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The paper investigates the feasibility of using GANs to create realistic 
induction motor thermal RGB image datasets for multimodal condition-
monitoring systems. Generating high-quality thermal images presents 
computational challenges, and in this study, two GAN frameworks, DCGAN 
and WGAN-GP, were used under different health conditions. Firstly, DCGAN 
was used on three conditions using various hyperparameters, but the 
results required further improvement. Secondly, WGAN-GP was used with an 
extensive training duration of 11 hours, utilising 10,000 epochs and a batch 
size of 64, targeting the inner fault dataset, which resulted in generating 
artificial images that closely resembled real images. This study highlights 
the impact of hyperparameters on GAN performance and demonstrates the 
capability of GANs in creating artificial thermal image datasets.
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INTRODUCTION

In the era of Artificial Intelligence (AI) and smart 
manufacturing, having a reliable condition monitoring 
system for fault detection and recognition is essential for 
maintaining high-quality standards and controlling the 
production process [1]it is difficult to obtain a sufficient 
defect data set in terms of diversity and quantity. A new 
generation method called surface defect-generation 
adversarial network (SDGAN. This paper follows the paper 
published by Hejazi et al. published on December 2022. 
This study aims to highlight the importance of using a 
multimodal condition monitoring system utilising vibration 
and thermal images to increase the fault detection accuracy 
[2]. Thermal images are considered promising in induction 
motor condition monitor it can reach up to 100% if images 
are clear without further preprocessing [3], unlike vibration 
signal, which is regarded as the most famous metric in 
induction motor condition monitoring systems [2, 4]. 

However, thermal images are not commonly used in 
condition monitoring since defect data are limited or 
rare and are also subjected to a lack of fault diversity. It is 
common to use AI for classification or regression, and the 
neural network is expected to be trained on representative 
and balanced data for both. In fact, computers can also be 
used for data generation using generative models, such 
as variational autoencoders and generative adversarial 
networks. Therefore, the importance of using GANs arises 
when manufacturing needs a methodology that generates 
complex faults for better condition monitoring systems [1]
it is difficult to obtain a sufficient defect data set in terms 
of diversity and quantity. A new generation method called 
surface defect-generation adversarial network (SDGAN. 
Generative Adversarial Networks (GANs) were introduced by 
lan Goodfellow et al. in 2014 [5]. GANs use deep learning to 
generate fake images by mimicking the dataset distribution 
by playing a min-max game between two models, the 
Generator (G) and Discriminator (D) models. Hence, (G) 
learns to generate images very close to real images to fool 
D [6]. GANs are called generative because they generate 
something as an output, for example, images, videos 
domain adaptation, image super-resolution, etc., and 
adversarial because they have two networks fighting against 
each other (G) network (G) that capture the distribution 
and (D) model (D) that that tries to figure the genuinely of 
generated data if it was fake or real [7]. 

Deep Convolutional Generative Adversarial Network 
(DCGAN) is a type of GANs that Radford discovered, Metz, 
and Chintala in 2014 [8]. DCGAN utilises Convolutional 
Neural Network (CNN) architecture with GANs [1]it is 
difficult to obtain a sufficient defect data set in terms of 
diversity and quantity. A new generation method called 
surface defect-generation adversarial network (SDGAN. 
One of the key innovations of DCGAN is the replacement 
of pooling layers with stride convolutions and fractionally-
strided convolutions. This allows both the (G) and (D) to 
learn convolutional operations, spatial downsampling, 
and upsample individually. By doing this, DCGAN ensures 
(G) and (D) networks learn independently, which can 
help to stabilise the training process. It also uses batch 
normalisation (BN) to stabilise learning. BN is a technique 
used to normalise the input to a layer, which helps to solve 
the vanishing gradient problem and prevent the deep (G) 
from collapsing all samples to the same points. Finally, 
DCGANs use both ReLU and LeakyReLU activation functions 
to allow the model to learn quickly and perform well [9], 
[10]computer graphics, and computer vision problems 
can be treated as image-to-image translation tasks. Such 
translation entails learning to map one visual representation 

of a given input to another representation. Image-to-image 
translation with generative adversarial networks (GANs. 
Followed by Data augmentation in fault diagnosis based 
on the Wasserstein Generative Adversarial Network with 
Gradient Penalty (WGAN-GP)  deep architecture that can 
stabilise the training and generate high-quality images in 
2017 [11]. WGAN-GP brings stability to the training model 
with almost no parameter tuning [12]. It also proved its 
capability in fault sample generation [13]a practical problem 
comes up in these studies, where deep learning models 
cannot be well trained and the classification accuracy is 
greatly affected because of the sample-imbalance problem, 
which means that there are a large amount of normal 
data but few fault samples. To solve the problem, an 
enhanced generative adversarial network (E-GAN, also in 
supplementing low dimensional fault data [14]. 

STATE-OF-THE-ART

DCGAN proved its efficiency in [15] which is called 
unbalanced dataset. Due to the existence of such 
unbalanced datasets, traditional methods are not 
easy to detect faults. Deep convolutional generative 
adversarial networks(DCGAN for image generation in 
solving imbalanced datasets in the chemical industry fault 
diagnosis field. It was also used in [4] for axial piston pump 
bearing fault diagnosis to mitigate data availability and 
missing fault labelling challenges. DCGAN was also used 
in induction motor fault classification using Case Western 
Reserve University’s (CWRU) famous dataset in which CWT 
images were synthesised [14]. In January 2023,  a paper 
was published focusing on WGAN usage in thermal images; 
fault creation in induction motors was also used to increase 
fault samples, namely, inner and outer faults also in healthy 
condition [16, 17]

It was clear from the literature that researchers tried to 
generate extra trustworthy data to enhance the training 
performance on limited fault types or generate look-like 
vibration signals without focusing on thermal image fault 
creation. Even the most recent paper explored generating 
thermal images on three conditions only to enhance the 
fault classification accuracy using a single input model. 
Unlike other projects, this paper explores the possibility 
of using GANs in induction motor thermal RGB image fault 
creation using DCGAN and WGAN. Hence, our condition 
monitoring thermal images are of high resolution and large 
size. The primary objective is to investigate the generation 
of an artificial thermal image dataset that resembles the 
existing dataset under various health conditions. The 
intention is to support the proposed multimodal condition-
monitoring system outlined in the paper [2].

DATASET

Wolfson Magnetics Laboratory, located at Cardiff University 
School of Engineering. The laboratory conducted 
experiments to simulate six different failure modes and 
healthy conditions. To create these failure modes, a 2mm 
diameter drill was used to create holes in both the inner and 
outer parts of the bearing, as illustrated in Fig. 1 [3]. This 
paper aims to specifically investigate three conditions: inner, 
outer, which are (depicted in Fig. 1), and healthy. Healthy 
conditions refer to a bearing without any defects or faults.

However,  Thermal images of bearing faults were collected 
using a Forward Looking InfraRed (FLIR) thermal camera 
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positioned 30cm from the centre of the housing, Fig. 2. The 
camera was connected to a computer to capture images 
of six artificially induced faults and one health condition. A 
total of 120 images were captured under three types of load, 
resulting in 360 images per condition. The data was split 
into 80% for training, equivalent to 288 RGB images, and 
20% for testing, equal to 72 RGB photos [3, 18]. 

Fig. 1. Bearing faults (a) inner fault, (b) outer fault.

Fig. 2. Thermal images sample under three health conditions (a) inner 
fault (b) outer fault (c) healthy.

METHODOLOGY

In this study two GAN architectures were used. Firstly, the 
DCGAN model was trained on Google Colab using Tesla T4 
GPU. Training and testing images of size 224 x 224 x 3 were 
located in the google drive directory. The (G) model takes 
a random noise vector of size 100 as input and generates 
an image. The (D) model predicts whether it is real or fake. 
Both models trained alternately with binary cross-entropy 
loss function and Adam optimiser. The DCGAN (G) has 
40,635,715 parameters, and the (D) has 605,505 trainable 
parameters. The second architecture is WGAN-GP, a type of 
GAN architecture that uses a gradient penalty to enforce the 
Lipschitz continuity of the (D). The (D) is trained to output 

a scalar value instead of a probability. The (G) is trained to 
minimise the Wasserstein distance between the distribution 
of real and generated samples. The (G) loss is the negative 
Wasserstein distance, and the (D) loss is the difference 
between the average of the (D) output on the real samples 
and the generated samples, plus a gradient penalty term. 
The gradient penalty term is added to ensure that the (D) 
satisfies the Lipschitz continuity condition with a 0.0001 
learning rate and batch size of 64 and Adam optimiser [11].

RESULTS

Basic DCGAN was tested on three health condition datasets: 
inner fault, outer fault, and healthy. The experiments 
varied in terms of hyperparameters, such as Learning Rate 
(LR) (0.0001, 0.0002), batch size (16,32), and the number 
of epochs (50, 500). On the other hand, WGAN-GP was 
tested on the inner fault type only with advanced training 
parameters, as shown in Table 1. 

To evaluate the performance of each experiment, the (G) 
and (D) losses were assessed. A lower (D) loss relative to the 
(G) indicates superior (D) performance. Conversely, a lower 
(G) loss suggests a better performance of the (G). These 
findings align with the results presented in Table 1, where 
the performance of each model can be observed based on 
their respective losses. The experiments were conducted 
in two stages: the first stage involved using basic DCGAN 
with simple parameters (Experiments 1-12) to test various 
health condition datasets, while the second stage focused 
on utilising WGAN-GP with advanced parameters specifically 
for the inner fault type. 

Stage 1: Three conditions were tested, starting with the 
inner fault (Experiments 1-4): longer training time led 
to better performance, with the best result observed in 
experiment 2. It used 500 epochs, LR of 0.0001, a batch 
size of 32, and achieved a (G) loss of 4.627 and a (D) loss of 
0.0002. Outer fault (Experiments 5-8), Increasing the batch 
size led to better performance, with the best result obtained 
in experiment 7, which used 50 epochs, LR of 0.0002, a batch 
size of 16, and achieved a (G) loss of 0.0021 and (D) loss of 

No. Model Dataset LR Batch Size Epochs Training 
time (min) (G) Loss (D) Loss

1 DCGAN Inner 0.0001 16 500 48 3.2172 5.537

2 DCGAN Inner 0.0001 32 500 41 4.627 0.0002

3 DCGAN Inner 0.0002 16 50 5 0.0019 3.5658

4 DCGAN Inner 0.0002 32 500 40 5.0668 7.6786

5 DCGAN Outer 0.0001 16 50 4 0.0045 3.0554

6 DCGAN Outer 0.0001 32 50 4 0.0079 2.782

7 DCGAN Outer 0.0002 16 50 4 0.0021 3.4129

8 DCGAN Outer 0.0002 32 50 4 0.00308 3.2324

9 DCGAN Healthy 0.0001 16 50 4 0.00681 2.8419

10 DCGAN Healthy 0.0001 32 50 4 0.0068 2.8419

11 DCGAN Healthy 0.0002 16 50 5 0.00681 2.84186

12 DCGAN Healthy 0.0002 32 500 50 8.32011 5.0697

13 WGAN-GP Inner 0.0001 64 10,000 660  
(11 hours)

-1896.8600 Loss Fake: -1897.3366  
Loss Real: -1548.9419

Table 1. GAN performance for fault detection experiments.
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3.4129. Healthy conditions (Experiments 9-12) where longer 
training time resulted in improved performance, with the 
best outcome observed in experiment 12, which utilised 
1000 epochs, LR of 0.0002, a batch size of 32, and achieved 
a (G) loss of 8.3201 and a (D) loss of 5.0697. However, visual 
inspection results were not as promising compared to the 
project objective.

Stage 2: the inner fault was exclusively tested using WGAN-
GP (Experiment 13) with a higher number of epochs and 
longer training time. The experiment required 11 hours 
of training time. The (G) loss was a high negative number, 
while the (D) loss of -1897.3366 for fake samples and 
-1548.9419 for real samples. These findings suggest that 
the (D) network performed well in distinguishing between 
real and fake samples, with the loss being minimised during 
training. Similarly, the (G) loss was also a high negative 
number, specifically -1896.8599. This indicates that the (G) 
successfully generates samples that the (D) classifies as real 
samples with a high level of confidence.

DISCUSSION 

The choice of hyperparameters significantly impacts model 
performance. Generating artificial fault images of large size 
and high complexity posed challenges requiring significant 
time and GPU capabilities. Table 1 provides insights into the 
performance of GANs using DCGAN. Implementing WGAN-GP 
with advanced hyperparameters (10,000 epochs, batch size 
64) on a GPU yielded efficient generation of motor images 
closely resembling real images over time as shown in Fig. 3.

Fig.  3. WGAN-GP  images (inner fault type): (a) at epoch 0, (b) at epoch 
100, (c) at epoch 10,000.

CONCLUSION 

This study has highlighted the significant impact of 
hyperparameters on GAN performance and has successfully 
demonstrated the remarkable capability of GANs in creating 
induction motor thermal images. This study has proved the 
applicability of WGAN-GP for generating artificial thermal 
images, although it requires high computational power. 
Future research will aim to optimise the process of dataset 
creation by training all fault types simultaneously using 
conditional GANs with higher image resolution.
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