, M. Barni, and J. Huang, “Cnn-based
adversarial embedding for image steganography,” IEEE TIFS,
vol. 14, no. 8, pp. 2074–2087, 2019.

[28] S. Baluja, “Hiding images within images,” IEEE TPAMI, vol. 42,
no. 7, pp. 1685–1697, 2019.

[29] J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei, “Hidden: Hiding data
with deep networks,” in ECCV, 2018, pp. 657–672.

[30] M. Xia, X. Liu, and T.-T. Wong, “Invertible grayscale,” ACM TOG,
vol. 37, no. 6, pp. 1–10, 2018.

[31] Y. Du, Y. Xu, T. Ye, Q. Wen, C. Xiao, J. Dong, G. Han, and S. He,
“Invertible grayscale with sparsity enforcing priors,” ACM TOMM,
vol. 17, no. 3, 2021.

[32] Q. Zhu, C. Han, G. Han, T.-T. Wong, and S. He, “Video snapshot:
Single image motion expansion via invertible motion embedding,”
IEEE TPAMI, vol. 43, no. 12, pp. 4491–4504, 2020.

[33] Y. Xing, Z. Qian, and Q. Chen, “Invertible image signal processing,”
in CVPR, 2021, pp. 6287–6296.

[34] Y. Wu, G. Meng, and Q. Chen, “Embedding novel views in a single
jpeg image,” in ICCV, 2021, pp. 14 519–14 527.

[35] K. L. Cheng, Y. Xie, and Q. Chen, “Iicnet: A generic framework for
reversible image conversion,” in ICCV, 2021, pp. 1991–2000.

[36] M. Xiao, S. Zheng, C. Liu, Y. Wang, D. He, G. Ke, J. Bian, Z. Lin, and
T.-Y. Liu, “Invertible image rescaling,” in ECCV, 2020, pp. 126–144.

[37] Z. Zhong, L. Chai, Y. Zhou, B. Deng, J. Pan, and S. He, “Faithful
extreme rescaling via generative prior reciprocated invertible
representations,” in CVPR, 2022, pp. 5708–5717.

[38] L. Ardizzone, J. Kruse, C. Rother, and U. Köthe, “Analyzing inverse
problems with invertible neural networks,” in ICLR, 2018.

[39] L. Dinh, D. Krueger, and Y. Bengio, “Nice: Non-linear independent
components estimation,” arXiv preprint arXiv:1410.8516, 2014.

[40] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using
real nvp,” arXiv preprint arXiv:1605.08803, 2016.

[41] S. Mallat, “A theory for multiresolution signal decomposition: the
wavelet representation,” IEEE TPAMI, vol. 11, no. 7, pp. 674–693,
1989.

[42] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized
image compression,” arXiv preprint arXiv:1611.01704, 2016.

[43] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in NeurIPS, 2019, pp.
8024–8035.

[44] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari,
R. Ramamoorthi, R. Ng, and A. Kar, “Local light field fusion:
Practical view synthesis with prescriptive sampling guidelines,”
ACM TOG, vol. 38, no. 4, pp. 1–14, 2019.

[45] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and
temples: Benchmarking large-scale scene reconstruction,” ACM
TOG, vol. 36, no. 4, pp. 1–13, 2017.

[46] R. Jensen, A. Dahl, G. Vogiatzis, E. Tola, and H. Aanæs, “Large scale
multi-view stereopsis evaluation,” in CVPR, 2014, pp. 406–413.

[47] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,”
in CVPR, 2018, pp. 586–595.

[48] Y.-J. Yuan, Y.-T. Sun, Y.-K. Lai, Y. Ma, R. Jia, and L. Gao, “Nerf-
editing: geometry editing of neural radiance fields,” in CVPR, 2022,
pp. 18 353–18 364.

	Introduction
	Related Work
	Method
	Preliminaries on Neural Radiance Fields
	Neural Image Distillation
	3D Snapshot Embedding

	Experiments
	Experimental Setup
	Results

	Conclusion
	References

