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This paper introduces a novel approach, namely Variable-Periodic Voronoi Tessellation (VPVT), for the bio-

inspired design of porous structures. The method utilizes distributed points defined by a variable-periodic 
function to generate Voronoi tessellation patterns, aligning with a wide diversity of artificial or natural cellular 
structures. In this VPVT design method, the truss-based architecture can be fully characterized by design 
variables, such as frequency factors, thickness factors. This approach enables the optimal design of porous 
structures for both mechanical performance and functionality. The varied, anisotropic cell shapes and sizes 
of VPVT porous structures provide significantly greater design flexibility compared to typical isotropic porous 
structures. In addition, the VPVT method not only can design micro-macro multiscale materials, but is also 
applicable for the design of meso-macro scale truss-based porous structures, such as architecture constructions, 
biomedical implants, and aircraft frameworks. This work employs a Surrogate-assisted Differential Evolution 
(SaDE) method to perform the optimization process. Numerical examples and experiments validate that the 
proposed design achieves about 51.1% and 47.8% improvement in compliance performance and damage 
strength, respectively, than existing studies.

1. Introduction

Porous or lattice structures, also known as cellular structures, are 
ubiquitous and widely used in nature and many engineering fields, due 
to their high specific strength and multi-functionality [1–3]. Some of 
the examples of porous structures in nature and engineering systems are 
presented in Fig. 1: (a) A two-phase soil porosity model in nature and its 
pores and hard particles in phases increase with the soil depth, which 
is analogous to functionally graded materials with unidirectional vari-

ation in pore density; (b) Artificially manufactured porous aluminum 
foam material, with extremely high specific strength and load-carrying 
capacity; (c) Human bone trabecular possesses a multi-layer porous 
structure with small bone branches, resulting in high strength and 
impact resistance; (d) A gymnasium building constructed by variable-

periodic porous structures exhibits superior deformation and buck-

ling resistance; (e) Dragonfly wings naturally exhibit variable-periodic 
porous structural frameworks, which provide extensive benefits for air-

flow controlling and stability maintenance. Regarding functionalities 
at the engineering level, porous structures are known to have many 
excellent properties such as lightweight, vibration absorption, wear re-
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sistance, electrical shielding and multiple load-carrying capacity [4–7]. 
In addition, the material-transferring property of porous structures is 
also particularly important at the level of biological systems, such as 
trabecular bone, where pores provide space and passages for vessels or 
plant stems to transport nutrients [8]. To date, a variety of ultralight 
bio-inspired porous materials and structures have been proposed, de-

signed and fabricated, which have attracted great interests from both 
academic and industrial communities [9–11]. To achieve optimal me-

chanical performance and behaviour for porous structures, researchers 
have attempted to apply Topology Optimization (TO) methods to de-

sign the layouts and configurations of porous structures [12,13]. The 
pioneering work on this topic can be traced back to Bendsøe, who de-

scribed the design domain in terms of infinitely small square cells with 
rectangular holes and developed a numerical homogenization method 
to assign equivalent mechanical properties to these cells [14]. This 
groundbreaking work paved the way for subsequent research using the 
homogenization method based TO to design porous structures. Up to 
now, many different TO methods have been developed and success-

fully applied to design porous structures for various engineering appli-
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Fig. 1. Porous materials and structures in nature and civil constructions: (a) 
Gradation model of soil porous material, exhibiting a gradual variation in soil 
particle density and porosity from the top to the ground; (b) Artificial aluminum 
foam, a typical functionally graded material with a high strength-to-density ra-

tio. (c) Variable-periodic porous structure of bone trabeculae in the skeletal 
system, providing high strength and impact resistance. (d) Variable-periodic 
porous structures construction for the well-known Bird’s Nest national sta-

dium in Beijing. (e) Variable-periodic porous structural frameworks in dragonfly 
wings.

cations in mechanical, aerospace, biomedical and architectural fields, 
etc. [15–17].

The advent of 3D printing technology achieves substantially large 
design freedom for porous structures, in which the number of layers 
and the complexity of configurations increase significantly to an un-

precedented extent [18]. Notably, the discussed ‘porous structure’ in 
this work is a general concept that contains an inner complex structure 
rather than a pure porous structure. Although the traditional monolithic 
TO method is theoretically capable of designing porous structures with 
diverse geometric patterns across multiple scales, its practical applica-

tion is hindered by high computational costs [19]. To this end, there 
have been numerous efforts to develop advanced multiscale optimiza-

tion methods for the design of 3D-printed porous structures [15,19,20]. 
In their methods, the original problem is carried out with respect to 
micro and macro scales, respectively, using a two-step optimization 
procedure. The macro-scale optimization process determines the opti-

mal material distribution in the design domain with a set of discretized 
macroscopic elements. While, the micro-scale optimization is applied to 
obtain specific porous or lattice architectures whose effective material 
property matches with that of macroscopic element. Finally, by tessel-

lating the determined micro-structures into each macro-scale element, 
an integral design for a multi-layer porous structure with optimal per-

formance can be achieved. The homogenization of the micro-structure 
plays a key role in the multiscale optimization process, which directly 
couples the computation between macro- and micro-scales. Up to now, 
a large number of elemental homogenization and de-homogenization 
techniques have been developed, which can be based on relative density 
mechanism [21], bulking modulus [22], effective elastic tensor mecha-

nism [23,24], or strain-driven [25]. Besides the above studies derived 
by an analytical computation model or experiment data, many stud-

ies have recently begun to utilize the data-driven or machine learning 
algorithms [26–28] to complete the homogenization processing. With 
this approach, the implicit, complicated relationship between micro-

architecture and macroscopic elemental property can be derived and 
applied easily in the design. Such methods have presented a natural 
advantage in the multiscale design of meta-materials or irregular struc-

tures [29]. However, the homogenization method often suffers from a 
“size effect” issue in practical applications. Most methods exhibit de-

creased accuracy as the length difference between two physical scales 
decreases, as highlighted in existing studies [30–32]. In the design of 
porous structures with meso-macro scales, such as bridge supports or 
gliding wings, the homogenization method may inaccurately evaluate 
mechanical properties or the elastic tensor, leading to a failure of mul-

tiscale optimization. The conceptual framework of macro-, meso-, and 

micro-scales usually lacks strict numerical boundaries. In the design 
context of Voronoi-based porous materials, it is necessary to let the 
number of voids in the unit cell surpass a certain threshold to ensure the 
design problem at the ‘micro-macro’ scale. This threshold ensures align-

ment of the designed model with the Gibson-Ashby model [6,33,34], 
therefore, it guarantees that the homogenization of each unit cell can 
achieve a relatively accurate isotropic elasticity property. The recog-

nition of this “size effect” underscores the significance of developing 
innovative design methods, which are capable of accommodating var-

ious scales and providing extensive geometry tailoring capabilities for 
material topology [35,36].

The early framework of the multiscale TO method is generally in 
a ‘varied-density parameterized unit cell’ mode, which adopts prede-

termined lattice or pore unit cells (e.g. BCC, Hexagon, Kagome types) 
as the micro-architecture [37]. Due to the fixed structure, these lat-

tice units only require offline homogenization prior to the optimization 
process. The tunable relative density of the lattice unit is used as the 
only kind of design variable, which generally exhibits an exponential 
mapping function to the effective modulus of the lattice. This feature 
can achieve very fine geometric details with a minimum computational 
cost comparable to the mono-scale topology. However, the unique fixed 
microstructure also greatly reduces the solution space of the microstruc-

tures to one dimension. In addition, many typical square- and X-shaped 
cells have been proved with a theoretical upper bound on their effective 
modulus according to the Hashin-Shtrikman bounds [19]. Later, several 
methods with a ‘multi-parameterized unit cell’ mode have been devel-

oped. The parameterized unit cell is defined with multiple parameters 
e.g. [17,23], and provides a large design freedom for optimization. This 
kind of unit cell allows, to some extent, an adaptation of the microstruc-

tural anisotropy to the local stress direction during the optimization 
process. Consequently, the optimized design will also be close to the 
theoretical limit of effective modulus. In the last decade, “concurrent 
multiscale optimization” becomes much more popular, which can have 
a hierarchical or concurrent optimization framework at both two length 
levels [15,28,38]. The method performs an additional local optimiza-

tion to determine the microscopic spatial distribution of solid and void 
phases. Compared to the above two predefined microstructure modes, 
the micro-architecture of this mode is much more diverse, which can 
greatly improve both the mechanical performance and functionality of 
the optimal structure. In the meanwhile, ensuring good connectivity be-

tween different microstructures or unit cells has also become a critical 
and difficult point in this method. In addition, a large number of nu-

merical homogenization operations are usually required in concurrent 
multiscale optimization, resulting in a relatively cumbersome computa-

tional cost. However, regardless of the fixed or variable microstructure 
lattice design, all the above optimization methods in context belong to 
a ‘restricted unit cell’ mode, where the macroscopic elements always 
present a fixed size and shape. As shown in Fig. 2, this feature usually 
leads to a relatively inflexible and artificial pattern in the final struc-

ture, whereas the elements in a natural porous structure, i.e., dragonfly 
wings, often exhibit a much greater diversity in terms of shapes and 
sizes. Over the past three years, several studies have suggested that the 
periodic design mode of porous or lattice structures significantly lim-

its the design freedom and the optimum solutions. As a result, more 
and more researchers resort to the development of new methods with 
‘unrestricted unit-cell design’ [9].

Evolutionary algorithms (EA) have become increasingly popular in 
the field of structural optimization due to the rapid development of 
computational power in recent years [39,40]. Compared with gradient-

based optimization methods, the EA-based methods avoid the use of 
explicit expressions of sensitivity information and apply crossover and 
mutation operations to update design variables. Although the conver-

gence speed of EA-based methods is slower than that of gradient-based 
algorithms, it is suitable for solving optimization problems with strong 
non-convexity and complexity and usually can avoid trapping in local 
optima. In this work, a revised surrogate-assisted difference evolution 
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Fig. 2. Comparison of artificial (a) and natural (b) porous materials. (a) was obtained by rerunning an advanced multiscale optimization code, as referenced in [38]. 
The design of artificial porous materials appears monotonous due to the influence of the predefined macro-scale element size on the final design pattern. On the 
other hand, real biological porous tissues exhibit immense diversity, with lattices shaped like rectangles, pentagons, or even filled.

method (SaDE) [41,42], as an advanced variant of EA-based algorithms, 
is applied to perform the optimization design of porous structures. The 
SaDE algorithm uses a sequential approach with global and local search 
phases, resulting in a balance between exploitation and exploration. 
In doing so, the SaDE method simplifies the process of solving objec-

tive functions through using surrogate models, and thus significantly 
reduces the computational cost.

This work proposed a novel variable periodic Voronoi tessellation 
(VPVT) method to design and optimize bio-inspired porous structures. 
It will demonstrate that this proposed VPVT design concept can pro-

vide a generic means to create bio-inspired porous patterns without 
any obvious limitations in the above context, while naturally ensur-

ing multiscale tailoring capability and connectivity. The porous pattern 
mimics irregular cellular structure in nature, i.e. dragonfly or trabec-

ular bone, achieving advanced material property and performance. In 
the proposed method, mesh interpolation and function-driven Voronoi 
seeding techniques are applied to create the grains (elements) with 
varying sizes and shapes for porous structures. The varied patterns of 
Voronoi lattices not only provide extensive design freedom for struc-

tural optimization, but also possess natural connectivity along the entire 
design domain. The VPVT method transforms the original topology 
optimization problem for porous structures into a parametric optimiza-

tion problem, whose objective can be expressed in terms of various 
structural performances including compliance, vibration, and buckling. 
Compared to the conventional multiscale TO methods, since only the 
frequency parameters of mesh grids, without micro-scale topological el-

ements, are needed to generate VPVT structures, the number of design 
variables is significantly reduced. The proposed method is applicable 
to both micro-macro or meso-macro multiscale optimization problems, 
e.g., biomedical implants, bridge brackets and architectural supports.

The paper is organized as follows. In Section 2, the VPVT design con-

cept and modelling methodology is first introduced. Subsequently, the 
superior tailoring ability and optimization framework to support aimed 
design are presented. Section 3 presents the numerical example and ex-

periment to validate the advantages and effectiveness of the proposed 
method. Finally, Sections 4 and 5 summarize the key findings and con-

clusions drawn from this study.

2. Methods and materials property for VPVT structure

To enable efficient design and optimization of porous structures, the 
VPVT method establishes a one-to-one mapping framework from a set 
of pre-defined parameters (design variables) to the porous geometry. 
The basic design domain is first divided into several basic unit cells, 
then the proposed method utilized an interpolation mesh grid method, 
named “frequency mesh grid”, to construct the porous structures of each 
unit cell. The four corner nodes of each mesh grid will be assigned 
four pre-defined frequency values, respectively, which then will serve 
as the basis to generate a set of seeding points in the design domain. 
Afterwards, these seeding points are used to create a porous structure 
by introducing Voronoi tessellation at their locations. Furthermore, the 

number and the locations of seeding points can be controlled by manip-

ulating the frequency values associated with each frequency mesh grid. 
As a result, the Variable-Periodic Voronoi Tessellation (VPVT) patterns 
are generated. The frequency values at each mesh grid corner are used 
as the design variables for the parameterized optimization procedure.

2.1. The VPVT design method

The whole design domain is decomposed into M × N elements 
(named as Region of Interest, ROI) by the “frequency mesh grid”, as 
shown in Fig. 3(a). At each corner of the element in a mesh grid, the 
corresponding ‘frequency factor’ is first predefined. As such, the fre-

quency factor 𝑓 (𝑥, 𝑦) at any location (𝑥, 𝑦) in the design domain can 
be defined and determined through a linear interpolation procedure. 
Subsequently, the points (𝑥, 𝑦) that satisfy Eq. (1) in the design domain 
{(𝑥, 𝑦)|𝑥 ∈ [0, 𝐿𝑥], 𝑦 ∈ [0, 𝐿𝑦]} will be used as the Voronoi seeds for the 
construction of a VPVT cell.

|sin(𝐶0 ⋅ 2𝜋𝑓 (𝑥, 𝑦)𝑥)|+ |sin(𝐶0 ⋅ 2𝜋𝑓 (𝑥, 𝑦)𝑦)| = 0 (1)

Alternatively, Eq. (1) can be expressed in the following two trigono-

metric functions as{
sin

(
𝐶0 ⋅ 2𝜋𝑓 (𝑥, 𝑦)𝑥

)
= 0

sin
(
𝐶0 ⋅ 2𝜋𝑓 (𝑥, 𝑦)𝑦

)
= 0

0 ≤ 𝑥 ≤ 𝐿𝑥, 0 ≤ 𝑦 ≤ 𝐿𝑦 (2)

where 𝐶0 ∈ 𝑅+ is the magnification factor, 𝑓 (𝑥, 𝑦) denotes the fre-

quency factor distribution in each “frequency mesh”. Herein, Eq. (2)

can be analytically calculated by simplifying it into a one-variable cu-

bic equation with a linear interpolation frequency mesh grid. For a 
detailed computation of the above Equations, please refer to the Ap-

pendix A. Applying the above procedures, a variable-periodic Voronoi 
tessellated (VPVT) scaffold structure is generated as shown in Fig. 3(c) 
based on the Voronoi seeds in Fig. 3(b), however, it is inherently a one-

dimensional wireframe model. For practical engineering applications, 
this wireframe model is transformed into a 2D solid model by assigning 
thickness properties to each line segment (or a 3D model by introduc-

ing an additional height scale to the 2D model). A mesh grid named 
“thickness mesh” is defined to achieve the above process, as shown in 
Fig. 3(d). Similar to the “frequency mesh” method, the thickness factor 
at any position within the design domain is determined through an in-

terpolation operation with respect to a “thickness mesh”. For each line 
segment within the design domain, a thickness factor at its midpoint 
is calculated, as depicted in Fig. 3(e), which, subsequently, will be as-

signed as the thickness of the whole line segment, as shown in Fig. 3(f).

Fig. 3 demonstrates the construction process of a VPVT cellular 
structure within a single ROI. By appropriately adjusting the design 
variables of ‘frequency factor’ and ‘thickness factor’, this proposed VPVT 
method is capable of creating diverse porous structures with different 
geometric characteristics and structural performances over the entire 
design domain, as illustrated in Fig. 4. Fig. 4(a) shows the design capa-

bility of the VPVT method to create a rhombus-based cellular structure, 
which is analogous to the uni-axial functionally graded material. In 
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Fig. 3. The process of designing a VPVT cellular structure. (a)∼(c) demonstrate the seeding and Voronoi forming process in a single VPVT ROI unit (indicated by 
the black dashed square) refer to design variables ‘frequency meshgrid’: (a) the basic design domain and corresponding frequency interpolation mesh grid; (b) the 
solutions of the seeding equations in a single ROI; (c) a Voronoi scaffold (porous structure) generated from seeding points in (b). (d)∼(f) illustrate the thickness 
assignment of VPVT structure refer to ‘thickness meshgrid’:(d) the thickness mesh grid; (e) thickness interpolation calculation at truss middles points; (f) the thickness 
assignment of the wireframe model.

Fig. 4(b), a radially varying functionally graded material is designed us-

ing the VPVT method. In this cellular structure, the size of the porosity 
decreases along the radius direction from the origin, and the unit cells 
in some ROIs exhibit typical honeycomb hexagonal structures. Fig. 4(c) 
shows a typical square cellular structure, which is obtained by assigning 
constant frequency factor in the VPVT design method. Fig. 4(d) shows a 
novel diagonally concentrated porous structure, in which the materials 
tend to cluster in the diagonal region, resulting in dense and small cavi-

ties at the sites. The corresponding ROI image (in the lower right box of 
Fig. 4 shows that the design domain is enriched by long slender-shape 
cellular structures, in which the truss structures are mainly aligned in 
a bi-direction mode, i.e., parallel to either 45◦ or -45◦ directions. With 
this cellular structure pattern, the whole structure shown in Fig. 4(d) 
exhibits a strong orthogonal heterogeneous characteristic.

Fig. 4(e) and (f) demonstrate two VPVT porous patterns generated 
from completely-random or partially-random frequency factors, respec-

tively. From a bionic perspective, these two randomly generated VPVT 
porous structures show good bionic and similarity to the lattice patterns 
in the dragonfly wing. (e) features a dense pentagram cellular structure, 
while (f) combines a large rectangle with an irregular porous struc-

ture. In addition, the pentagram cellular structure in (e) shows complex 
variation that resembles a stochastic porous structure. Nevertheless, we 
declare this is a ‘pseudo-stochastic’ design process, in which although 
the frequency factors are completely selected using a random process, 
the generated VPVT porous pattern is unique and reproducible provided 
that the same frequency factors are given. On the contrary, real stochas-

tic porous structures may exhibit a certain amount of variation in their 
final designs even when all design parameters (i.e. porous density and 
regularity) remain the same [6,43,44]. The high repeatability of the 
VPVT method can ensure consistency and interchangeability of part 
designs in actual manufacturing, and so this “pseudo-stochastic” yet 
deterministic design method can provide considerable beneficial in in-

dustrial applications. After understanding the relationship between the 
frequency mesh grid (design variables) and the resultant VPVT geomet-

ric pattern, a designer is able to intuitively design the desired porous 
structure pattern. The VPVT porous structure of case (f) is an exam-

ple of simulating the dragonfly wing structure, as denoted by Fig. 4(h), 
which is tessellated by large horizontal structures with aligned rectan-

gular cells and small, irregular, curved cells. To obtain such “dragonfly 
wing”-inspired porous structures, we first place an uni-axially varying 
variable frequency grid in the design domain, whose value decreases 
along the 𝑦-axis, and then select (0, 30) and (60, 30) as two center points 
to further reduce the frequency factor along the radius direction. Fi-

nally, considering the stochastic nature of biological structures, a small 
random increment is added to each existing frequency factor within the 
region 0 < 𝑦 < 40 to enhance the diversity of the porous pattern. In this 
way, the lattice size, shape and alignment of a typical pattern (h) in 
the dragonfly wing can be mimicked using the VPVT method (f), cor-

respondingly. In addition, the independent thickness mesh grid has the 
same design flexibility as the frequency mesh grid. Herein, a radius-

varying thickness configuration has been applied for the cases of (a), 
(b), (c) and (d), while a constant thickness is used for cases (e) and 
(f). The thickness design feature provided by the VPVT method further 
enhances the design flexibility of porous structures.

It is worth noting that, a complete VPVT pattern may simultaneously 
integrate several types of these basic units with different characteristics, 
such as squares, hexagons and rhomboids, as shown in the entire design 
domain. Depending on their specific locations and manifested function-

alities, our proposed optimization routine in the later section will select 
appropriate types of cellular structures to form an optimal configuration 
to meet the structural design objectives. Throughout the optimization 
process, this deliberate adaptability of the lattice geometry not only fa-

cilitates accurate emulation of biological structures, but also provides a 



Materials & Design 243 (2024) 113055

5

Z. Li, S. Chu and Z. Wu

Fig. 4. Various VPVT structures under different frequency and thickness grid set-ups. For clarity, the line width of the images is appropriately scaled. (a) a uni-

directional functionally graded structure; (b) a radius-directional functionally graded structure; (c) a square cell structure; (d) a diagonal anisotropic structure; (e) 
and (f) are porous structures generated by random mesh grid configurations. ROI units can be classified as: (a) rhombus, (b) honeycomb, (c) square, and (d) slender, 
or as irregular ones (e) and (f). From a bionic perspective, the two ROI units of (e) and (f) exhibit significant bionic similarity to the lattice pattern found in the 
dragonfly wing (g) and (h), respectively.

solid foundation for achieving enhanced material properties and supe-

rior mechanical functionalities.

Based on the proposed design framework, the topology of a complete 
VPVT structure can be expressed using a level-set function [45]. The 
coordinates of the 𝑖𝑡ℎ truss bar in VPVT structure can be numerically 
solved and marked as a Set {(𝑥1,𝑖, 𝑦1,𝑖), (𝑥2,𝑖, 𝑦2,𝑖)}. With this definition, 
the material at location (𝑥, 𝑦) in a specific design domain D𝑚, is defined 
as follows

⎧⎪⎨⎪⎩
𝜙(x) > 0,x ∈Ω
𝜙(x) = 0,x ∈ 𝜕Ω
𝜙(x) < 0,x ∈ D𝑚 ⧵Ω

, where

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜙(x) = max(𝜙𝑖,𝑟(𝑥, 𝑦, 𝑡), 𝜙𝑖,𝑐1(𝑥, 𝑦, 𝑡), 𝜙𝑖,𝑐2(𝑥, 𝑦, 𝑡))
𝜙𝑖,𝑟(𝑥, 𝑦, 𝑡) = min(𝜙𝑖,𝑟1(𝑥, 𝑦, 𝑡), 𝜙𝑖,𝑟2(𝑥, 𝑦, 𝑡))

𝜙𝑖,𝑟1(𝑥, 𝑦, 𝑡) = 1 − (−𝑘1⋅(𝑥−𝑥𝑖,0)+𝑘2⋅(𝑦−𝑦𝑖,0))2

(𝑡𝑖∕2)2

𝜙𝑖,𝑟2(𝑥, 𝑦, 𝑡) = 1 − (𝑘2⋅(𝑥−𝑥𝑖,0)+𝑘1⋅(𝑦−𝑦𝑖,0))2

(𝐿∕2)2

𝑘1 =
𝑦𝑖,2−𝑦𝑖,1

𝐿
, 𝑘2 =

𝑥𝑖,2−𝑥𝑖,1
𝐿

𝑥𝑖,0 =
𝑥𝑖,1+𝑥𝑖,2

2 , 𝑦𝑖,0 =
𝑦𝑖,1+𝑦𝑖,2

2 , 𝐿 =
√

(𝑥𝑖,2 − 𝑥𝑖,1)2 + (𝑦𝑖,2 − 𝑦𝑖,1)2

𝜙𝑖,𝑐1(𝑥, 𝑦, 𝑡) = 1 − (𝑥−𝑥𝑖,1)2+(𝑦−𝑦𝑖,1)2

(𝑡𝑖∕2)2
,

𝜙𝑖,𝑐2(𝑥, 𝑦, 𝑡) = 1 − (𝑥−𝑥𝑖,2)2+(𝑦−𝑦𝑖,2)2

(𝑡𝑖∕2)2

(3)

where the region Ω defined by 𝜙(x) ≥ 0 is the final topological geome-

try of the VPVT structure. x = [𝑥, 𝑦] is the coordinate vector. The term 
i corresponds to the truss component ID in the VPVT structure. The de-

fault topological shape of the i𝑡ℎ truss component consists of the region 
containing a rectangular body and two circular endpoints [45], which 
are represented by the geometric functions 𝜙𝑖,𝑟(𝑥, 𝑦, 𝑡), 𝜙𝑖,𝑐1(𝑥, 𝑦, 𝑡) and 
𝜙𝑖,𝑐2(𝑥, 𝑦, 𝑡), respectively. 𝑡𝑖 is the thickness of the rectangular body 
and the diameter of the two circular regions. (𝑥𝑖,0, 𝑦𝑖,0) is the center of 
rectangular body of i𝑡ℎ truss component, while (𝑥𝑖,1, 𝑦𝑖,1) and (𝑥𝑖,2, 𝑦𝑖,2)
denote the end points of truss and the center of two circular regions. 
In particular, the functions 𝜙𝑖,𝑐1(𝑥, 𝑦, 𝑡), 𝜙𝑖,𝑐2(𝑥, 𝑦, 𝑡) and 𝜙𝑖,𝑟(𝑥, 𝑦, 𝑡) rep-

resent the distances of the location x to those three center points, 
respectively. Obviously, the location x is inside the rectangular or the 
circular regions if 𝜙𝑖,𝑐1(𝑥, 𝑦, 𝑡) or 𝜙𝑖,𝑐2(𝑥, 𝑦, 𝑡), 𝜙𝑖,𝑟(𝑥, 𝑦, 𝑡) is greater than 
0. The complete VPVT structure is finally attained by using a Boolean 
merging operation of the above rectangular, circular regions of all truss 
components, which is achieved by a Max operation of terms 𝜙𝑖 in Eq. 
(3).

2.2. Mechanical property of VPVT structures

This subsection discusses the mechanical property of VPVT porous 
structures and their corresponding computational method. In this work, 
a full-scale finite element method (FEM) is used to accurately calculate 
the mechanical response of the structure under given boundary condi-

tions. Specifically, the original VPVT geometry model is meshed with 
typical beam FEM elements instead of solid elements to reduce compu-
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tational costs. The method used to derive the constitutive relationship 
for the FEM element is based on the Euler-Bernoulli beam theory [46]. 
Once the constitutive matrix D of the beam element is determined, the 
global stiffness matrix K is assembled using a standard FEM process 
as given by Eq. (4), with which the displacement field U of the VPVT 
structure is also computed.

K =
Ne∑
e=1

∫ B𝑇
𝑒

D𝑒B𝑒𝑑𝑉𝑒, U = K−1F (4)

where D𝑒 is the constitutive matrix of the beam element e, B𝑒 is the 
strain-displacement matrix based on the linear shape function, 𝑉𝑒 is the 
volume of the element e. F is the corresponding external loading vector, 
𝑁𝑒 is the total element numbers. The above FEM-based computation 
process was completed and implemented in ABAQUS (Dassault.Co. Ltd, 
ver.19) with a Python script, which is used to control the parameters 
and the entire computational workflow. The ‘B32’ beam element with 
0.4 unit length mesh density was selected to construct the FE volume 
mesh model, while the default width of the beam section was set to 0.1
mm. On the other hand, it is worth for designers to consider the ef-

fective modulus of the VPVT ROI, as it clearly characterizes the local 
mechanical behaviour of each VPVT cellular structure (lattice pattern). 
The effective modulus of some typical VPVT ROIs are evaluated to fur-

ther demonstrate varying material properties provide a large design 
space for the proposed VPVT method. The macro-scale effective elas-

ticity tensor, 𝐸𝐻
𝑝𝑞𝑟𝑠

, for the cellular structure under periodic boundary 
conditions [34,47] is computed as follows,

𝐸𝐻
𝑝𝑞𝑟𝑠

= 1
𝑉 ∫

𝑅𝑂𝐼

𝐸𝑝𝑞𝑟𝑠

(
𝜀
0(𝑝𝑞)
𝑖𝑗

− 𝜀
𝑝𝑞

𝑖𝑗

)(
𝜀
0(𝑝𝑞)
𝑘𝑙

− 𝜀
𝑝𝑞

𝑘𝑙

)
𝑑𝑉 (5)

where 𝑉 is the volume of a unit cell (ROI) of a porous structure. 
𝜀
0(𝑝𝑞)
𝑖𝑗

is the prescribed macro-scale strain term with respect to periodic 
boundary conditions (PBC), meanwhile 𝜀𝑝𝑞

𝑖𝑗
is the local varying elastic-

ity tensor corresponding to the FEM beam elements. With Eq. (5), the 
compliance tensor 𝑆𝐻 is determined as the inverse matrix of the elas-

ticity tensor 𝐸𝐻 (𝐸𝐻
𝑝𝑞𝑟𝑠

in the matrix format). The effective material 
modulus along each axial direction of the cellular structure is given by 
𝐸𝑥 =

1
𝑆𝐻
11

, 𝐸𝑦 =
1

𝑆𝐻
22

.

Herein, Eq. (5) is utilized to determine the effective modulus for 
some typical ROIs of VPVT structures, and then the results are com-

pared with that of other two recent Voronoi-based porous structures 
introduced by Do [33] and Lu [6], as depicted in Fig. 5. Considering 
that the effective modulus of both Do and Lu’s Voronoi-based porous 
structures are derived from the exponential function for open-cell foams 
[48], the computational results given in Fig. 5 only concern about struc-

tures with a volume fraction in 0.1 to 0.5 where the open-cell foams 
keep a relative high computational accuracy.

Thanks to the capability of generating diverse patterns for porous 
structures, the VPVT design approach provides a much larger design 
space than that given by other existing methods. As illustrated in Fig. 5, 
the Voronoi structures designed by Do and Lu exhibit deterministic, 
isotropic material properties within a specific volume fraction. This lim-

itation primarily arises from their stochastic and quasi-homogeneous 
designs on Voronoi patterns. On the contrary, VPVT structures (ROIs), 
with different values of frequency factors ‘𝑓𝑖 ’, exhibit remarkable di-

versity among the shape and size of their Voronoi cells, resulting in a 
distinct effective Young’s modulus even under the same volume frac-

tion. In various designs of VPVT structures, not only the isotropic 
properties can be readily achieved but also some of them exhibit 
distinct anisotropic characteristics. For structures like ‘VPVT-slender’ 
and ‘VPVT-rand’, there is a notable disparity between their effective 
Young’s modulus along two axial directions, 𝐸𝑥∕𝐸𝑠 and 𝐸𝑦∕𝐸𝑠 (𝐸𝑠

is the Young’s modulus of basic material utilized in homogenization). 
For ‘VPVT-rhombus’ and ‘VPVT-honeycomb’, their structural patterns 
approximately exhibit homogeneous, isotropic properties, thus their ef-

fective modulus 𝐸𝑥∕𝐸𝑠 and 𝐸𝑦∕𝐸𝑠 are close to each other. For the 

Fig. 5. The effective modulus of typical VPVT structures is compared to the 
other two Voronoi-based isotropic porous structures [6,33]. Do’s and Lu’s de-

signs exhibit isotropic properties, so their effective modulus remains constant 
along different directions. Meanwhile, the VPVT structure may possess either 
isotropic or anisotropic properties. The data line for each type of VPVT struc-

tures is attained by gradually increasing the thickness values 𝑡(𝑥, 𝑦) while fixing 
its frequency values 𝑓 (𝑥, 𝑦). The total effective modulus range for the VPVT 
structure is determined using a Monte Carlo sampling process of 𝑓 (𝑥, 𝑦) and 
𝑡(𝑥, 𝑦) in design space. This is shown as the semi-transparent gray area in the 
image.

standard ‘VPVT-square’ structure, it keeps a strict orthotropic and so its 
effective modulus values along 𝑥- and 𝑦- directions are equal with each 
other. Finally, the grey semi-transparent region highlighted in Fig. 5

corresponds to the total design space of the effective modulus values 
obtained using the VPVT design approach. This is attained through a 
Monte-Carlo sampling of the frequency and thickness parameters 𝑓𝑖 and 
𝑡𝑖 in feasible space. The expansive grey region implies a broad design 
space provided by the VPVT method, which substantially enhancing the 
probability of discovering a porous structure with desired performance.

2.3. The tailoring ability of VPVT method

The plate with a hole is a typical mechanics problem, which exists 
widely in many engineering fields, e.g., civil, aerospace, biomedical, 
and manufacturing etc. Herein, the VPVT method is applied to a struc-

ture configuration considering a square plate domain with an inner hole 
Ω, as shown in Fig. 6(a). The problem can easily be addressed by intro-

ducing an extra additional constraint in the original periodic equations, 
i.e., 𝑓 (𝑥, 𝑦) = 0 over the hole region (𝑥, 𝑦) ∈Ω. In doing so, the Voronoi 
seeding points in the Ω region will be removed, which results in a very 
sparse VPVT tessellation with few thin rods in this hole region, as shown 
in Fig. 6(b). These remaining structures within the region Ω can be 
further removed by applying 𝑡 = 0. After artificially defining a circu-

lar boundary for the region Ω, an appropriate VPVT porous structure 
design is formed for this square plate with an inner hole problem. Dif-

ferent from conventional element-based topology optimization methods 
that apply an arrangement of small square elements to fit the circular 
boundary, an analytical and accurate circular boundary Ω can be de-

fined directly in the point-based VPVT method. Note, although the ROIs 
near the cutout edges in the VPVT method cannot maintain a complete 
rectangular shape, it does not affect the Voronoi tessellation, as well as 
the modelling and optimization process. Therefore, when applying the 
VPVT method in the design of structures with cutouts, it only requires 
to introducing additional constraints over the void regions, while the 
tailoring process for the cutout domain and boundary is analogous to 
the process of defining an outer boundary.

Fig. 6(d) demonstrated a case of applying the VPVT method to de-

sign porous structures within an irregular domain. Herein, an airfoil 
profile is selected as the outer boundary of the VPVT porous struc-

ture. There are two methods to address this problem. The first one is 
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Fig. 6. The tailoring process of the VPVT method by adjusting 𝑓 (𝑥, 𝑦) and 𝑡(𝑥, 𝑦) functions for the designs that involve domains with either internal or external 
irregular boundaries. (a)∼(c) show the tailoring process of the VPVT method in steps to the design of a square domain incorporating an inner circle boundary Ω. (d) 
presents the transforming of the original VPVT cellular structure into an irregular aerofoil by quadratic eight-node isoparametric mapping.

to transfer the Voronoi seeding points generated in the original rectan-

gular domain (e) into the irregular domain (d) using an isoparametric 
mapping method, and then generate the VPVT porous structure in the 
aerofoil domain (d). However, this approach may suffer from the issues 
of large void regions in the final design. Alternatively, in the second 
method, the VPVT porous structure is generated in the original rectan-

gular domain (e), and then transfer each rod in the design (e) into the 
aerofoil domain (d) using the conformal mapping method. In doing so, 
a new Voronoi tessellation well filled the aerofoil domain is generated. 
The geometric patterns of the three ROIs in close-ups are jointly influ-

enced by both the original structure and the mapping function. Due to 
the stretching process, these three ROI patterns, which are originally 
uniform in the rectangular domain (e), exhibit strong heterogeneity in 
the new irregular domain (d). The detailed computational process is 
presented in Appendix B.

VPVT also has the tailoring ability to construct metastructures or 
metamaterials with specific mechanical properties. For example, the 
VPVT method allows us to create a porous structure or specific ROIs 
that exhibit negative Poisson’s Ratio (NPR) properties. According to the 
features of re-entrant honeycomb structures [49–51], a unit cell ROI 
with NPR can be generated by introducing additional constraints to 
frequency 𝑓 (𝜉, 𝜂) and thickness 𝑡(𝜉, 𝜂) functions in the VPVT method, 
as shown in Fig. 7(a) ∼ (c) step-by-step. Note, 𝜉, 𝜂 are the normal-

ized coordinates of 𝑥, 𝑦 with respect to the ROI unit. An initial VPVT 
pattern with a uniform lattice in the ROI is firstly defined, as shown 
in Fig. 7(a). After applying an additional constrain of the frequency 
function, i.e., 𝑓 (𝜉, 𝜂) = 0 over a defined region (outside a circle with-

out four corners of the ROI), arrow-shaped internal folding components 
for the re-entrant auxetic structure are emerged, as demonstrated in 
Fig. 7(b). Subsequently, by performing a thickness tailoring 𝑡(𝜉, 𝜂) = 0, 
as depicted in Fig. 7(c), redundant truss members are removed and 
eventually a desired unit cell ROI with NPR property is obtained. Note, 
although the tailoring steps (a) ∼ (c) are separately demonstrated, an 
NPR-VPVT structure can be directly and rapidly achieved using inte-

grated frequency and thickness constraints in practical applications.

Moreover, the VPVT constructed NPR structure can be modified 
and optimized, straightforwardly, by applying different design parame-

ters in constraints. The complete VPVT structure can comprise various 
ROI configurations with different NPRs (or other functionality) while 
still maintaining a strong connectivity. As illustrated in Fig. 7(d), the 
Poisson’s ratio 𝜈𝑥𝑦 in this axuetic structure gradually decreases from 
−3.01 to −1.35. This example suggests the strong geometric tailoring 
capability of VPVT method at the ROI level. As such, through the pro-

posed VPVT method, we can systematically design specialized ROIs in 
various regions to accommodate their unique functional requirements, 
ultimately assembling them to create a hybrid structure. This design 
approach is analogous to the concept of digital modular material as-

sembly, which strongly complies with the concept of contemporary 
‘advanced manufacturing’ [52]. Fig. 7(d) demonstrates an example. In 
the human spine, trabecular vertebrae typically require high stiffness to 
withstand axial compression, while the intervertebral disc (IVD) imparts 
flexibility to enable spinal bending. However, under axial compression, 
a lumbar disc herniation (LDH) may occur, compressing the adjacent 
spinal cord and nerves, eventually leading to severe back pain or dis-
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Fig. 7. The ‘negative Poisson’s ratio’ tailoring process and modular design for ROI units. (a)∼(c) shows the tailoring process by the VPVT method in steps to build 
an auxetic honeycomb structure; (d) Revised structure with distinct negative Poisson’s ratios; (e) A design of human spinal implant with distinct VPVT modular 
structure, e.g., FGM and NPR modules. The close-up on right side presents the details of the connection between two distinct ROI modules. The human spine 
demonstration in (e) is re-graphed from [53].

ability. The use of an auxetic material is expected to mitigate this effect 
due to its negative Poisson’s ratio [53]. In this study, VPVT method 
is employed to incorporate a functionally graded material (FGM) into 
the vertebral portion, while integrating auxetic material in Fig. 7(d) for 
the IVD section. The ‘shrink’ vertebral is a graded porosity structure 
for providing sufficient compressive load-carrying capacity, while the 
IVD region is composed of a re-entrant auxetics structure for preventing 
LDH. The related FEM simulation result can be referred to Appendix B. 
Challenges such as the ‘curved outline of vertebral bone’ and the ‘con-

nectivity of adjacent modules’ both can be readily addressed by using 
the VPVT tailoring process. Furthermore, since both types of struc-

tures (FGM and auxetic material) are modelled within the VPVT design 
framework, it is possible to perform the optimization design for dif-

ferent modular parts of the entire implant, simultaneously. As such, the 
coupling effects between different modules can be automatically tackled 
during the optimization process. This case study highlights the signif-

icant potential of this proposed VPVT method to perform integrated 
structure design for achieving multiple functionalities.

2.4. Inner structure reinforcement

To further demonstrate the benefits of applying variable periodic 
cells in the design of lattice structures, the VPVT structure is compared 
with two state-of-the-art porous structures studied in ‘restricted cell’ 
mode [38,54] in later Section. 3.2. Since both their lattice units contain 

the inner-layer structure, an inner X-shape architecture is also added 
in the pure VPVT structure for consistency, as shown in Fig. 8. This 
will further enhance the lattice performance in terms of stiffness and 
strength-to-weight ratio. To avoid extremely high computational costs 
in the later optimization process, herein the angles of X-shaped bars are 
set to be the same for all Voronoi cellular structures, and therefore, only 
two design variables are needed for X-shaped bars. To ensure structural 
stability, the centre points of the X-shaped bars can be positioned either 
at the Voronoi geometric centre (seeding points) or the gravity centre. 
However, since this work adopts a bounded Voronoi configuration for 
the outer-layer framework construction, the centre points of some orig-

inal Voronoi cells may locate at or even outside of the boundaries of 
the design domain. Under such a circumstance, only a partial of the 
internal X-shaped bars is presented in the cellular structure. To avoid 
this issue, the intersection centre of X-shaped bars is placed at the grav-

ity centre rather than the geometric centre of each cellular structure. 
Furthermore, for computational analysis and comparison among ‘Pure 
VPVT’, ‘VPVT with single-orient inner-truss’ and ‘VPVT with multiple-

orient inner-truss’, please refer to Appendix D.

2.5. Optimization process

Although gradient-based methods have high efficiency in solving 
optimization problems with smooth, differentiable objective and con-

straint functions, they often suffer from the convergence issues of local 
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Fig. 8. The process of adding inner X-shape supporting in pure VPVT porous structure. (a) the gravity center of each lattice cell; (b) inner X-shaped bars reinforcement 
at the gravity center of each lattice cell; (c) the final design of a modified VPVT porous structure in a full domain.

optima, particularly when dealing with highly non-convex problems. 
The SaDE method, on the other hand, provides a global search ability 
without any requirements for explicit computation of gradient infor-

mation. In addition, to some extent, the SaDE method can avoid being 
trapped in local optima. By applying the VPVT method, the original 
complicated topological design problem for porous structures is trans-

ferred into a parametric optimization process, in which three types of 
design variables, e.g., “frequency mesh grid”, “thickness mesh grid” and 
“angles of X-shaped bars” are considered. These two or three kinds of 
design parameters will simultaneously influence the VPVT topology in 
the design domain, which leads to an implicit, non-smooth, non-convex 
optimization problem. Consequently, in this work, the SaDE method in-

stead of the conventional gradient-based methods is applied to solve 
the optimization problems for the design of VPVT porous structures. 
An advanced SaDE algorithm, namely Surrogate-Assisted Classification-

Collaboration Differential Evolution (SaCCDE) method [42], is applied 
due to its low computational costs and good convergence rates. The de-

tails of the SaCCDE optimization process are presented in Appendix C.

As the strength-to-volume ratio is one of the most interesting aspects 
of porous material design, herein the work focus on minimizing com-

pliance performance of the designed structure. The typical optimization 
problem can be described as follows:

find 𝑓, 𝑡, 𝛼

min
𝑓,𝑡,𝛼

𝐶(𝑓, 𝑡, 𝛼) = F𝑇 U

s.t. 𝑉 (𝑓, 𝑡, 𝛼) ≤ 𝑉𝑓𝑟𝑎𝑐

, while

⎧⎪⎪⎨⎪⎪⎩
F = K(𝑓, 𝑡, 𝛼)U
𝑉 (𝑓, 𝑡, 𝛼) = ∬

𝐷𝑚

𝜙(x)𝑑𝑉 ∕𝑉D

t ≤ 𝑡 ≤ 𝑡, f ≤ 𝑓 ≤ 𝑓, −90◦ < 𝛼 ≤ 90◦
(6)

where 𝐶(𝑓, 𝑡, 𝛼) is the objective function for the compliance of a de-

signed VPVT structure with the parameters of 𝑓, 𝑡, 𝛼. 𝑉 (𝑓, 𝑡, 𝛼) is the 
volume fraction of the VPVT structure and 𝑉𝑓𝑟𝑎𝑐 is its upper bound. 
𝐷𝑚 and 𝑉D are the design domain and corresponding total volume 
of the VPVT structure. F, U, K denote the external load vector, dis-

placement vector, and structural stiffness matrices of VPVT structure. 
𝜙(𝑥) is the topological design function, as given in Eq. (3). Herein, 
𝑓 = [𝑓1, 𝑓2, ⋯ , 𝑓𝑖, ⋯ , 𝑓𝑁 ] and 𝑡 = [𝑡1, 𝑡2, ⋯ , 𝑡𝑖, ⋯ , 𝑡𝑁 ] are the frequency 
factor set and thickness factor set, respectively. 𝛼 = [𝛼1, 𝛼2] corresponds 
the two angles of inner X support. t, ̄t, f , 𝑓 are the threshold of above 
design variable set. In this work, a ‘single-orientation’ mode is applied, 
with which the orientation angles of all the inner support rods in dif-

ferent Voronoi cells share the same values with two design variables, 
𝛼1, 𝛼2. This will significantly reduce the dimension of the optimiza-

tion problem, and relatively migrate the ‘local minimum optimum’ issue 
that often encounters in other angle optimization studies. VPVT cellu-

lar structures with diverse-angled inner supports are demonstrated in 
Appendix D.

3. Numerical examples and experimental validation

3.1. MBB numerical example

In this section, a numerical example and the corresponding exper-

iment were carried out to demonstrate the advantages of the VPVT 
method. A Messerschmitt-Bölkow-Blohm (MBB) beam with a concen-

trated force loading at its middle point is studied, as shown in Fig. 9. 
Since this is a symmetry problem, only a half domain of the MBB beam 
is defined, i.e., 100 mm × 60 mm domain divided into 10 × 6 ROI 
regions. The total number of design variables of this problem is 156, 
including 11 × 7 frequency mesh grid factors 𝑓 , 11 × 7 thickness mesh 
grid factors 𝑡, and two angles for the supporting X-shaped bars 𝛼. Re-

garding the material properties, 𝐸 = 1000 MPa, 𝜈 = 0.3, 𝐶0 = 0.05. The 
volume limitation is set as 𝑉𝑓𝑟𝑎𝑐 = 0.4, while design variable thresholds 
as t = 0.2, ̄𝑡 = 0.4, f = 0.5, 𝑓 = 4.5. It is worth highlighting that the vol-

ume fraction 𝑉 (𝑓, 𝑡, 𝛼) is a highly non-linear function with respect to 
all the design variables 𝑓, 𝑡, 𝛼. Under the above settings, the MBB ex-

ample leads to much more complex VPVT porosity patterns, which give 
rise to significant challenges for the global optimization to achieve con-

vergence with respect to the given volume constraint, 𝑉𝑓𝑟𝑎𝑐 . In view of 
this, after the SaCCDE optimization procedure achieves a relatively sta-

ble state approaching but not yet arrived at the final convergence, the 
obtained design values of 𝑓, 𝛼 will be fixed and thickness variables 𝑡
are solely optimized in the later process. After a few more iterations, 
the final optimization solution with full usage of the volume fraction 
limit is achieved. As a result, the material volume threshold defined by 
𝑉𝑓𝑟𝑎𝑐 can be fully utilized without the need for numerous additional 
populations and generations applied in the global optimization proce-

dure. This two-stage optimization procedure is marked as dashed line 
in Fig. 9 convergence history. A population size of 60 per generation is 
used in the SaCCDE algorithm.

The convergence curve for this optimization design process is illus-

trated in Fig. 9. During the optimization process, the compliance of the 
MBB beam showed a remarkable reduction from an initial value of 2.07
to 0.76. Notably, the optimal lattice structure for the MBB example ex-

hibits significant variability and diversity. The pore size ranges from 
1.03 to 8.21, and the lattice types in the optimal VPVT structure include 
square, rectangle, and hexagon configurations, etc.

Furthermore, in this MBB example, a clear material concentration 
trend was observed, wherein several dense pore cells of diminutive 
size align along the diagonal axis of the design domain, as depicted 
in Fig. 10. It appears that the materials are strategically distributed 
to form a bridging path from the loading point to the fixed vertex at 
the bottom right corner. This configuration can effectively resist the 
compressive loading and deformation of the whole structure. The pore 
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Fig. 9. The optimization convergence curve of the VPVT design process for the semi-symmetry MBB beam under 4320 population (4320/60 =72 iteration in 
SaCCDE). Four marked points in the convergence curve are selected and the corresponding FEM displacement results are illustrated in (a) ∼ (d), respectively. (e) 
and (f) are the optimized frequency variable field and thickness variable field of case (d).

shape in this VPVT design also exhibits noticeable changes along the 
diagonal path. Pore cells near the loading and fixed boundary mainly 
appear in pentagon or hexagon shapes, as shown by the dashed circle in 
Fig. 10(a). In contrast, a cluster of lattices in the middle part of the diag-

onal path is similar in shape to a rectangle, as shown by the solid circle 
in Fig. 10(a). From an engineering perspective, the material within this 
dashed circle exhibits relatively diverse principal stress and principal 
strain directions. As a result, the lattice cells in these areas are pre-

dominantly in the form of pentagonal or hexagonal shapes, providing 
enhanced load-carrying capacity from various directions. In the central 
section of the diagonal path, where the local deformation involves pri-

marily unidirectional compressive strain along the diagonal direction. 
As a result, the lattice shapes in this region consist mainly of rectan-

gular units arranged along the diagonal direction, which increases the 
structural stiffness. Fig. 10(b) shows the von Mises stress distribution of 
the optimal VPVT porous structure. The primary regions of high stress 
are highlighted in green, indicating a clear alignment of the high-stress 
trace along the diagonal path. In line with this observation, the two in-

ner truss rods are optimally angled at −46.5◦ and −8.9◦, respectively. 
The average of the two angles closely approximates the diagonal direc-

tion of the MBB beam, as depicted by red arrows in Fig. 10(a), which 
provides significant resistance to the high stress and deformation along 
those directions.

3.2. Comparison with other optimization works

To demonstrate the advantages of VPVT, we compare its design per-

formance with the design results obtained from two other optimization 
methods. One method utilizes Gao’s open-access codes [38], while the 
other one employs Hoang’s codes [54]. These two methods employ the 

multiscale and full-scale techniques, respectively, to design 2D porous 
structures with a ‘restricted unit cell’ mode. Gao’s method applies a si-
multaneous optimization procedure to design porous structures at two 
distinct scales. The macro-scale optimization determines the desired 
material distribution within the design domain, while micro-scale op-

timization finds the corresponding micro-architectures that can match 
the desired elastic properties of macroscopic elements. In his work, the 
actual volume fraction 𝑉𝑓𝑟𝑎𝑐 = 𝑉𝑚𝑎𝑐𝑟𝑜 ⋅ 𝑉𝑚𝑖𝑐𝑟𝑜, where the macro-volume 
fraction 𝑉𝑚𝑎𝑐𝑟𝑜 and micro-volume fraction 𝑉𝑚𝑖𝑐𝑟𝑜 are the parameters 
manually predefined before the optimization process. In contrast, in 
Hoang’s program, instead of applying the homogenization process, an 
adaptive geometric component was used to project onto the background 
element to obtain a continuous density field, which is then used to cal-

culate mechanical response and sensitivity information of the designed 
model [54].

To ensure an objective comparison, the same 2D deformation model 
as Gao and Hoang is applied to the optimal VPVT beam structures. 
Some adjustments had also been made to certain parameters in their 
methods. Firstly, the ‘TRI’ element with a 0.25 mm mesh size instead 
of the ‘B32’ element is applied to recreate the FEM model for VPVT 
structures. This allows us to retain the same geometry while omitting 
the width property. The detailed FEM modelling process for the VPVT 
structures is presented in Appendix E. Secondly, the design configura-

tions in Gao’s and Hoang’s codes have been altered to ensure that their 
lattice sizes match with the variable cavity sizes (lattice sizes) of the 
VPVT structures, which range from approximately 1 mm to 8 mm. Ad-

ditionally, Gao’s code, which has a multiscale framework, requires the 
recalculation of volume constraint parameters, including micro-volume 
fraction and macro-volume fraction. The VPVT structure has an aver-

age lattice porosity of approximately 0.5 ∼ 0.6. Correspondingly, we 
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Fig. 10. The truss alignment and stress field of the VPVT optimized result for the MBB beam problem. (a) the geometry model; The direction of the trunk in the TO 
solution and the inner truss angles 𝛼 are denoted in (a). (b) illustrates the von Mises stress distribution in the optimal design of VPVT porous structure. The primary 
direction of the high-stress region aligns with the diagonal of the design domain.

Table 1

The comparison of the optimal solutions between the VPVT method, Gao et al.’s method [38] and 
Hoang’s method [54].

Case-ID cellular (lattice) size (/mm) 𝑉𝑚𝑎𝑐𝑟𝑜 𝑉𝑚𝑖𝑐𝑟𝑜 Compliance Geometry*

MBB.VPVT 1.03 to 8.21 0.400 \ 0.130

MBB.Gao.1 1 1.000 0.400 0.178 (-)

MBB.Gao.2 2 1.000 0.400 0.187 (-)

MBB.Gao.3 4 1.000 0.400 0.161 (-)

MBB.Gao.4 1 0.800 0.500 0.143 (-)

MBB.Gao.5 2 0.800 0.500 0.141 (-)

MBB.Gao.6 4 0.800 0.500 0.131 (-)

MBB.Hoang.1 5 0.400 \ 0.121

MBB.Hoang.2 7.5 0.400 \ 0.161(-)

* The ‘geometry’ column demonstrates the macro-scale optimal structure on the left side with the corre-

sponding magnified lattice unit on the right side.

set the micro-scale lattice porosity in Gao’s codes as 0.5 or 0.6, result-

ing in corresponding micro-volume fractions 𝑉𝑚𝑖𝑐𝑟𝑜 = (1 − 0.5) = 0.5 or 
(1 −0.6) = 0.4, respectively. As the total volume fraction for the MBB ex-

ample is fixed at 𝑉 = 0.4, the macro-volume fraction in Gao’s code can 
be calculated as 𝑉𝑚𝑎𝑥 = 𝑉 ∕𝑉𝑚𝑖𝑐𝑟𝑜 = 0.8 or 1. For Hoang’s case, the op-

timized structure was also set as an ‘X-shape support’ type equal to the 
VPVT method. The detailed values of these new parameters are listed 
in Table 1.

Overall, the porous structures obtained by the VPVT method show a 
better compliance performance than those fixed periodic porous struc-

tures obtained by Gao and Hoang’s methods, as presented in Table 1. 
The compliance value of MBB.VPVT is about 7.0% - 30.4% lower than 
most other cases, such as MBB.Gao.1,2,3 4,5 and MBB.Hoang.2. Consid-

ering practical application such as implant design, a frequency limit f = 
0.5 and density filter is set on the frequency grid of the MBB.VPVT case 
in section 3.1 to avoid local blank area, but some compliance perfor-

mance is sacrificed. Nevertheless, the MBB.VPVT still achieve a similar 
compliance as MBB.Gao.6 and MBB.Hoang.1 which allow for a large 
local blank area. A better compliance performance can be attained by 
further decrease f and refine the meshgrid in VPVT method. The differ-

ence in performance between VPVT and other methods mainly results 

from ‘porous architecture’ and ‘cellular (lattice) size’. The porous ar-

chitecture of different method as shown in the ‘Geometry’ column of 
Table 1. Thanks to the irregular and diverse porous architecture at the 
lattice level, the VPVT method allows the materials to have more flexi-

bility in aligning with the local principal stress direction, consequently 
enhancing its load-carrying capacity. In terms of cellular size, the VPVT 
method benefits from a variable Voronoi cell size that is optimized with 
respect to the set-up, whereas the cellular size for the two methods men-

tioned is constant and determined by their macro element size, which 
is manually selected and non-optimized. As demonstrated in Table 1, 
although the lattice size of the ‘restricted unit cell’ method is altered 
to a series of different values, the fixed-periodic structure consistently 
exhibits lower performance than the variable periodic structure.

The VPVT method requires fewer design variables than the two ‘re-

stricted unit cell’ methods. The VPVT method is capable of generating 
a fine and highly diverse porous microstructure by adjusting the design 
parameters, 𝑓, 𝑡, 𝛼 within each macro-scale element (ROI region). Con-

versely, the ‘restricted unit cell’ TO methods typically require not only 
macro-scale but also numerous extra micro-scale topological elements 
as design variables to determine the micro-architectures. From an op-

timization perspective, the limited number of design variables used in 
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Fig. 11. Five 3D-Printed experimental specimens: first four are the VPVT designs for the MBB beam example, as illustrated by cases a∼d in Fig. 9, and the last one 
is of the periodic lattice structure design based on Gao.MBB.3 in Table 1. The upper row of image (a) shows the overview of specimens before experimental testing, 
while the images in the bottom-hand show the failed specimens after the three-point bending test; (b) Loading-Displacement curves from the three-point bending 
tests; (c) is the corresponding linear FEM simulation model and result for MBB.VPVT.d.

the VPVT method relatively enhances the convergence efficiency of the 
optimization process and reduces computational costs.

3.3. Experimental validation: 3D printing fabrication and three-point 
bending test

To validate the effectiveness and accuracy of the optimal VPVT 
porous structures, 3-point bending experimental testing was conducted 
on the MBB beam example in this subsection. It is important to note that 
four optimal VPVT designs obtained in Section 3.1, denoted by points 
(a) to (d) in Fig. 9, were modified due to limitations of the available 3D 
printing and 3-point bending test equipment. Specifically, their design 
domain and truss thickness were reduced to half of their original val-

ues, and their height was increased to 2.5 mm. Additionally, the case of 
‘Gao.MBB.3’ in Table 1 was also printed and tested for the purpose of 
comparison. Finally, five specimens were printed using a stereolithog-

raphy apparatus (SLA) on an AUTOCERA-R 3D printer under the same 
conditions, as depicted in Fig. 11(a). The preparation of the model file, 
including build supports and component slicing, is completed in the 
3DXpert software (OQTON Lo.ctd). The material of specimens is PLA 
resin with an elasticity modulus of 669 MPa and a Poisson’s ratio of 
0.3. The machining processing parameters utilized are the same as the 
default configuration given by the printer manual, including layer thick-

ness of 100 μm laser power of 500 mW, scan speed of 10 m/s, and high 
fill density of 100% mm. The specimens are aligned horizontally on 
the building plate with an additional 0.5 mm high rectangular support 
placed underneath. The support partition is later removed by sanding 
with 40- and 100-grit sandpaper.

Three-point bending tests were performed on Shimadzu AGS-X uni-

versal testing machine. Firstly, a pre-loading force 0.1 N is applied at 
the midpoints of MBB beams, and then each SLA specimen is loaded 
at a rate of 2 mm/min until failure. Two clamp points are respec-

tively loaded at a 1∕6 distance of the total length from the side edge 
of specimens. In the meanwhile, a ‘B32’ FEM simulation with the same 
boundary conditions, as presented in Appendix E, had been completed 
for the purpose of comparison. The corresponding linear stiffness is cal-

culated as the external F divided by the displacement U of the loading 
pin.

The experimental load-displacement curves for the four VPVT spec-

imens, along with the Gao.MBB.3 specimen, have been obtained and 

presented in Fig. 11(b). A steeper curve during the linear elastic stage 
indicates a higher stiffness for each structure. The experimental results 
further confirm the numerical findings presented in Section 3.3, i.e., 
the stiffness of the optimal design case (d) exceeds that of the other 
four cases. It can be observed that the stiffness curves obtained from 
FEM simulation and experiment show relatively high agreement in lin-

ear period, as denoted by the star and green lines in Fig. 11(b). The 
minimal discrepancy between the simulation and the experimental test-

ing implies a high computational accuracy of using ‘B32’ beam elements 
instead of a 3D volume model for the FEM simulations presented in Sec-

tion. 3.

Furthermore, the experimental data also demonstrate the superior 
mechanical performance of the VPVT-designed structures in the nonlin-

ear stage until failure. It is noteworthy that all four variable-periodic 
porous structures (the four optimal VPVT cases) exhibit higher ulti-

mate damage strength than the fixed-periodic structure (Gao.MBB.3), 
with case (d) demonstrating the highest strength. The final damage 
threshold of VPVT(d) is about 47.8% higher than Case Gao. Accord-

ing to the ‘redundant load paths’ theory [9] and engineering intuition, 
when a local area of the VPVT-designed material is damaged, the stress 
within the broken region is redistributed through the nearby inter-

twined truss network, supported by adjacent ‘backup’ truss members. 
This stress-transformation mechanism is advantageous in maintaining 
the maximum stress at a consistent level before and after initial damage, 
thus preventing cascading failure or complete collapse of the structure. 
The load-displacement curves of cases (a) and (d) support this struc-

tural design concept to some extent, as the curves display a noticeable 
inflection point during the middle stages of damage. This phenomenon 
suggests a temporarily increased local stiffness at the crack tip, likely re-

sulting from the stress transformation mechanism discussed above. This 
property positions the VPVT method as a promising candidate for the 
development of advanced fracture-toughness materials and structures.

4. Discussions

VPVT provides a fast and efficient modelling approach to construct 
irregular, nature-inspired porous structures through a function-driven 
mechanism. By varying the ‘frequency factor’ design variables at four 
corners of each ROI unit, this novel method is capable of producing a 
wide variety of lattice structures, covering the most common structures 
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found in nature. While many bio-inspired design methods primarily rely 
on neural network training or imaging processing techniques [28,55], 
the proposed VPVT method offers a comparable design space using only 
a few number of design variables. The method is also highly efficient, 
as the seeding positions for VPVT are determined from ‘analytical solu-

tions of mathematical equations’ rather than any ‘data-training’ process.

From a design perspective, the frequency design variables have a 
clear physical meaning and exhibit a strong correspondence to the re-

sultant geometric shapes. This enables one to rapidly design desired 
structures through intuitive understanding. According to our study in 
this work, a few simple and intuitive cases can be directly generated: 
(1) a square or rectangular lattice generally needs equal frequency fac-

tor pairs on corners; (2) a standard honeycomb requires certain initial 
phase difference in Eq. (1) along 𝑥 or 𝑦 direction in ROI. This can be ap-

proximated by utilizing a radius-varied frequency field. With the above 
understanding, the dragonfly wing pattern in Fig. 4 can be directly 
derived. On the other hand, from the optimization perspective, VPVT-

based design framework is also capable of achieving appropriate lattice 
structures with desired material properties and structural performance 
by optimizing the design variables. The SaCCDE optimization will auto-

matically search for the appropriate frequency variables to match ideal 
porous shape and size to improve the performance.

The function-driven seeding mechanism presented in Appendix A

can be flexibly adjusted to accommodate practical design requirements. 
For example, a radial basis function (RBF) interpolation that is often 
used in meshless methods can be employed to replace the 4-node inter-

polation, allowing for the design of more complex, curved boundaries 
within the design domain. Alternatively, additional constraint functions 
or appropriate phase shift terms can be incorporated into the trigono-

metric functions of Eq. (2) to make specific seeding arrangement for 
desired functionality. For instance, Section 2.3 presents an example of 
designing auxetic honeycomb structures by introducing extra tailoring 
constraints in Eq. (2).

Mimicking nature’s features to design engineering materials and 
structures with unique and unprecedented properties has attracted great 
interest. As the biological structure usually processes certain natural 
randomness, many state-of-the-art bionic works [4,56,57] applied a 
stochastic generation procedure to design porous structures with vivid 
biological patterns. Although the stochastic property can bring a great 
increase in the geometric diversity of porous structures, it can also 
lead to problems such as “random defects” and “low reproducibility”, 
which are detrimental in actual industrial manufacturing. In contrast, 
the VPVT method proposed in this work offers a novel perspective to ef-

ficiently parameterize irregular porous cellular structures, thus enabling 
a deterministic yet pseudo-stochastic approach to bio-inspired structure 
design. This method can, to a certain extent, avoid the above-mentioned 
problems of stochastic-based methods.

The proposed VPVT method exhibits robust structural connectiv-

ity without additional constraints. Through the application of VPVT, 
the porosity of the structure is translated into a ‘G0’ continuous fre-

quency function 𝑓 (𝑥, 𝑦) across the design domain (𝑥, 𝑦). Consequently, 
adjacent Regions of Interest (ROIs) share identical frequency values 𝑓
along their interface boundaries, facilitating a seamless transition of 
Voronoi shapes between ROIs. In contrast, many conventional design 
methods require a manually seeding operation on the boundaries of 
ROIs to ensure geometric connectivity between adjacent microstruc-

tures [9,30,38,58–60]. Furthermore, by further increasing the conti-

nuity of the function 𝑓 (𝑥, 𝑦) among ROIs, the smoothness of porosity 
variation and geometric structure in the final model can be automati-

cally improved at the architectural level.

Many of previous works applied a ‘SIMP-based’ two-level method 
to design porous [4,6,33] or multi-scale structures [15,34,38], as dis-

cussed in Section 2.2 or Section 1. Initially, they match the elastic 
properties of ROI units with the relative density 𝜌, which will be op-

timized with gradient-based methods. Subsequently, the optimized 𝜌 is 
de-homogenized to the actual cellular geometry based on design vari-

ables, such as the number of Voronoi seeds 𝑁 and the truss thickness 
𝑡 [4,6,33,34]. This optimized 𝜌 serves as the basis for designing the 
cell geometry. To ensure a relatively accurate matching relationship 
between the ROI elasticity tensor and de-homogenized architecture, a 
very fine design scheme for the cellular structures must be applied in 
the ROI region [6,34]. Although their optimized result may contain dif-

ferent cell shapes such as rectangle and hexagon, these shapes are not 
directly involved in the optimization process. For example, different 
shaped cells with the same 𝜌 of ROIs may be considered as the same 
elastic property [4,33]. In contrast, the VPVT method proposes a novel 
full-scale approach to straightforwardly construct and optimize the de-

sired cellular architecture. Unlike previous studies that used a single 
design variable 𝜌 for each ROI, the VPVT method uses four frequency 
values 𝑓 at ROI corners and their varying combinations is capable of 
creating a wide diversity of lattice structures. This feature also enables 
a full controllability on the ROI geometry. As 𝑓 was utilized as basic 
design variables directly participating in the optimization process, the 
proposed method can take into account the shapes of lattice cells during 
the optimization process to achieve desired performance, as demon-

strated in Section 3.1. In addition, this design framework also allows 
us to model porous structures with fewer Voronoi seeds, resulting in 
greater adaptability to meso-macro scale problems. For example, the 
design of truss-based buildings, scaffolding where the amount of voids 
is relatively limited.

5. Conclusions

This paper proposes an innovative variable periodic Voronoi tessel-

lation (VPVT) method for designing bio-inspired porous structures. The 
resulting designs exhibit a remarkable resemblance to natural materi-

als and structures, reminiscent of structures like dragonfly wings. This 
efficiency meets the material requirements for a wide range of mechan-

ical and multifunctional demands, such as porous bone implants and 
architectural supports.

With this VPVT method, porous structures are designed through a 
function-driven mechanism, wherein the porosity and lattice pattern 
are generated from periodic functions and the associated frequency and 
thickness parameters. In this design manner, a VPVT porous structure 
may contain a wide variety of lattice types, such as, honeycomb, rhom-

bus, square, and slender, all of which are able to maintain varying 
lattice size and high-quality connectivity. Furthermore, the function-

driven mechanism provided by the VPVT method promises a strong 
material tailoring capability, making it suitable for irregular bound-

aries and modular designs. This forms the foundation for an integrated 
and comprehensive approach to apply in practical engineering de-

signs, e.g., spinal implant, impact protectors and bridge structures. The 
variable-periodic porous design enabled by the VPVT method substan-

tially extends the design freedom compared to fixed periodic methods, 
ultimately resulting in structures with superior performance.

The future work will mainly focus on the following three aspects: 
(1) The VPVPT method will be further extended for efficient multi-

scale optimization at the micro-macro scale by incorporating homog-

enization methods. (2) The VPVT method will be extended to design 
three-dimensional problems by introducing a three-dimensional seeding 
mechanism. (3) The VPVT method can be further extended by adjust-

ing the periodic equations or introducing specific additional constraint 
equations. This modification enables the rapid design and optimization 
of porous structures with tailored morphological characteristics, pre-

cisely meeting the functional requirements of porous structures, such as 
heat propagation and conductivity. These future works will enable this 
proposed VPVT design method to further enhance the performance of 
porous structures and attract wide applications.
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Appendix A. VPVT seeding strategy

The solutions of Eq. (2) in Section 2.1 is equivalent to the solutions 
of Eq. (A.1),{

2𝐶0𝑓 (𝑥, 𝑦)𝑥−𝐾1 = 0
2𝐶0𝑓 (𝑥, 𝑦)𝑦−𝐾2 = 0

(A.1)

where 𝑥, 𝑦 are location coordinates in the design domain and 𝑓 (𝑥, 𝑦) is 
the frequency value at location (𝑥, 𝑦), 𝐾1, 𝐾2 are non-negative integers. 
By introducing normalized coordinates 𝜉, 𝜂 to replace 𝑥, 𝑦

⎧⎪⎨⎪⎩
𝜉 = 2 𝑥−𝑥𝑙

𝑥𝑢−𝑥𝑙
− 1, 𝑥 ∈ [𝑥𝑢, 𝑥𝑙]

𝜂 = 2 𝑦−𝑦𝑙

𝑦𝑢−𝑦𝑙
− 1, 𝑦 ∈ [𝑦𝑢, 𝑦𝑙]

(A.2)

and applying the linear interpolation within a ROI design domain, Eq. 
(A.1) is transformed into the following equation system in terms of the 
normalized coordinates and design parameters (frequency factor) as

1
8

𝐶0 ⋅ [𝑓1, 𝑓2, 𝑓3, 𝑓4] ⋅
⎡⎢⎢⎢⎣
(1 − 𝜉)(1 − 𝜂)
(1 + 𝜉)(1 − 𝜂)
(1 + 𝜉)(1 + 𝜂)
(1 − 𝜉)(1 + 𝜂)

⎤⎥⎥⎥⎦ ⋅ [𝑥1, 𝑥2, 𝑥3, 𝑥4] ⋅
⎡⎢⎢⎢⎣
(1 − 𝜉)(1 − 𝜂)
(1 + 𝜉)(1 − 𝜂)
(1 + 𝜉)(1 + 𝜂)
(1 − 𝜉)(1 + 𝜂)

⎤⎥⎥⎥⎦
−𝐾1 = 0

1
8

𝐶0 ⋅ [𝑓1, 𝑓2, 𝑓3, 𝑓4] ⋅
⎡⎢⎢⎢⎣
(1 − 𝜉)(1 − 𝜂)
(1 + 𝜉)(1 − 𝜂)
(1 + 𝜉)(1 + 𝜂)
(1 − 𝜉)(1 + 𝜂)

⎤⎥⎥⎥⎦ ⋅ [𝑦1, 𝑦2, 𝑦3, 𝑦4] ⋅
⎡⎢⎢⎢⎣
(1 − 𝜉)(1 − 𝜂)
(1 + 𝜉)(1 − 𝜂)
(1 + 𝜉)(1 + 𝜂)
(1 − 𝜉)(1 + 𝜂)

⎤⎥⎥⎥⎦
−𝐾2 = 0 (A.3)

where [𝑓1, 𝑓2, 𝑓3, 𝑓4], [𝑥1, 𝑥2, 𝑥3, 𝑥4] and [𝑦1, 𝑦2, 𝑦3, 𝑦4] are ‘frequency 
factor’ vector and ‘𝑥, 𝑦’ coordinates vector of a single ROI design do-

main, respectively. For example, the coordinates vector [𝑥1, 𝑥2, 𝑥3, 𝑥4] =
[30, 40, 40, 30], [𝑦1, 𝑦2, 𝑦3, 𝑦4] = [30, 30, 40, 40] and the frequency fac-

tor [𝑓1, 𝑓2, 𝑓3, 𝑓4] = [4.1, 3.9, 3.6, 3.9] denotes a ROI design domain, as 
shown in Fig. 3(a). Typically, considering a standard quadratic element 

mesh, it has 𝑥𝑙 = 𝑥1 = 𝑥4, 𝑥𝑢 = 𝑥2 = 𝑥3, 𝑦𝑙 = 𝑦1 = 𝑦2, 𝑦𝑢 = 𝑦3 = 𝑦4. For 
the sake of simplicity, we eliminate the coordinates 𝑥, 𝑦 using the fol-

lowing expressions derived from Eq. (A.1) as⎧⎪⎨⎪⎩
𝑥 = 𝐾1

2𝐶0𝑓 (𝑥,𝑦)

𝑦 = 𝐾2
2𝐶0𝑓 (𝑥,𝑦)

(A.4)

For 𝐾1 ≠ 0, it can derive the following Eq. (A.5) without 𝑦 from Eqs. 
(A.1) and (A.3) as⎧⎪⎨⎪⎩

𝑥 = 1
2 (𝜉 + 1) ⋅ (𝑥𝑢 − 𝑥𝑙) + 𝑥𝑙

𝜂 = 2
𝐾2
𝐾1

𝑥−𝑦𝑙

𝑦𝑢−𝑦𝑙
− 1

(A.5)

To further simplify the equations system in Eq. (A.3), we can substitute 
the expressions in Eq. (A.5) into Eq. (A.3) and eliminate the variables 𝑥
and 𝜂. It then transfers the original equation into a one-variable cubic 
equation in terms of 𝜉 as

𝐴𝑜𝜉
3 +𝐵𝑜𝜉

2 +𝐶𝑜𝜉 +𝐷𝑜 = 0 (A.6)

where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝐴𝑜 =
(

𝐾2 𝑓2 𝜎8 𝜎1
𝜎9

− 𝐾2 𝑓1 𝜎8 𝜎1
𝜎9

− 𝐾2 𝑓3 𝜎8 𝜎1
𝜎9

+ 𝐾2 𝑓4 𝜎8 𝜎1
𝜎9

)
𝐵𝑜 = 𝜎5 𝜎1 − 𝜎6 𝜎1 −

𝜎4 𝜎1
yl−yu

+ 𝜎3 𝜎1
yl−yu

− 𝐾2 𝑓1 𝜎8 𝜎2
𝜎9

+ 𝐾2 𝑓2 𝜎8 𝜎2
𝜎9

− 𝐾2 𝑓3 𝜎8 𝜎2
𝜎9

+ 𝐾2 𝑓4 𝜎8 𝜎2
𝜎9

𝐶𝑜 = 𝜎5 𝜎2 − 𝜎6 𝜎2 +
𝑓1 𝜎7 𝜎1

4 + 𝑓2 𝜎7 𝜎1
4 − 𝜎4 𝜎2

yl−yu
+ 𝜎3 𝜎2

yl−yu
− 𝑓3 𝜎10 𝜎1

4
(
yl−yu

) − 𝑓4 𝜎10 𝜎1
4
(
yl−yu

)
𝐷𝑜 =

𝑓1 𝜎7 𝜎2
4 − 𝐾1

2𝐶0
+ 𝑓2 𝜎7 𝜎2

4 − 𝑓3 𝜎10 𝜎2
4
(
yl−yu

) − 𝑓4 𝜎10 𝜎2
4
(
yl−yu

)

(A.7)

and⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜎1 =
xl 𝜎10

4 −𝐾2 xl 𝜎8
2𝐾1

yl−yu
−

xu 𝜎10
4 +𝐾2 xu 𝜎8

2𝐾1
yl−yu

− xl 𝜎7
4 + xu 𝜎7

4 + 𝐾2 xl 𝜎8
𝜎9

+ 𝐾2 xu 𝜎8
𝜎9

𝜎2 =
xl 𝜎7
4 + xu 𝜎7

4 − xl 𝜎10
4
(
yl−yu

) − xu 𝜎10
4
(
yl−yu

)
𝜎3 =

𝑓4 𝜎10
4 − 𝐾2 𝑓4 𝜎8

2𝐾1
, 𝜎4 =

𝑓3 𝜎10
4 + 𝐾2 𝑓3 𝜎8

2𝐾1
,

𝜎5 =
𝑓2 𝜎7
4 + 𝐾2 𝑓2 𝜎8

𝜎9
, 𝜎6 =

𝑓1 𝜎7
4 − 𝐾2 𝑓1 𝜎8

𝜎9

𝜎7 =
𝜎10

yl−yu
− 2, 𝜎8 =

xl
2 − xu

2 , 𝜎9 = 2𝐾1
(
yl − yu

)
,

𝜎10 = 2yl −
2𝐾2

( xl
2 + xu

2

)
𝐾1

According to Cardano formula [61], the solutions can be divided 
into 4 cases and expressed as follows

If 𝐴𝑜 ≠ 0,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜉1 =
(
− 𝑞

2 −
√

𝑝3

27 +
𝑞2

4

)1∕3
+
(√

𝑝3

27 +
𝑞2

4 − 𝑞

2

)1∕3

𝜉2 = 𝜔2
(
− 𝑞

2 −
√

𝑝3

27 +
𝑞2

4

)1∕3
+𝜔

(√
𝑝3

27 +
𝑞2

4 − 𝑞

2

)1∕3

𝜉3 = 𝜔

(
− 𝑞

2 −
√

𝑝3

27 +
𝑞2

4

)1∕3
+𝜔2

(√
𝑝3

27 +
𝑞2

4 − 𝑞

2

)1∕3

, where

⎧⎪⎪⎨⎪⎪⎩
𝜔 = −1+3i

2 ,

𝑝 = 3𝐴𝑜𝐶𝑜−𝐵𝑜
2

3𝐴𝑜
2 ,

𝑞 = 27𝐴𝑜
2𝐷𝑜−9𝐴𝑜𝐵𝑜𝐶𝑜+2𝐵𝑜

3

27𝐴𝑜
3

If 𝐴𝑜 = 0, 𝐵𝑜 ≠ 0, 𝜉1, 𝜉2 = −
𝐶𝑜
2 ±

√
𝐶𝑜

2−4𝐵𝑜 𝐷𝑜

2
𝐵𝑜

.

If 𝐴𝑜 = 0, 𝐵𝑜 = 0, 𝐶𝑜 ≠ 0, 𝜉1 = −𝐷𝑜

𝐶𝑜
.

If 𝐴𝑜 = 0, 𝐵𝑜 = 0, 𝐶𝑜 = 0, it has 𝐷𝑜 = 0. The situation is meaningless and 
omitted.

https://github.com/lizy20
https://github.com/lizy20
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For a given ROI {(𝑥, 𝑦)|𝑥 ∈ [𝑥𝑙, 𝑥𝑢], 𝑦 ∈ [𝑦𝑙, 𝑦𝑢], 𝑥, 𝑦 > 0}, 𝐾1, 𝐾2 in 
above first three cases always satisfy

𝐾1 ∈ [2𝐶0𝑥𝑙 ⋅min(𝑓1, 𝑓2, 𝑓3, 𝑓4),2𝐶0𝑥𝑢 ⋅max(𝑓1, 𝑓2, 𝑓3, 𝑓4)]

𝐾2 ∈ [2𝐶0𝑦𝑙 ⋅min(𝑓1, 𝑓2, 𝑓3, 𝑓4),2𝐶0𝑦𝑢 ⋅max(𝑓1, 𝑓2, 𝑓3, 𝑓4)]
(A.8)

For attaining the complete solution set, the MATLAB program will 
iterate through all possible pairs of 𝐾1 and 𝐾2, which are then sub-

stituted into Eq. (A.6) to obtain the potential solutions for 𝜉 and the 
corresponding values of 𝑥 within a given ROI. Subsequently, 𝜂, 𝑦 can be 
determined by substituting the solutions of 𝜉 and 𝑥 into Eq. (A.5). The 
final solutions for each pair of (𝑥, 𝑦) in a Cartesian coordinate will be 
used as the seeds for Voronoi tessellation. Notably, the previous calcu-

lation only remains valid under the assumption ‘𝐾1 ≠ 0’. In cases where 
‘𝐾1 = 0, 𝐾2 ≠ 0’, the corresponding calculation process to compute the 
final solutions is analog to the one for ‘𝐾1 ≠ 0’. When ‘𝐾1 = 0, 𝐾2 = 0’, 
the solutions are (𝑥, 𝑦) = (0, 0) or 𝑓 (𝑥, 𝑦) = 0. Note, in this work, only 
non-negative values for 𝑓 (𝑥, 𝑦) are considered, due to the physical sig-

nificance of frequency factors 𝑓 . Further, we artificially specify that 
the points (𝑥, 𝑦) satisfying 𝑓 (𝑥, 𝑦) = 0 can never be used as the seeds of 
Voronoi cells.

The ‘pore density’ is an important parameter for the design of porous 
structures [6]. For a typical VPVT structure, the number of voids in a 
single ROI equals to the number of Voronoi seeds and thus depends 
on the corresponding frequency function 𝑓 . Regarding a location (𝑥, 𝑦)
in the ROI region, the interval of the pore density 𝜌 in a ROI can be 
estimated based on Eq. (2), as follows,

𝜌(𝑥, 𝑦) ∈
[
4𝐶2

0 (𝑓 (𝑥, 𝑦))2,
(2𝐶0𝑓 (𝑥, 𝑦)𝐿𝑥 + 1) ⋅ (2𝐶0𝑓 (𝑥, 𝑦)𝐿𝑦 + 1)

𝐿𝑥 ⋅𝐿𝑦

]
(A.9)

where the definition of above parameters is equal to Eq. (2). The, the 
seed number N can be approximately estimated using the following 
integral function as,

N = ∬
𝑅𝑂𝐼

𝜌(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (A.10)

Considering the variation of frequency function 𝑓 (𝑥, 𝑦) shows a linear 
continuity among the ROI area, Eq. (A.10) can be further approximately 
computed using the Gaussian Quadrature method as:

𝑁 =
∑9

1 𝜔𝑖𝜌(𝑥𝑖, 𝑦𝑖)𝐿𝑥𝐿𝑦

4
(A.11)

where 𝜔𝑖 is the 3𝑟𝑑 Gaussian weight, 𝜌(𝑥𝑖, 𝑦𝑖) corresponds to the 
pore density at the 𝑖𝑡ℎ Gaussian point. It is worth noting that the 
N is approach a deterministic value, 

∑
𝜔𝑖𝐶

2
0𝑓 (𝑥𝑖, 𝑦𝑖)2𝐿𝑥𝐿𝑦, when 

𝐶0𝑓 (𝑥, 𝑦)𝐿𝑥 >> 1 and 𝐶0𝑓 (𝑥, 𝑦)𝐿𝑦 >> 1. Regarding the examples pre-

sented in Section 3, with the threshold of 𝑓 ∈ [0.5, 4.5] and 𝐶𝑜 = 0.05, 
the estimated number of pores 𝑁 will be in the range of [1, 31]. Notably, 
this number is significantly smaller than the number of pores in other 
porous structure [33,57,62], which suggests the design cases presented 
in this paper are all of the meso-macro scales.

Appendix B. Computation of VPVT tailoring operation

By introducing additional constraints in the original periodic seed-

ing equations, the VPVT framework can be extended to design struc-

tures with complex boundaries and geometric features, at both macro-

scale or micro-scale (a single ROI) levels. This advantageous feature of 
the VPVT method allows engineers to efficiently perform preliminary 
bionic designs based on their intuition and experience. Herein, a de-

tailed information is presented to demonstrate the extended tailoring 
capability provided by the proposed VPVT method.

Fig. B.1(a) and (b) illustrate the distributions of frequency factor 
𝑓 (𝑥, 𝑦) and thickness factor 𝑡(𝑥, 𝑦), respectively, which are applied in 

the VPVT method for the design of a porous structure with a central 
hole (Fig. 6(a)∼(c) in manuscript). As demonstrated in Fig. B.1(a), the 
Voronoi seeds in the Ω region are removed after applying the zero fre-

quency constraint over this domain, i.e., 𝑓 (𝑥, 𝑦) = 0 in Ω, while the 
seeds outside Ω are unaffected. Traditional topology optimization meth-

ods often rely on complex topological elements to determine the pres-

ence or absence of materials. Therefore, the tailoring normally requires 
a properly refined mesh to fit exactly within the desired boundaries. On 
the contrary, the VPVT method surpasses this limitation by tailoring at 
the point level instead of the element level. For the cases when the size 
of a ROI substantially larger than the Ω region with inner curved bound-

aries, the efficient tailoring process of the VPVT design framework will 
not be affected by adjusting the 𝑓 , 𝑡 functions. This adaptability makes 
the VPVT method particularly advantageous for industrial designs with 
curved boundaries or profiles, such as bone implants or advanced vehi-

cle battery electrodes.

For the design example with an irregular boundary as shown in the 
main manuscript Fig. 6(d), the corresponding relationship between the 
original and post-mapping domains is illustrated in Fig. B.1(c). Since 
three points at least are needed to define an edge, eight vertices named 
𝑃𝑖 and 𝑃𝑖

′ are used to define the original and post-mapping domains, 
respectively. A smooth airfoil boundary can be generated once each 
𝑃𝑖

′ point is placed in a proper location with 𝐶1 continuity. To transfer 
the endpoint coordinates of every rod from the square domain to the 
airfoil domain, a shape mapping function utilising a high-order element 
interpolation technique [63] as expressed in Eq. (B.1) is applied:

[
𝑥′, 𝑦′

]𝑇 =
[
𝑁1 0 𝑁2 0 ... 𝑁8 0
0 𝑁1 0 𝑁2 ... 0 𝑁8

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥′
1

𝑦′1
𝑥′
2

𝑦′2
...

𝑥′
8

𝑦′8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.1)

where (𝑥′, 𝑦′) is the coordinates of each node (point) in the transformed 
irregular design domain,

[𝑥′
1, 𝑦

′
1, 𝑥

′
2, 𝑦

′
2, ⋯ , 𝑥′

8, 𝑦
′
8]

𝑇 is the coordinates vector of the vertex nodes 
𝑃 ′
1 , 𝑃

′
2 , ⋯ , 𝑃 ′

8 of the irregular boundary, as marked in Fig. B.1(d). 𝑁𝑖 in 
the matrix in Eq. (B.1) is a standard quadratic square shape function 
expressed as Eq. (B.2):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑁1 = 1
4 (1 − 𝜉)(1 − 𝜂)(−𝜉 − 𝜂 − 1);

𝑁2 = (1 − 𝜉2)(1 − 𝜂)∕2;
𝑁3 = 1

4 (1 + 𝜉)(1 − 𝜂)(𝜉 − 𝜂 − 1);
𝑁4 = (1 − 𝜂2)(1 + 𝜉)∕2;
𝑁5 = 1

4 (1 + 𝜉)(1 + 𝜂)(𝜉 + 𝜂 − 1);
𝑁6 = (1 − 𝜉2)(1 + 𝜂)∕2;
𝑁7 = 1

4 (1 − 𝜉)(1 + 𝜂)(−𝜉 + 𝜂 − 1);
𝑁8 = (1 − 𝜂2)(1 − 𝜉)∕2;

, where

⎧⎪⎨⎪⎩
𝜉 = 2 𝑥−𝑥𝑙

𝑥𝑢−𝑥𝑙
− 1

𝜂 = 2 𝑦−𝑦𝑙

𝑦𝑢−𝑦𝑙
− 1

(B.2)

Herein, 𝜉, 𝜂 are the normalized parametric coordinates of the original 
Cartesian coordinates (𝑥, 𝑦) within the entire design domain (Note, 𝜉, 
𝜂 are not normalized with respect to a single ROI). 𝑥𝑙, 𝑥𝑢, 𝑦𝑙, 𝑦𝑢 are the 
lower and upper bounds of the entire design domain along 𝑥 and 𝑦
directions, respectively.

In above ‘Negative Possion’s Ratio’ example, a key step in the ‘fre-

quency tailoring’ process is to ensure the existence of the Voronoi seeds 
at four corners of the ROI, while simultaneously eliminating other 
Voronoi seeds located near the four ROI boundaries. This results in a 
truss structure with a ‘folded arrow’ pattern, which can later be cut 
into a re-entrant honeycomb structure by appropriate ‘thickness tailor-

ing’. In the above process, the length of the ‘folded arrow’ truss plays 
a crucial role in determining the Poisson’s ratio of the final structure 
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Fig. B.1. The tailoring process on 𝑓 (𝑥, 𝑦) and 𝑡(𝑥, 𝑦) for the design domains with internal or external irregular boundaries. (a) and (b) show the frequency function 
𝑓 (𝑥, 𝑦) and the thickness function 𝑡(𝑥, 𝑦) for the tailoring of a rectangular plate with an inner hole example, respectively. (c) shows the relationship between the 
original frequency function and the post-mapped one for the design with an airfoil outer boundary. The corresponding control nodes along the boundary are marked 
and denoted as [𝑥1, 𝑥2, 𝑥3..𝑥8].

design. By adjusting the parameters during the ‘tailoring process’ over 
different ROI units, it is possible to create ‘folded arrow’ trusses with 
varying lengths, resulting in auxetic structures with different Poisson’s 
ratios, as shown in the Fig. 7(d). Herein, further details are presented of 
this modelling process. Fig. B.2(a) suggests the basic square cell for the 
tailoring operation. In particular, the initial frequency function 𝑓 (𝑥, 𝑦)
is increased to 6, different from the previous value of 3. This adjust-

ment results in a sufficient density of Voronoi seeds in the ROI domain, 
thus providing a highly variable tailoring flexibility for the ROI unit. 
Fig. B.2(b) highlights the difference in Voronoi seed distribution and 
truss member placement in three types of ROI units after the frequency 
𝑓 (𝜉, 𝜂) and thickness 𝑡(𝜉, 𝜂) tailoring. The blue dots are the remaining 
Voronoi seeds after ‘frequency tailoring’, while the red bar symbolises 
the corresponding Voronoi pattern generated by these seeds. The black, 
bold bar represents the final re-entrant honeycomb material after ‘thick-

ness tailoring’. For the purpose of clarity, we introduced a feature index 
𝑘 with values 2, 3 and 4 to denote three cases. Thus, the location of the 
important geometric element in the ROI can then be parameterised in 
terms of 𝑘, as shown in Fig. B.2(c). In view of this, the fitted frequency 
function 𝑓 (𝜉, 𝜂) can be expressed as follows:

{
𝑓 (𝜉, 𝜂) = 0, in (𝜉, 𝜂) ∈ Ω;
𝑓 (𝜉, 𝜂) = 6, the other region.

where

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ω=Ω1 ∩ (Ω2 ∪ (Ω3 ∩ Ω4))
Ω1 = {(𝜉, 𝜂) | ∣ 𝜉 ∣ + ∣ 𝜂 ∣< 2}
Ω2 = {(𝜉, 𝜂) | (∣ 𝜉 ∣≥ 1 − 𝑙𝑐) ∪ (∣ 𝜂 ∣≥ 1 − 𝑙𝑐)};
Ω3 = {(𝜉, 𝜂) | (𝜉 + 𝜂 = 0) ∪ (𝜂 − 𝜉 = 0)};
Ω4 = {(𝜉, 𝜂) | |𝜉| >= 𝑘 ⋅ 𝑙𝑐};

(B.3)

where 𝑙𝑐 is the interval distance of neighbouring Voronoi seeds in the 
parametric coordinate space, as shown in Fig. B.2(c). The definition of 
parametric thickness function 𝑡(𝜉, 𝜂) is as follows:

{
𝑡(𝜉, 𝜂) = 0.2, in (𝜉, 𝜂) ∈ Ω′;
𝑡(𝜉, 𝜂) = 0, the other region.

where

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ω′ = Ω′
1 ∪ Ω′

2 ∪ Ω′
3 ∪ Ω′

4
Ω′
1 = {(𝜉, 𝜂) | (∣ 𝜉 ∣≥ 1 − 𝑙𝑐) ∩ (∣ 𝜂 ∣≤ 1 − 1.3𝑙𝑐)};

Ω′
2 = {(𝜉, 𝜂) | (∣ 𝜂 ∣= (𝑘− 0.5)𝑙𝑐) ∩ (∣ 𝜉 ∣< (𝑘− 0.5)𝑙𝑐)};

Ω′
3 = {(𝜉, 𝜂) | (∣ 𝜉 ∣= 0.5𝑙𝑐) ∩ (∣ 𝜂 ∣> (𝑘− 0.5)𝑙𝑐)};

Ω′
4 = {(𝜉, 𝜂) | (𝜉 + 𝜂 = 0 ∪ 𝜂 − 𝜉 = 0) ∩ ∣ 𝜉 ∣ + ∣ 𝜂 ∣< 2};

(B.4)

In practical design processes, the negative Poisson’s ratio of the 
structure under small strains can be expressed as a function of 𝑘. A quick 
and straightforward approximate method for the calculation of Pois-

son’s ratio 𝜈, without solving complex equations, is provided. Given that 
the overall strain is very small, axial deformations of the rods within 
the system can be neglected. Referencing the work by Gibson [64], the 
overall deformations and strains of the structure are expressed as fol-

lows:

⎧⎪⎪⎨⎪⎪⎩

𝜀𝑥 =
𝑑𝐿𝜉

𝐿𝜉

𝜀𝑦 =
𝑑𝐿𝜂

𝐿𝜂

𝐿𝜉 = 𝑙0 + sin(𝜃1)𝑙1 + sin(𝜃2)𝑙2
𝐿𝜂 = cos(𝜃2)𝑙2 − cos(𝜃1)𝑙1 + 𝑙ℎ2

, where

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑙0 = (𝑘− 0.5)𝑙𝑐
𝑙1 = 1.41𝑎− 1.131𝑙𝑐 − 1.141𝑘 ⋅ 𝑙𝑐

𝑙2 = 1.563𝑙𝑐
𝑙ℎ1 = 1 − 𝑙0
𝑙ℎ2 = 1 − 2.167𝑙𝑐

(B.5)

Herein, the parameters 𝑙ℎ1, 𝑙ℎ2, 𝑙0, 𝑙1, 𝑙2, etc. in Eqs. (B.5) denote the 
length of each segment in the truss, as shown in Fig. B.2(d). It is note-

worthy that 𝑙ℎ1, 𝑙ℎ2 can be specified as a rigid component due to its 
small deformation or periodic boundary of a ROI [64,65], while the 
bending deformation of 𝑙0 is relatively large and cannot be omitted in 
the analysis, as shown by the FEM simulation in Fig. B.2(e). Therefore, 
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Fig. B.2. The detailed information for constructing auxetic honeycombs with varying negative Poisson ratios. (a) the basic ROI unit built by the VPVT method for 
tailoring; (b) Three kinds of ROI units with distinct negative Poisson’s ratios, where the index ‘k’ is used to differentiate and identify each case; Red and black truss 
members compose the revised Voronoi pattern after 𝑓 (𝜉, 𝜂) tailoring, while the black truss members denote the final auxetic structure for different ROI units after 
the thickness tailoring 𝑡(𝜉, 𝜂) based on revised Voronoi pattern; (c) The parameterized geometry information for the structure for defining tailored function 𝑓 (𝜉, 𝜂), 
𝑡(𝜉, 𝜂); (d) The demonstration of the name, location of each beam in Equation (B.5); (e) The deflection angles of the beam components in the three types of ROI 
units under a 0.01 tensile strain in the 𝑥-direction are presented. The deflection of middle bridge beam in ‘𝑘=4’ case is quite large due to its big spanning; (f) shows 
the FEM testing for the hybrid structure for human spinal implants. The concave curved profile suggests that the auxetic component can effectively alleviate lumbar 
disc herniation (LDH).

the deflection of truss 𝑙0 is named as 𝑤𝑙0
, then the Poisson’s ratio of the 

structure is given by Eq. (B.6):

𝜈𝑥𝑦 = −
𝜀𝑦

𝜀𝑥

= −
sin(𝜃1)𝑙1𝑑𝜃1 − sin(𝜃2)𝑙2𝑑𝜃2 +𝑤𝑙0

𝐿𝜂

⋅
𝐿𝜉

cos(𝜃1)𝑙1𝑑𝜃1 + cos(𝜃2)𝑙2𝑑𝜃2

(B.6)

In this analysis, rather than employing the effective Young’s modu-

lus and the mechanical equilibrium equations, we directly resort to the 
deflection formula for a cantilever beam, to estimate the relationship 
between 𝑤𝑙0

, 𝜃1, 𝜃2. Considering of truss members including 𝑙1, 𝑙0 with 
the ‘P1’ point clamped at the base under a specific moment, we deduced 
the deflection ratio:

𝑤𝑙0
∕𝑤𝑙1

≈ 𝑙0∕𝑙1 ⇒ 𝑤𝑙0
≈ 𝑙0𝑠𝑖𝑛(𝜃1)𝑑𝜃2 (B.7)

Similarly, we assume 𝑑𝜃2∕𝑑𝜃1 = 𝑙2∕𝑙1. Substituting above equations 
into (B.6), the Poisson’s ratio is as:
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Table B.1

The error of negative Poisson’ ratio between 
above estimated computation and FEM simu-

lation result.

k 𝜈𝑥𝑦 by Eqs. (B.8) 𝜈𝑥𝑦 by FEM error

2 -1.32 -1.35 3.8%

3 -1.90 -1.81 4.7%

4 -2.51 -3.01 20%

𝜈𝑥𝑦 = −
(𝑙0 + 𝑙1) sin(𝜃1) − sin(𝜃2)

𝑙2
2

𝑙1

𝐿𝜂

⋅
𝐿𝜉

cos(𝜃1)𝑙1 + cos(𝜃2)
𝑙2
2

𝑙1

(B.8)

The discrepancies in the prediction of Poisson’s ratio between the 
above analytical method and the results from FEM simulation (with 
𝜀𝑥 = 0.01 of the whole ROI) are presented in Table B.1. The results sug-

gest good accuracy of the analytical method when the values of 𝑘 are 
small, while the accuracy is decreased for large 𝑘. This reduction is pri-

marily attributed to the amplified bending effects of an elongating 𝑙0
as 𝑘 increases, which render our equation (B.8) less accurate. Never-

theless, the examples we have presented highlight the potential of the 
VPVT tailoring technique in designing auxetic honeycombs. By select-

ing appropriate values for the feature parameter, ‘k’, it becomes feasible 
to achieve a desired negative Poisson’s ratio. In the future, our empha-

sis will be on developing a more diverse range of auxetic structures and 
improving the computational method of their mechanical properties.

The proposed VPVT method is able to construct a more comprehen-

sive, hybrid structure in a single space by operating ROIs as packaged 
modular units. The coupling effect and connectivity requirement of dif-

ferent ROI modules can be considered and easily fulfilled by this VPVT 
method. A FEM test of the designed implant is proposed in Fig. B.2(f), it 
is obvious that the hybrid structure exhibits a concave curved profile at 
the location of the intervertebral disc. This profile effectively alleviates 
lumbar disc herniation in patients. Although, in this example the afore-

mentioned procedure remains primarily at the design stage, the 𝑓, 𝑡
mesh factor can still theoretically function as optimization variables for 
subsequent SaCCDE optimisation calculations.

Appendix C. SaCCDE optimization

In this work, a global optimization method, named Surrogate-

Assisted Classification-Collaboration Differential Evolution (SaCCDE), is 
applied to solve the VPVT design problems. Herein, the detailed work-

flow of this SaCCDE method is presented in the following Algorithm 1. 
In the SaCCDE method, the population is divided into two subpopu-

lations, i.e., good and poor populations, based on the feasibility rules. 
Subsequently, a classification-collaboration mutation operation is ap-

plied to generate promising mutant solutions from both good and poor 
populations. Then, the surrogate model is used to identify the most 
promising offspring solutions, which can speed up the convergence of 
the optimization process. To address the reduced population diversity 
caused by excessive greedy information from classified solutions, an 
adaptive global search algorithm is applied. This algorithm dynamically 
adjusts the mutation operation based on iterative information, enhanc-

ing its ability to thoroughly explore the entire search space. As such, a 
balance between local and global searches is achieved by applying this 
SaCCDE algorithm.

The parameter ‘population size per generation’ in the SaCCDE 
method significantly influences the effectiveness of the optimization 
process. Herein, an initial test is conducted to assess the impact of pop-

ulation size on the optimization results, as presented in Table C.1. The 
final optimal compliance is compared for configurations with different 
population sizes per generation, while maintaining an approximate total 
population of 1600. It was observed that 60 populations per generation 
can be a balanced choice considering effectiveness and computational 
cost.

Algorithm 1 SaCCDE algorithm.

Require: Minimize: 𝑓 (𝑥𝑖,𝑔) subjected to: 𝑔(𝑥𝑖,𝑔). 𝑥: design variables; 𝑖: a popu-

lation; population size: 𝑖 = 1, 2, 3, ⋯ , 𝑁𝑃 ; g: generation.

1: Initialize the population size NP, generation g=1, and population 𝑃𝑔 =
{𝑥𝑖,𝑔 = 𝑥1,1, 𝑥2,1, ⋯ , 𝑥𝑁𝑃 ,1).

2: Complete the ABAQUS Modelling and perform the FEM simulation → obtain 
the values of objective function 𝑓 (𝑥𝑖) and constraints 𝑔(𝑥𝑖) for each case in 
the population.

3: Using the above data to construct a database 𝐵, then initialize iteration 
parameters: 𝐹𝐸𝑠, 𝑇𝑓𝑎𝑖𝑙

4: while 𝐹𝐸𝑠 ≤ 𝑀𝑎𝑥𝐹𝐸𝑠 do

5: for each FEM solution 𝑓 (𝑥𝑖,𝑔) in 𝑃𝑔 do

6: Construct the Radius Basis Function (RBF) model as an approxima-

tion of the objective function 𝑓 (𝑥𝑖,𝑔 ) and constraints 𝑔(𝑥𝑖,𝑔)
7: Generate 𝛽 offspring solutions for each design variable set 𝑥𝑖 through 

a specific operation of multiplying offspring solutions

8: Select the most promising design variable set 𝑥𝑝𝑖,𝑔 from 𝛽
9: Complete the FEM simulation to determine the values for the objec-

tive function 𝑓 (𝑥𝑝𝑖,𝑔) and constraints 𝑔(𝑥𝑝𝑖, 𝑔)
10: 𝐹𝐸𝑠 = 𝐹𝐸𝑠 + 1
11: if 𝑥𝑝𝑖,𝑔 is better than 𝑥𝑏𝑒𝑠𝑡,𝑔 refer to feasibility rules: then

12: 𝑥𝑏𝑒𝑠𝑡,𝑔 = 𝑥𝑝𝑖,𝑔 , 𝑇𝑓𝑎𝑖𝑙 = 0
13: else if : then

14: 𝑥𝑏𝑒𝑠𝑡,𝑔 = 𝑥𝑝𝑏𝑒𝑠𝑡,𝑔−1, 𝑇𝑓𝑎𝑖𝑙 = 𝑇𝑓𝑎𝑖𝑙 + 1
15: end if

16: Updating database B by archiving new solutions 𝑓 (𝑥𝑝𝑖,𝑔), 𝑔𝑝(𝑥𝑖,𝑔)into 
the database.

17: end for

18: Selecting next parent population 𝑃𝑔+1 from updated total population: 
𝑇 𝑜𝑡𝑎𝑙𝑝𝑜𝑝𝑔 = {𝑃𝑔, 𝑥𝑝1,𝑔 , 𝑥𝑝2,𝑔 , ⋯ , 𝑥𝑝𝑁𝑃 ,𝑔}

19: g=g+1

20: end while

21: Output:𝑥𝑏𝑒𝑠𝑡,𝑔

Table C.1

The effectiveness and time costing for different ‘population size’ configurations 
in SaCCDE.

Population 
size

Total 
population-

Generation

Time costing 
(mins/

generation)

Optimum 
Compliance

20 1600-80 32 3.51

40 1600-40 35 2.76

60 1620-27 50 2.36

80 1600-20 65 2.38

Appendix D. Computational analysis of various types of VPVT 
structures

In this study, we employed a Variable-Periodic Voronoi Tessellation 
(VPVT) structure with uniform truss orientation across all Voronoi cells. 
However, it is noteworthy that our framework allows for the generation 
of alternative designs, such as a pure VPVT structure without inner truss 
or VPVT with varying truss orientations among different cells. In terms 
of optimization, lattice units (ROI) with higher anisotropic properties 
are expected to yield superior solutions, particularly concerning com-

pliance objectives and single loading boundaries [19].

Nevertheless, the application of ‘varying truss orientation’ lattice 
will significantly lead to a significant increase in the number of de-

sign variables in SaCCDE, potentially causing non-convergence issues in 
the optimization process. A comparison of the three VPVT mesh types 
is presented in Fig. D.1. Due to constraints on the number of design 
variables in SaCCDE (less than 180), we reduced the design domain 
to a 4x4 mesh grid. For attaining more distinct and comparative op-

timized solutions, we apply a ‘cantilever’ boundary conditions rather 
than ‘MBB’ boundary here (for small square design domain under MBB 
boundary condition, material for three different configurations will all 
concentrate in diagonal region and induce high similarity). The ‘multi-
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Fig. D.1. Comparison of the optimized solution for three different VPVT structure, including ‘pure voronoi’, ‘single truss orientation’, ‘multiple truss orientation’.

truss orientation’ VPVT is obtained by sub-optimizing the solution of 
the ‘single truss orientation’ VPVT, with a fixed ‘frequency meshgrid’ 
and varied truss orientations in different ROIs.

The compliance value of three types of VPVT is 1.81, 0.97 and 
0.91 respectively, which proves our above statements. From the view of 
structural architecture, the size and shape of Voronoi cells in the ‘pure 
Voronoi’ mode are very different from the other two ‘truss-reinforced’ 
modes. Correspondingly, the compliance value of the ‘pure Voronoi’ 

mode is also twice that of the ‘single truss orientation’ mode. Mean-

while, the ‘multiple truss orientation’ also shows a clear variation in 
truss orientation compared to the ‘single truss orientation’. The truss 
direction in the ‘multiple truss orientation’ tends to coincide with the 
principal stress direction in the model. Although the compliance value 
is further reduced, the amount of variation is relatively limited. Finally, 
we use a ‘same truss orientation VPVT’ mode in Section 3, which strikes 
a balance between performance and computational cost.

Appendix E. ABAQUS modelling for VPVT structure

In this study, ABAQUS software is utilized to establish FE volume models for the analysis of porous structures. A Python script was developed to 
interact with ABAQUS for managing this computational process. In the complete optimization workflow, pre-processed data containing the specifics 
of a VPVT structure design is firstly generated in MATLAB. The data is stored in a ‘.mat’ format, which contains endpoint coordinates and thickness 
values of each truss. Subsequently, the data of each individual truss is transferred into ABAQUS to construct a corresponding part, and then all the 
truss structures are assembled to form a final complete VPVT structure. Notably, the assembly processes for the ‘B32’ and ‘TRI’ mesh elements used 
in Sections 3 and 4 of this work differ from each other. The ‘B32’ mesh truss model was assembled directly from wireframe parts using a ‘point’ 
joint. In contrast, the 2D ‘TRI’ mesh models require an additional ‘Boolean merge’ and tailoring process at the cross points of truss members to 
establish a continuous solid joint. Fig. E.1(a) illustrates the joint of the ‘B32’ beam model, while (b)-(d) depict the tailoring process of the joint for 
a 2D ‘TRI’ solid model. Fig. E.1(c) highlights a semicircular adhesive joint at truss ends, matching the rod thickness, and the final joint is depicted 
in Fig. E.1(d). Notably, due to these operations, the volumes of the ‘beam model’ and ‘solid model’ may differ, even with identical design variables. 
For example, in main manuscript Section 3, the average beam volume was approximately 4.5% more than the solid volume under the same design 
variables. However, given this minor discrepancy, it was overlooked in our analysis. Furthermore, for the purpose of saving optimization costs, we 
utilized a constant-thickness truss with thickness values dependent on its midpoints in this work.

Fig. E.1. The joint operation process for the VPVT truss structures in ABAQUS: (a) Wireframe geometric features of the beam model at a triple-truss joint, where 1, 
2, and 3 denote distinct truss members. The construction evolution of the solid model joint is depicted in (b), (c), and (d). In (b), the original rectangular-shaped 
truss is directly built without tailoring. In (c), a semicircle region is respectively placed at the end of the three trusses. Finally, in (d), a Boolean operation is used to 
combine the triple-truss joint into a continuous solid.

For the set-up in 3-point bending FE simulation as Fig. 11(c) shows, a ‘friction-less’ contact property were set between ‘VPVT MBB beam’ and ‘circle 
pin’. All the pins had diameter of 10 mm and were deal as rigid body. Two clamp pins were fixed at center point, while 1 N external force were 
applied on the loading pin. The ‘VPVT MBB beam’ were modelled by ‘B32’ element with 0.5 mm mesh density.

Appendix F. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .matdes .2024 .113055.
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