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1 Department of Computer Engineering, Turkish Air Force Academy, National Defence University,
Istanbul 34149, Türkiye; caneyupoglu@gmail.com

2 School of Computer Science and Informatics, Cardiff University, Cardiff CF24 4AG, UK
* Correspondence: karakuso@cardiff.ac.uk

Abstract: Background: Cardiovascular diseases (CVDs) are the primary cause of mortality worldwide,
resulting in a growing number of annual fatalities. Coronary artery disease (CAD) is one of the
basic types of CVDs, and early diagnosis of CAD is crucial for convenient treatment and decreasing
mortality rates. In the literature, several studies use many features for CAD diagnosis. However,
due to the large number of features used in these studies, the possibility of early diagnosis is
reduced. Methods: For this reason, in this study, a new method that uses only five features—age,
hypertension, typical chest pain, t-wave inversion, and region with regional wall motion abnormality—
and is a combination of eight different search techniques, principal component analysis (PCA), and
the AdaBoostM1 algorithm has been proposed for early and accurate CAD diagnosis. Results:
The proposed method is devised and tested on a benchmark dataset called Z-Alizadeh Sani. The
performance of the proposed method is tested with a variety of metrics and compared with basic
machine-learning techniques and the existing studies in the literature. The experimental results have
shown that the proposed method is efficient and achieves the best classification performance, with an
accuracy of 91.8%, ever reported on the Z-Alizadeh Sani dataset with so few features. Conclusions:
As a result, medical practitioners can utilize the proposed approach for diagnosing CAD early
and accurately.

Keywords: AdaBoostM1; cardiovascular diseases; coronary artery disease diagnosis; machine learning;
PCA; search techniques

1. Introduction

Cardiovascular diseases (CVDs) are a class of disorders that include the blood and
heart vessels [1,2]. The main types and risk factors of CVDs are shown in Figure 1. Coronary
artery disease (CAD) is an illness that influences the blood vessels providing blood to the
heart and occurs when coronary arteries are blocked or narrowed. Additionally, it is
associated with ischemic heart disease, coronary heart disease, atherosclerotic heart disease,
heart failure, heart attack, sudden coronary death, and angina pectoris medical science. A
stroke is disease-causing damage to a particular brain area and occurs when blood vessels
are ruptured or blocked. Finally, peripheral artery disease affects the blood vessels that
supply blood to the feet and legs [2]. Readers are referred to [2] for the main risk factors of
CVDs and characteristics that can be associated with CVDs.

CVDs are the main cause of death all over the world. In 2021, the World Health
Organization (WHO) [3] reported that nearly 17.9 million people died from CVDs in 2019.
This number of mortalities constitutes 32% of the total deaths worldwide, and 85% of these
deaths are caused by heart attack and stroke. In addition, the top ten global causes of
mortality in 2019 are shown in Figure 2. As shown in the figure, CAD, also known as
ischemic heart disease, is the leading reason for deaths [4].
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Figure 1. The main types (rectangle at the centre) and risk factors (around the rectangle with arrows)
of CVDs [2].

Figure 2. Top ten global causes of mortality in 2019 [4].

Disease diagnosis is a highly complex process in medical science, and many tests
are necessary for accurate diagnosis. In order to help medical doctors with the early
detection of disease, machine learning and data mining techniques have been widely
utilized recently [5]. Especially in CAD, with early detection, the possibility of treatment is
greatly increased and patients’ lives can be saved.

In the literature, numerous methods have been developed to diagnose CAD on the
Cleveland heart disease dataset [6] up to the present [7–17]. The prediction and diagnosis
success of the existing studies tested on this dataset is quite satisfying. For this reason,
in this study, the performance of the proposed approach is evaluated on a newer dataset
called the Z-Alizadeh Sani [18], released in 2017. In the work introduced by Alizadehsani
et al. [19], the Z-Alizadeh Sani dataset was collected and utilized for the first time for CAD
diagnosis. From 2012 to 2016, Alizadehsani et al. employed various machine learning
techniques such as sequential minimal optimization (SMO), artificial neural network (ANN),
support vector machine (SVM), Naïve Bayes, bagging, C4.5 decision tree, information
gain, and a genetic algorithm for CAD detection [19–25]. In a study using the same
dataset, Qin et al. [26] presented a CAD detection method utilizing an ensemble algorithm
based on multiple feature selection (EA-MFS) and SVM. Arabasadi et al. [27] proposed a
hybrid CAD prediction approach combining a genetic algorithm and multilayer perceptron
artificial neural network (MLP-ANN) on a subset of the Z-Alizadeh Sani dataset from which
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22 features were selected. In order to diagnose CAD, Babič et al. [28] offered a predictive
and descriptive analysis. They used four different classifiers such as decision trees, Naïve
Bayes, SVM, and ANN.

In the work of Kılıç and Kaya Keleş [29], the artificial bee colony (ABC) algorithm
and SMO technique were utilized for feature selection and classification, respectively.
Sixteen features were selected by the ABC algorithm, and SMO was applied to these features.
Hu et al. [30] proposed two methods, namely, minimum message length finite inverted Beta-
Liouville mixture (MML-IBLMM) and variational finite inverted Beta-Liouville mixture
(Var-IBLMM), and then tested the performances of these models on Z-Alizadeh Sani dataset.
In the study introduced by Abdar et al. [31], a CAD detection technique called N2Genetic-
nuSVM, which is based on a genetic optimizer and nu-support vector classification, was
presented. In another work realized by Abdar et al. [32], a nested ensemble nu-support
vector classification (NE-nu-SVC) approach was proposed to diagnose CAD accurately. In
the feature selection step of the proposed approach, a genetic search method was utilized,
and 16 features were selected. In the research of Joloudari et al. [33], the performances of
SVM, chi-squared automatic interaction detection (CHAID) decision tree, C5.0 decision tree,
and random trees were investigated for CAD diagnosis. The experimental results indicate
that the random trees technique is better than the other classifiers. On the other hand,
Nasarian et al. [34] presented a hybrid feature selection method named heterogeneous
hybrid feature selection (2HFS) that utilizes the synthetic minority over-sampling technique
(SMOTE) and adaptive synthetic (ADASYN) for handling the Z-Alizadeh Sani dataset and
uses random forests, Gaussian Naïve Bayes, eXtreme Gradient Boosting (XGBoost), and
decision tree for CAD classification. In another work proposed by Ashish et al. [35], a CAD
detection method based on random forests, SVM, and XGBoost was introduced. In the
data-dividing step of the method, the random forests technique was used for training and
testing of the Z-Alizadeh Sani dataset. In the classification step, the SVM and XGBoost
techniques were utilized together. In a recent study [36], an ensemble feature selection
approach and seven classifiers were used, and the best classification accuracy rate was
attained with 25 features and the MLP classifier.

The aforementioned studies adopted some combination of feature selection, feature
extraction, and classification techniques such as information gain, genetic algorithm, ABC,
bagging, decision trees, random trees, Naïve Bayes, SMO, SVM, SVC, ANN, CHAID, and
XGBoost to diagnose CAD. Unlike the abovementioned methods, this work proposes a new
CAD diagnosis method based on eight different search techniques, principal component
analysis (PCA), and AdaBoostM1. To the best of the author’s knowledge, there is no
other work in the literature utilizing PCA and AdaBoostM1 techniques together for CAD
diagnosis in this framework and detecting CAD based on age, hypertension, typical chest
pain, t-wave inversion, and region with regional wall motion abnormality features. The
major findings and contributions of this research study are as follows:

• Proposes a new method to diagnose CAD based on age, hypertension, typical chest
pain, t-wave inversion, and region with regional wall motion abnormality features.

• Explores attribute spaces using eight different search methods, namely, evolutionary,
best first, genetic, harmony, particle swarm optimization (PSO), greedy stepwise, rank,
and multi-objective evolutionary search.

• Enhances the performance of CAD diagnosis by efficiently taking advantage of using
PCA and AdaBoostM1 techniques together.

• The performance of the proposed method is tested in terms of several metrics and
compared with basic classifiers and existing studies in the literature.

• Achieves the best classification performance ever reported on the Z-Alizadeh Sani
dataset with so few features (five) with an accuracy rate of 91.80%.

• The experimental results demonstrate that the proposed method is promising to be
utilized by medical specialists for diagnosing CAD.

The rest of the paper is ordered as follows. The proposed CAD diagnosis method
and the dataset used are introduced in Section 2. Section 3 shows the experimental results,
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comparing the proposed method’s performance to the existing studies in the literature.
Finally, conclusions are summarized in Section 4.

2. Materials and Methods
2.1. Dataset Description

In this work, the Z-Alizadeh Sani dataset that is freely available from the University of
California—Irvine Machine Learning Repository [18] was used to evaluate the proposed
method. The dataset contains 303 records, of which 87 of them are healthy persons and
216 of them are CAD patients. Fifty-five attributes can be classified into four groups:
symptom and examination (14 attributes), demographic (17 attributes), electrocardiography
(ECG) (7 attributes), and laboratory and echocardiography (echo) (17 attributes). The
overview of the Z-Alizadeh Sani dataset, including attribute name, category, and range, is
shown in Table 1.

2.2. The Proposed CAD Diagnosis Method

This study presents a new CAD diagnosis method based on age, HTN, typical chest
pain, t-wave inversion, and region-RWMA features. The proposed method comprises four
basic steps, which are feature selection, feature extraction, data dividing, and classification.
The flowchart of the proposed CAD diagnosis method is demonstrated in Figure 3. A
correlation-based feature subset selection technique is utilized with evolutionary, best first,
genetic, harmony, PSO, greedy stepwise, rank, and multi-objective evolutionary search
methods in the feature selection step. Then, the PCA technique transforming the data
into another space is used for feature extraction and size reduction on the data obtained
after selecting common attributes. In the data-dividing step, the k-fold cross-validation
technique is exploited to divide the whole dataset into k separate subsets, in which k-1
subsets are utilized for training and the remaining part is separated for testing. In the
classification step, the AdaBoostM1 algorithm is performed for classifying coronary artery
disease as healthy or patient. The techniques utilized to perform the proposed diagnostic
method are described in the following subsections.

2.2.1. Feature Selection

In the feature selection step of the proposed method, a correlation-based feature
subset selection technique [37] was used with eight different search methods, namely,
evolutionary [38], best first [39], genetic [40], harmony [41], PSO [42], greedy stepwise [43],
rank [44], and multi-objective evolutionary search [45]. To evaluate the worth of a subset of
attributes, the feature subset selection technique considers the estimative ability of every
feature associated with the redundancy degree between them. The evolutionary search
method utilizes an evolutionary algorithm (EA) to discover the attribute space. The best
first search method uses a greedy hillclimbing algorithm enhanced with a backtracking
ability for searching the space of a subset of attributes. The genetic search method carries
out a search utilizing Goldberg’s genetic algorithm. The greedy stepwise search method
applies a greedy backward/forward search, along with the space of a subset of attributes.
To rank all the attributes, the rank search method utilizes a subset or attribute evaluator.
Finally, the harmony, PS,O and multi-objective evolutionary search methods explore the
attribute space using the harmony, PSO, and multi-objective evolutionary algorithms,
respectively. Interested readers can kindly refer to [38–45] for further details about the
search methods.

In the initial phase of the feature selection process outlined in the proposed method,
eight distinct search methods are employed to explore and identify useful attributes. Table 2
presents the attributes selected through these search methods, along with the respective
counts and attribute numbers. Subsequently, in the second stage, attributes common to all
search methods are retained. As indicated in Table 2 (common attributes highlighted in
bold), the selected attributes are numbered 1, 7, 25, 35, and 54, corresponding to features
such as Age, HTN, Typical Chest Pain, T-Wave Inversion, and Region-RWMA.
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Table 1. The Overview of Z-Alizadeh Sani Dataset.

# Attribute Name Attribute Category Attribute Range

1 Age Demographic 30–86
2 Weight Demographic 48–120
3 Length Demographic 140–188
4 Sex Demographic Female, Male
5 Body Mass Index (BMI, Kg/m2) Demographic 18.115–40.901
6 Diabetes Mellitus (DM) Demographic Yes, No
7 Hypertension (HTN) Demographic Yes, No
8 Current Smoker Demographic Yes, No
9 Ex-Smoker Demographic Yes, No
10 Family History (FH) Demographic Yes, No
11 Obesity (BMI > 25) Demographic Yes, No
12 Chronic Renal Failure (CRF) Demographic Yes, No
13 Cerebrovascular Accident (CVA) Demographic Yes, No
14 Airway Disease Demographic Yes, No
15 Thyroid Disease Demographic Yes, No
16 Congestive Heart Failure (CHF) Demographic Yes, No
17 Dyslipidemia (DLP) Demographic Yes, No
18 Blood Pressure (BP, mmHg) Symptom and examination 90–190
19 Pulse Rate (PR, ppm) Symptom and examination 50–110
20 Edema Symptom and examination Yes, No
21 Weak Peripheral Pulse Symptom and examination Yes, No
22 Lung Rales Symptom and examination Yes, No
23 Systolic Murmur Symptom and examination Yes, No
24 Diastolic Murmur Symptom and examination Yes, No
25 Typical Chest Pain Symptom and examination Yes, No
26 Dyspnea Symptom and examination Yes, No
27 Function Class Symptom and examination 0, 1, 2, 3
28 Atypical Symptom and examination Yes, No
29 Nonanginal Chest Pain Symptom and examination Yes, No
30 Exertional Chest Pain Symptom and examination Yes, No
31 Low Threshold Angina (Low TH Ang) Symptom and examination Yes, No
32 Q-Wave ECG Yes, No
33 ST Elevation ECG Yes, No
34 ST Depression ECG Yes, No
35 T-Wave Inversion ECG Yes, No
36 Left Ventricular Hypertrophy (LVH) ECG Yes, No
37 Poor R-Wave Progression ECG Yes, No
38 Bundle Branch Block (BBB) ECG Left, Right, Normal
39 Fasting Blood Sugar (FBS, mg/dL) Laboratory and echo 62–400
40 Creatine (Cr, mg/dL) Laboratory and echo 0.5–2.2
41 Triglyceride (TG, mg/dL) Laboratory and echo 37–1050
42 Low Density Lipoprotein (LDL, mg/dl) Laboratory and echo 18–232
43 High Density Lipoprotein (HDL, mg/dL) Laboratory and echo 15.9–111
44 Blood Urea Nitrogen (BUN, mg/dL) Laboratory and echo 6–52
45 Erythrocyte Sedimentation Rate (ESR, mm/h) Laboratory and echo 1–90
46 Hemoglobin (HB, g/dL) Laboratory and echo 8.9–17.6
47 Potassium (K, mEq/lit) Laboratory and echo 3–6.6
48 Sodium (Na, mEq/lit) Laboratory and echo 128–156
49 White Blood Cell (WBC, cells/mL) Laboratory and echo 3700–18,000
50 Lymphocyte (%) Laboratory and echo 7–60
51 Neutrophil (%) Laboratory and echo 32–89
52 Platelet (PLT, 1000/mL) Laboratory and echo 25–742
53 Ejection Fraction (%) Laboratory and echo 15–60
54 Region-RWMA Laboratory and echo 0, 1, 2, 3, 4
55 Valvular Heart Disease (VHD) Laboratory and echo Mild, Severe, Moderate, Normal
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Figure 3. Flowchart of the proposed CAD diagnosis method.

2.2.2. Feature Extraction

The data collected from a system often have dozens of related attributes. However,
there may only be a few actual driving forces governing the behavior of a system, even
though we have more attributes in the data measuring many system variables that provide
redundant information [46]. It is usually possible to simplify problems containing redun-
dancy by taking advantage of dimensionality reduction techniques. PCA is one of the most
famous kinds of dimensionality reduction methods and has been widely used in various
fields till now. It is intensely used for dimension reduction and feature extraction purposes
as it decreases overfitting risk, reduces computational complexity, eliminates distracting
noise, and so on [47].
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Table 2. The Attributes Chosen Using Search Methods. Bold attribute numbers refer to the common
features for all search methods.

Search Method
Number of

Chosen
Attributes

Attribute No.

Evolutionary 17 1, 7, 9, 14, 15, 18, 24, 25, 28, 29, 31, 35, 39, 41, 45, 47, 54
Best first 12 1, 6, 7, 18, 25, 28, 29, 35, 45, 47, 53, 54
Genetic 15 1, 4, 6, 7, 12, 18, 25, 28, 29, 32, 34, 35, 47, 53, 54
Harmony 17 1, 7, 12, 13, 14, 15, 17, 25, 27, 28, 29, 35, 37, 45, 47, 53, 54
PSO 14 1, 6, 7, 18, 25, 28, 29, 32, 34, 35, 45, 47, 53, 54
Greedy stepwise 10 1, 6, 7, 14, 25, 35, 45, 47, 53, 54
Rank 13 1, 6, 7, 14, 25, 28, 29, 32, 33, 35, 45, 53, 54
Multi-objective
evolutionary 10 1, 6, 7, 14, 25, 35, 45, 47, 53, 54

PCA employs orthogonal transformations to condense multiple correlated variables
into a reduced set of uncorrelated variables [47,48]. This technique establishes a new
orthogonal-basis space where each axis represents a principal component, formed as a
linear combination of the original data variables. By rigorously calculating these principal
components, PCA ensures no redundancy of information within this new space [46]. Maxi-
mizing variance along each axis, PCA aligns the first axis with the highest variance of the
data points, while the subsequent axes are orthogonal to the previous ones, sequentially
maximizing the remaining variance [46]. Hence, in the transformed space, principal com-
ponents are arranged in descending order of variance, with the first component explaining
the most variance and subsequent components explaining progressively less [47,49].

The mathematical formulations required to compute the principal components are
given hereafter. Let x(t) for t = 1, 2, . . . , n be an arbitrary dataset containing its corre-
sponding instances and features with zero mean. Its covariance matrix R is computed
as follows:

R =
1

n − 1

n

∑
t=1

[
x(t)x(t)T

]
(1)

The next equation can be utilized to compute linear combinations of variables in the
original data, i.e., the linear transformation from x(t) to y(t),

y(t) = MTx(t) (2)

where M denotes an orthogonal matrix of the size n × n, and the ith column of this matrix,
also of the sample covariance matrix R, is essentially equal to the ith eigenvector. At this
point, the eigenvalue problem is initially set to be solved by the following equation:

λlql = Rql (3)

where ql represents the corresponding eigenvector, and λl stands for an eigenvalue of the
covariance matrix R (consider λ1 > λ2 > · · · > λn). Based on Equation (4), the principal
component is computed by

yl(t) = qT
l x(t), l = 1, . . . , n (4)

where yl(t) stands for the ith principle component. For additional information and further
details, readers can refer to the references [47,48].

For the Z-Alizadeh Sani dataset with selected attributes, Figure 4 illustrates the vari-
ance values explained by each principal component generated and depicts only the first
eight components, which account for around 95% of the total variance.
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Figure 4. Variance values explained by each principal component.

2.2.3. Data Dividing

A methodology known as k-fold cross-validation can be used to reduce the bias
related to a random sampling of the holdout and training data samples when comparing
the predicted accuracy of two or more methods. The entire data set is randomly separated
into k mutually exclusive subsets of approximately similar size in k-fold cross-validation,
also known as rotation estimation. The classification technique is trained and tested k
times. k-1 of mutually exclusive subsets are utilized for training, while the remaining one
is reserved for testing. With averaging the k individual accuracy measures, the prediction
of a technique’s overall accuracy is computed as

CV accuracy =
1
k

k

∑
i=1

Ai (5)

where A represents the accuracy measure of each fold such as specificity, sensitivity, and
hit rate, and k denotes the number of used folds [50,51].

Since it is the most widespread practice for k to have a value of 10, the k-fold cross-
validation is also known as 10-fold cross-validation. Empirical studies have shown that
the optimal number of folds seems to be 10 [50,51]. For this reason, in this study, 10-fold
cross-validation was utilized for evaluating the proposed diagnosis method. Figure 5
shows a visualization of k-fold cross-validation with k = 10 [50,51].

Figure 5. Visualization of 10-fold cross-validation.
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2.2.4. Classification

In the classification step of the proposed method, the AdaBoostM1 algorithm [52]
is utilized to classify coronary artery disease as patient or normal. The following is a
description of the AdaBoostM1 algorithm. Tn = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} is a
training set with Y values in 1, 2, . . . , k. Each observation Xi is given a weight wb(i), which
is originally set to 1/n. After each step, this value is updated. The classifier’s error is
denoted by ϵb and is calculated as follows:

ϵb =
n

∑
i=1

[wb(i)ξb(i)] (6)

where

ξb =

{
0, Cb(xi) = yi

1, Cb(xi) ̸= yi
(7)

The constant αb is calculated from the classifier’s error in the bth iteration, and this
value is utilized for the weight update. Particularly, αb = 1/2ln((1 − ϵb)/ϵb), and for the
b + 1th iteration, the new weight is

wb+1(i) = wb(i) exp{αbξb(i)} (8)

The obtained weights are then normalized to the sum of one. As a result, the weight
of incorrectly categorized observations increases while the weight of correctly classified
observations reduces, driving the single classifier produced in the next iteration to focus
on the most difficult examples. Furthermore, while the single classifier’s error is low,
differences in weight updates are bigger, since when the classifier gets a high accuracy, the
few mistakes become more important. Thus, the alpha constant can be thought of as a
learning rate computed as a function of each iteration’s mistake. Additionally, this constant
is employed in the final decision rule, which gives more weight to the individual classifiers
with the lowest error. This process is repeated in each step for b = 1, 2, 3, . . . , B. Finally, the
ensemble classifier calculates the weighted sum of each class’s votes. As a result, the class
with the highest weighted vote receives the assignment. In particular [52,53],

C(x) = argyj
max

B

∑
b=1

[
αbδ

(
Cb(x), yj

)]
(9)

= argyj
max ∑

b:Cb(x)=yj

αb (10)

3. Experimental Results and Discussions
3.1. Performance Metrics

In this study, to measure the proposed CAD diagnosis method’s effectiveness, various
basic metrics, which are accuracy, precision, recall, F1, AUC, and MCC, are employed, and
these metrics are computed as follows [54–57]:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 =
2 · Precision · Recall
Precision + Recall

(14)
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AUC =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
(15)

MCC =
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
(16)

where the types of possible outcomes are TP (true positives—correctly labeled as positive
tuples), TN (true negatives—correctly labeled as negative tuples), FP (false positives—
negative tuples incorrectly labeled as positive), and FN (false negatives—positive tuples
mislabeled as negative) in binary estimation [54,58]. The confusion matrix, a summary of
the possible outcomes, is demonstrated in Figure 6.

Figure 6. Confusion Matrix.

3.2. Experiments on the Feature Extraction

The initial experiment focused on the feature extraction method employed in the
proposed approach. Two distinct techniques were utilized: exclusive feature selection
and PCA. The performance metrics results are presented in Table 3, utilizing various
data-division methodologies, including an 80% training–20% test split, and 5-fold and
10-fold cross-validation. Notably, employing feature selection alone yielded a classification
accuracy of 90.164% in the 80% training–20% test data division. Furthermore, precision,
recall, F-measure, and AUC metrics exceeded 0.9, with a Matthews correlation coefficient
(MCC) rate of 0.755. Subsequently, integrating PCA with the selected features led to
improved accuracy, precision, recall, F-measure, and MCC metrics, resulting in an accuracy
rate of 91.803%, as demonstrated in Table 3.

Table 3. Performance Metric Results of Various Feature Extraction Techniques with AdaBoostM1.

Feature Extraction Technique 80/20% Train/Test Split 5-Fold CV 10-Fold CV

Feature selection only

%Acc. 90.164 86.799 86.469
Precision 0.932 0.893 0.900
Recall 0.932 0.926 0.912
F1 0.932 0.909 0.906
AUC 0.929 0.909 0.907
MCC 0.755 0.670 0.666

PCA

%Acc. 91.803 88.119 89.109
Precision 0.933 0.913 0.914
Recall 0.955 0.921 0.935
F1 0.944 0.917 0.924
AUC 0.895 0.888 0.879
MCC 0.793 0.708 0.730

In the data-dividing methodology of 5-fold cross-validation, an accuracy of 86.799%
was attained, and results in the range of 0.893 to 0.926 were obtained for precision, recall,
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F-measure, and AUC. When the PCA technique was utilized for feature extraction, some
rise was observed in accuracy, precision, recall, F-measure, and MCC metrics. Finally, in
10-fold cross-validation, the use of the PCA technique increased by approximately three
percent in the accuracy metric. Moreover, the results of precision, recall, F-measure and
M,CC metrics rose. Considering all the results, the best classification accuracy rate of
91.803%, precision rate of 0.933, recall rate of 0.955, F-measure rate of 0.944, and MCC rate
of 0.793 were achieved in 80% training–20% test splitting methodology when PCA was
used. Additionally, the best AUC rate of 0.929 was achieved with the feature extraction
technique of feature selection only.

In addition, the confusion matrices for each feature extraction technique and data-
dividing methodologies are given in Figure 7. The confusion matrices acquired for the
feature selection only are depicted in Figure 7a–c while Figure 7d–f demonstrate the
confusion matrices attained for the PCA technique with the data-dividing methodologies
of 80% training–20% test and 5-fold and 10-fold cross-validation, respectively.

Figure 7. Confusion matrices for each feature extraction technique and data-dividing methodology.
Figures in (a–c) refer to “Feature-selection-only” results for 80%-Training-20%Test, 5-fold-CV and
10-fold-CV, respectively. Similarly, (d–f) refer to the same results respectively but this time for the
“PCA” method.
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3.3. Comparison with Traditional Methods

This subsection compares the classification results of the proposed method with
basic classifiers. On the Z-Alizadeh Sani dataset, several basic techniques were tested
in the 10-fold cross-validation. The aforementioned two extraction techniques of feature
selection only and PCA were utilized with each basic classifier, and their performance
results are shown with regard to the previously mentioned six metrics in Table 4. Along
with the proposed approach, this table contains the results of eleven basic classifiers such
as Naïve Bayes [59], k-NN (k = 5) [60], C4.5 decision tree [61], locally weighted learning
(LWL) [62], K* [63], logistic model trees (LMT) [64], SVM [65], random forests [66], logistic
regression [67], Hoeffding tree [68], and deep learning 4J [69]. As can be seen from the
table, using PCA to extract the features increased the classification accuracy performance of
k-NN, C4.5 decision tree, LWL, SVM, deep learning 4J and the proposed method. LMT and
logistic regression with an accuracy of 88.449% are the best classifiers for feature selection
only, whereas the proposed method with PCA achieves the best accuracy rate of 89.109%, a
recall rate of 0.935, and an F-measure rate of 0.924, surpassing the other techniques.

Table 4. Classification Performance Results Of Basic Classifiers. Bold-faced results refer to the best
performing results for each metric.

Feature Extraction
Technique

Naïve
Bayes

[59]
k-NN
[60]

C4.5
DT
[61]

LWL
[62] K* [63] LMT

[64]
SVM
[65] RF [66]

Log
Reg
[67]

Hoeff.
Tree
[68]

DL 4J
[69] Ours

Feature selection only

%Acc. 88.120 85.480 85.150 87.130 83.500 88.450 87.790 81.520 88.450 87.790 85.480 86.470
Preci. 0.905 0.910 0.890 0.900 0.877 0.910 0.916 0.864 0.910 0.905 0.939 0.900
Recall 0.931 0.884 0.903 0.921 0.894 0.931 0.912 0.880 0.931 0.926 0.852 0.912

F1 0.918 0.897 0.897 0.911 0.885 0.920 0.914 0.872 0.920 0.915 0.893 0.906
AUC 0.923 0.894 0.830 0.907 0.901 0.919 0.853 0.881 0.922 0.923 0.922 0.907
MCC 0.705 0.653 0.634 0.681 0.592 0.714 0.703 0.543 0.714 0.697 0.676 0.666

PCA

%Acc. 80.530 86.470 87.790 87.790 81.850 86.800 88.120 81.190 88.450 80.200 86.800 89.110
Preci. 0.920 0.900 0.912 0.905 0.871 0.889 0.917 0.863 0.910 0.919 0.944 0.914
Recall 0.796 0.912 0.917 0.926 0.875 0.931 0.917 0.875 0.931 0.792 0.866 0.935

F1 0.854 0.906 0.915 0.915 0.873 0.910 0.917 0.869 0.920 0.851 0.903 0.924
AUC 0.892 0.878 0.846 0.697 0.858 0.918 0.855 0.874 0.922 0.892 0.921 0.879
MCC 0.581 0.666 0.701 0.885 0.555 0.668 0.710 0.536 0.714 0.575 0.703 0.730

3.4. Comparison with Existing Methods in the Literature

In this subsection, the proposed method was compared with the existing studies
in the literature using the same dataset, the Z-Alizadeh Sani dataset. The performance
comparison of the proposed method with the existing works is presented in Table 5,
containing researcher names, years, used method, number of selected features, and accuracy
metrics. Between 2012 and 2016, Alizadehsani et al. [19–25] used different numbers of
features, such as 16, 20, 24, and 34, and achieved the best accuracy of 94.08% utilizing
information gain and SMO. In 2017, Qin et al. [26] applied their CAD detection approach
based on EA-MFS and SVM with 34 features and procured an accuracy rate of 93.70%. In
the same year, Arabasadi et al. [27] proposed a genetic algorithm and MLP-ANN-based
CAD prediction method selecting 22 features, while Babič et al. [28] performed various
classifiers such as decision trees, Naïve Bayes, SVM, and ANN and used 27 features to feed
these classifiers.

In 2018, Kılıç and Kaya Keleş [29] selected 16 features using the ABC algorithm and
then classified CAD utilizing the SMO technique. As a result of their study, an accuracy
rate of 89.44% was obtained. In 2019, MML-IBLMM and Var-IBLMM methods introduced
by Hu et al. [30] were applied to the Z-Alizadeh Sani dataset and attained an accuracy rate
of 81.84%. In the same year, Abdar et al. [31] proposed the N2Genetic-nuSVM approach,
selected 29 features, and acquired an accuracy rate of 93.08%. In another work performed
by Abdar et al. [32], a CAD diagnosis approach called NE-nu-SVC was presented. In this
approach, 16 features were selected and an accuracy of 94.66% was achieved.

In 2020, Joloudari et al. [33] tested the classification performance of various classifiers,
selected 40 features, and obtained the best accuracy rate of 91.47% with random trees. In
the same year, a hybrid feature selection method called 2HFS was introduced by Nasar-
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ian et al. [34], and 38 features were selected using this method. In the sequel, SMOTE and
XGBoost techniques were used together and an accuracy rate of 92.58% was reported. In
another study presented by Ashish et al. [35], a random forests-, SVM-, and XGBoost-based
CAD detection approach was implemented and an accuracy rate of 93.86% was achieved
with 10 features. In a recent work [36], 25 features were used, and an accuracy rate of
91.78% with the MLP classifier was obtained.

Unlike these studies, the proposed method in this work utilizes five features, namely,
age, hypertension, typical chest pain, t-wave inversion, and region with regional wall
motion abnormality. In the dataset with these features, PCA and AdaBoostM1 techniques
were used for feature extraction and classification, respectively. The best accuracy of 91.80%
was achieved when using these few features on the Z-Alizadeh Sani dataset.

Table 5. Performance Comparison of The Proposed Method with The Existing Studies using the
Z-Alizadeh Sani Dataset.

Paper Year Method # of Features Accuracy (%)

[22] 2012 SMO 16 82.16

[25] 2012 Naïve Bayes–SMO 16 88.52

[21] 2012 SMO 34 92.09

[24] 2012 SMO 1-1 34 92.74

[19] 2013 Information gain + SMO 34 94.08

Bagging 79.54 (LAD)
[20] 2013 + 20 61.46 (LCX)

C4.5 68.96 (RCA)

Average and combined 86.14 (LAD)
[23] 2016 information gain 24 83.17 (LCX)

+ SVM 83.50 (RCA)

[26] 2017 EA-MFS + SVM 34 93.7

[27] 2017 GA + MLP-ANN 22 93.85

[28] 2017 SVM 27 86.67

[29] 2018 ABC + SMO 16 89.44

[30] 2019 MML-IBLMM and Var-IBLMM 55 81.84

[31] 2019 N2Genetic-nuSVM 29 93.08

[32] 2019 NE-nu-SVC 16 94.66

[33] 2020 Random trees 40 91.47

[34] 2020 2HFS + SMOTE + XGBoost 38 92.58

[35] 2021 Random forests + SVM + XGBoost 10 93.86

[36] 2023 MLP 25 91.78
Proposed PCA + AdaBoostM1 5 91.8

3.5. Limitations

This work can be considered a retrospective study because it uses a dataset based on
past patient records. Researchers conduct this type of study by examining the existing
records, historical data, or previous occurrences in order to determine outcomes, relation-
ships, or correlations between variables. In contrast to prospective studies, which follow
participants ahead of time, retrospective studies begin with the desired outcome or end-
point and go backwards to investigate the reasons or events that led to it. For example, in a
prospective study introduced by Locuratolo et al. [70], patients were evaluated clinically
and in the laboratory after 30 days, 3 months, 6 months, and 1 year following the index
incident. Various endpoints related to acute coronary syndrome were evaluated. At the
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end of the study, the persistence of treatments and the percentage of patients who achieved
therapeutic goals were evaluated.

Retrospective studies have some limitations, such as data quality, limited scope,
bias, temporal ambiguity, confounding variables, validity of exposure measurement, and
causality inference. In spite of these limitations, retrospective studies remain useful in
epidemiological research, particularly when prospective investigations are unfeasible or
unethical. The method proposed in this study can help medical doctors diagnose CAD
early by using a small number of features.

4. Conclusions

This paper introduces an effective approach for diagnosing coronary artery disease
(CAD) by leveraging age, hypertension, typical chest pain, T-wave inversion, and regional
wall motion abnormality features. The method proposed utilizes eight distinct search
techniques, including evolutionary, best first, genetic, harmony, PSO, greedy stepwise, rank,
and multi-objective evolutionary search, to perform feature selection on the Z-Alizadeh Sani
dataset. Principal component analysis (PCA) and the AdaBoostM1 algorithm are employed
for feature extraction and CAD classification, respectively. Through extensive experiments
and analyses using various performance metrics, the proposed method achieves the highest
prediction performance to date with only five attributes. Notably, it achieves impressive
accuracy, precision, recall, F-measure, AUC, and MCC rates of 91.8%, 93.3%, 95.5%, 94.4%,
89.5%, and 79.3%, respectively. These results demonstrate the efficiency of the proposed
approach and its potential to serve as a cost-effective tool to aid medical practitioners in
CAD diagnosis.
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