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Abstract

Over the East Africa region forecasts of the onset of the rainy seasons have the

potential to support decision-making, especially in the largely rain-fed agricul-

tural sector. However, the understanding of key features of onset remains lim-

ited. Here, we analyse the variability of onset and associated drivers at

interannual and subseasonal timescales, using several onset definitions.

Results show that the onset date is especially variable from year to year in

some of the high-potential agricultural areas (standard deviation >20 days),

which has implications for agricultural risk management. The choice of onset

definition metric matters; agronomic definitions have limited applicability at

the regional scale and are also highly sensitive to the spatial scale of analysis

and to the choice of rainfall data. Onset information provided at coarse scales

should be used with caution for decision-making at the local scale; the “hit
rate” of coarse-scale tercile onset information at the local scale is less than 40%

on average. To varying degrees, onset is related to total seasonal rainfall and

thus to dominant interannual drivers of rainfall, including the Indian Ocean

Dipole and ENSO modes in October–December and the western Pacific

“V-gradient” pattern in March–May. However, by analysing the dominant pro-

portion of onset variance unrelated to total rainfall during the climatological

season we show a substantial influence of subseasonal drivers, notably the

Madden–Julian Oscillation. As such, there is an opportunity for rainfall onset

information to be provided across seasonal and subseasonal timescales. Our

work reinforces the need for enhanced co-production of such onset informa-

tion with stakeholders, especially regarding the choice of metric, alignment of

forecasts with livelihood calendars, interpretation of the credibility of informa-

tion content for local-level decision-making, as well as appropriate strategies

for staggered risk management interventions informed by forecasts over

“seamless” lead times.
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1 | INTRODUCTION

In East Africa (EA), livelihoods, food security and indeed
gross domestic product (GDP) are substantially depen-
dent on rain-fed agricultural production (Kadi et al.
2011) and thus are highly vulnerable to climate variabil-
ity and change. For a recent broad review of EA climate
variability and trends and the societal impacts, see
Palmer et al. (2023). Actionable climate information can
support more optimal agricultural decisions. Forecasts of
the timing of the seasonal rain onset are often ranked by
users as the most important metric (Owusu et al., 2017;
UK Met Office, 2011). Accurate knowledge of the onset
date can boost yield by reducing the risk of planting late
or early (Laux et al., 2008) by guiding the implementation
of key cropping decisions such as land preparation, pur-
chase of inputs, sowing dates, mobilization of manpower
and equipment (Acharya & Bennett, 2021). For example,
the delayed onset of March-May (MAM) rains in 2019
was associated with a 20% reduction in total maize pro-
duction in Kenya (Global Agricultural Monitoring, 2019).
“False onsets” in which a prolonged dry spell occurs
shortly after an initial wet spell, can lead to seedling
death and the need for replanting (Gbangou et al., 2019)
as in Western Kenya in MAM 2019 (Feed the
Future, 2019). Currently, climate information services in
the EA region have a dominant focus on forecasts of sea-
sonal rainfall totals, although forecasts of onset date are
also provided (e.g., https://www.icpac.net/seasonal-
forecast/). Notably, an opportunity exists for advancing
forecast information in EA given the relatively high pre-
dictability of climate across seasonal to subseasonal time-
scales (de Andrade et al., 2019; MacLeod et al., 2021;
Walker et al., 2019).

Based on the multiscale nature of rainfall variability,
defining the onset of the rainy season is complex and fur-
ther should depend on the intended application. Over
20 onset definitions have been published for the West
African monsoon (Fitzpatrick et al., 2015). While onset
can be defined using a combination of atmospheric circu-
lation parameters, most definitions are based on rainfall
only, due to the availability of historical rainfall data—
compared to other parameters such as soil moisture—
and the direct relevance to agricultural practices (Ferijal
et al., 2022). “Agronomic” onset definitions are typically
based on point-scale rainfall exceeding some threshold of
accumulated rainfall, deemed sufficient for seed germina-
tion but with an added condition to avoid false onset, that
is, no significant dry spell in the subsequent days
(Acharya & Bennett, 2021; Laux et al., 2008; Marteau
et al., 2009; Stern et al., 1981). Forecasting centres in EA
such as the IGAD Climate Prediction and Applications
Centre (ICPAC) operationally utilize agronomic defini-
tions (Table 1) across the entire region/country.

However, such definitions are problematic when applied
over large areas or using relatively coarse observations
because (i) the rainfall thresholds usually established
from point scale studies may not apply to spatially aver-
aged rainfall information (ii) cropping patterns and thus
water requirements likely differ over large regions such
that crop-relevant thresholds may not be appropriate.
Such problems can be addressed using definitions based
on the accumulated daily anomalies with respect to the
local mean (Camberlin & Okoola, 2003; Dunning
et al., 2016; MacLeod, 2018).

To date, no assessment of the applicability of opera-
tional or other onset definitions has been conducted for
EA. This is despite studies over other regions such as
West Africa showing strong sensitivity of the mean
onset date, onset variability, onset drivers, and thus
likely forecast skill to onset definitions (Fitzpatrick
et al., 2015; Vellinga et al., 2013). Further, scientific lit-
erature on EA rainfall has mainly focused on under-
standing the seasonality, variability and drivers of total
seasonal rainfall. EA has a complex seasonality
(Herrmann & Mohr, 2011; Liebmann et al., 2017) which
has been associated with EA's topography and location
astride the equator. Herrmann and Mohr (2011) show
pronounced spatial gradients in seasonality regimes in
close spatial proximity such that in Western Kenya and
Northern Uganda, there exist up to five different season-
ality regimes. The role of IOD and ENSO in driving
OND rainfall variability is well established (Black, 2005;
Indeje et al., 2000; Marchant et al., 2007; Mutai &
Ward, 2000; Ogallo, 1988). The MAM season is generally
believed to be less strongly associated with tropical
modes and has weaker predictability (Walker
et al., 2019), although in recent decades the role of the
Pacific Ocean temperatures in driving dry MAM condi-
tions (Funk et al., 2015) and the Madden–Julian Oscilla-
tion (MJO) activity (Maybee et al., 2022) has emerged.
There has been a recent focus on subseasonal variability
indicating relatively strong predictability at these time-
scales linked to improvement in the representation of
the MJO (Finney et al., 2020; MacLeod et al., 2021).
However, there has been little focus on how these sys-
tems influence onset variability, despite the ongoing
operational provision of onset forecasts.

Those studies that have focused on drivers of onset
variability have been conducted over large scales or one
part of the East African region with each study utilizing
one onset definition (detailed in Table 1). Various studies
have linked the variability of onset in MAM to the atmo-
spheric response to patterns of sea surface temperature
(SST) including the SST gradient between the Atlantic
and Indian Oceans (Camberlin & Okoola, 2003); The
South Indian Ocean (Wainwright et al., 2019); The West-
ern Pacific “V” shape region (Funk et al., 2023). In the
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OND season onset variability links most strongly to circu-
lation anomalies associated with the Indian Ocean Dipole
(Gudoshava et al., 2022a). However, such interannual
variability explains only a relatively small proportion of
onset variance (up to around 50%; MacLeod, 2018) such
that subseasonal and higher frequency synoptic scale var-
iability is crucial. Given that onset is fundamentally a rel-
atively short-term phenomenon but is influenced by
longer-term structures of variability there is a need for
greater clarity on how climate/weather drivers that oper-
ate across space/time scales interact to determine onset
variability.

Such improved understanding of drivers of onset and
the sensitivity to onset metric definition across multiple
scales of analysis is important for informing the develop-
ment and use of appropriate products for agricultural
planning and risk management. In this study, we address
the following research questions.

1. What is the spatial and temporal nature of onset vari-
ability across the East African region?

2. How sensitive are onset characteristics to the choice
of onset metric and scale of analysis?

3. What are the key drivers of variability in onset across
interannual to subseasonal timescales?

2 | DATA AND METHODS

2.1 | Rainfall

The primary precipitation dataset used is the Climate
Hazards Group Infrared Precipitation with Stations
(CHIRPS) from 1981 to 2020, available at daily/0.05� res-
olution. CHIRPS blends gauge data with rainfall calcu-
lated from thermal infrared satellite imagery (Funk
et al., 2015) and performs well over East Africa (Kimani
et al., 2017). However, to analyse the sensitivity of onset
dates to different equally valid datasets, we also utilized
daily Multi-Source Weighted-Ensemble Precipitation
(MSWEP) at daily/0.1� resolution. MSWEP merges gauge,
satellite, and reanalysis data (Beck et al., 2019) and is

TABLE 1 Onset definitions that are documented and operationally used over the East African region.

Onset metric
category Reference Onset definition

Accumulated daily
anomalies

Dunning et al. (2016) Referred to as onset metric AA in this study.
Inspired by Liebmann and Marengo (2001), defines onset as the
minima in the cumulative daily precipitation anomaly.
The onset date at the grid point level is defined as the minima of
the accumulated daily rainfall anomalies time series with the
anomalies calculated relative to the long-term mean of a rainy
season

Camberlin and Okoola (2003) (Not used in this study)
Inspired by Liebmann and Marengo (2001).
The onset date was defined as the minima of the accumulated
principal component (PC) time series of the leading mode of the
daily station rainfall empirical orthogonal function (EOF) analysis
over Kenya and Northern Tanzania

Agronomic: threshold
of accumulated daily
rainfall

IGAD Climate Prediction and
Applications Centre (ICPAC)
(Gudoshava et al., 2022)

Referred to as onset metric AG1 in this study.
Adopted as the operational onset definition at the IGAD Climate
Prediction Centre over the Greater Horn of Africa (ICPAC).
Onset is the first day of the wet season when a wet spell of
accumulated rainfall in 3 consecutive days is 20 mm and there is
no dry spell of over 7 days in the next 20 days. The threshold for a
rainy day is defined as 1 mm

Kijazi and Reason (2012) Referred to as onset metric AG2 in this study.
The first wet day of a 5-day period whose accumulated rainfall
exceeds 10 mm followed by three consecutive pentads having a
rainfall amount of not less than 10 mm per pentad

Kenya Meteorological Department
(KMD)

(Not used in this study)
Utilizes the same definition as ICPAC. However, for the arid and
semi-arid areas (ASALs) the accumulated threshold is lowered to
10 mm

MWANGI ET AL. 3359
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second to CHIRPS in performance over parts of EA
(Omonge et al., 2022).

We assess rainfall onset over a domain covering equa-
torial EA bounded by 7�S and 5�N; 29�E and 43�E com-
prising Kenya, Uganda, Northern Tanzania, Rwanda,
Burundi, Southern Somalia, Southern Ethiopia and
Southern South Sudan (Figure 1). Although most of the
region receives rainfall during two main seasons: the
“long rains” season from March to May (MAM) and
the “short rains” season from October to December
(OND), the seasonality of rainfall over the region is much
more complex.

The Eastern sector (�37�–42�E) of the region exhibits
two distinct seasons while the extreme South (<5�S) has
one season, as illustrated in Figures S1 and S2, Support-
ing Information. This is corroborated by previous studies
(Dunning et al., 2016; Herrmann & Mohr, 2011;
Liebmann et al., 2017). However, the characterization of
seasonality in parts of Uganda and Western Kenya
(WKNU) varies depending upon the methodology
employed and the rainfall dataset used. Using harmonic
analysis of the local rainfall climatology, Dunning et al.
(2016) delineate two seasons across equatorial East
Africa, while Liebmann et al. (2017) identify two seasons

in much of Uganda and the Lake Victoria basin and
unimodal seasonality in WKNU. Further, Herrmann
and Mohr (2011) using a water balance methodology
combining temperature and rainfall, highlight a more
complex seasonality over WKNU, encompassing one wet
season, two wet seasons and non-seasonal patterns, with
unimodal and bimodality within the wet seasons. There
are pronounced spatial gradients in regimes in close spa-
tial proximity such that in WKNU there exist up to five
different regimes. Further, they note the stability of the
defined seasonality is very low in WKNU, that is, there is
high interannual variability in seasonality.

Detailed agricultural livelihood calendars (available
only for Kenya) from the Famine Early Warning Systems
Network (FEWSNET) illustrate the complexity of agro-
climate seasonality in Western Kenya (FEWSNET, 2011).
Considering the transition from Lake Victoria to the Rift,
there is a variation from zones with one to two maize-
growing seasons which are associated with rainfall sea-
sonality. The complex seasonality is further illustrated by
time-longitude plot of mean daily rainfall, between lati-
tudes 0� and 1�N which indicates one long rainfall season
in Western Kenya and two slightly distinct rain seasons
in central Uganda (Figure S1).

FIGURE 1 (a, b) Seasonal mean rainfall (mm) for MAM and OND, respectively. (c, d) Standard deviation of seasonal rainfall (mm) for

MAM and OND, respectively. Contours in (a, b) indicate the percentage contribution of the season to the annual total rainfall.
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Due to the region's complex seasonality particularly
the presence and duration of the second season over the
western sector of EA, applying a single rule to seasonality
in the region is difficult. Thus we consider the two sea-
sons (MAM and OND) that are experienced over much of
EA. Rainfall variability in these seasons is most pro-
nounced over Kenya (Figure 1c) especially over central
Kenya and Rift Valley, which are also Kenya's most agri-
culturally productive regions (USDA, 2009).

2.2 | Definition of onset

We utilize three definitions from Table 1 that are applica-
ble for grid cell/localized analysis. Two are agronomic
definitions (i) ICPAC's operational definition (ii) from
Kijazi and Reason (2012) (hereafter, AG1 and AG2,
respectively). The third definition is based on accumu-
lated daily rainfall anomalies (hereafter, AA) from Dun-
ning et al. (2016), with the onset being the transition
from dry to wet, defined as the point of upturn in accu-
mulated rainfall anomalies (averaged over 5 days), which
are negative during dry periods but become positive
when the rainfall first exceeds the daily norm. A typical
case of AA is shown in Figure 2 with the onset date indi-
cated by the red dot. The method was refined to cope
with specific circumstances as described in sect. S1 and
Figure S3.

Due to the region's complex seasonality, particularly
the presence and duration of the second season over the
Western sector of EA, we conducted onset sensitivity
analysis for this season using different season lengths;
July–December (JASOND); August–December (ASOND)
and September–December (SOND). Further, acknowl-
edging the absence of a perfect method for defining sea-
sons due to complex seasonality and thus onsets, we
implement several restrictions in our analysis: (i) we
focus on seasons centred on February to May and

September to December, and (ii) we mask out areas that
climatologically experience onsets before 1st March and
1st October. These restrictions are applied across the
three definitions and climatological masks are unique for
each definition.

2.3 | Spatial–temporal characterization
of onset

We utilized empirical orthogonal function (EOF) analysis
to determine the dominant spatial patterns of onset vari-
ability. Results over the domain of interest were essentially
insensitive to the use of a larger domain of 10�S–7�N and
25�–45�E (Figures S4 and S5). We also assess the depen-
dence of onset timing to the spatial scale of analysis by
comparing onset dates at contrasting spatial resolutions
(following Young et al., 2020), of the highest available
resolution (0.05�), indicative of local scale decision-
making, and a degraded coarse resolution of 1.0�, indica-
tive of some of the available forecast products, e.g., the
World Climate Research Programme/WMO S2S real-time
pilot (http://www.s2sprediction.net/) provided forecast
information degraded to 1.5�. We conduct this scale-
dependence analysis by (i) deriving the temporal correla-
tion of onset dates derived at fine and coarse resolution;
(ii) deriving the “hit rate” at the fine scale of coarse scale,
as the percentage of seasons that are in the same tercile
category at both resolutions. This is analogous to a base-
line assessment of the “skill” of a “perfect” onset forecast
provided at low resolution assessed at the local-level more
relevant to decision-making on the ground.

2.4 | Drivers of onset variability

We consider both interannual and intraseasonal controls
on onset timing. At interannual timescales, we correlate

FIGURE 2 Example of onset

derivation using the AA onset metric for

March to May 1999 at grid point 32.524�E,
0.575�S with onset indicated by the red

dot. Plot shows daily rainfall (mm, blue

line) with the cumulative daily rainfall

anomalies (mm, green), and smoothed

cumulative daily anomalies (mm, red).

The red (dark blue) dots indicate the

absolute minima (maxima) of the

smoothed cumulative curve.

MWANGI ET AL. 3361
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the EOF PCs (section 2.3) with SSTs from the National
Oceanic and Atmospheric Administration's (NOAA) sec-
ond version Optimum Interpolation (OI) monthly dataset
(Reynolds et al., 2002). We focus on indices of relevant
modes of variability of the Indian Ocean Dipole (IOD)
and the recently defined “Western V Gradient (WVG)” in
the Pacific. The IOD Index (DMI) was calculated as the
difference between monthly SST anomalies in the west-
ern (50�–70�E, 10�S–10�N) and eastern (90�–110�E, 10�S–
0�) Indian Ocean (Saji et al., 1999). The WVG (Funk
et al., 2023) was computed as the difference between
standardized SSTs over the NINO3.4 region (170�–
120�W, 5�S–5�N) and the Western “V”; that is the aver-
aged over West Pacific 120�–160�E, 15�S–20�N, Western
North Pacific 160�E–150�W, 20�–35�N and Western
South Pacific 155�E–150�W, 15�–30�S.

Distinguishing the interannual and intraseasonal
influences on onset is not simple since the singular sea-
sonal onset values are not amenable to standard time fil-
tering. There is a well-documented observed association
between seasonal total rainfall and onset dates, in which
high (low) seasonal total rainfall results in earlier
(delayed) onset ( Camberlin & Okoola, 2003; Gudoshava
et al., 2022a, 2022b; Kijazi & Reason, 2012; MacLeod,
2018). We assume that this association broadly reflects
the interannual control on onset. This correlation, how-
ever, only explains at most about 50% of the variance in
onset. Thus, to assess subseasonal influences we identify
seasons when the association between rainfall onset and
the rainfall total is relatively weak, for example, late-
onset seasons which are not notably drier than normal or
early-onset seasons that are not notably wetter than nor-
mal. We term these seasons, “deviant” seasons in the
sense that onset timing deviates from that expected from
the influence of interannual controls, and we then inves-
tigate the subseasonal drivers.

“Deviant” seasons at each grid cell are identified from
the residuals of the linear regression of onset date and
total rainfall during the climatological season (MAM
and OND) across the study period (for the grid points
with a statistically significant correlation; see, e.g.,
Figure S6). The major early and late “deviant” seasons
were defined as those with the greatest areal coverage of
grid cells with large residual values (below or above,
respectively the 20th and 80th percentile of the residual
distribution) across the three onset definitions. For each
season category (early/late onset) we identified two sea-
sons that have the largest percentage area across the
three onset definitions. We caveat this methodology by
recognizing that the residual of the regression is a simple
method of separating interannual and subseasonal
drivers and some of the deviation may well be from sea-
sonal characteristics that are not linked to total seasonal

rainfall. However, this is a good starting point for explor-
ing the deviance from the total seasonal rainfall and
onset association.

For these major “deviant” seasons analysis of subsea-
sonal drivers focused on the MJO, moisture convergence
and wind flow. We utilize hourly 30-km spatial resolu-
tion 850 hPa zonal winds and vertically integrated mois-
ture divergence from the fifth generation of European
Centre for Medium-Range Weather Forecasts (ECMWF,
ERA5) to analyse atmospheric conditions during onset.
We use the Real-time Multivariate MJO (RMM;
Wheeler & Hendon, 2004) to characterize the MJO phase
and amplitude before, during, and after onset dates. The
RMM is computed from the first two principal compo-
nents (referred to as RMM1 and RMM2) of the ENSO
signal-filtered analysis of combined daily global tropical
outgoing longwave radiation (OLR) and NCEP-NCAR
reanalysis zonal winds at 850 and 200 hPa. RMM1 and
RMM2 form a two-dimensional Cartesian phase diagram
that depicts the propagation of the MJO convective clus-
ters eastwards across the Tropics. Figures S7 and S8 show
the effect of MJO phases on rainfall across EA indicating
that enhanced rainfall over EA is associated with MJO
phases 2–4 (and to some extent phase 1), while sup-
pressed rainfall over EA is associated with MJO phases
5–8.

3 | RESULTS AND DISCUSSION

3.1 | Nature of onsets across different
onset definitions

Here we address research questions 1 and 2 with sec-
tions 3.1.1–3.1.3, respectively, presenting an assessment
of the spatial patterns of the mean onset date and vari-
ability, the association between onset definition defini-
tions, and the sensitivity of onset to the spatial scale of
analysis and different rainfall datasets.

3.1.1 | Patterns of mean wet season onset
and variability

Mean rainfall onset date patterns broadly indicate the
progression of onset from southwest to northwest across
the domain during MAM (Figure 3a–c) and northwest to
southeast during OND (Figure 3g–i). These patterns are
consistent with earlier studies on the region (Camberlin
& Okoola, 2003; Dunning et al., 2016; MacLeod, 2018;
Gudoshava et al., 2022a, 2022b) and align with the cus-
tomary explanation of the rainy seasons over East Africa
being associated with the movement of the tropical rain

3362 MWANGI ET AL.
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FIGURE 3 Climatological onset dates for; (a–c) MAM and (g–i) OND, for the AG1, AG2 and AA onset definitions, respectively. (d–f)
Temporal standard deviation of onset dates (days) for MAM and (j–l) for OND for definitions AG1, AG2 and AA, respectively. The white

contours in (f, l) indicate areas that receive total rainfall of over 350 mm on average. Areas where the onset occurs before March 1st and

October 1st for MAM and OND, respectively, are shown in grey. Hatching represents areas where less than 20% of the years attain an

onset date.

TABLE 2 Spatial correlation of the climatological onset dates and standard deviation across the three definitions for MAM and OND

seasons.

Spatial correlation of climatological onset dates Spatial correlation of standard deviation

MAM OND MAM OND

AG1 vs. AG2 0.92 0.90 0.76 0.64

AG1 vs. AA 0.74 0.78 0.63 0.33

AG2 vs. AA 0.75 0.84 0.45 0.21

MWANGI ET AL. 3363
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belt northwards and southwards, respectively. These
basic patterns are consistent for all three onset defini-
tions, confirmed by high spatial correlations of mean
onset between definitions, especially in OND (Table 2).
Note that the agronomic AG2 metric fails to achieve
onset dates during any of the 40 years in OND in the arid
Turkana region in the extreme northwest of Kenya.

However, absolute differences in mean onset between
definitions locally are often high, exceeding 14 days in
many places (Figure 4), presumably reflecting sensitivity
to the different thresholds of rainfall accumulation and
subsequent dry spells (Table 1) and the use of relative
versus absolute rainfall. While the agronomic definitions
arguably have greater relevance to practical applications
in agriculture the pattern of mean onset for a given met-
ric and its relevance to decision-making must be well
understood and communicated (see section 3.1.3).

Perhaps of greater importance note is the magnitude
of interannual variability in onset dates (Figure 3d–f,j–l)
which varies markedly across the domain with the high-
est variability (>28 days) occurring in Kenya, especially
over parts of the Coastal strip, Rift Valley and Western
Kenya for both seasons. Rift Valley and Western Kenya
are wetter areas of high agricultural production such that
high onset variability likely has important implications
for agricultural practices and affirms the potential impor-
tance of reliable onset information to inform decision-
making and risk management. Note that the high onset

variability in these regions of Kenya contrasts with much
lower variability over similarly humid regions in western
Tanzania or Uganda. Agreement between the onset defi-
nitions in the spatial structure of variability is weaker
than for mean onset (Table 2). Further, the spatial pattern
of onset variability does not match especially closely with
that of seasonal total rainfall variability (Figure 1c,d). This
suggests that the drivers of onset and total rainfall variabil-
ity may have significant differences (see section 3.2).

Sensitivity analysis for the second season indicates
that onset dates shift with changes in season definition,
and this is especially so for AG onset definitions
(Figure S9). Notably, interannual variability in onset
dates remains high over parts of the Coastal strip, Rift
Valley and Western Kenya (Figure S9 d–f,j–l). The high
variability over the Rift Valley and Western Kenya can be
associated with the high interannual variability in sea-
sonality that is noted by Herrmann and Mohr (2011).

3.1.2 | Association between onset definition
definitions

Although mean onset patterns are very similar across
onset definitions, the temporal association among them
is low in many areas (Figure 5). However, a strong associ-
ation is noted between AG1 and AG2 in the MAM season
(Figure 5a). Not surprisingly, AA has a lower association

FIGURE 4 Absolute differences in climatological mean onset dates (in days) between the three onset definitions. Difference between

MAM onsets for (a) AG1 and AG2 (b) AG1 and AA (c) AG2 and AA. Difference between OND onsets for (d) AG1 and AG2 (e) AG1 and AA

(f) AG2 and AA.
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with AG2 and AG1 with correlations less than 0.6 over
much of the region. The association is weak, especially in
OND (Figure 5f), for which there are large areas with
nonsignificant correlations. This weak temporal agree-
ment in onset among the definitions strongly indicates
that the choice of onset metric is important in an opera-
tional context and should be considered carefully when
assessing the predictability of onset forecasts.

3.1.3 | Sensitivity of onset to spatial
resolution and different datasets

Typically, weather and climate information provided by
meteorological services over EA is provided at spatial
scales much coarser than that of local level decision mak-
ing in agricultural management. Accordingly, we sought
to investigate the sensitivity of onset dates to spatial scale.
The temporal correlation of onset dates at fine (0.05�)
and coarse resolution (1�) for the AA metric is very vari-
able but generally quite strong (r > 0.6) over much of the
domain in both seasons (Figure 6i,j), although the corre-
lation is lower in many areas especially where variability
in onset is highest (Figure 3). The “hit rate” for onset ter-
cile values at high resolution given a low-resolution
tercile value is very variable but generally only �60% for
the early onset tercile and �50% for the late onset tercile.

It is higher in MAM than in OND, in which there are
large parts of Kenya with very low “hit rates” for the late
onsets (Figure 6k,m,n,p).

In contrast, for the AG1 onset metric the correlation
between the two scales of analysis is generally only mod-
erate in MAM (r < 0.6 over much of the domain;
Figure 6a) and low in OND (<0.4 over much of the
domain; Figure 6b). Lower correlations are observed over
parts of northwestern, central and eastern Kenya in OND
as compared to MAM. The low correlation in AG1 can
likely be attributed to the effect of spatial averaging on
absolute rainfall values and hence the timing of exceed-
ance of threshold values (Figure S10). The hit rate for the
“perfect” forecast is much less in both seasons and espe-
cially so in OND with much of Kenya having less than
40% hit rate for late and early onset tercile categories
(Figure 6f,h).

We conducted further spatial sensitivity analysis with
MSWEP and CHIRPS (regridded) at 0.1� and 1� as
detailed in sect. S2. Although MSWEP correlation is
higher over the domain and thus contrasts with CHIRPS,
especially in OND (Figures S11 and S12), the hit rate is
<50% for much of Kenya, especially for AG1.

Overall, AA onsets are relatively insensitive to the
scale of analysis, likely because the spatial autocorrela-
tion in relative rainfall anomalies is quite high. As such
AA represents a more robust onset metric than the

FIGURE 5 Temporal correlation between onset dates across the period 1981–2020 from the three definitions; (a–c) MAM season and

(d–f) OND season. Hatching represents correlations that are statistically significant at the 95% significance level.
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agronomic AG1. AG1 is not a robust onset indicator for
onsets derived at a coarse scale e.g., from forecast
models, for application at the local scale. Notwithstand-
ing the potential for statistical artefacts in the gridded
rainfall data, these results suggest that strong caution
must be applied to the interpretation and use of coarse-
scale climate information. We further infer that rainfall
in OND is rather more spatially heterogeneous than
in MAM.

Further, Figure 7 shows the sensitivity of onset vari-
ability to different rainfall datasets. Generally, in MAM,
(Figure 7a–c) sensitivity to the dataset is variable but
most areas show moderate to strong correlations. In
OND (Figure 7d–f) however, correlation is notably lower
for the agronomic AG1 and AG2 definitions, presumably
reflecting the sensitivity of absolute rainfall thresholds to
the more heterogeneous rainfall on OND (similar to the
spatial scale analysis in Figure 6). The implication is that

FIGURE 6 Sensitivity of onset to spatial resolution of rainfall dataset. (a, b) Temporal correlation between onset dates at 0.05� and 1�;
for the AG1 metric during MAM and OND respectively. (i, j) Same as (a, b) but for the AA metric. (c–e) Percentage of years with the onset

date in the same tercile category (early, normal, late, respectively) at 0.05� and 1� for MAM using AG1 metric. (f–h) Same as (c–e) but for
OND. (k–m) Same as (c–e) but for the AA metric. (n–p) Same as (f–h) but for AA metric.
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agronomic definitions should be applied cautiously since
they are highly sensitive to the data structure.

3.2 | Drivers of onset variability

Here we address research question 3 and explore the
drivers of variability in onset across interannual (sec-
tion 3.2.1) to subseasonal (section 3.2.2) timescales.

3.2.1 | Large-scale drivers of onset variability
at interannual timescales

That the spatial structures of onset variability (Figure 3d–
f,j–l) differ from those of seasonal total rainfall
(Figure 1c,d) could imply that they are influenced by dif-
ferent drivers and/or respond differently to dominant
driver systems. We explore these prioritizing results
based on the AA definition since it incurs fewer instances
when onset dates are not attained.

The OND leading EOF (Figure 8b; 22% of total vari-
ance) shows negative loadings over much of the domain
and positive loading over a few areas along the western
edge (Rift Valley) of the domain. This could be associated
with the complexity of defining seasonality over the

region and the high interannual variability in seasonality.
The associated PC1 time series has significant correlation
with SSTs over the Indian and Pacific Oceans (Figure 8d)
consistent with the well-established role of the IOD
(Black, 2005; Hirons & Turner, 2018; Nicholson, 2017)
and ENSO (Indeje et al., 2000; Mutai et al., 2012;
Ogallo, 1988) in strongly driving OND rainfall. The
reverse correlation of the IOD SST index and grid cell
onset confirms this pattern of influence for all three onset
definitions (Figure 8e–g), such that positive (negative)
IOD events drive earlier (later) onset over much of the
domain, consistent with Gudoshava et al. (2022a, 2022b),
but later (earlier) onset along the western edge of the
domain.

The difference that is noted along the Rift Valley with
onset EOF and influence of the IOD on onset is not seen
in seasonal rainfall. Seasonal rainfall shows positive cor-
relation with IOD over much of the region with weaker
correlation along the Rift Valley and Uganda
(Figure S13). Further, the leading EOF of OND rainfall
total reflects the IOD influence and loads uniformly over
the region (Figure S14). Correlation of onset and total
rainfall during the climatological season (Figure 9d–f)
also shows the differing pattern along the western edge
of the domain while we see the expected negative correla-
tion over the rest of the domain, consistent with

FIGURE 7 Sensitivity of onset variability to different rainfall dataset. Temporal correlation between onset dates for CHIRPS 0.1� and
MSWEP 0.1� for the three onset definition definitions; (a–c) MAM season and (d–f) OND season. Hatching represents correlations that are

statistically significant at the 95% significance level.
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Camberlin et al. (2019) and MacLeod (2018). The differ-
ing pattern along the edge reflects the effects of complex
seasonality and the high interannual variability in
seasonality on onset definition and hence linkage to
interannual drivers.

In the MAM season, the leading EOF (Figure 8a, 27%
of total variance) shows the highest loadings over the Rift
Valley, Western, Central and Coastal Kenya. Correlation
of the leading EOF PCs with MAM SSTs indicates low

correlation over most tropical oceans (Figure 8c), consis-
tent with documented relatively low sensitivity of MAM
total rainfall variability to tropical modes of SSTs
(Mutai & Ward, 2000; Ogallo, 1988). However, significant
correlations over the Arabian Sea and Southern Indian
Ocean are consistent with the findings of Wainwright
et al. (2019) suggesting that warmer SSTs to the South of
Madagascar (over Arabian Sea) drive a delayed (faster)
northward progression of the rain belt resulting in late

FIGURE 8 Leading EOF loadings of AA onset dates for; (a) MAM and (b) OND. Correlation between; (c) MAM leading EOF PCs and

MAM SSTs (b) OND leading EOF PCs and OND SSTs; (e–g) OND IOD index with OND onset dates for, AG1, AG2 and AA, respectively.

Composites of; (h, i) negative WVG rainfall and MAM AA onset dates respectively. Hatching represents correlations that are statistically

significant at the 95% significance level.
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(early) onset. We also see significant negative (positive)
correlations between MAM onset and SSTs in the central
(eastern) Pacific. This pattern is very similar to that iden-
tified by Maybee et al. (2022) in driving both MAM rain-
fall over the Greater Horn of Africa (GHA) and the
activity of the MJO, whose activity in phases 1–3 they
report drives variability in GHA rainfall. So while this
provides an indication of commonality between drivers
of interannual variability in both seasonal rainfall and
onset, the role of subseasonal MJO activity is highlighted
(and by Vellinga & Milton, 2018) and we explore this spe-
cifically in relation to onset in section 3.2.2. Further, this
Pacific SST pattern in Figure 8c is also reminiscent of the
WVG pattern which drives an asymmetric response to
EA rainfall, such that it is the negative WVG phase that
drives a stronger, dry MAM, signal over EA (Funk
et al., 2023). Composites during major negative WVG
MAM seasons (in which WVG index <−1) show negative
total rainfall anomalies and late onsets (positive anoma-
lies) over much of Kenya and Uganda (Figure 8h,i),
although the onset signal is weaker and less consistent
spatially. As such we find a rather weak association of
onset with the Western V mode.

In line with the leading EOF pattern, MAM onset
dates (notably for the AA metric; Figure 9c) have a strong
significant negative correlation with MAM total rainfall

over much of the domain (Figure 9a–c). Kijazi and Rea-
son (2012) documented that anomalously wet MAM sea-
sons over the Northeastern Highlands of Tanzania are
associated with earlier onsets. MacLeod (2018) also
showed this kind of correlation in the region.

3.2.2 | From interannual to intraseasonal
influences: Identifying unusually early or late
onset “deviant” years

The preceding results suggest strong controls on the
onset known modes of interannual variability. However,
at most (during OND in the Eastern part of the domain)
only �50% of the variance in onset dates is explained by
seasonal rainfall. As such, there remains a dominant pro-
portion of onset variance which is not clearly associated
with interannual drivers. In this section, for both OND
and MAM, we examine 2 years in which unusually early
or late onset most strongly deviates from that expected
from the interannual signal (see section 2 and
Figure S15). We assess the role of the MJO in each case.
Previous analysis has established that MJO in phases 1–4
(5–8) favours enhanced (suppressed) rainfall in the
region (Camberlin et al., 2019; Kilavi et al., 2018;
MacLeod et al., 2021; Maybee et al., 2022; Zaitchik, 2017)

FIGURE 9 Temporal correlation between total seasonal rainfall and onset dates; (a–c) MAM season with AG1, AG2 and AA definitions,

respectively, (d–f) Same as (a–c) but for OND. Hatching represents correlations that are statistically significant at the 95% significance level.
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(Readers are reminded of the influence of the MJO phase
on EA rainfall in Figures S6 and S7). MJO phases 3 and
4 (and to some extent phase 2) have been associated with

the likely occurrence of westerly flow anomalies resulting
in enhanced rainfall over EA (Berhane & Zaitchik, 2014;
Finney et al., 2020; Pohl & Camberlin, 2006).

FIGURE 10 Onset conditions at subseasonal timescales during the two most “deviant” MAM early onset seasons of MAM 1990 (a–d),
(i), (k) and MAM 1999 (e–h), (j), (l), respectively. (a, e) Standardized rainfall anomalies, (b, f) standardized onset anomalies, (c, g) locations

of deviant grid cells and (d, h) onset dates. These are only shown where the correlation between seasonal rainfall and onset date is

statistically significant (based on Figure 9). (i, j) The evolution of the MJO phase and magnitude using the RMM diagram (see section 2). (k,

l) Circulation diagnostics of anomalous vertically integrated moisture divergence (kg�m−2�s−1) and 850 hPa winds (vector magnitude is

shown on plot), during the dominant onset periods of (k) 15th–28th February 1990 (consistent with (c, d)), and (l) 1st–15th March 1999

(consistent with (g, h)).
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For unusually early onset in MAM, 1990 and 1999 are
the 1st and 3rd most extensive “deviant” years
(Figure S16). In both cases, onset was unusually early

over much of Kenya, southern Somalia, and eastern
Uganda (Figure 10b,f) although the seasonal rainfall con-
ditions are contrasting. (Note that the 2nd largest year,

FIGURE 11 Onset conditions at subseasonal timescales during two “deviant” MAM late onset seasons of MAM 1983 (a–d), (i), (k) and
MAM 2019 (e–h), (j), (l), respectively. (a, e) Standardized rainfall anomalies, (b, f) standardized onset anomalies, (c, g) locations of deviant

grid cells and (d, h) onset dates. These are only shown where the correlation between seasonal rainfall and onset date is statistically

significant (based on Figure 9). (i, j) The evolution of the MJO phase and magnitude using the RMM diagram (see section 2). (k, l)

Circulation diagnostics of anomalous vertically integrated moisture divergence (kg�m−2�s−1) and 850 hPa winds (vector magnitude is shown

on plot), during the dominant onset periods of (k) 22nd–26th February 1983 (consistent with (c, d)), and (l) 22nd–27th April 2019 (consistent

with (g, h)).
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2010, is presented in Figure S15 as the seasonal condi-
tions are similar to those of 1990). In MAM 1990 onset
was exceptionally early (Figure 10b,c), occurring in late
February (Figure 10d). This early onset coincided with
MJO in phase 2 with high amplitude (Figure 10i) which
favours enhanced rainfall over EA (Figure S7), and wide-
spread anomalous moisture convergence in westerly flow
anomalies (Figure 10k), consistent with the dynamical
analysis of Finney et al. (2020). During the remainder of
the season, the MJO remained active in all phases,
including many days in phases 1–4 both of which are
consistent with anomalously wet seasonal conditions
(Maybee et al., 2022; Vellinga & Milton, 2018). As such,
in MAM 1990 MJO activity is consistent with both the
triggering of a very early onset and high rainfall condi-
tions throughout the season.

MAM 1999 differed in that the season was drier than
normal (Figure 10e), yet onset was unusually early
(Figure 10f,g) occurring mostly in early March
(Figure 10h). Onset coincided with an active MJO in
phase 3–4 (Figure 10j) which favours enhanced rainfall
over EA (Figure S7) and anomalous westerly moisture
flux and convergence over much of the region
(Figure 10l) this is consistent with earlier studies that
have linked enhanced rainfall over the region to westerly
flow anomalies ( Camberlin & Wairoto, 1997; Dyer &
Washington, 2021). The MJO was strongly active in
phases 5 and 6 for much of the rest of the season which
favours suppressed rainfall over EA (Figure S7). As such,
the MJO activity is consistent with both the early onset
and subsequent suppressed rainy season.

For deviant late onset MAM seasons, we consider
1983 and 2019 which are the 2nd and 3rd most deviant
seasons (Figure S15). (Note that 1st most deviant season,
MAM 2003 (see Figure S16) has a spatially incoherent
distribution of deviant grid cells and onset dates render-
ing identification of coherent drivers problematic). In
MAM 1983, onset was unusually late over much of East-
ern Kenya (Figure 11b,c) and seasonal rainfall was below
average over the region (Figure 11a). Although active,
the MJO was in phases 8 and 1 for much of March and
early April which is consistent with drier conditions over
the region (Figure S7) (MacLeod et al., 2021; Maybee
et al., 2022). The late onset in late April over Eastern
Kenya coincided with active MJO in phase 2 (Figure 11i)
and moisture convergence in easterly flow (Figure 11k);
this is consistent with the analysis of Pohl and Camberlin
(2006). For much of the season, the MJO was in phases
7 and 8 for many days, which is associated with sup-
pressed rainfall. Thus, MJO activity is consistent with the
late triggering of onset and suppressed rainfall during
the season.

In MAM 2019, onset was unusually very late over
Eastern Kenya, Southern Somalia and parts of the Lake
Victoria basin (Figure 11f,g), occurring in mid-April
(Figure 11h). Seasonal rainfall was low but not strongly
so (Figure 11e). MJO activity was suppressed during
much of late March to mid-April consistent with dry con-
ditions. The onset in late April coincided with active
MJO in phase 3 (Figure 11j) and moisture convergence
(Figure 11l). During MAM 2019 under the ForPAc project
(www.forpac.org) the UK Met Office piloted provision to
the Kenya Meteorological Department (KMD) of subsea-
sonal forecasts of weekly rainfall out to 4 weeks lead time
from the GloSEA5 model. On the basis of these forecasts,
KMD issued a forecast of a 3–4 week delay in expected
onset (White et al., 2022). This updated their earlier long
lead seasonal forecast and was useful for adjusting farm-
ing activities such as planting. Note that from late
February to early March, the MJO was active in phases
2 and 3 but it did not trigger onset as the moisture con-
vergence belt was further to the south, likely associated
with the strong influence of tropical cyclone Idai which
propagated from the over the Southwest Indian Ocean
into continental Southern Africa (Figure S17).

For OND we consider the 1st and 2nd most deviant
early onset seasons of 2011 and 2017. In OND 2011, onset
was earlier than usual over parts of Eastern Kenya
(Figure 12b,c), although total seasonal rainfall was below
average (Figure 12a). The early onset occurred in mid-
October (Figure 12d) and coincides with the MJO in
phase 2 (Figure 12i), which favours enhanced rainfall
over Kenya (Figure S8) (Camberlin et al., 2019) and mois-
ture convergence (Figure 12k). For the rest of the season,
the MJO is in phases 4 and 5 which suppresses rainfall
over the eastern sector of the region (ibid) MJO activity is
thus consistent with early onset and below-average rain-
fall over parts of Eastern Kenya. In OND 2017, earlier
than usual onset occurred over eastern Kenya and parts
of Tanzania (Figure 12f,g) despite below-average seasonal
rainfall over these areas (Figure 12e). Over some of these
areas the unusually early onset occurred at the beginning
of October (Figure 12h) coinciding with MJO phases
2 and 3 (Figure 12j) which is consistent with enhanced
rainfall and convergence in the westerly flow anomalies
(Figure 12l). For much of the season, the MJO was active
in phases 5 and 6 which are associated with suppressed
rainfall over the region (Figure S8).

For OND deviant late onset seasons, we consider
1991 and 2006. In OND 1991, onset was later than usual
in parts of Central Tanzania and Northeastern Kenya
(Figure 13b,c) and total rainfall was generally below aver-
age over these areas (Figure 13i). For much of October,
the MJO was inactive and in November the MJO was
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mostly active in Phase 8 which is associated with sup-
pressed rainfall over much of the region except the Coast
(Figure S8). Onset occurred from early to mid-December

(Figure 13d) coinciding with MJO in phase 1 (Figure 13i)
and strong convergence over Tanzania (Figure 13k) this
is consistent with slightly enhanced rainfall over parts of

FIGURE 12 Onset conditions at subseasonal timescales during the two most “deviant” OND early onset seasons of OND 2011 (a–d), (i),
(k) and OND 2017 (e–h), (j), (l), respectively. (a, e) Standardized rainfall anomalies, (b, f) standardized onset anomalies, (c, g) locations of

deviant grid cells and (d, h) onset dates. These are only shown where the correlation between seasonal rainfall and onset date is statistically

significant (based on Figure 9). (i, j) The evolution of the MJO phase and magnitude using the RMM diagram (see section 2). (k, l)

Circulation diagnostics of anomalous vertically integrated moisture divergence (kg�m−2�s−1) and 850 hPa winds (vector magnitude is shown

on plot), during the dominant onset periods of (k) 15th–31st October 2011 (consistent with (c, d)), and (l) 1st to 5th October 2017 (consistent

with (g, h)).
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Tanzania (Figure S8). MJO activity triggered the late
onset and suppressed rainfall during the season. In con-
trast, OND 2006 had an above-average rainfall

(Figure 13e) and earlier onset over much of the region
(Figure 13f) except Southern Kenya and Central
Tanzania (Figure 13g). The late onset occurred in Mid-

FIGURE 13 Onset conditions at subseasonal timescales during the two most “deviant” OND late onset seasons of OND 1991 (a–d), (i),
(k) and OND 2006 (e–h), (j), (l), respectively. (a, e) Standardized rainfall anomalies, (b, f) standardized onset anomalies, (c, g) locations of

deviant grid cells and (d, h) onset dates. These are only shown where the correlation between seasonal rainfall and onset date is statistically

significant (based on Figure 9). (i, j) The evolution of the MJO phase and magnitude using the RMM diagram (see section 2). (k, l)

Circulation diagnostics of anomalous vertically integrated moisture divergence (kg�m−2�s−1) and 850 hPa winds (vector magnitude is shown

on plot), during the dominant onset periods of (k) 1st to 15th December 1991 (consistent with (c, d)), and (l) 15th–30th November 2006

(consistent with (g, h)).
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November and coincided with MJO in Phase 2 which is
associated with enhanced rainfall over these areas
(Figure S8) and convergence (Figure 13l). For much of
the season, the MJO was in phases 1, 2 and 3 which are
associated with enhanced rainfall over the region hence
the wetter-than-average season.

In summary, our analysis indicates that onset during
the deviant seasons is often triggered by MJO being in
phases 2 and 3, consistent with the established role of
MJO in the region. This provides a clear indication of the
potential for improved forecasting of onset at subseasonal
lead times, as demonstrated in the pilot case study in
MAM 2019 over Kenya. Further, our results suggest the
MJO also influences the outcome of the entire season,
with seasons that are drier than usual, having MJO in
unfavourable phases for much of the season (MAM 2019,
OND 2017). While wetter than usual seasons have the
MJO largely in favourable phases (MAM 1990). This con-
curs with studies that associate MJO activity with sea-
sonal outcomes (Maybee et al., 2022; Vellinga &
Milton, 2018).

4 | CONCLUSION AND
RECOMMENDATIONS

A sound understanding of onset variability and the asso-
ciated drivers are essential for forecasting and subsequent
application in risk management. For the East Africa
region, this paper seeks to provide a comprehensive and
systematic assessment of various onset definition defini-
tions and onset variability and drivers, across time scales.

Climatological onset dates from the three candidate
onset definitions evaluated are similar to those derived in
earlier studies for both wet seasons (Camberlin &
Okoola, 2003; Dunning et al., 2016; Gudoshava
et al., 2022a, 2022b; MacLeod, 2018). However, the het-
erogeneity of variability in onset is only very broadly con-
sistent across definitions and has large differences in
local detail. Crucially, onset is most variable over many
of the high-production agricultural areas, and this poten-
tially has implications for agricultural and risk manage-
ment decision-making. The complex seasonality over the
region and high interannual variability in seasonality
over western sector does affect the definition of rainy sea-
son onset and thus there is no broad rule that is applica-
ble over the region. This challenge is evident in the broad
season categorisations and sometimes lack of specificity
in operational onset forecast products. Livelihood calen-
dars in some of the complex regions seem to give a better
understanding of seasonality and influence on agricul-
tural activities.

Notably, the temporal correlation among definitions
is low over the region, especially in the OND season such
that the choice of metric is clearly a key consideration in
the provision of onset information. Further, due to
marked climatic gradients across EA agronomic defini-
tions utilized in current operational forecasts provided by
meteorological agencies in the region are not well suited
for region-wide application. Thus, operational onset defi-
nitions should be fine-tuned to specific livelihoods and
agricultural needs through a process of co-production
with relevant stakeholders. Although the accumulated
anomaly AA metric which provides onset timing relative
to local climate is more robust, there is a need to evaluate
the utility of this metric to support decision-making in
agricultural practices or other applications.

Agronomic definitions are also particularly sensitive
to the spatial scale of analysis and to the choice of rainfall
dataset. This is due to the sensitivity of the absolute rain-
fall threshold values to rainfall variability and uncer-
tainties. Information provided at coarse scales is typically
not strongly applicable to decision-making at local level.
Even for the most robust metric (AA), a perfect forecast
would have limited “skill” at the local level, with a hit
rate of below 60% over large areas, for late tercile onset
events. Therefore, onset forecasts, especially using agro-
nomic definitions, should be issued, and interpreted cau-
tiously given this scale sensitivity.

Onset emerges from a complex interaction of inter-
annual and subseasonal drivers. The interannual variabil-
ity in onset is influenced by the same large-scale modes
that influence total seasonal rainfall. Onset variability in
OND is driven by the IOD and ENSO with IOD likely the
most dominant. MAM onset has weak association with
the Pacific “Western V Gradient” SST pattern. Onset is
found to have a high correlation with total rainfall over
much of the region for both seasons. Indeed, although
correlation between onset and total rainfall during the
climatological season is high in many areas this explains
at most about 50% of onset variance. As such the shorter-
term subseasonal drivers of onset must be considered.
For the seasons in which onset deviates most strongly
from the influence of seasonal scale controls we identify
subseasonal influences on onset, notably from the MJO.
In many of these seasons, the MJO also likely influences
the characteristics of the rest of the season, especially so
for the MAM season.

We make the following recommendations consistent
with our results. The region has a complex seasonality
that has implications on definition of onset and the use
of updated livelihood calendars could inform definition
of seasons and provision of forecast information that
aligns with diverse livelihood activities. The choice of
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onset metric in each season is important, and agronomic
definitions should be applied cautiously as they are espe-
cially sensitive to spatial averaging and data uncer-
tainties. This points to a stronger need for co-production
of onset information, in which meteorological agencies
work with stakeholders to define actionable onset defini-
tions and to establish the appropriate use of coarse-scale
onset monitoring and forecast information at the local
level. This should be informed by a co-produced assess-
ment of skill and salience of coarse-scale onset informa-
tion to risk management decisions across spatial scales
and across forecast lead times. An assessment of subsea-
sonal onset forecast skill directly in relation to risk man-
agement decisions will be reported by the authors in a
companion paper. Such systematic analysis of the credi-
bility and salience of onset information and the further
enhancement of co-production processes are therefore a
key priority. This is especially so given the demand for
climate information and indeed the ongoing development
of agricultural decision support tools ingesting forecast
information targeted at local-level stakeholders (e.g.,
Black et al., 2023).

Advances in global forecast models reveal EA to be a
“sweetspot” of predictability, at subseasonal scales across
all seasons (de Andrade et al., 2021; MacLeod
et al., 2021). This presents a basis for provision of onset
forecasts across “seamless” seasonal to subseasonal lead
timescales. Onset forecasts at the seasonal lead times
could provide a “heads-up” of what is expected, especially
in years when the main interannual drivers are active.
Subsequent updates of onset timing from subseasonal
forecasts could then be issued, perhaps on a weekly basis
(as with the products during the S2S real time pilot pro-
ject), to inform the implementation of onset-related activ-
ities. Further, recent experience in the provision of
subseasonal rainfall forecasts through the “Forecasts for
Preparedness Action” (ForPAc, www.forpac.org) project
suggests that a narrative explanation of the underlying
drivers, for example, the state of the MJO and associated
teleconnections, can usefully augment subseasonal fore-
casts and add confidence in stakeholder interpretation
(White et al., 2022). Our results here reinforce the call for
enhanced forecasting capability in EA Meteorological ser-
vices, continued access to subseasonal forecasting infor-
mation from global modelling centres, and for enhanced
and continued co-production between meteorological ser-
vices and stakeholders to make most effective use of fore-
cast skill in EA, in line with the growing body of
evidence in the region (Gudoshava et al., 2022b; Hirons
et al., 2021; Muita et al., 2021; Mwangi et al., 2022). Such
activities can ensure advantage is taken from the oppor-
tunity afforded by relatively high climate predictability in
EA across subseasonal to seasonal timescales.
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