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ABSTRACT

Extreme heat due to changing climate poses a new challenge for temperate climates. The challenge is further
aggravated by inadequate research, policy, or preparedness to effectively respond and recover from its impacts.
While urban morphology is crucial in mitigating urban heat, it has received limited attention in urban planning,
highlighting the need for further exploration, particularly in temperate regions. To illustrate the challenge and its
potential mitigations, we use the example of the coastal temperate city of Cardiff. To establish the interrelations
between urban morphology and urban heat island patterns, we explored the spatiotemporal variations in land
surface temperature (LST), normalised difference vegetation index (NDVI), and surface urban heat island (SUHI)
to local climate zone (LCZ) classification for Cardiff. Results showed a significant variation in SUHI in the LCZ
zones. Both LST and NDVI land were found to vary significantly across the LCZ zones demonstrating their associ-
ation with the urban form and morphology of the locality. For built-up areas, a more compact built-environment
with smaller vegetation cover and larger building density was 2.0 °C warmer than the open built-environment
when comparing the mean summer LSTs. On average, the natural classes exhibit a LST that is 8.0 °C lower than the
compact built-environment and 6.0 °C lower than the open built-environment. Consequently, the high-density,
built-up LCZs have a greater SUHI effect compared to the natural classes. Therefore, temperate climate cities
will benefit from incorporating an open built-environment that has sufficient greenery and open spaces. These
findings help determine the optimal urban form for temperate climates and develop heat mitigation strategies
while planning, designing, or improving the new and existing urban areas. In addition, the LCZ map applied in
this study for Cardiff will enable international comparison and testing of proven climate change adaptation and
mitigation techniques for similar urban areas.

1. Introduction

As we approach a future of extended, hotter, and more frequent heat

sectors, and caused economic losses at the local, regional, and national
levels. Their study also highlighted that the UK is unprepared for up-
coming extreme heat events, especially if they occur more frequently

events, cities must intensify their efforts in planning for such extreme
heat. The rising mortality risk attributable to ambient temperature rise
across various cold and temperate climate cities [1,2], serves as a warn-
ing that extreme heat is a concern not only for tropical cities but also
for those in temperate regions. The UK, generally considered to be part
of a temperate region, is facing an unprecedented challenge posed by
the high frequency of extreme heat. In the summer of 2022, the UK
experienced record-breaking high temperatures, with certain areas ex-
ceeding 40 °C. This led the government to declare heat health warnings,
signifying a national emergency for the first time [3]. While such tem-
perature extremes are not rare, the high frequency of such occurrences
is unprecedented. The rapid pace at which these changes have occurred
has disrupted the healthcare system, transport infrastructure, and utility
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with the same intensity and duration, or if they are less frequent but
more severe than the 2022 heatwaves. Current research on heat stress
metrics, considering the combined effects of temperature, humidity, and
urbanization, remains limited, as noted by [4,5]. Additionally, studies
often neglect the role of climate and hydro meteorological variations in
the context of urban heat stress, as highlighted by [6]. Therefore, there
is a critical need to gain a deeper understanding of the mechanisms be-
hind urban heat, particularly concerning the impacts of climate change
and urbanization.

The impacts of extreme heat are further exacerbated by the surface
urban heat island (SUHI) effect which is caused by the process of urban-
ization including changes in land use and land cover (LULC) and human
behaviors. These phenomena lead to more days of intense heat on a local
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level, linked with higher energy use for cooling in buildings and elevated
human health risks due to heat. The SUHI intensity has significantly in-
creased between 1990 and 2010, mainly due to urban expansion and
the lack of green infrastructure in the city cores. Recent studies [7,8]
indicate that this trend is expected to persist at least through 2030. Con-
sequently, recognizing SUHI hotspot zones and adopting climate-driven
planning measures is crucial to mitigate its effect.

There is an absence of evidence-backed urban planning policies
aimed at enhancing urban thermal conditions in response to recent heat
events in urban areas in general. This can be attributed to the lack of
available data and a limited comprehension of how urban morphology
influences the thermal conditions within the city. While weather data
has become more available in recent years, the local or microclimate
data remains scarce. As a result, our understanding of area or locality-
specific climate change effects related to heat events is limited. Given the
context, the local climate zone (LCZ) concept offers a novel perspective
and methodology for investigating the urban heat island phenomenon,
encouraging the integration of climate science research with policy plan-
ning efforts. The local climate zone framework developed by [9] serves
as an verified classification system for land surfaces to identify the vary-
ing land surface types and to assess the impact of urban morphology on
SUHI [10-12]. It can visually demonstrate the interplay between urban
climatic conditions, surface structure, and land use and consequently,
help identify the thermal environment management needs for various
LCZs in cities [13]. The LCZ classification consists of 10 building and 7
land cover classes. The effectiveness of LCZ classification in depicting
land surface characteristics and variations in microclimate is evident
in literature ([13,14]). In this study we have used this framework to
achieve the following objectives:

- Analyse the impact of urbanisation and urban morphology on local
climate in a temperate city.

Evaluate the effectiveness of local climate classification in explaining
microclimate variations.

Identify the top-performing and bottom-performing local climate
zone (LCZ) categories in terms of their impacts on the local micro-
climate in the city.

To fulfil these goals, we employed the following approaches:

Utilised a comprehensive LCZ map of the city.

Explored the relationship between the LCZ classes and remote sens-
ing data, including factors such as land surface temperature (LST),
normalised difference vegetation index (NDVI), and the surface ur-
ban heat island (SUHI) effect.

In this study, we have used land surface temperature (LST) as it plays
a vital role in describing microclimate conditions by representing the ex-
change of energy and matter between the surface of the earth and the
lower layer of the atmosphere [15]. It serves as a valuable substitute for
bridging information gaps and filling data voids in regions with limited
weather station coverage [16]. The complete spectrum of thermal char-
acteristics resulting from changes in LULC is not adequately captured by
limited field measurements and isolated stationary networks [17,18].
Typically, LST is used to calculate surface temperature by leveraging
indirect measurements of surface radiation, upward thermal radiance,
and surface emissivity through thermal remote sensing techniques. Sim-
ilar to LST, it is crucial for urban planning and policymakers to access
greenspace data that is specific and available at a high spatial resolu-
tion [19]. Therefore, in this study, we apply normalised difference veg-
etation index (NDVI) which is a satellite-based measure of vegetation
(abundance and health) to identify areas that suffer from a lack of green
space. Simultaneously, comprehending the spatial pattern and structure
of surface urban heat island (SUHI) is crucial for policymakers to de-
velop localised mitigation action plans, target hot spots and allocate
resources to respond to the adverse effect of SUHI [20]. This becomes
especially important given the rising annual trends in SUHI observed in
temperate climates [21].
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2. Materials and methodology

Remote sensing tools have become indispensable for data collection
and analysis across diverse fields. Key amongst these tools are Land-
sat, jointly operated by the United States Geological Survey (USGS)
and NASA, MODIS (Moderate Resolution Imaging Spectroradiometer),
a satellite sensor managed by NASA for observing Earth’s surface and
temperature, and Sentinel, an earth observation satellite operated by the
European Space Agency (ESA). In a comprehensive systematic review
to understand the impact of LULC on LST and outdoor thermal comfort,
[22] found that Landsat was the most frequently employed tool in 57 %
of studies, followed by MODIS at 12 %. Sentinel, operated by the Euro-
pean Space Agency (ESA), was less commonly used, accounting for only
3 % of studies. MODIS offers continuous images at a spatial resolution
of 250-1000 m, allowing for regional and national-level analysis with
daily data availability for short-term LULC changes. However, its broad
area coverage may limit identifying specific land uses in smaller areas.
MODIS provides a wide range of spectral bands, offering data on health,
vegetation, atmospheric properties, and surface temperatures. Similarly,
Sentinel also offers daily multispectral data collection, albeit limited to
certain regions. In contrast, Landsat provides fine-resolution images up
to 30 m, enabling detailed land cover analysis and historical data for
LULC studies. However, it primarily collects visible and near-infrared
spectral data, limiting its ability to provide comprehensive information
on land use and surface temperature. Additionally, the revisit time of
Landsat imagery is approximately 16 days, which may hinder the avail-
ability of daily data. Despite the limitations, using Landsat-8 images is
an established way for estimation of LST and NDVI as demonstrated in
various studies [23-29]. Additionally, it has been successfully applied
in studies to investigate locations of different types of LCZ [30-32].

Consequently, in this study, we have applied satellite data for the
recent years 2018, 2019, 2020, 2021 and 2022 for Cardiff during the
summer months (June-August) to prepare LST, NDVI and SUHI maps
and relate these to urban morphology of Cardiff by using GIS. This study
focuses on the recent years and specifically the warmest months, which
also coincide with the growing season in the UK, in response to the
increased frequency of heat events in recent years. To promote sustain-
able urban development, we have conducted the first comprehensive
city-wide assessment of LCZ mapping, comparing it with LST, NDVI,
and SUHI data across the entire city. The data and accompanying map
results will serve as a valuable resource for urban planners, designers,
and policymakers, aiding in decision-making for planning and optimis-
ing climate-responsive designs.

2.1. Study area

The study focuses on Cardiff, the capital and largest city of Wales,
located only 2.4 km from the sea. The city is encompassed by several
water bodies, with the Taff and Rhymney rivers flowing in the east, the
Bristol Channel to the south, the Severn Estuary to the southeast, and
the river Ely to the west. The city is bordered by Vale of Glamorgan to
the west and South Wales Valleys to the north, resulting in its growth
being predominantly directed towards the eastern outskirts.

Cardiff experiences a temperate oceanic climate, classified as a *Cfb’
according to the Képpen climate classification [33]. Solar radiation lev-
els are consistently high from March to October, with Cardiff experienc-
ing an annual total solar radiation of 1337 kWh/m? and around 3029
hours of sunshine. The highest recorded annual dry bulb temperature is
24.7 °C, while the lowest is -4.8 °C [34].

According to data from the Office for National Statistics [35] the
population size in Cardiff has increased by 4.7 %, from around 346,100
in 2011 to 362,400 in 2021. Approximately 41 % of the city’s territory
is set aside to protect its green spaces, while most of the brownfield land
has already been developed [36]. In addition, there is a risk of flooding
in areas like the river Taff and coastal plains, which constrains housing
space due to tidal and river-related restrictions. According to the Organ-
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Table 1
Remote sensing images used in the study.
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LANDSAT PRODUCT ID row, path Date image acquired
LCO08_L1TP_203,024_20,180,627_20,200,831_02_T1 24, 203 27-06-2018
LC08_L1TP_203,024_20,190,716_20,200,827_02_T1 24, 203 16-07-2019
LCO08_L1TP_204,024_20,200,623_20,200,823_02_T1 24, 204 23-06-2020
LC08_L1TP_203,024_20,210,721_20,210,729_02_T1 24, 203 21-07-2021
LCO08_L1TP_203,024_20,220,622_20,220,705_02_T1 24, 203 22-06-2022

isation for Economic Co-operation and Development [36], Cardiff needs
to adopt more condensed urban development in order to meet the future
housing demand. However, the impact of compact urban development
on city’s microclimate is unknown. Compounding the issue further, a
geological study in Cardiff revealed that shallow groundwater temper-
atures beneath the city are 2 °C higher than the average groundwater
temperature in the UK [37]. This additional warmth is attributed to the
urban heat island (SUHI) effect. Consequently, in Cardiff, a spatial un-
derstanding of urban morphology and local SUHI conditions is vital for
planning decisions aimed at mitigating the SUHI effect, highlighting the
need for this study to inform future climate-proofing efforts.

2.2. Land surface temperature

Land surface temperature (LST) is essential for defining microclimate
conditions, and it is readily available on a global scale through satellite
imagery. The LST values were derived from Brightness Temperature (Tg)
using the Semi-Automatic Classification Plugin in QGIS [38], applying
the equation from [39]. As mentioned in the reference article [39], each
of the LULC categories were assigned an emissivity value by reference
to the emissivity classification scheme by [40].

Ty
1+ (A x Tg/p) Ine

@

S!
where:

e S, = The emissivity corrected LST

4 = wavelength of emitted radiance (for which the peak response
and the average of the limiting wavelengths (A = 11.5 um) is used.
p=h xcfo (1438 x 1072) mK

h = Planck’s constant = (6.626 x 107*) J s

& = Boltzmann constant = (1.38 x 1072%) J/K

¢ = velocity of light = (2.998 x 10%) m/s

€ = emissivity

Examining LST in relation to LCZ classification is a valuable ap-
proach to understanding differences amongst LCZ zones. Several studies
have reported significant LST disparities across various LCZ classes, con-
firming LST’s effectiveness in understanding the variation in urban form
and surface properties [41,42]. In this study, five Landsat scenes from
2018 - 2022 were used, captured by Landsat Collection 2 Level 1, specif-
ically Landsat 8 OLI/TIRS C2 L1. These scenes had a spatial resolution
of 30 m and were obtained from the United States Geological Survey
(USGS) Landsat Data Access Portal. The scenes were selected for the
summer months between May- July, enabling the generation of LST and
NDVI data. Scenes with minimal cloud cover (less than 15 %) were cho-
sen to avoid misclassification caused by clouds and their shadows [42].
Additional information about these images can be found in Table 1. To
compare with the LCZ, the image resolutions were adjusted to 100 m
from the original 30 m. All spatial evaluations in this research were car-
ried out using QGIS. Statistical examination of the gathered data was
executed using the R Programming Tool.

2.3. Normalised difference vegetation index

Normalised difference vegetation index (NDVI) is a recognised
method for quantifying vegetation by assessing the difference between
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near-infrared (NIR; Band 5) light (which vegetation strongly reflects)
and Red light (Band 4 which vegetation absorbs) [43] (Eq. 2). Satellite
instruments like Landsat have the necessary bands containing NIR and
Red wavelengths.

(NIR — Red)
(NIR + Red)

NDVI = )

Typically, healthy vegetation (chlorophyll) reflects more near-
infrared (NIR) and green light compared to other wavelengths, while
absorbing more red and blue light. The NDVI always ranges from -1 to
+1, but it does not establish distinct boundaries for different types of
land cover. Negative values usually indicate the presence of water. Val-
ues near +1 suggest dense, healthy green leaves, and values near zero
often mean a lack of green leaves. Smaller NDVI and reduced vegetation
density may also indicate the impact of water deficiency on vegetation
growth, thus revealing signs of drought. A change in NDVI for a pixel can
result from altered plant health (spectral greenness) as well as changes
in the number of plants and vegetation coverage (structure). However,
NDVI cannot differentiate between spectral or structural changes. Alter-
ations in land use and land cover (LULC) can significantly impact veg-
etation type and density [44]. Therefore, it’s crucial to examine NDVI
concerning LCZ classes to identify potential changes and effects. In this
study, NDVI was computed using the Semi-Automatic Classification Plu-
gin within QGIS [38] using Landsat data. The scenes were then resam-
pled from 30 to 100 metres to align with the LCZ map.

2.4. Local climate zone (LCZ) and urban heat island (SUHI)

Understanding of the spatial distribution of SUHI intensity within
LCZ categories remains limited in the UK, notably in Cardiff, especially
during the recent prolonged periods of hot summer weather and fre-
quent heat events. Therefore, a comprehensive understanding of how
urban morphology affects the spatial distribution of SUHI in Cardiff is
essential for effective climate planning and adaptation. The LCZ clas-
sification system has shown its effectiveness in measuring the urban
heat island (SUHI) phenomenon [45]. In this research, we determine
the SUHI across various LCZ categories by using LCZ-D (Low plants) as
the benchmark for rural areas as also applied in [46]. The SUHI changes
are calculated using the following equation [47]:

T, - T,

UHI = i mean (3)

sd

Here, T; is the pixel value of LST, T,,,,, is the mean value of LST in
LCZ-Dand T, is the standard deviation of LST within the study area.

The LCZ map of Cardiff has been extracted from the Global LCZ
dataset developed by [48] based on the LCZ typology. A shape file
for Cardiff is downloaded from the Digimap portal (https://digimap.
edina.ac.uk/) to extract the region from the global data set. The data
has a Coordinate Reference System of EPSG:4326 - WGS 84 which is
exported to EPSG:32,630 - WGS 84 / UTM zone 30 N to match with the
Landsat data.

2.5. Minimum detectable change (MDC)
This study applies the minimum detectable change (MDC) [49] to iden-

tify the differences in estimated means of the environmental properties
such as LST, NDVI and SUHI. Our null hypothesis: H : d,, = 0 posits
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that there is no mean difference in environmental properties between
various LCZ categories. The alternative hypothesis: Hy: 32‘, > 0 suggests
that the average difference in environmental properties varies between
LCZ categories. The MDG, in this context, quantifies the uncertainty as-
sociated with making an incorrect conclusion and is linked to the prob-
ability of errors in drawing conclusions. The interpretation of the MDC
is that it represents the smallest change in a measurement that can be
confidently considered a real change, beyond the scope of measurement
error, here with a 95 % level of confidence. In the case of a one-sided
test, where V is an estimate of the spatial variance, MDC is calculated
through the following equation:

A A 0.5
dy; =MDC = (X,_, + X ! 4
21 = = (X1 t+ X1p) N, + N, &)

Here, X is a standard normal distribution and N1 and N2 are the
samples at each event. The « (the size of the significance test) and g
represent probability of false rejection and probability of false accep-
tance, respectively. 1 — f is the power of the test.

3. Results
3.1. Local climate zones of Cardiff

The local climate zone (LCZ) of Cardiff is shown in Fig. 1. Approxi-
mately 54 % of the city consists of built-up areas (LCZ-1 to LCZ-6, LCZ-8,
LCZ-10), while 38 % is covered by green spaces (LCZ-A to LCZ-D). The
most dominant built-up LCZ class is LCZ-6 (Open lowrise) covering al-
most 40 % of the city (Fig. 1b). The next largest built-up LCZ classes
include LCZ-8 (Large lowrise), LCZ-9 (Sparsely built) and LCZ-5 (Open
midrise), respectively. Cardiff does not have any built-up areas in LCZ-7
(Lightweight lowrise) category which is a more prevalent category for
cities in the developing countries. Also, Cardiff has a much lower pop-
ulation density and building density compared to many large cities in
the west as can be seen in the lower number of built-up areas in the
‘compact’ category. Although it has some grid-cells in the LCZ-2 (Com-
pact midrise) and LCZ-3 (Compact lowrise) categories, the number of
grid-cells in the LCZ-1 (Compact highrise) category is very small cov-
ering only 0.1 % area of the city. The highrise buildings in Cardiff are
mostly categorised as LCZ-4 (Open highrise). Cardiff also has some (1 %)
heavy industrial areas categorised as LCZ-10 (Heavy industry). amongst
the natural LCZ classes the prevailing category is LCZ-B (Scattered trees)
covering 25 % of the area. The next main classes are LCZ-A (Dense trees)
and LCZ-D (Low plants). There are no areas in LCZ-C (Bush, scrub) and
LCZ-E (Bare rock or paved) categories and only a few grid cells in LCZ-
F (Bare soil or sand) category. The percentage of water LCZ-G (Water)
within the city landmass is around 1.3 %.

3.2. Spatio-temporal variation in land surface temperature in Cardiff

Fig. 2 shows the LST maps for Cardiff for the years 2018 to 2022.
LSTs recorded during summer period ranges between 10.5 °C (2022) to
39.9 °C (2021). From the comparison of mean and median data, 2021
(mean summer LST of 30.5 °C) appears to be the warmest year with 2020
(mean summer LST of 24.9 °C) being the coolest. The LST data statistics
for the years 2018, 2019, 2020, 2021 and 2022 is included in Table 2.

Table 3
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Table 2
LST data statistics for the years 2018, 2019, 2020, 2021 and 2022.
LST 2018 LST_2019 LST 2020 LST 2021 LST 2022

Min. 20.3 14.5 16.4 22.8 10.5
1st Qu. 27.8 241 22.5 27.9 25.3
Median 30.4 26.9 24.7 30.5 28.0
Mean 30.1 26.5 24.9 30.5 28.0
3rd Qu. 32.6 28.9 27.3 33.1 30.8
Max. 39.1 35.2 36.1 39.9 39.2
NA’s 195 7912 195 195 195

The change between the years does not follow a specific trend. It was
not possible to find a cloud-free Landsat data for the summer period in
2019. The presented data for 2019 has cloud masking for a large region
covering 7912 grid-cells with missing LST data. Therefore, the LST data
for 2019 is excluded from further analysis.

Fig. 3 presents how the mean LST for the years 2018, 2020, 2021 and
2022 varies across the LCZ classes in Cardiff. Clearly the built-up LCZ
classes have higher LSTs compared to the natural classes. The LST for the
‘compact’ areas are higher than the ‘open’ built-up areas. The ‘compact’
built-up classes have higher traffic flow, fewer tress or more impervious
or paved surfaces compared to moderate/ lower traffic flow, abundant
vegetation or plant cover and higher fraction of pervious surfaces in the
‘open’ built-up classes. The mean LST for the compact LCZ classes 1, 2
and 3 are 32.6 °C, 33.9 °C and 34.1 °C, respectively and the same for the
open classes 4, 5 and 6 are 31.6 °C, 32.5 °C and 30.4 °C, respectively.
The box-plot statistics for mean LST data (mean of 2018, 2020, 2021,
2022) for each LCZ classes can be found in Table 3.

On average, compact LCZ classes were 2.0 °C warmer than the open
classes. amongst the built-up classes, LCZ-3 has the highest mean LST
(34.1 °C) for higher building density and lower natural elements and
LCZ-9 has the lowest (26.3 °C) due to a smaller number of buildings
widely spaced across natural landscapes. Both LCZ-8 (30.8 °C) and LCZ-
10 (31.8 °C) have lower mean temperatures compared to most ‘compact’
and ‘open’ built-up classes which is different from other cities such as
Sao Paulo [50]. This means these classes in Cardiff may have a different
physical character such as higher vegetation cover, lower paved surfaces
etc. amongst the natural classes, LCZ-A has the lowest LST (23.7 °C) and
LCZ-F has the highest LST (28.4 °C) due to their physical properties as
also reported in the above study. On average, the natural classes exhibit
a temperature that is 8.0 °C lower than the compact LCZ classes and
6.0 °C lower than the open LCZ classes.

To determine the statistical significance of the differences in esti-
mated means, we applied the minimum detectable change (MDC) for
LST, as shown in Table 4. It shows differences between various LCZ
classes are statistically significant for most categories except between
the following categories: LCZ-2 and LCZ-3, LCZ-1 and LCZ-5, LCZ-1 and
LCZ-10, LCZ-4 and LCZ-10, LCZ-5 and LCZ-10, LCZ-9 and LCZ-B, LCZ-9
and LCZ-D and LCZ-B and LCZ-D.

3.3. Spatio-temporal variation in normalised difference vegetation index
(NDVID)

The NDVI values for Cardiff (Fig. 4) are grouped into five categories:
absence of vegetation (mainly water bodies, indicated by negative val-

Box-plot statistics for mean LST data (mean of 2018, 2020, 2021, 2022) for each LCZ classes.

1 2 3 4 5 6 8 9 10 A B D F
Min 31.3 30.4 30.9 27.4 28.1 25.1 23.4 22.8 27.6 21.5 22.0 23.5 27.9
First Quartile 31.8 32.8 331 30.5 31.3 28.9 28.9 25.5 30.8 22.6 25.2 25.7 28.2
Median 32.6 33.9 34.1 31.6 32,5 30.4 30.8 26.3 31.8 23.7 26.3 26.4 28.4
Third Quartile 33.2 34.5 34.7 32.7 33.5 31.4 32.5 27.2 33.1 25.0 27.4 27.2 28.7
Maximum 34.5 36.5 35.9 35.8 35.5 35.1 37.4 29.9 36.5 28.5 30.6 29.4 28.8
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Table 4 ues), low vegetation (values ranging from 0.10 to 0.30), scattered vege-
Minimum Detectable Change (MDC) for LST. tation (0.30 to 0.50), moderate to healthy vegetation (0.50 to 0.60), and
dense vegetation (values exceeding 0.6). NDVI values in Cardiff varied
from -0.06 to 0.64, with a mean NDVI of 0.32 during summer as calcu-
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Fig. 1. a. LCZ map of Cardiff, b. LCZ grid-cells in Cardiff, c. Google Map Images of common LCZ classes for Cardiff.
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Fig. 1. Continued

the various LCZ categories. The built-up LCZ classes (LCZ-1 to LCZ-
6) exhibit increasing median summer NDVI values of 0.07, 0.10, 0.11,
0.16, 0.17, and 0.26, respectively, as building density reduces and veg-
etation quantity increases. LCZ-9 has a higher median summer NDVI
(0.46) compared to LCZ-1 (0.07) and LCZ-10 (0.06), which have min-
imal or no trees. Landcover classes LCZ-A, LCZ-B, and LCZ-D show a
gradual decrease in median summer NDVI values of 0.50, 0.48, and
0.45, respectively, when compared to LCZ-F (0.08), which has few or no
trees. The mean NDVI in compact LCZ areas is 0.10 lower than in open
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LCZ classes. Similarly, on average, natural LCZ classes display an NDVI
0.34 higher than built-up classes. The box-plot statistics (Table 5) show
the mean NDVI data (mean of 2018, 2020, 2021, 2022) for each LCZ
class.

The crosstabulation presenting the minimum detectable change
(MDC) for NDVI (Table 6) shows the difference in mean is statistically
significant in most cases, except between LCZ-1 and LCZ-2, LCZ-1 and
LCZ-10, LCZ-1 and LCZ-F, LCZ-2 and LCZ-3, LCZ-4 and LCZ-8 and be-
tween LCZ-10 and LCZ-F in summer.



T. Sharmin, A. Chappell and S. Lannon

f.

Fig. 2. Figures showing summer LST in a) 2018, b) 2019, c¢) 2020, d) 2021, e) 2022, and f) Mean LST of 2018, 2020, 2021 and 2022.

e.

Energy and Built Environment 6 (2025) 1142-1155

LSTin °C
M 15
I 59
[ 913
[0 1317
1721
2125
[ 2529
[ 2933
B 33-37
B 37-41
Ml 41-45
4549

Table 5
Box-plot statistics for mean NDVI data (mean of 2018, 2020, 2021, 2022) for each LCZ classes.
1 2 3 4 5 6 8 9 10 A B D F

Min -0.02 -0.02 0.02 -0.05 -0.01 -0.01 -0.06 0.21 -0.02 0.35 0.29 0.19 0.07
First Quartile 0.04 0.07 0.08 0.10 0.12 0.20 0.07 0.38 0.04 0.46 0.42 0.37 0.07
Median 0.07 0.10 0.11 0.16 0.17 0.26 0.13 0.46 0.06 0.50 0.48 0.45 0.08
Third Quartile 0.10 0.14 0.14 0.21 0.24 0.35 0.23 0.50 0.09 0.53 0.51 0.49 0.08
Maximum 0.19 0.24 0.23 0.36 0.41 0.56 0.46 0.61 0.15 0.62 0.64 0.62 0.08

3.4. Spatio-temporal variation in the surface urban heat island (SUHD)

Fig. 6 depicts the urban heat island (SUHI) during summers in Cardiff
from 2018 to 2022 (excluding 2019 due to heavy cloud-cover), along
with the mean SUHI for these years. The most noticeable SUHI effect
occurred in 2018 and 2021. However, 2020 demonstrated a significantly
reduced SUHI effect, likely due to the pandemic’s influence as seen in
LST patterns. The highest value of 4.4 °C was recorded in 2021, while
the lowest was -5.2 °C in 2022. The SUHI effect is less prominent in
the north and northwest city areas, where vegetation density or NDVI
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is higher. The central part exhibits a moderate SUHI effect, whereas the
southern part experiences more substantial SUHI levels due to minimal
vegetation. The SUHI is directly associated with building density and
the presence of vegetation.

Fig. 7 displays the SUHI variation for different LCZ classes during
the summer. Similar to the LST patterns, more high-density and com-
pact built-up areas, such as LCZ-1 (Compact highrise), LCZ-2 (Com-
pact midrise), and LCZ-3 (Compact lowrise), experience elevated SUHI.
Across all landcover classes, except LCZ-F (Bare soil or sand) due to its
material properties, SUHI values are lower. Within the built-up LCZ cat-
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Fig. 3. Mean summer LST for different LCZ classes.
Table 6

Minimum Detectable Change (MDC) for NDVI.

LCZ 1 2 3 4 5 6 8

=}
s
>
=
o
]

1 0 1 1 1 1 1 1 0 1 1 1 0
2 0 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1
4 1 1 0 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1
8 1 1 1 1 1 1
9 1 1 1 1 1
10 1 1 1 0
11 1 1 1
12 1 1
14 1

egories, LCZ-6 (Open lowrise) shows the lowest median SUHI of 1.3 °C,
whereas LCZ 9 (Sparsely built) displays a negative median SUHI due
to its natural surroundings (see Table 7). The most prominent SUHI is
observed in LCZ-8 (Large lowrise) and LCZ-10 (Heavy industry) zones,
where mean maximum values reach up to 3.6 °C and 3.3 °C, respectively.
The box-plot statistics for mean SUHI data (mean of 2018, 2020, 2021,
2022) for each LCZ classes is presented in Fig. 7 and Table 7.

The minimum detectable change (MDC) for SUHI (Table 8) shows
similar pattern to that of the MDC for LST. During summer, most LCZ cat-
egories are statistically different considering the SUHI. However, similar
to LST, the absence of statistical differences is observed in the following
classes: LCZ-2 and LCZ-3, LCZ-1 and LCZ-5, LCZ-1 and LCZ-10, LCZ-4
and LCZ-10, LCZ-5 and LCZ-10, LCZ-9 and LCZ-B, LCZ-9 and LCZ-D and
LCZ-B and LCZ-D.

4, Discussion
4.1. LST characteristics in LCZ

The work showed that high-density and compact built-areas exhibit
higher LST (Fig. 3), increased SUHI (Fig. 7) effect, and decreased NDVI
(Fig. 5). Numerous studies have examined the differences in surface or
air temperatures of LCZs, as indicated by references [14,51-58]. Studies
in other coastal cities such as Hong Kong have also reported compact
high-rise areas (LCZ-1) is most sensitive to extreme heat [59]. When

Table 7
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Table 8
Minimum Detectable Change (MDC) for SUHI.

LCZ 1 2 3 4 5
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1 1 1 1 0 1 1 1 0 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 0 1 1 1 1
5 1 1 1 0 1 1 1 1
6 1 1 1 1 1 1 1
8 1 1 1 1 1 1
9 1 1 0 0 1
10 1 1 1 1
11 1 1 1
12 0 1
14 1

urban areas are densely constructed, the LST rises due to building ma-
terials and pavements absorbing solar radiation and storing it as heat.
Additionally, the compact layout traps solar radiation within building
masses, restricting its release into the night sky, resulting in the SUHI
phenomenon. While the correlation between LST, NDVI and SUHI with
LCZ classification is demonstrated in the above studies, the pattern and
magnitude of the effect of the built environment for temperate climates
were not fully explored.

The examination of annual LSTs between 2018-2022 reveals that
global factors like pandemic may have played a role in lowering the
LST in 2020 as also reported in a study conducted in Europe and North
America [60]. Their study has also reported an increase in daytime LST
during the pandemic over most parts of Europe due to a lesser reduc-
tion of solar radiation by atmospheric aerosols and water vapour con-
tent. This does not seem to be the case in Cardiff perhaps due to several
surface-related factors such as large natural land coverage and proxim-
ity to the sea and lower population and building density compared to
more high-density European cities. Cardiff also has a smaller fraction
of ‘compact’ areas which are characterised by moderate to heavy traffic
flow.

A significant portion of Cardiff built environment falls within the
categories of LCZ-6 (Open low-rise). The mean difference in LST be-
tween compact and open urban zones is 2.0 °C during summer. The
contrast is even more pronounced when compared to natural areas,
with compact and open zones being respectively 8.0 °C and 6.0 °C
warmer than these natural environments. This temperature disparity
holds significant implications for urban climate, especially in the con-
text of the growing frequency of heat events. Therefore, integrating open
urban designs into the planning of both new and existing urban areas
could considerably reduce LST, ultimately leading to an enhanced local
microclimate.

This study’s findings are consistent with previous research investi-
gating differences in LST or air temperature within and between local
climate zones (LCZs). For instance, [61] observed higher LST in com-
pact residential areas compared to commercial areas in the city centre of
Sendai, a typical Japanese metropolitan city. Similarly, in Kumasi city,
Ghana, [62] noted a 1.2 °C increase in average surface temperature at-
tributed to urbanisation effects. In Berlin, Germany, [63] documented
average air temperature differences of approximately 1.0 °C (K) during

Box-plot statistics for mean SUHI data (mean of 2018, 2020, 2021, 2022) for each LCZ classes.

LCZ_classes 1 2 3 4 5 6 8 9 10 A B F

Min 1.6 1.3 1.5 0.3 0.6 -0.4 -1.0 -1.2 0.4 -1.6 -1.5 0.5
First Quartile 1.8 21 2.2 1.3 1.6 0.8 0.8 -0.3 1.4 -1.3 -0.4 0.6
Median 2.0 2.4 2.5 1.7 2.0 1.3 1.4 -0.1 1.8 -0.9 -0.1 0.6
Third Quartile 2.2 2.6 2.7 2.0 2.3 1.6 2.0 0.3 2.2 -0.5 0.3 0.7
Maximum 2.6 3.3 3.1 3.1 3.0 2.8 3.6 1.1 3.3 0.7 1.4 0.8
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NDVI 2021
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Mean NDVI of 2018, 2020, 2021 and 2022

Fig. 4. Figures showing summer NDVI in 2018, 2019, 2020, 2021 and 2022.

summer nights between dense-trees (LCZ-A) and LCZ-6 (Open lowrise)
areas.

In this study, it was observed that maximum LSTs in the categories of
large low-rise buildings (LCZ-8) and heavy industrial buildings (LCZ-10)
exceeded those observed in other compact built-classes (LCZ-1, 2, and
3). Several studies have previously documented the higher LSTs in in-
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dustrial areas during daytime [64-66]. This phenomenon is attributed to
the prevalence of impervious surfaces and extensive roof areas with low
albedo, which aligns with findings from prior research [67,68]. These
areas may benefit from additional vegetation to increase shading and
reduce albedo on roof surfaces, thereby mitigating solar radiation in
summer. A more comprehensive analysis, considering factors such as
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Fig. 5. Figures showing Mean Summer NDVI for various LCZ classes.

vegetation type, density, surface fraction, and thermal properties of per-
vious surfaces, is necessary to develop effective strategies for reducing
LST in LCZ-8 and LCZ-10 [14].

Based on the analysis of the results, it becomes evident that LCZ-
6 (Open lowrise) is the most suitable option for the urban climate
of Cardiff. However, considering the potential for future population
growth, it may not be feasible to expand the LCZ-6 further due to the
scarcity of available buildable spaces. Conversely, proceeding with more
intensified development is not recommended unless proper mitigation
actions are implemented.

4.2. NDVI characteristics in LCZ

Numerous studies have explored the relationship between NDVI
and LCZ classes. For example, [69]) conducted a study in three Chi-
nese metropolises—Wuhan, Nanjing, and Shanghai—and discovered
that NDVI had a significant mitigating effect on the heat risk index
(HRI) in LCZ-1, LCZ-2, LCZ-4, and LCZ-5. Their recommendations for
alleviating heat risk included transitioning compact LCZ types to open
LCZ types, avoiding the configuration of LCZ-1 and LCZ-2, enhanc-
ing NDVI in existing LCZ-1, LCZ-2, LCZ-4, and LCZ-5 areas, increas-
ing greenery by transforming mono-structures into composite structures
with trees, shrubs, and grasses, and implementing greening of facades.
Similarly, [70] in China found that NDVI had a notable cooling effect
on the SUHI for most of the year. They found that NDVI performed
best in terms of cooling within LCZ-F, particularly during summer and
spring.

Concerning NDVI in Cardiff, the northern, northwestern, and north-
eastern regions of the city are abundantly covered by healthy vegetation,
covering approximately 41 % of the city’s land under its green space pro-
tection schemes. Nonetheless, the compact built areas in the southern
part of the city exhibit a serious lack of vegetation, a concern that has
been amplified by recent urban projects such as Roald Dahl Plass [71],
which is nearly devoid of any significant greenery. The finding of our
study shows that there is no difference in NDVI, between LCZ-1 and
LCZ-2, LCZ-2 and LCZ-3, LCZ-1 and LCZ-10, LCZ-1 and LCZ-F, and be-
tween LCZ-10 and LCZ-F. This lack of differentiation can be attributed to
the absence of vegetation and the prevalence of impervious land cover
within these categories. But again, the lack of differences between the
Open highrise (LCZ-4) and Large lowrise (LCZ-8) are not fully under-
stood. It seems that LCZ has some limitations in distinguishing LCZ-8
and LCZ-10 from other categories.

4.3. SUHI characteristics in LCZ

The LCZ system has been extensively applied in research on SUHI
[72]. Studies by [73] investigated LST characteristics across 18 LCZs
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in Beijing, revealing that compact and mid to low-rise built-up areas
(LCZ-2, LCZ-3, LCZ-7, LCZ-8) tend to be the warmest zones, while wa-
ter and vegetated types (LCZ-A, LCZ-B, LCZ-D, LCZ-G) are the coolest.
SUHI events are most prevalent during summer and daytime conditions.
LCZ-9 and LCZ-A, LCZ-B, LCZ-D, and LCZ-G show a seasonal pattern
with smaller Annual Temperature Ranges (ATRs) due to factors such as
leaf abscission and crop harvesting. Conversely, high-rise built-up zones
(LCZ-1 and LCZ-4) experience higher ATRs because of seasonal varia-
tions in solar radiation. [74] examined the relationship between SUHI
intensity and LCZ classes in Budapest, finding that as building density
decreases, SUHI intensities also decrease. The highest intensities were
observed in the city centre, while vegetated landcover LCZ classes ex-
hibited the lowest SUHI intensities, sometimes resulting in cooling, as
indicated by negative values.

Similar to LSTs, LCZ-8 (Large lowrise) and LCZ-10 (Heavy indus-
try) zones in Cardiff showed the highest SUHI patterns. The substantial
masses of large lowrise buildings capture solar radiation in thermal ma-
terials, and due to their dense urban layout, they struggle to release ab-
sorbed heat effectively, leading to SUHI effects. Similarly, heavy indus-
trial structures release warm air, water vapour, CO2, and other harmful
gases through the burning of fuels for heating and power, waste incin-
eration, and industrial processes like metal milling and smelting which
elevate urban temperatures. Studies by [46] reported Built-type LCZs
had higher average SUHI-intensity than land-cover type LCZs in Dalian
City, with the highest intensity (5.8 °C) observed in LCZ-10. In a sim-
ilar study, [11] also reported significant SUHI variation amongst dif-
ferent LCZs, with higher SUHII observed in high-density built-up LCZs
compared to open low-rise LCZs, reaching a maximum UHI mean of
5.3°C.

4.4. LCZ-Application for Cardiff and its effectiveness

The study’s findings from the Minimum Detectable Change (MDC)
analysis highlight the effectiveness of LCZ classes in identifying micro-
climatic diversity. We have included MDC analysis for the first time
in the field of urban climate research, to detect differences in the es-
timated means of environmental properties such as LST, NDVI, and
SUHL This approach is useful to represent the smallest change within
the LCZ categories that can be confidently considered a real change,
beyond the scope of measurement error, here with a 95 % level of
confidence. We have identified statistically significant variations, par-
ticularly in summer, in LST, NDVI, and SUHI values within the LCZ
categories.

In terms of LST, it is logical to observe no significant difference be-
tween LCZ-9 and LCZ-B, LCZ-9 and LCZ-D, and LCZ-B and LCZ-D. This
is because these categories predominantly consist of impervious sur-
faces with minimal vegetation and scattered trees. Similarly, the lack
of statistical difference between LCZ-2 and LCZ-3 as well as between
LCZ-1 and LCZ-10, is understandable, as these categories are character-
ized by dense clusters of buildings and predominantly paved landscapes.
However, the absence of differences in SUHI between the Open highrise
(LCZ-4) and Open midrise (LCZ-5) categories compared to Heavy indus-
try (LCZ-10) is not entirely clear.

Nonetheless, despite these limitations, while LCZ may not fully dis-
tinguish subtle differences in urban morphology, it remains suitable for
categorising broader types such as compact and open built areas, as well
as green and bare soil land cover. The LCZ method, with its integration
of 3D landscape attributes, refined classification process, and identifi-
cation of numerous landscape patches, has proven more effective than
traditional LULC methods for classifying urban areas [75]. It proves to
be a valuable tool for understanding distributions of LST, NDVI, and
SUHI across cities and consequently, for guiding urban planning and
design decisions aimed at improving their microclimates and mitigating
climate impacts.
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Fig. 6. Figures showing summer SUHI in 2018, 2019, 2020, 2021 and 2022.
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Fig. 7. Figures showing Mean Summer SUHI for various
LCZ classes.
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5. Conclusion

This study has explored the association between urban morphology
through the application of LCZ map, LST, NDVI and SUHI effects, aim-
ing to formulate an appropriate climate planning for Cardiff. This uni-
versally applicable description is crucial for supporting climate mod-
elling and climate-sensitive urban planning policies. Specifically, the
spatial patterns of LST, NDVI, and SUHI according to the LCZ categories
play a vital role in comprehending the urban thermal environment. The
key findings of this study are as follows: (1) The LCZ framework effec-
tively categorises LST, NDVI, and SUHI observations in Cardiff, a tem-
perate city. (2) Maps illustrating LST, NDVI, and SUHI changes from
2018 to 2022 reveal vital insights into differences across the city and
hotspots. (3) The core results lie in LCZ-based variations of LST, NDVI,
and SUHI, offering standardised spatial data for climate-conscious plan-
ning in Cardiff and cross-comparisons with LCZ-based studies in diverse
climates. (4) Notably, open urban areas are cooler by 2.0 °C compared
to compact urban regions. (5) On average, the natural classes exhibit a
temperature that is 8.0 °C lower than the compact built-environment and
6.0 °C lower than the open built-environment. Given land constraints,
an optimal urban planning strategy for Cardiff involves integrating high-
density structures with ample green spaces and nature-based solutions
to counter surface urban heat.

The findings of the study also demonstrate that vegetation cover can
significantly affect the surface temperatures, aligning with similar re-
search on the urban thermal environment. The observed inverse rela-
tionship between LST and NDVI underscores the importance of safe-
guarding the green spaces along the periphery of the city to mitigate
the effects of extreme heat exposure. Hence, urban planners and poli-
cymakers should further emphasise on preserving the ecological roles
of vegetation, wetlands, and water bodies, while devising strategies for
built-up areas that coexist harmoniously with ecological conservation.

The research outcomes are crucial for understanding the impact of
SUHI on densely populated areas in the event of frequent heatwaves.
People in high-density areas are the most vulnerable to SUHI effect.
Regardless of climate or wealth, unpreparedness can exacerbate SUHI
consequences. The urban planners and policymakers should therefore
consider the specific factors behind the SUHI effect in each LCZ classes to
devise practical strategies for mitigation accordingly. These findings can
help identify areas at risk of surface urban heating and aid in designing
plans to lower LST, enhancing energy efficiency and thermal comfort in
urban spaces.
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To conclude, the outcomes of this research where the general pub-
lic and local decision-makers are still unaware of the devastating ef-
fects of extreme heat events and SUHI. The study equips urban planners
and designers with essential perspectives for appropriate urban planning
and effective heat control. Particularly considering climate change chal-
lenges, these findings offer significant guidance for shaping future ur-
banisation trajectories. A limitation of this study is its focus on summer
conditions when outdoor activities and heat-exposure risks are elevated.
Further analysis during winter is needed, especially to understand the
effect of SUHL
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