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Abstract. This paper introduces a framework to study discrete optimization
problems which are parametric in the following sense: their constraint matrices
correspond to matrices over the ring Z[x] of polynomials in one variable. We
investigate in particular matrices whose subdeterminants all lie in a fixed set
S ⊆ Z[x]. Such matrices, which we call totally S-modular matrices, are closed
with respect to taking submatrices, so it is natural to look at minimally non-
totally S-modular matrices which we call forbidden minors for S. Among other
results, we prove that if S is finite, then the set of all determinants attained by a
forbidden minor for S is also finite. Specializing to the integers, we subsequently
obtain the following positive complexity results: the recognition problem for
totally ±{0, 1, a, a+ 1, 2a+ 1}-modular matrices with a ∈ Z\{−3,−2, 1, 2} and
the integer linear optimization problem for totally ±{0, a, a+1, 2a+1}-modular
matrices with a ∈ Z\{−2, 1} can be solved in polynomial time.

1 Introduction

For a matrix M , let ∆(M) denote the maximal absolute value of a subdeter-
minant of M . Since decades it is well-known that the number ∆(M) plays a
crucial role in understanding complexity questions related to integer program-
ming problems whose associated constraint matrix is M . Important examples
include bounds on the diameter of polyhedra [7,10,21], questions about the prox-
imity between optimal LP solutions and optimal integral solutions [3,8], bounds
on the size of the minimal support of integer vectors in standard form pro-
grams [1,2,4,11], and running time functions for dynamic programming algo-
rithms [12]. Largely unexplored however remain two fundamental algorithmic
questions: Given a finite set S ⊆ N of allowed values for the subdeterminants in
absolute value of the matrix M :

1. What is the complexity of solving an ILP with associated constraint matrix
M in dependence of |S| and maxs∈S s? (Optimization problem)

2. How can we efficiently verify whether a matrix M has all its subdeterminants
in absolute value in S? (Recognition problem)

If S = {0, 1}, both questions have been answered. Indeed, a famous theorem of
Hoffmann and Kruskal [15] and a decomposition theorem of Seymour for totally
unimodular matrices [27] allow us to tackle both questions. We refer to [26] for
further theory concerning totally unimodular matrices. If S = {0, 1, 2}, there
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exists a polynomial time algorithm to solve Question 1 [6]. In this generality,
further optimization results are not known to us. There are other important
results when one imposes additional restrictions on the constraint matrix. For
instance, if one assumes that each row of the constraint matrix contains at most
two non-zero entries, there is a polynomial time algorithm for the optimization
problem [13]. A randomized polynomial time algorithm for the related integer
feasibility question can be derived if the constraint matrix is {0, ∆}-modular for
∆ ≤ 4 [19,20]. There are also polynomial time algorithms for the optimization
problem if the constraint matrix is {a, b, c}-modular [14] for a, b, c ∈ N.

The main reason why there are only few general results on optimization and
recognition problems is due to the lack of understanding integral matrices with
bounded subdeterminants. The purpose of this paper is to develop a frame-
work to investigate the structure of those matrices. Our point of departure is to
consider matrices with entries being elements in Z[x], the ring of polynomials
with integral coefficients in one indeterminate x. Moreover, we specify a set of
polynomials S ⊆ Z[x] that corresponds to the allowed polynomials for the sub-
determinants of those matrices. All other polynomials in Z[x]\S are forbidden.
Let us make this precise.

Definition 1. Let S ⊆ Z[x] be finite. Let 1 ≤ m,n. A matrix M ∈ Z[x]m×n

is totally S-modular if every k × k subdeterminant of M is contained in S for
1 ≤ k ≤ min{m,n}. Let 2 ≤ l. The matrix M ∈ Z[x]l×l is a forbidden minor
for S if every (l− 1)× (l− 1) submatrix is totally S-modular but detM /∈ S. By
F (S), we denote the set of all polynomials that arise as a determinant of some
forbidden minor for S.

The case Z can be recovered by restricting S to consist of constant polynomials.
One advantage of operating in Z[x] is that we can extract a certain decomposi-
tion, Theorem 1, and simplify arguments due to arithmetic properties of Z[x].
This allows us to make progress towards Question 1 and 2 if we evaluate the
polynomials in M and S at integers. The disadvantage of our approach is that
there are finitely many values of a ∈ Z for which our statements do not hold. For
those values a, there exist a polynomial in F (S) and a polynomial in S whose
evaluations at a admit the same value. This implies that F (S(a)) cannot be the
set of all polynomials that arise as a determinant of some forbidden minor for
the set S(a) of evaluations of all polynomials of S at a; cf. Lemma 3.

Let us remark that there is a related line of research. It involves understand-
ing the matroids that admit a representation as a ±{0, 1, 2, . . . ,∆}-modular
matrix for ∆ ≥ 2 [22,23]. We emphasize that there are crucial differences be-
tween this approach and the totally S-modular direction proposed in this work.
For instance, here the notion of a forbidden minor depends on the concrete
representation of the matrix.

We will later be able to make general statements about the structure of
the set F (S). However, when it comes to Questions 1 and 2, we need further
restrictions to derive general statements.
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1.1 The smallest non-trivial cases

Given the requirements that x ∈ S and S is as small as possible, it turns out
that the first non-trivial cases are given by matrices with associated sets S =
±{0, x, x + 1, 2x + 1} and S = ±{0, 1, x, x + 1, 2x + 1}. Let us next argue why
this is the case. We assume that 0 ∈ S. This assumption can be made without
loss of generality because, if 0 /∈ S, we are quite restricted; see, for instance, [5].
So let S = ±{0, x}. One can check that there is no invertible totally S-modular
matrix in dimension larger than one. Hence, we may assume that S contains at
least three different polynomials, i.e., S = ±{0, x, y} for y ∈ Z[x]. The only ways
of choosing y such that the set of totally S-modular matrices contains invertible
instances in every dimension is either y = 1 or y = x+ 1. Let S = ±{0, x, x+ 1}.
After removing all-zero rows and columns, one can show that totally S-modular
matrices M are submatrices of the following matrix up to a sign, row and column
permutations, and duplicates:

x+ 1 . . . . . . x+ 1
... . .

.
x

... . .
.
. .
. ...

x+ 1 x . . . x

 .

In other words, the rows and columns of M can be totally ordered, or, equiva-
lently, M excludes the submatrix(

x+ 1 x
x x+ 1

)
. (1)

This implies that the matrix (1) is a forbidden minor for S with determinant
2x + 1. We therefore obtain a purely combinatorial description which does not
take into account the knowledge about subdeterminants but still completely
characterizes totally S-modular matrices. One of the advantages of this observa-
tion is that, after minor preprocessing, the recognition problem becomes surpris-
ingly straightforward in large dimensions: Up to row and column permutations
and multiplying with minus one, one can simply check whether the matrix has
entries in {x, x + 1} and the forbidden submatrix in (1) does not appear. This
leads to the natural question of what happens when we allow the matrix (1) to be
present, i.e., we add 2x+ 1 to the set S. This gives us S = ±{0, x, x+ 1, 2x+ 1}.
As a next step, one can add the choice y = 1 from above to our current set to
obtain S = ±{0, 1, x, x+ 1, 2x+ 1}.

1.2 Statements of our results

The statements are concerned with matrices that can be decomposed into M =
T + x · u · v> for integral T ,u, and v. To derive complexity results, we need to
understand the matrix T for a given set S. The following decomposition result
applies. Let S(a) denote the set of evaluations of all polynomials of S at a ∈ Z.
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Theorem 1. Let S ⊆ Z[x] be finite. Let M = T + x · u · v> where T ,u, and v
are integral. If M is totally S-modular, then T is totally S(0)-modular.

For instance, let K0 ⊆ N be finite and S = ±{kx− 1, kx, kx+ 1 : k ∈ K0}. Then
Theorem 1 states that T is totally unimodular.

Theorem 1 can be significantly generalized. The assumption that M = T +
x ·u · v> can be replaced by M = T + x ·M1 + . . .+ xl ·Ml where M1, . . . ,Ml

are arbitrary integral matrices for l ∈ N. We refrain from proving this in detail.
The reason is that we only use Theorem 1, and its evaluated form Corollary 1, to
derive statements about optimization and recognition, but even then Theorem 1
itself is not enough. Further properties of the matrix T are required to tackle the
following constraint parametric optimization problem over Z which is given in
terms of a full-column-rank constraint matrix M(a) ∈ Zm×n where every entry
of M(a) is parametrized by a specific value a ∈ Z:

ILP(M(a), b, c) : max c>x s.t. M(a)x ≤ b, x ∈ Zn

where b is integral. The following two results can be derived with the tools
developed in this paper.

Theorem 2. Let a ∈ Z\{−3,−2, 1, 2} and S(a) = ±{0, 1, a, a+1, 2a+1}. Given
a matrix M(a) ∈ Zm×n, one can decide in polynomial time whether M(a) is
totally S(a)-modular.

Theorem 3. Let a ∈ Z\{−2, 1} and S(a) = ±{0, a, a+ 1, 2a+ 1}. Let M(a) ∈
Zm×n have full column rank and be totally S(a)-modular. Then one can solve
ILP(M(a), b, c) for integral b and c in polynomial time.

2 Tools

Throughout this paper we work with the lexicographical order of Z[x] which is
defined by s < t if and only if the leading coefficient of t − s is positive. With
respect to this ordering we further define the absolute value of s ∈ Z[x] to be

|s| =

{
s, if s ≥ 0,

−s, otherwise
.

Also, we interchangeably pass from polynomials s ∈ Z[x] to polynomial func-
tions, denoted by s(a), when evaluating polynomials. This can be done since the
polynomial function is uniquely determined by the polynomial over Z[x]; see [17,
Chapter 4]. Let I ⊆ [n] and J ⊆ [n]. We denote by M\I,\J the submatrix of M
without the rows indexed by I and columns indexed by J . In what follows, the
notation A(k) ⊆M is shorthand for specifying that A(k) is a k×k submatrix of
M . Given a submatrix A of M and i, j ∈ [n], we denote by A[i, j] the submatrix
of M that contains A along with the extra row and column indexed by i and j
respectively.
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We now show two results that can be viewed as a generalization of the well-
known fact that every matrix that is not totally unimodular and has entries in
±{0, 1} contains a submatrix with determinant two in absolute value. For that
purpose, we utilize a well-known determinant identity from linear algebra which
is due to Sylvester [28] and commonly referred to as Sylvester’s determinant
identity. By convention, the determinant of an empty matrix is 1.

Lemma 1 (Sylvester’s determinant identity). Let M ∈ Z[x]n×n for n ≥ 2
and let A(k) ⊆ M for k = 0, . . . , n with A(k) = M\I,\J for the ordered sets
I = {i1, . . . , in−k} and J = {j1, . . . , jn−k}. Then we get

detM · (detA(k))
n−1−k = det

 detA(k)[i1, j1] . . . detA(k)[i1, jn−k]
...

. . .
...

detA(k)[in−k, j1] . . . detA(k)[in−k, jn−k]

 .

For the most part, we work with the special case when k = n− 2, which is also
known as the Desnanont-Jacobi identity. In this case, we get the equation

detM · detA(k) = det

(
detA(k)[i1, j1] detA(k)[i1, j2]
detA(k)[i2, j1] detA(k)[i2, j2]

)
(2)

for I = {i1, i2} and J = {j1, j2}. This identity already implies our first bound:

Lemma 2. Let S ⊆ Z[x] be finite. Then the set F (S) of determinants attained
by the forbidden minors of S is finite and

max
x∈F (S)

|x| ≤ 2 ·max
s∈S

s2.

Proof. Select some forbidden minor M for S such that detM 6= 0. There ex-
ists an invertible submatrix A(n−2) ⊆M . By the Desnanot-Jacobi identity (2)
applied to A(n−2), we obtain that

detM =
1

detA(n−2)
· (s1s2 − s3s4) ,

where si ∈ S for i = 1, 2, 3, 4. Since detA(n−2) ∈ S, the right hand side only
attains finitely many values as S is finite. Hence, there are only finitely many
values possible for detM . To obtain the inequality, we take absolute values on
both sides, apply the triangle inequality, and observe that |si| ≤ maxs∈S |s|. The
claim follows then from 1 ≤

∣∣detA(n−2)
∣∣. ut

We immediately obtain that every forbidden minor for totally ±{0, 1, . . . ,∆}-
modular matrices over Z admits a determinant bounded by 2∆2 in absolute
value. The bound in Lemma 2 is tight: Let S ⊆ Z[x] be finite such that s ∈ S
implies −s ∈ S and {0} 6= S. Select τ = maxs∈S |s|. Then(

τ τ
−τ τ

)
is a forbidden minor for S and has determinant 2τ2. One can strengthen the
bound in Lemma 2 if the dimension is sufficiently large and S ⊆ Z.
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Theorem 4. Let S ⊆ Z be finite. Let τ = maxs∈S |s|. Given a forbidden minor
M ∈ Zn×n for S of dimension n ≥ dlog2 τ + 1e, then

|detM | ≤ 2 · dlog2 τ + 1e · τ.

Proof. Suppose that the matrix M is invertible, otherwise we are done. Let
∆k = max

{∣∣detA(k)

∣∣ : A(k) ⊆M
}

for all k = 0, . . . , n and κ = dlog2 τe. If
κ = 0, we have τ = 1 and, thus,∆n−1/∆n−2 ≤ 1 as∆n−2 ≥ 1 and∆n−1 ≤ τ = 1.
So the Desnanont-Jacobi identity (2) applied to some invertible (n−2)× (n−2)
submatrix implies

|detM | ≤ 2 ·∆n−1/∆n−2 ·∆n−1 ≤ 2 ·∆n−1 ≤ 2 · τ.

For the remainder of the proof, we suppose that 1 ≤ κ. Observe that κ+1 ≤ n.
Assume that ∆n−j/∆n−j−1 > 2 for all j = 1, . . . , κ. This yields

κ∏
j=1

∆n−j/∆n−j−1 > 2κ ≥ τ.

However, we also have

κ∏
j=1

∆n−j/∆n−j−1 = ∆n−1/∆n−κ−1 ≤ τ

as ∆n−κ−1 ≥ 1 and ∆n−1 ≤ τ , which is a contradiction. So we know there exists
an index l∗ ∈ [κ] such that ∆n−l∗/∆n−l∗−1 ≤ 2, where we have n − l∗ − 1 ≥ 0
by construction. Let A := A(n−l∗−1) ⊆ M attain ∆n−l∗−1. Then applying
Sylvester’s determinant identity, Lemma 1, to A gives us

detM · (detA)l
∗

= det

 detA[i1, j1] . . . detA[i1, jl∗+1]
...

. . .
...

detA[il∗+1, j1] . . . detA[il∗+1, jl∗+1]


︸ ︷︷ ︸

=D

for suitable sets I and J . Dividing by (detA)l
∗

and applying Laplace expansion
to the first row on the right hand side yields

detM =
1

(detA)l∗
·
l∗+1∑
k=1

(−1)k · detA[i1, jk] · detD\1,\k.

Observe that detD\1,\k = detM\i1,\jk · (detA)l
∗−1 by Lemma 1. Hence,

detM =
1

detA
·
l∗+1∑
k=1

(−1)k · detA[i1, jk] · detM\i1,\jk .

Taking absolute values and using that |detA| = ∆n−l∗−1 gives

|detM | ≤ (l∗ + 1) ·∆n−l∗/∆n−l∗−1 ·∆n−1 ≤ (κ+ 1) · 2 · τ.

The claim follows from κ = dlog2 τe. ut

6



Let S ⊆ Z[x] be finite. If M is totally S-modular over Z[x], then M(a) is
totally S(a)-modular for every a ∈ Z. This raises the question of whether totally
S(a)-modular matrices over Z for a fixed value a ∈ Z are also totally S-modular
over Z[x], i.e., totally S(a)-modular for all a ∈ Z. This is in general not true:
Let S = ±{0, x, x+ 1, 2x+ 1} ⊆ Z[x] and a = 1. We define the matrix

M =


x x+ 1 x x

x+ 1 x+ 1 x+ 1 x
x x+ 1 x+ 1 x+ 1
x x x+ 1 x

 ∈ Z[x]4×4.

One can check that M(1) is totally S(1)-modular. However, the matrix M sat-
isfies detM = 1 /∈ S. Nevertheless, if we evaluate at some a ∈ Z\{−2,−1, 0, 1},
we avoid this issue for this particular matrix since detM(a) = 1 /∈ S(a). One of
our main results in this section states that this is a general phenomenon. Let

I(S) = {a ∈ Z : s(a) = f(a) for some s ∈ S and f ∈ F (S)}

denote the set of integer valued intersections between the polynomial functions
given by the elements in S and F (S), the set of all polynomials that arise as a
determinant of some forbidden minor for S.

Lemma 3. Let S ⊆ Z[x] be finite and a ∈ Z\I(S). Then M(a) is totally S(a)-
modular if and only if M is totally S-modular over Z[x]. Also, the matrix M(a)
is a forbidden minor for S(a) if and only if M is a forbidden minor for S.
Furthermore, the set I(S) is finite.

Proof. Note that the statement about the forbidden minors follows directly from
the first statement about totally S-modular matrices. Therefore, we only need to
prove the first part of the statement. Recall that every totally S-modular matrix
over Z[x] is totally S(a)-modular for every evaluation at a ∈ Z. So it suffices to
show the other direction.

A totally S(a)-modular matrix that is not the evaluation of a totally S-
modular matrix over Z[x] contains a forbidden minor M for S by definition.
This forbidden minor M satisfies detM(a) ∈ S(a) and detM /∈ S. In other
words, let f ∈ F (S) be the polynomial corresponding to detM , then f /∈ S but
f(a) = s(a) for some s ∈ S. Thus, we obtain a ∈ I(S), a contradiction. So M
does not contain a forbidden minor for S and is therefore totally S-modular.
Since S and F (S) are finite, see Lemma 2, we get that there are only finitely
many of those intersections. ut

We aim to make statements about matrices with entries being polynomials
of degree at most one, that is, matrices given by M = T + x · R ∈ Z[x]n×n

for integral T and R. The following result relates the rank of R to the largest
degree among the polynomials in a given set S. We write deg(s) for the degree
of s ∈ Z[x].

Lemma 4. Let S ⊆ Z[x] be finite. Let M = T + x · R ∈ Z[x]m×n be totally
S-modular for integral T and R. Then we have rankR ≤ maxs∈S deg(s).
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Proof. Let r = rankR and R′ ∈ Zr×r be an invertible submatrix of R and
M ′ = T ′ + x ·R′ the corresponding submatrix of M . We get

detM ′ = det (T ′ + x ·R′) = detR′ · det
(
R′−1T ′ + x · I

)
,

where I denotes the unit matrix. Using the Leibniz formula for the determinant
det(R′−1T ′ + x · I), we observe that there exists only one term with degree r,
namely the term corresponding to the identity permutation, and no term with
degree larger than r. Thus, the right hand side in the equation above is a poly-
nomial of degree r. So detM ′ is also a polynomial of degree r. Since the matrix
M ′ is totally S-modular, we have that r = deg(detM ′) ≤ maxs∈S deg(s). ut

So, if maxs∈S deg(s) = 1 and R is non-zero, then Lemma 4 implies that
rankR = 1. Hence, we can express R as a rank-1 update and obtain M =
T +x ·u ·v> for some integral u and v. Given such a matrix M = T +x ·u ·v>
without any restriction on its subdeterminants, it is possible to establish that
subdeterminants of M are indeed polynomials of degree at most one. This is a
consequence of the well-known matrix determinant lemma for rank-1 updates.
A variant of this lemma is stated below.

Lemma 5 (Matrix determinant lemma). Let M = T +x ·u ·v> ∈ Z[x]n×n

for integral T , u, and v. Then we have

detM =
(
detT − det

(
T − u · v>

))
· x+ detT .

This is the essential ingredient to prove Theorem 1.

Proof (of Theorem 1). Let M = T + x · u · v> be totally S-modular. Then
Lemma 5 implies that detM = λ1x + λ0 for λ0, λ1 ∈ Z and detT = λ0. This
holds for all such totally S-modular matrices. So the claim follows. ut

We will also use an implication of Theorem 1 for matrices over Z.

Corollary 1. Let S ⊆ Z[x] be finite and a ∈ Z\I(S). If M(a) = T + a · u · v>
with integral T , u, and v is totally S(a)-modular, then the matrix T is totally
S(0)-modular.

Proof. Since a ∈ Z\I(S), we know that every totally S(a)-modular matrix
M(a) = T+a·u·v> corresponds to a totally S-modular matrix M = T+x·u·v>
over Z[x] by Lemma 3. From Theorem 1 it follows that T is totally S(0)-modular.

ut

3 Properties of I(S)

Following Lemma 3, we demonstrate how to calculate all intersections between
the polynomial functions in a given set S and the polynomial functions in F (S).
We start by proving a lemma which holds under more general assumptions. For
that purpose, we remark that the ring Z[x] is a unique factorization domain.
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So every element in Z[x] admits a unique factorization into smaller irreducible
elements up to multiplying with ±1. Therefore, the notion of greatest common
divisors carries naturally over from Z to Z[x]. Analogously to Z, elements in Z[x]
are relatively prime if their greatest common divisor is 1. We call a matrix M ∈
Z[x]m×n totally unimodular if every subdeterminant is contained in ±{0, 1}.

Lemma 6. Let S ⊆ Z[x] be such that all non-zero y, z ∈ S are relatively prime
or |y| = |z| and 2 /∈ S. Let n ≥ 3 and M ∈ Z[x]n×n be invertible and every
(n− 1)× (n− 1) submatrix of M is totally S-modular. Then either M is totally
unimodular or there exist invertible submatrices A(n−2), Ã(n−2) ⊆M such that∣∣detA(n−2)

∣∣ 6= ∣∣det Ã(n−2)
∣∣.

Proof. Let n = 3. The (n − 2) × (n − 2) submatrices of M are the entries of
M . Assume that every entry of M is in ±{0, s} for some s ∈ S. If s = 1, we
get that M ∈ ±{0, 1}3×3. Since 2 /∈ S, the matrix M is totally unimodular,
cf. [26, Theorem 19.3]. If we assume s 6= 1, we have detA(2) ∈ ±{s2, 2s2} for
an invertible submatrix A(2) ⊆M as every entry is contained in ±{0, s}. Since
the non-zero elements in S are pairwise relatively prime and s ∈ S, we get
detA(2) /∈ S, contradicting that A(2) is totally S-modular.

So we suppose that n ≥ 4. Let M not be totally unimodular. Again, we
assume that every invertible (n − 2) × (n − 2) submatrix has determinant s or
−s for some s ∈ S. By the induction hypothesis applied to some invertible sub-
matrix A(n−1) ⊆M , there exists an invertible submatrix A(n−3) ⊆ A(n−1) with∣∣detA(n−3)

∣∣ 6= |s|. We apply the Desnanont-Jacobi identity, (2), to A(n−3) ⊆
A(n−1) and obtain that

detA(n−1) =
1

detA(n−3)
(s1s2 − s3s4) ∈ ± 1

detA(n−3)
· {s2, 2s2}

with si ∈ ±{0, s} for i = 1, 2, 3, 4. If
∣∣detA(n−3)

∣∣ 6= 1, then detA(n−3) does
not divide s2 or 2s2 as the non-zero elements in S are pairwise relatively prime
and 2 /∈ S. However, this implies that detA(n−1) /∈ Z[x], a contradiction. If∣∣detA(n−3)

∣∣ = 1, we get that detA(n−1) ∈ ±{s2, 2s2}. This gives us a contra-
diction since detA(n−1) and s are not relatively prime. ut

We are in the position to determine the set of possible determinants given by
the forbidden minors for a specific set S. We showcase this for S = ±{0, 1, x, x+
1, 2x+ 1}.

Lemma 7. Let S = ±{0, 1, x, x+1, 2x+1} and D be the set of all determinants
attained by a 2× 2 forbidden minor for S. Then we have

F (S) ⊆ ±{2, x− 1, x+ 2, 2x, 2x+ 2, 3x+ 1, 3x+ 2, 4x+ 2} ∪D.

Proof. Let n ≥ 3 and M be a forbidden minor. There exists an invertible sub-
matrix A(n−2) ⊆M . Applying the Desnanont-Jacobi identity (2), we get

detM · detA(n−2) = s1s2 − s3s4
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with si ∈ S for i = 1, 2, 3, 4. This equation needs to have a solution for detM in
Z[x]. Suppose that detM has degree larger than one. This implies

∣∣detA(n−2)
∣∣ =

1, an equality that has to hold for every invertible (n−2)×(n−2) subdeterminant.
By Lemma 6, we deduce that M is totally unimodular and, thus, not a forbidden
minor. So we assume detM has degree at most one. Using suitable software such
as SageMath, one can enumerate all feasible solutions to the Desnanont-Jacobi
identity with degree at most one. This gives us the following feasible values for
detM up to a sign:

2S\0 ∪ {x− 1, x+ 2, 2x− 1, 2x+ 3, 3x+ 1, 3x+ 2, 4x, 4x+ 1, 4x+ 3, 4x+ 4}.

However, it is possible to show that the values ±{2x− 1, 2x+ 3, 4x, 4x+ 1, 4x+
3, 4x+ 4} for detM can only appear for a unique choice of

∣∣detA(n−2)
∣∣. There-

fore, if there exists a forbidden minor with such a determinant, every invertible
(n−2)×(n−2) submatrix needs to have the same determinant in absolute value.
This contradicts Lemma 6. Hence, we can exclude these values and obtain the
determinants from the statement. ut

Computing the intersections of the elements in S = ±{0, 1, x, x+ 1, 2x+ 1} and
the set in Lemma 7 yields that I(S) ⊆ {−3, . . . , 2} in Corollary 1. We remark
that it is possible to show that both sets are indeed equal.

Remark 1. For the set S = ±{0, x, x + 1, 2x + 1}, one can show analogously to
the proof of Lemma 7 that F (S) ⊆ ±{1, 2x, 2x + 2, 3x + 1, 3x + 2, 4x + 2} ∪D
and I(S) = {−2,−1, 0, 1}, where D is the set of all determinants attained by a
2× 2 forbidden minor for S.

4 Proofs of Theorems 2 and 3

For both cases, S = ±{0, 1, x, x+1, 2x+1} and S = ±{0, x, x+1, 2x+1}, we re-
cover that S(a) = ±{0, 1} if a ∈ {−1, 0}. Since one can optimize ILP(M(a), b, c)
in polynomial time for totally unimodular constraint matrices, see, for instance,
[26, Chapter 19], and recognize totally unimodular matrices in polynomial time
[26, Chapter 20], both theorems hold in this case. In the following, we prove
Theorems 2 and 3 for the other values of a.

4.1 Proof of Theorem 2

Recall that S = ±{0, 1, x, x+ 1, 2x+ 1}. By Lemma 4, every totally S-modular
matrix M admits a decomposition into M = T + x · u · v> for some suitable
integral valued T , u, and v. One can test in polynomial time whether such a
decomposition exists. To finish the proof of Theorem 2, we use the complete char-
acterization given below and the fact that one can recognize totally unimodular
matrices in polynomial time; see [26, Chapter 20].

Lemma 8. Let T , u, and v be integral. The matrix M = T +x ·u ·v> is totally
S-modular if and only if T and T − u · v> are totally unimodular.
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Proof. We abbreviate T̄ = T−u·v>. It suffices to show the statement for square
matrices. So we assume without loss of generality that m = n. Let T and T̄ be
totally unimodular. We have

detM =
(
detT − det T̄

)
· x+ detT (3)

by Lemma 5. So detM is completely determined by detT and det T̄ . As detT
and det T̄ are both in ±{0, 1}, we obtain that detM ∈ ±{0, 1, x, x+1, 2x+1} =
S by going through all feasible cases. The other direction follows directly by
evaluating S, M , and (3) at x ∈ {−1, 0}. ut

By Lemma 3 and I(S) ⊆ {−3, . . . , 2} from the previous section, we can now
derive Theorem 2 by replacing S with S(a) for a ∈ Z\{−3,−2,−1, 0, 1, 2}.

4.2 Proof of Theorem 3

Following Remark 1, we fix some a ∈ Z\{−2,−1, 0, 1}. We use the decomposi-
tion M(a) = T + a · u · v> for integral u,v from Lemma 4 where T is totally
unimodular by Corollary 1. By multiplying rows and columns with −1, we as-
sume without loss of generality that u and v are non-negative. Observe that this
already implies that the entries of T are in {0, 1} since the entries of M(a) are
in S(a). Let without loss of generality M(a) have no zero column or row. This
implies that no entry of u and v equals zero. If there exists an entry of M(a)
which is 2a + 1, then due to the rank-1 update the whole row and/or column
containing this entry have entries 2a + 1. If there exists a row of M(a) whose
entries are all 2a + 1, we can divide this row by a/(2a + 1) and round down
the right hand side. So we can always assume that u = 1. If there are multiple
columns whose entries are all 2a+ 1, we aggregate them. Hence, we assume that
there is at most one column with entries 2a + 1. So we can select v ∈ {1, 2}n
where at most one entry of v is 2. We suppose without loss of generality that
v1 ∈ {1, 2} and v\1 = 1. Let the first column of M(a) be M(a)·,1. Notice that

M(a)·,\1 is a matrix with entries in {a, a+ 1}. We set y = 1>x̃ for x = (x1, x̃)>

to reformulate ILP(M(a), b, c) in the form of the mixed integer linear program

max c>x s.t. T\1,·x̃ ≤ b− x1 ·M(a)·,1 − a · u · y, 1>x̃ = y, x1, y ∈ Z.

We next show that the constraint matrix, the transpose of [T\1,·|1], is totally
unimodular. If this is true, then a solution of the mixed integer linear program
in two integer variables can be obtained in polynomial time using Lenstra’s
algorithm [18] or its improved successors [9,16,24]. It corresponds to a solution
of ILP(M(a), b, c).

Consider [T\1,·|1]. The matrix T\1,· is totally unimodular since its a sub-
matrix of T . Let T ′ be an invertible submatrix of the constraint matrix that
contains the row 1. By adding a · 1 to every row of T ′ that is not the all-ones
row, we obtain a new matrix M(a)′ that contains a submatrix of M(a)·,\1, whose
entries are in {a, a+ 1}, and one all-ones row. Since each submatrix of M(a) is
totally S(a)-modular, we obtain ±1 = detM(a)′ = detT ′ by Theorem 5 below.
So [T\1,·|1] is totally unimodular.

11



Theorem 5. Let S = ±{0, x, x + 1, 2x + 1} ⊆ Z[x] and n ≥ 2. Let M ∈
{x, x+ 1}n×(n−1) be totally S-modular. Then det[M |1] ∈ ±{0, 1}.

Proof. For the purpose of deriving a contradiction, assume that the statement
does not hold. We multiply the all-ones column with x + 1. So we deduce that
det[M |(x+ 1) · 1] /∈ ±{0, x+ 1} by assumption. Note that det[M |(x+ 1) · 1] is
divisible by x + 1. So we obtain that det[M |(x + 1) · 1] /∈ S. Thus, the matrix
[M |(x + 1) · 1] contains a forbidden minor for S. As M is totally S-modular,
the forbidden minor contains the all-(x+ 1)’s column. For the remainder of the
proof, we show that no forbidden minor with entries in {x, x + 1} contains an
all-(x+ 1) column or row, which finishes the proof of the theorem.

One can verify that for n = 2 no forbidden minor with entries in {x, x + 1}
exists. So we assume that n ≥ 3. Suppose without loss of generality that the last
row of M , which we denote by Mn,·, has greatest common divisor larger than
1. We derive a contradiction.

We observe that gcdMn,· ∈ {x, x + 1}. By Remark 1, we have |detM | =
2 · gcdMn,· as detM has to be divisible by gcdMn,·. Let A(n−1) ⊆M be an
invertible submatrix not containing the last row. Take an invertible submatrix
A(n−2) ⊆ A(n−1). The Desnanont-Jacobi identity, (2), applied to A(n−2) yields

2 gcdMn,· detA(n−2) = detM detA(n−2) = s1s4 − s2s3,

where s1, s2 ∈ S and s3, s4 ∈ ±{0, gcdMn,·}. This equation cannot be sat-
isfied if si = 0 for some i = 1, 2, 3, 4. So we assume that si 6= 0 for all
i = 1, 2, 3, 4. By division with gcdMn,· and assuming that without loss of gen-
erality s3 = gcdMn,· = s4, we get 2 · detA(n−2) = s1 − s2 for s1, s2 ∈ S\0.

The only solutions are given when
∣∣detA(n−2)

∣∣ = s1 = −s2 or
∣∣detA(n−2)

∣∣ =
−s1 = s2. Hence, every invertible (n − 2) × (n − 2) submatrix of A(n−1) has
the same determinant as A(n−1) in absolute value. If n = 3, this implies that
the (n − 2) × (n − 2) subdeterminants correspond to entries. As the entries of
M are in {x, x + 1}, this means that all the entries in A(n−1) are the same
which gives us detA(n−1) = 0, a contradiction. So let n ≥ 4. Take an invertible
submatrix A(n−3) ⊆ A(n−1). We apply the Desnanont-Jacobi identity, (2), to
A(n−3) ⊆ A(n−1) and get detA(n−3) ∈ ±{detA(n−1), 2 detA(n−1)} which yields∣∣detA(n−3)

∣∣ =
∣∣detA(n−1)

∣∣. This holds for all invertible (n−3)× (n−3) subma-
trices of A(n−1). By Lemma 6, this implies that A(n−1) is totally unimodular.
However, this contradicts that detA(n−1) ∈ S. ut

5 Finiteness of forbidden minors

Recall from the introduction that totally ±{0, x, x + 1}-modular matrices with
entries in {x, x + 1} are completely characterized by excluding the submatrix
(1). In light of the celebrated Robertson-Seymour theorem [25], one might ask
whether there is always a finite list of forbidden minors for a finite set S ⊆ Z[x]
and matrices with entries in {x, x + 1}. This is not the case. An intriguing
example with infinitely many forbidden minors is already given by the set S =
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±{0, 1, x, x+ 1, 2x+ 1}; see Figure 1 for an incomplete list. Interestingly, if one
removes the 1 from S and passes to ±{0, x, x + 1, 2x + 1}, then we are only
aware of finitely many forbidden minors; see Figure 1. It is open whether this
list is complete. If this is true, this might support the following conjecture for a
finite set S ⊆ Z[x] such that s ∈ S implies −s ∈ S: there exists a finite list of
forbidden minors if and only if 1 /∈ S.

Fig. 1. The blue boxes depict the value x and the green boxes x+ 1 or vice versa. The
first row of matrices corresponds to the first five elements of an infinite sequence of
matrices that can be obtained by generalizing the existing pattern. It can be shown that
those infinitely many matrices are forbidden minors for ±{0, 1, x, x + 1, 2x + 1}. The
matrices in the last row correspond to five forbidden minors for ±{0, x, x+ 1, 2x+ 1}.
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