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Brain tumour segmentation is a hard and time-consuming task to be 
conducted in the process of radiotherapy planning. Deep Learning (DL) 
applications have a significant improvement in image segmentation 
tasks. In this work, we apply DL models such as 2D and 2.5D U-NET to the 
segmentation task of a brain tumour on the BraTS 2021 dataset and our local 
dataset. The 2.5D network is a modified version of 2D U-NET by using three 
slices as an input for each magnetic resonance imaging (MRI) sequence. We 
achieve the best segmentation results with 2.5D U-NET on BraTS with Dice 
scores of 86.97%, 91.27% and 94.42% for enhancing tumour, tumour core and 
whole tumour respectively. On the other hand, our best segmentation result 
of the GTV delineation on the local dataset is a Dice score of 78.51% for 2D 
U-NET. Although the result of GTV contours is not improved by 2.5D for the 
local dataset due to non-fixed voxel size, the Dice scores of ET, TC and WT are 
improved by the proposed 2.5D U-NET for the BraTS dataset.
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Volumes (GTV) of the local dataset. Fig. 1 shows 4 image 
sequences namely: FLAIR, T1, T1ce and T2. The BraTS 
and the local dataset cover 1251 patients and 53 patients 
respectively.

Fig. 1. Examples in BraTS 2021 (Fig. 1a) and our local dataset (Fig. 1b). 
From left to right; FLAIR, T1, T1ce, T2 sequences and their corresponding 
segmentation masks.

In the 2.5D model, for each sequence we used 3 channels 
including: (a) current slice (n), (b) previous slice (n-1) and 
(c) following slice(n+1). This is shown in Fig. 2. Due to the 
local dataset having different voxel and matrix sizes for each 
patient, each scan of the local dataset was resampled to 
match the BraTS 2021 data format and specifications. Each 
channel used a 2D image of size (240x240).

Fig. 2. A 3-slice example of the T1ce sequence for the local dataset.

The RFS method use three types of U-NET models for image 
segmentation, i.e., Binary class, Multi-label, and Multiclass 
models. In the case of binary-class models, three separate 
binary-class models were used for segmenting three regions 
(ET, TC, and WT), separately. The input and output of each 
binary-class model corresponded to only one of the regions. 
In both cases of multilabel and multiclass models, only 
a single model was used for the segmentation of all the 
three regions. The difference between the multilabel and 
multiclass models is that the former uses the overlapping 
class masks among ET, TC and WT, while the latter takes 
non-overlapping class masks. Both binary and multilabel 
models used the sigmoid function, while the multiclass 
model used the softmax function at the last layer of the 
U-NET.
The z-score technique was used to normalise images. 
Multiclass, Multi-label, and Binary class single 2D and 2.5D 
U-NET architectures were trained on individual tumour 
regions with the BraTS 2021 dataset. The Dice Similarity 
Coefficient (DSC) was utilised to assess the similarity 
between the contours generated by the DL models and the 
reference contours.

The trained models were then combined with a union RFS 
(u-RFS) model. The u-RFS model was used to improve the 
DL-based GTV segmentation for both 2D and 2.5D models.

INTRODUCTION

Brain tumours are one of the most lethal types of cancer 
[1]. Glioblastoma (GBM) is a aggressive, rapidly developing 
and fatal type of glioma that originates from glial cells. 
The median survival time for GBM patients is 15 months 
after diagnosis [2]. Brain tumour segmentation is the 
process of separating the tumour from healthy brain tissue. 
Brain tumour segmentation is a challenging task due to 
the heterogeneous nature of the tumour tissue [3] and 
Magnetic Resonance Imaging (MRI) is a commonly used 
imaging technique in brain because it provides high-
quality, high-contrast and detailed images of soft tissues. 
Accurate tumour segmentation is critical for diagnosis 
and therapy planning [4]. In radiotherapy, the optimal 
delivery of high-dose radiation to the tumour while sparing 
healthy tissues depends on the accuracy of segmentation. 
Manual segmentation is time-consuming, subjective, and 
non-reproducible. Automated segmentation is proposed 
to decrease labour-intensive work, provides objective and 
reproducible results [5]. Deep Learning (DL) models are one 
of solutions developed to segment tumours automatically. 

In clinical practice the poor generalizability of DL models 
is a major barrier [6]. Particularly for medical image 
segmentation tasks, models have demonstrated good 
performance when using uniform datasets, but their ability 
to generalise to new and unseen data remains a challenge. 
In brain tumour segmentation, the generalizability of 
DL models needs to be evaluated for different datasets 
consisting of MRI scans with variable settings such 
as resolution (pixel spacing and slice thickness) and 
matrix size. Such validation is essential for enhancing 
the robustness and usefulness of DL models in clinical 
applications. Ideally, models with high generalizability could 
be developed when training datasets contain a significant 
number of high-quality images from different centres using 
variety of imaging settings. 

Despite high number of publications dealing with DL-based 
tasks including segmentation, due to generalizability as a 
primary issue, the models transferred to clinic are very few 
[7]. In this study, we investigated the generalizability of DL 
models with different configurations on GBM segmentation 
task across different datasets.

MATERIALS AND METHODS

In this study we utilised a large dataset of publicly accessible 
MRI scans and reference segmentations (BraTS 2021) and 
a local dataset. GBMs are segmented according to the 
BraTS challenge as enhancing tumour (ET), tumour core 
(TC), and entire tumour (WT) regions [8]. The BraTS 2021 
dataset has a fixed voxel size (1x1x1mm) and fixed matrix 
size (240x240x155). However, clinical datasets including our 
local glioma scans have variable voxel sizes and matrix sizes 
for each MRI sequence. 

In this research, we used U-NET, a convolutional neural 
network architecture designed for biomedical image 
segmentation tasks. The U-NET architecture consists of an 
encoder network, which down samples the input image 
extracting salient features, and a decoder network, which 
up samples the feature maps back to the original image 
resolution and generates the segmentation mask. This 
arrangement gives the network its characteristics U shape 
[9]. Tumour segmentation was carried out using a region-
focused selection (RFS) method [10] that combines several 
single 2D U-NET and 2.5D U-NET architectures trained on 
BraTS tumour regions and validated with Gross Tumour 
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RESULTS

For our local dataset, the comparison of 2D U-NET and 2.5D 
U-NET predictions is shown in Fig. 3.

Fig. 3. GTV segmentation of the local dataset. From left to right; T1ce 
sequence, reference contour, 2D U-NET prediction and 2.5D U-NET 
prediction for.

In Table 1, the results show that 2.5D U-NET models 
outperform 2D U-NET models for each DL method and for 
both ET and WT regions.

DL method ET(%)
(2D)

ET(%)
(2.5D)

WT(%)
(2D)

WT(%)
(2.5D)

Multiclass 84.99 86.76 91.65 93.81

Multilabel 82.29 84.01 92.24 94.42

Binary class 85.19 86.97 92.18 94.35

Table 1. DSC results of ET and WT (BraTS dataset).

In Table 2, the results show that 2.5D U-NET models 
outperform 2D U-NET models for the TC region. However, 
the 2D model outperforms the 2.5D model for the GTV 
region. u-RFS provided the best DSC score with 78.51% 
when applied to the 2D model.

DL method TC(%)
(2D)

TC(%)
(2.5D)

GTV(%)
(2D)

GTV(%)
(2.5D)

Multiclass 89.71 91.27 78.43 70.35

Multilabel 87.27 88.78 77.91 69.88

Binary class 89.48 91.03 78.22 70.16

u-RFS 78.51 70.42

Table 2. DSC results for TC (BraTS dataset) and for GTV (local dataset).

DISCUSSION AND CONCLUSIONS

The results presented in this work show that 2.5D models 
outperform 2D models for the segmentation of GBM 
on the BraTS dataset. This is because of the additional 
information provided by the imaging data feeding into the 3 
channels used in the model equating to 12 channels in total 
compared to 4 channels used in the 2D model. However, the 
2.5D model did not generalise well when applied to our local 
dataset that included scans with different voxel and matrix 
sizes compared to the BraTS 2021 dataset. 

If only one model will be developed, the RFS method can 
be utilised for the selection of the best method when 
considering only one region. The u-RFS method proved 
to be useful in improving the performance of both 2D and 
2.5D models. The u-RFS can be applied to any DL model to 
increase segmentation results. 
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