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Summary

This work discusses the generation and propagation of tsunamis and their associated
acoustic–gravity waves. Many studies of tsunamis have been carried out in the past,
dating back decades, but here we aim to extend the results of two - relatively recent - key
papers. In the process new results were found, which it is hoped, may help in the future
development of tsunami early warning systems.

The first extension takes the rigid seabed, purely acoustic, slender fault model as de-
veloped by Mei and Kadri and adds the restoring force of gravity. With this addition, it
becomes possible to derive the equations governing the tsunami propagation as well as
the acoustic-gravity waves. Since the underlying mathematical model is linear, we found
more complex multi-fault clusters could be handled quite easily using superposition. Re-
sults were validated with numerical models.

The next step aimed to address the more realistic scenario whereby the seabed is now
regarded as an elastic medium. The inclusion of elasticity has some interesting conse-
quences. Firstly the acoustic–gravity waves are found to terminate after a finite time, with
the decay time most affected by seabed rigidity. Secondly, elasticity enables coupling of
the acoustic–gravity waves to the seabed and propagation with the shear wave velocity.
We derive improved estimates for these frequencies. Next, elasticity enables the propaga-
tion of a second surface wave of negligible amplitude which travels at the speed of sound
- this is not seen in the rigid model. The cut-off frequency for this wave is derived.

We also noted the acoustic-gravity wave signal carried information which depended
on the time evolution and geometry of the rupture. We show that, with appropriate filter-
ing, information on the fault’s geometry and dynamics can be retrieved.

Finally we shift perspective from a local, Cartesian coordinate system to a global
spherical coordinate system. By application of appropriate scales, the equations govern-
ing the defocusing and focusing of the tsunami amplitude due to the spherical geom-
etry involved can be derived. The acoustic–gravity waves undergo a similar defocus-
ing/focusing effect. A qualitative comparison is made with the Tonga eruption of 2022
which saw tsunami and acoustic–gravity wave propagation on a global scale.
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h = 2000 m. First eight modes. . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.18 Overlay of phase velocity curves for depth of h = 4000 m. Solid black
are the approximate curves, dashed are those obtained from solving the
dispersion relation. First 16 modes shown. . . . . . . . . . . . . . . . . . . 92

4.19 Percentage error for first 16 modes from Fig 4.18. The maximum error
occurs at the knee of each phase velocity curve (≈ 3000ms−1). Depth
h = 4000 m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.20 Top plot, first acoustic mode with elastic seabed, bottom plot with rigid
seabed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.21 Response of signal duration when changing parameters. . . . . . . . . . . 94
4.22 FFT of First four available modes h = 4000 m. . . . . . . . . . . . . . . . . 94

viii



4.23 Band-pass filtering applied to the 10 combined modes of the synthetic
acoustic–gravity wave generated by a single slender fault. The data in
Figure 4.23a shows the first 10 modes combined and is sampled at a rate of
100 Hz. Figure 4.23b shows the resulting signal after application of band-
pass filtering with passband 0.45 Hz to 0.6 Hz. The characteristic peaks
are numbered 1,2,3,4. The passband was chosen to eliminate low/high
frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.24 Surface elevation comparison (elastic vs rigid). Co-ordinates are x = 1000

km, y= 0 km Co-ordinate origin at fault centroid. Figure 4.24a h = 4000

m. Figure 4.24b h = 1000 m . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.25 LHS of dispersion relation (4.3.65) - dash trace - and RHS of dispersion

relation - solid trace - when r ∈ R. The frequency is at the point where
mode 00 becomes active ω ≃ 6.95rads−1, h = 4000 m (see Table 4.1).
The top log-plot indicates overall behaviour. The next two plots provide
an expanded view. The mode 00 solution in the middle plot where the
solid curve touches the dashed curve 0 ≤ r ≤ 0.0001, and the mode 01
solution (the usual tsunami) in the bottom plot where the solid curve again
makes contact with the dashed curve in the descending phase 4≤ r ≤ 6. . . 98

4.26 Mode 00 surface-gravity wave with envelope. . . . . . . . . . . . . . . . . . 98
4.27 Bottom pressure comparison between rigid and elastic seabed. The loca-

tion of H08N hydrophone is indicated by a red star bottom left. By 3625
s the elastic model has largely cleared of acoustic–gravity waves whereas
the rigid model still has strong oscillations around the earthquake zone. . . 101

4.28 Comparison of the current elastic model with both hydrophone and seis-
mic data for the Sumatra 2004 event. The time axis begins at UTC 2004-
12-26 00:58:53 (t = 0). The vertical red line represents the arrival time
for a propagation speed 8000ms−1, the vertical green line represents the
arrival time for a propagation speed Cs = 3550ms−1 and the vertical blue
line represents the arrival time for a propagation speed Cl = 1450ms−1. . 102

4.29 (a) Locations for the H08N and H08S hydrophone triads, along with
the Diego Garcia seismograph (yellow markers). The northern triad is
shielded by the Chagos Archipelago. (b) Expanded view of island, and
west coast of Sumatra. Images from Google Earth . . . . . . . . . . . . . . 102

ix



4.30 Top left and right: Overlay of elastic model prediction onto hydrophone
data north and south locations. Bottom left and right: North and south
hydrophone data with re-scaled vertical axis. Red vertical line = arrival
time for phase speed 8000ms−1, green vertical line = arrival time for
phase speed Cs = 3550ms−1, blue vertical line = arrival time for phase
speed Cl = 1450ms−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.31 Leading pulse of hydrophone signal is largely made up of low frequency
components which filtering is able to suppress. . . . . . . . . . . . . . . . . 103

4.32 Left frame: recorded hydrophone data from H11 at Wake Island for Samoa
2009 event. Note t = 0 does not correspond to the rupture start time. Right
frame: Signal after application of band-pass filtering, focusing on the time
interval containing the initiation of the main pulse. Data sampling occurs
at 250 Hz (1 sample every 4 ms). . . . . . . . . . . . . . . . . . . . . . . . . 105

4.33 USGS finite fault model dimensions and timings . . . . . . . . . . . . . . 105
4.34 Surface elevations compared for Tohoku 2011 event at DART buoy 21418 106

5.1 A tangent plane can approximate spherical geometry locally over a lim-
ited range. (a) Unit sphere with tangent plane incident at (x, y, z)= (0,0,1).
(b) Cross-section through x/z plane. The ∆z represents the difference be-
tween the tangent approximation and the actual curved surface. . . . . . . 110

5.2 Water layer of constant depth h covering a rigid, solid non-rotating sphere
of radius re. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Representation of the seabed rupture as an uplifting cylinder of radius
Rc. Surrounding the cylinder is an annulus of outer radius R0. Solutions
involve matching function values and first derivatives of the velocity po-
tential at R0. (a) Uniform cylindrical uplift at the seabed of compressible
ocean of constant depth h. (b) Top view of rupture regions. The black
disc is the uplifting cylinder, the surrounding grey annulus is the inner
region and everything at distance > R0 is referred to as the outer region. . 113

5.4 Arc length R = reθ. In practice θ is small for the inner region i.e θ < L
re

≈
0.14 - see (5.1.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Plot of q0(ω). Solid trace is dispersion relation, dash trace is (5.3.46), dot
trace (5.3.47), is an approximate expression derived in [4]. . . . . . . . . . 120

x



5.6 Plot of theta function (5.3.40) (grey), upper and lower limits ±1 (red),
and approximate envelope function (5.4.60) (black). North pole (rupture
origin) is located at θ = 0, matching point at θ = θ0 = R0/Re = 0.01884,
maximum defocusing occurs at θ = π/2, antipodal matching point is at
θ =π−θ0, and the South pole is at θ =π. . . . . . . . . . . . . . . . . . . . 124

5.7 Comparison between the surface elevation from (5.3.19), against (5.3.59)
which uses spherical coordinates. CS is red dash trace, spherical solution
is blue solid trace. (a) Distance from source 120 km. This is the matching
point. (b) Distance from source 1000 km as in [4] (c) Distance from
source 10000 km. Near the maximum defocusing point. (d) Distance
from source 20000 km. As this distance is slightly further away than
the antipodal matching point (θ = π− θ0 ) some amplification is seen.
However, this is not a valid result because the calculation was carried out
beyond the range of applicability of Θ(θ). . . . . . . . . . . . . . . . . . . . 126

5.8 Progression of acoustic–gravity waves generated by point source model
of the Tonga 2022 eruption. (a) Circular wavefront shortly after eruption,
(b) Wavefront has now travelled almost half way around the world. This
is just before maximum defocusing is achieved. (c) Just after maximum
defocusing, the wavefront is now past the half-way point and is beginning
to focus again. (d) The wavefront has reached its antipodal point over
north Africa and has focused here. . . . . . . . . . . . . . . . . . . . . . . . 127

xi



LIST OF TABLES

2.1 Timeline of key papers. Those papers regarded as forming the core of the
research contained in this thesis are coloured teal. . . . . . . . . . . . . . . 12

3.1 Constants and parameters used in validation of current model with gravity. 16
3.2 Statistics for the eight pressure plots predicted by the Theory - see Figure

3.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Statistics for the eight pressure plots predicted by the Numerical Model -

see Figure 3.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Constants and parameters used in the calculation of predicted surface el-

evation at DART buoy 21418 for Tohoku 2011 event. . . . . . . . . . . . . 40
3.5 Parameters used for Sumatra 2004 event - ten faults in total. Includes ζ -

the vertical displacement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Comparison of cutoff frequencies obtained from numeric solver (ω00)
with approximations from quadratic solution (Ω00) and coarse approxi-
mation A00 for various depths h. . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Constants and parameters used in comparison of elastic seabed with rigid
seabed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Comparison of two key fault parameters (rupture duration and width) ob-
tained by different methods. The first column (∆t1,2,3,4) reports figures
obtained by filtering the H11 hydrophone signal and measuring timings
between peaks. The second column reports figures obtained by the meth-
ods described within [5]. The data in the third column are estimates de-
rived from USGS website figures. . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Constants and parameters used in the calculation of surface elevation at
DART buoy 21418 for Tohoku 2011 event - elastic model. Also refer to [1] 106

5.1 Constants and parameters used in surface elevation comparison of Figure
5.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Constants and parameters used in Tonga qualitative model. . . . . . . . . . 125

xii



Chapter 1 Introduction

Chapter 1

Introduction

1.1 Water waves

Surface water waves are a familiar sight to most people and can be observed in various
situations. Their amplitudes can range from very small capillary waves - such as occur
when an insect disturbs the surface of the water - to enormous tsunamis many meters high,
capable of widespread destruction. Sitting somewhat in the middle of this range are the
wind waves produced by meteorological processes (air pressure fluctuations and wind)
interacting with the fluid surface - see Figure 1.11.

In addition to the surface waves there are also acoustic–gravity waves and internal
waves. Acoustic–gravity waves are low frequency compression waves that travel at near
the speed of sound in water (≈ 1500ms−1), and can occupy the entire depth of the water
column. They can be generated by submarine earthquakes, landslides, impacting meteors,
underwater explosions and even interactions between surface waves [6, 7]. Internal waves
oscillate within the body of the liquid (as opposed to on its surface), and can arise when
layers of density stratification exist. A useful classification of the various water waves
possible based roughly on the restoring force that is in action (surface tension, gravity,
compressibility) can be found in [8]. The classification suggests eight categories in all.
This thesis will focus on two of those categories - namely the acoustic–gravity waves and
the tsunamis.

Tsunamis are a form of surface wave usually generated by an underwater earthquake
(rupture) or landslide. They are characterised by long wavelengths which can be in excess

1(https://commons.wikimedia.org/wiki/File:Ripples_waves_bee.jpg), Ripples
waves bee, https://creativecommons.org/licenses/by-sa/3.0/legalcode
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of 100 km. With the tsunamis having such long wavelengths they are classified as shallow-
water waves due to their wavelength greatly exceeding the water depth - even in the deep
ocean. Shallow-water waves incur very little dispersion, so that their speed of propagation
is independent of their wavelength. The propagation speed of shallow-water waves is -
to a good approximation - given by

√
gh, where g = 9.81ms−2 is the acceleration due to

gravity, and h is the water depth. As a point of interest if a tsunami were to pass under
a ship located far from shore in deep water its effect would be barely noticeable. It is
only when the tsunami reaches shallower water that its speed decreases and amplitude
increases in a process known as shoaling.

(a) Small ripples produced by insect in contact with the water surface. No machine-readable
author provided. Bogdan assumed (based on copyright claims)
.

(b) Wind waves produced by air blowing
over water surface.

(c) Tsunami over-topping wall, Miyako
Japan 11th March 2011. Image Mainichi
Shimbun/Reuters

Figure 1.1: Various water waves.

1.2 Motivation

To understand the motivation for studying tsunamis and acoustic–gravity waves it is only
necessary to look back at the many historical events involving tsunamis where loss of
life and/or damage to property has occurred. The National Geophysical Data Centre2

2https://www.ngdc.noaa.gov/
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places the first recorded tsunami in Syria over 4000 years ago. Moving forward in time
to 1854 we find the Tokai and Nankai earthquakes which caused a tsunami up to 10 m
high in Japan and represent the earliest tsunami to be recorded by instruments [9]. The
tsunami waves were recorded on a tide gauge in San Francisco. A few years later we find
the 1883 Krakatoa volcano eruption tsunami made famous in the 1968 film “Krakatoa
East of Java”. The eruption produced tsunamis with heights up to 15 m which claimed
36,000 lives along the Sunda Strait [9]. More recently there is the 2011 Tohoku Oki
event, with epicentre off the northern coast of Honshu. This was the biggest earthquake
to be recorded in Japan producing tsunamis with maximum run-up heights of around 40
m [9]. This earthquake and tsunami are regarded as the principal cause of the Fukushima
nuclear disaster. Very recent examples include 2018 Sulawesi / Palu and Tonga 2022.
However, the deadliest event so far recorded is that of December 26th 2004 in Sumatra.
More than 228,000 people from 14 countries lost their lives over the course of this single
event [9]. Data on the deep water propagation of the tsunami was recorded on bottom
pressure gauges [10] and - by chance - on satellite altimeters [11, 12].

1.3 Tsunami Early Warning Systems (TEWS)

Ideally one desires the ability to predict tsunamigenic events ahead of time, but this is
not possible with current technology. So until technology advances sufficiently these
events (and many others) demonstrate that a primary reason for the scale of the devasta-
tion suffered is the lack of a reliable early warning system. Current systems are heavily
dependent on DART buoys (Deep ocean Assessment & Recording of Tsunamis), Figure
1.23 and seismic data. The DART buoys may be capable of accurate tsunami evaluation,
but depending on particular circumstances there may not be much time for post-analysis
warnings. The tsunami has to move past the DART buoy in order for its bottom pres-
sure sensors to record an event. On the other hand seismic data arrives quickly, and
provides information on earthquake size and location (moment magnitude Mw and epi-
centre). However, at the present time, analysis of the seismic data fails to assess which
earthquake events will produce significant tsunamis, and so many false alarms are possi-
ble by this method. Work is currently being done to better categorise the data and isolate
potential tsunamigenic events using Artificial Intelligence (AI) and machine learning [13].

It has been proposed that acoustic–gravity waves can act as suitable precursors to an

3https://commons.wikimedia.org/wiki/File:DART_II_System_Diagram.jpg,
https://commons.wikimedia.org/wiki/Template:PD-US
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on-coming tsunami due to their higher propagation speed allowing them to out-run the
surface waves in the far-field [14, 3]. In this way they can “fill-the-gap” between the
seismic and DART methods. It has also been shown that the acoustic–gravity waves carry
information relating to the rupture geometry and timing [4, 15]. This information can be
extracted via an inverse process [4, 16, 17, 2] to generate rupture parameters for use in
forward tsunami modelling.

One recent development in the domain of TEWS is an international collaboration
which aims to utilise thousands of kilometres of undersea fibre-optic cables as a giant
sensor array. The idea is that sensors capable of measuring temperature, pressure and
seismic acceleration will piggyback onto the undersea telecommunications network4.

With advances in technology and theoretical understanding of tsunamigenic events it
is hoped that many fatalities can be avoided in future. It is with this goal in mind that
we are driven to better understand acoustic–gravity waves and, of course, the surface
tsunamis themselves.

Figure 1.2: DART buoy tsunami early warning system. Image by Pacific Marine Envi-
ronmental Laboratory, “DART II System Diagram”, marked as public domain.

4https://www.oden.utexas.edu/news-and-events/news/
Century-Old-Technology-Inspires-Tsunami-Earthquake-Detection/
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Chapter 2

Foundations

2.1 Literature review

This chapter gives an outline of some of the key papers forming the foundations for my
research efforts. The outline presented is not intended to be a comprehensive account of
the historical development of acoustic–gravity wave and tsunami research - rather it is
a summary of those papers that I feel made a contribution to my own work. Of course
the contributions made by individual papers are not equal, with some having been pored
over and studied intensely, whilst others may have revealed a single idea, equation or
technique.

Only a brief discussion of the key papers will be presented, whilst attempting to build
a coherent timeline leading from [18] through to [16] and [19]. The [16] paper then acts
as a springboard for the research developed in Chapters 3, 4 and 5.

The timeline begins with [18]. This paper discusses the interaction of two opposing
surface gravity waves in a heavy compressible fluid and finds that compression waves
arise (acoustic–gravity waves). These in turn are able to generate microseisms - small
oscillations of the seabed. This is possible because the acoustic–gravity waves can occupy
the entire water column and so stress the seabed. This property also means they do not
get trapped in the SOund Fixing And Ranging channel (SOFAR) [3] . In many fluid
mechanics applications it is common to regard the water as incompressible since this
simplifies some of the calculations. However in doing so a whole family of propagating
waves is neglected, namely the acoustic–gravity waves [20, 15]. Longuet-Higgins [18],
along with [21] sets the scene for much of the following research. In [21] the seabed
rupture is modelled as a cylindrical elevation lifting the water column above it. The
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seabed is taken to be rigid - this is a simplifying assumption common to many following
papers. Also, as in [18] the water is regarded as compressible.

Advancing a few years [22] studies the 2D problem with the disturbance at the seabed
now modelled as an infinite strip of constant width. The 1965 paper by Sells [22] dis-
tinguishes between acoustic–gravity waves derived from the edges of the strip, and those
seen by an observer directly above the strip.

Advancing further [14] models the seabed rupture as an oscillating strip of infinite
length, so again presenting a 2D scenario to solve. The importance of including com-
pressibility of the water layer is reinforced, and the possibility of using the propagating
acoustic–gravity waves as early tsunami warning signals far from the source is mentioned.
Yamamoto [14] demonstrated that the (angular) frequency of the acoustic–gravity modes
must be an integral multiple of πc/2h where c is the speed of sound in water and h is
the water depth. Also, the possibility of using the acoustic–gravity waves in order to de-
termine characteristics of the rupture (size and magnitude) is discussed. Yamamoto [14]
also clarifies the distinction between the propagating modes of the acoustic–gravity wave
family and those that decay quickly and thus remain localised to the rupture zone - the
evanescent modes.

In [15] we again find a 2D problem has been solved, but interestingly in the conclusion
to his paper Nosov states that “the acoustic mode has a certain frequency spectrum which
depends on bottom topography, sediment features and on the time history and spatial
structure of the bottom displacement”. Nosov refers to this as the tsunami’s “voice”. In
other words information on the rupture timing and geometry is to be found within the
acoustic–gravity wave signal.

The next item along the timeline is [12], in which the authors simulate tsunami prop-
agation using a fully non-linear and dispersive model. They performed a comparison
between their model and the results of an overflying satellite (Jason 1) which - by chance
- happened to be measuring sea surface elevation in the Indian ocean at the time the Suma-
tra 2004 tsunami passed underneath it. The authors had succeeded in breaking up the giant
rupture of 2004 into 10 segments, and conveniently provided details such as dimension,
timing, location, strike angle etc. for each segment. This information proved invaluable
in setting up my own models of this event later.

Stiassnie’s paper [3] again works with the 2D problem and derives integral solutions
as did earlier authors, but then applies the method of stationary phase to the propagating
modes in order to achieve a fully analytic solution utilising only basic operations (sums,
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products etc.) i.e. no integration necessary. The simplification afforded by the station-
ary phase method in computing the surface elevation and pressure field is considerable.
However, there is a price to pay in that the stationary phase method fails at the front of
the tsunami [3] and induces singularities into the equations. While working through this
paper I discovered a small error in the calculation of the surface elevation and pressure
due to the tsunami. The results given are missing a factor of 2, so that the surface wave
amplitude and pressure due to the tsunami should be double that reported in the paper -
see Appendix A. In the concluding remarks of [3] it is made clear that in seeking realistic
predictions bottom elasticity would have to be considered.

The year 2013 marks the start of a period of heightened activity within the tsunami
research community with three items listed on the timeline (and at least eight papers
published that year). The first of these is by [23]. The paper derives a hyperbolic Mild-
Slope Equation for Weakly Compressible fluids (MSEWC). The mild-slope condition
places a restriction on the severity of the gradient encountered in the depth variation in
that |∇h(x, y, t)| ≪ kh(x, y, t) where h(x, y, t) is now local water depth and k the wave-
number. This restriction means that changes in water depth should be gradual - no abrupt
changes allowed. In practical terms the equation can be used for a bottom inclination up
to 1:3 [24]. Their model based on depth-integrated equations can preserve all the physical
features and yet avoid the computational costs associated with fully 3D models. The
authors claim an order of magnitude improvement in computational time [23] over the
full 3D model.

The first paper to tackle elasticity of the seabed in my timeline is [25]. The research
leading to [25] was part of an MSc thesis which contained more detail than the standalone
paper. The [25] paper formed the basis for much of Chapter 4. In [25] the 2D problem of
acoustic–gravity waves in a compressible ocean overlying an elastic half-space is studied.
The results are compared against those for a rigid seabed. When elasticity of the seabed is
considered the shape of the phase velocity curves for the acoustic–gravity waves changes
from those of the rigid case. The acoustic–gravity waves are able to propagate into shal-
lower water before dissipating and the first acoustic mode travels all the way to shore as a
Scholte wave. This is not seen when the seabed is rigid. The elasticity of the seabed also
changes some of the surface wave properties as well. There is the possibility of a second
surface wave when the seabed is elastic.

The third work in the timeline for the year 2013 is that of [4]. Here again we see the
rupture modelled as a rising cylinder and the 3D problem is solved treating the regions
lying inside and outside of the cylinder’s circumference separately. A continuity condition
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is applied at the circumference to derive the velocity potentials for the two regions in
terms of Bessel and Hankel functions. The tsunami and acoustic–gravity waves can be
calculated from this model, although at high computational cost. Also presented is a
procedure for retrieving the rupture parameters (epicentre, start time, rupture duration,
vertical velocity etc.) from measured bottom pressure records, i.e. a solution to the inverse
problem. The work presented in [4] also became relevant in Chapter 5, where the effects
of shifting perspective from Cartesian to spherical coordinates is presented.

Abdolali et al. [26] again develops depth-integrated equations building on the earlier
work by [23], but now includes dissipation. The weakly compressible ocean overlies a
weakly compressible sediment layer, which itself overlies a rigid seabed. Only acoustic–
gravity waves are considered in this work, where it is found that the frequency spectrum
and modal peaks are lowered in comparison to a rigid seabed. A change in the frequency
spectrum is also encountered when the seabed is elastic - see Chapter 4 - where in this
case the shift is upward. It would be interesting to combine the sediment layer of [26] with
the elastic seabed of [2] and observe the resulting frequency shift in the acoustic–gravity
waves.

Renzi, [27] working with a rigid seabed, derives an analytical solution of the mild
slope equation based around a multiple scale perturbation technique. In the conclusions
the authors remark “mathematical solutions of Hydro Acoustic (H.A.) waves generated
by tsunamigenic disturbances over an elastic bottom in 3D appear not to be available in
the literature, leaving this challenging issue as a topic for further research”. This very
topic is addressed and at least partially solved (for constant depth) in Chapter 4.

In the same year (2017) we find a discussion of complex multi-faults - [28] examines a
multi-fault rupture which occurred in New Zealand 2016. The authors suggest that some
re-evaluation of how rupture scenarios are defined may be important. The ability to model
ruptures as multi-faults provides more flexibility in setting rupture parameters.

Next along the timeline [29] investigates the surface wave and acoustic–gravity wave
fields generated by the Tohoku 2011 tsunamigenic event. Their model is based on the Mild
Slope Equation for Dissipative Weakly Compressible fluids (MSEDWC), and utilised a
dual tsunamigenic source consisting of a co-seismic source along with a Submarine Mass
Failure (SMF). This way the authors obtained a better match with observations. Uplift
and timing data from this paper contibuted to the Tohoku 2011 models set up in Chapters
3 and 4.

Arriving at 2018 we find the first paper on the timeline to treat the rupture geometry as
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a slender, rectangular body - [16]. The rectangular shape is justified in many cases [16].
Also, more complex multi-fault scenarios can sometimes be approximated by taking two
or more rectangular shapes and employing superposition. This facility is explored in
Chapters 3 and 4. Taking advantage of the different length scales in the fault geometry
the authors obtain analytical results by using the asymptotic technique of multiple scales.
Modal envelopes of the 2D sound waves are governed by the Schrödinger equation and so
a full 3D solution is obtained. However, [16] focuses on the acoustic side alone, so does
not include gravity and therefore does not address the tsunami. The authors also extend
the work of [4] to now apply to a rectangular geometry (previously cylindrical). Chapter
3 extends the results of [16] to include gravity for the “forward” problem of tsunami and
acoustic–gravity wave propagation.

Next on the timeline is [20] which addresses the systematic discrepancies found when
observed tsunami arrival times are compared with those predicted by models that assume
incompressible water and a rigid seabed. Differences can run into tens of minutes. The
relative contributions of gravity, compressibility and elasticity are quantified.

Completing the timeline is [19] which studies the Tonga volcanic eruption of 2022
and the global propagation of the resulting acoustic–gravity waves and tsunami. This
event presented the authors with a unique opportunity to study resonance/energy transfer
between air and water. Since this paper discussed tsunamis and acoustic–gravity waves
on a global scale, it also provided a qualitative reference for the focusing/defocusing work
developed in Chapter 5.

By 2018/19 the importance of including compressibility has been widely recognised.
Of course if questions around tsunami behaviour are to be addressed then the restoring
force of gravity must also be taken into account. Gaining in recognition, is the impor-
tance of elasticity, with its modifying effects on both surface waves and acoustic–gravity
waves, particularly in phase velocity changes, but also other aspects. The geometry of
the rupture zone has undergone its own evolution as well. Early papers used fixed width
infinite strips (either transient or oscillatory motion) or cylindrical shapes. Arguably, a
more realistic physical representation of a rupture would be the finite rectangular shape
(slender fault) which is - at least approximately - found in nature [16]. More complex
multi-fault scenarios can then be constructed by combining two (or more) slender faults
into a multi-fault cluster. So as of 2018/19 the slender fault model exists, but is presented
in “pure acoustic” form. There is no gravitation included in the model and so insights
into tsunami behaviour are not possible. The realm of elasticity of the supporting seabed
has been explored and found to induce significant modifications to both surface wave and
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acoustic–gravity wave behaviour. However, the elasticity studies in [25] are devoid of
fault motion. Also, a comprehensive study of tsunami and acoustic–gravity wave propa-
gation on a global scale had to wait until 2022 and the massive Tonga eruption. This was
the first event of its kind to be captured with arrays of modern instrumentation. So, at this
point, some gaps in current tsunami research have been identified and this thesis aims to
progress understanding in these areas as outlined in the next Section.
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2.2 Thesis aims

The aims of this thesis are to advance current research by,

1. Adding gravitational effects to the slender fault model, thus enabling statements
relating to the surface waves to be derived alongside those of the acoustic–gravity
waves.

2. Developing the multi-fault aspect of rupture representation so as to handle more
complex fault scenarios via superposition.

3. Combining the uplift of a slender fault [16, 1] with an elastic seabed [25] to study
the effects of elasticity on the propagating acoustic–gravity waves and surface waves
arising from the fault motion.

4. Shifting perspective from a Cartesian coordinate system to a spherical coordinate
system, which better represents the actual geometry of the earth at large scales.
Then study how the propagation of both the tsunami surface waves and the acoustic–
gravity waves are affected by the change in geometry.
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1950 • [18] - Compressibility, acoustic–gravity waves.

1954 • [21] - Cylindrical elevation of seabed, compressibility,
rigid seabed.

1965 • [22] - 2D problem, infinite, constant width strip.

1982 • [14] - Oscillating infinite strip, early warning, rupture
properties, propagating vs evanescent.

1999 • [15] - 2D problem, tsunami voice.

2007 • [12] - Sumatra 2004 source details.

2010 • [3] - 2D, Stationary phase method.

2013 • [23] - MSEWC.

• [25] - Phase velocity curves, Scholte wave, second
surface wave mode.

• [30] - Extra details relating to earlier paper.

• [4] - 3D model, Bessel / Hankel functions, inverse model.

2015 • [26] - Depth integrated, dissipation, frequency shift

2017 • [27] - Rigid seabed,

• [28] - Complex multi-faults

• [29] - MSEDWC Tohoku 2011

2018 • [16] - Slender fault, acoustic only, multiple scales,
Schrödinger equation, inverse problem.

2019 • [20] - Gravity, compressibility.

2022 • [19] - Global extent, resonance.

TABLE 2.1 Timeline of key papers. Those papers regarded as forming the core of the
research contained in this thesis are coloured teal.
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2.3 Published / presented works

• Multiple scales analysis for sound signals from slender multi-faults, SIAM-IMA
Student Chapter three minute thesis, 2018.

• Poster presented at 2018 South China Sea Tsunami Workshop 10 (SCSTW-10),
10th, 11th October in National University of Singapore.

• Virtual presentation for Underwater Acoustics Conference & Exhibition 05/08/2021.

• Virtual presentation American Geophysical Union (AGU) fall meeting 13th to 17th

Dec 2021.

• [1], Williams, B., Kadri, U., and Abdolali, A. (2021). Acoustic–gravity waves from
multi-fault rupture. Journal of Fluid Mechanics, 915:A108.

• [2], Williams, B., Kadri, U. (2023). On the propagation of acoustic–gravity waves
due to a slender rupture in an elastic seabed. Journal of Fluid Mechanics, A6.

• Williams, B., Kadri, U. (2024). Propagation of acoustic–gravity waves on a sphere:
focusing and defocusing.
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Chapter 3

Slender faults with gravity and
multi-fault extension1

3.1 Introduction.

As discussed in the introduction (Chapter 1), acoustic–gravity waves are compression
waves that reside within the entire water column and can couple with the elastic seabed.
They carry information about the source at relatively high speeds ranging from the speed
of sound in water (1500ms−1), to Rayleigh wave speed in the solid (3200ms−1) that far
exceeds the phase speed of the tsunami (200ms−1 at 4 km water depth), see [25]. In
the solid layer, compression P (pressure) waves and S (shear) waves propagate at about
6800ms−1 and 3900ms−1, respectively [31]. A critical difference between analysing
acoustic–gravity waves and P and S waves is that the former, being a compression wave
in the liquid layer, is directly associated with the effective vertical uplift. Hence, acous-
tic–gravity waves can not only act as excellent precursors, but they could also provide
vital information on the geometry and dynamics of the effective uplift, which eventually
shapes the main characteristics of the tsunami. The next chapter contains more details
on this possibility. Using the acoustic fore-runner as an early warning signal has long
been established [15, 14, 3, 6, 32, 33, 34, 35, 36]. Finite fault models have also been in-
vestigated, providing a three dimensional theory of acoustic–gravity waves based on the
classical method of the Green’s function [4]. However, their utility in providing predic-
tions for acoustic and surface wave behaviour in real time is limited due to the solution
being in integral form. This requires partitioning of any shape considered into many

1[1]
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small elements, calculating the contribution from each element, then performing a sum-
mation to arrive at the total contribution. In the absence of an explicit analytical solution,
this proves to be computationally expensive [16] and, of course, the processing burden
escalates with the addition of more complex multi-fault ruptures, as observed in nature
[28]. An alternative approach was proposed by [16] who considered a slender fault and
invoked multiple scale analysis to obtain a closed-form analytical solution for the prop-
agating acoustic modes. Improvements in long-range modulation are provided by the
introduction of envelope factors involving Fresnel integrals.

The aim of this chapter is to extend the results of [16] to include gravitational effects
and multi-fault ruptures. The inclusion of gravitation involves a modification to the sur-
face boundary condition. This modification gives rise to expressions for the gravity wave
contribution to bottom pressure, along with the expected acoustic–gravity wave contribu-
tions. Evanescent modes are also derived, but later ignored, since their effects in the far
field are negligible. Expressions for surface elevation are obtained - broken down into
contributions from the surface wave and the acoustic–gravity waves. The form of the
governing equations for the envelope factors involved in the long range modulations are
found to be identical for both acoustic–gravity waves and the surface wave, i.e. they both
obey the Schrödinger equation. The addition of gravitation to the current model may have
a beneficial effect on the accuracy achievable in the inverse theory calculations originally
discussed in [16]. One application of the multi-fault approach developed here is to tackle
a long standing limitation which arises when applying a stationary phase approximation.
The derived explicit solution for the gravity mode (tsunami) is singular at the arrival time
[3] which results in overlooking the main peak of the tsunami. To overcome this difficulty,
the fault is split into strips. Since each strip has a different spatio-temporal singularity,
the main tsunami amplitude can be reconstructed by the superposition principle.

Extension to multi-fault ruptures arises naturally from the linear theory by application
of the superposition principle enabling fault systems such as that discussed in [28] to be
investigated. Two instances of multi-faults are considered here, one based upon the 2011
Tohoku event (detailed data can be found in [29]) and the second is based on the Sumatra
2004 event. We ignore terms of second order and higher (i.e. non-linear terms) since
the free surface displacements are small in comparison with the water depth [37]. We
also ignore viscous effects, capillary effects, surface tension and also assume constant
atmospheric pressure.
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Figure 3.1: Sketch of slender fault.

Constant Description Value
g Acceleration due to gravity 9.81 ms−2

L Fault half-length 400 km
b Fault half-width 40 km
2T Rupture duration 10 s
h Water depth 4 km
ρl Water density 1000 kgm−3

Cl Speed of sound in water 1500 ms−1

W0 Uplift velocity 0.1 ms−1

N Number of acoustic modes 10

Table 3.1: Constants and parameters used in validation of current model with gravity.

3.2 Governing equations

In addition to the assumptions above the water layer is assumed to be homogeneous and
of constant depth h. The origin of the Cartesian co-ordinates is located at the seabed,
at the centroid of the fault, with the vertical axis z directed vertically upward. Based on
irrotational flow, the problem is formulated in terms of the velocity potential φl(x, y, z, t),
where u =∇φl is the velocity field. Considering the slight compressibility of the sea, the
velocity potential obeys the standard three dimensional wave equation,

∂2φl

∂x2 + ∂2φl

∂y2 + ∂2φl

∂z2 − 1
C2

l

∂2φl

∂t2 = 0, (3.2.1)
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Chapter 3 Slender faults with gravity and multi-fault extension5

where Cl is the speed of sound in water. For the boundary condition at the free surface, we
follow the detailed derivation given in [8] Section (1.1.2). Beginning with the Bernoulli
equation from page 8 of [8] and with ρl as the fluid density

− P
ρl

= gz+ ∂φl

∂t
+ 1

2
|∇φl |2 +C(t), (3.2.2)

where C(t) is an arbitrary function of t which can usually be omitted by redefining φl .
The gz term is the hydro-static contribution. The other terms on the right-hand side of
(3.2.2) are the hydrodynamic contributions to total pressure P. On the free surface assume
the fluid moves only tangentially. Let the instantaneous equation of the boundary be

F(x, t)= z−ζ(x, y, t)= 0, (3.2.3)

where ζ is the height from z = 0. Let the velocity of a point x on the free surface be q
then after a time dt

F(x+qdt, t+dt)= 0= F(x, t)+
(
∂F
∂t

+q ·∇F
)

dt+O(dt)2. (3.2.4)

From equation (3.2.3) we have
∂F
∂t

+q ·∇F = 0 (3.2.5)

for small dt. Tangential motion requires u ·∇F =q ·∇F which implies

∂F
∂t

+u ·∇F = 0, z = ζ. (3.2.6)

The pressure immediately below the free surface must equal the pressure Pa above. Ap-
plying (3.2.2) to the free surface we have

− Pa

ρl
= gζ+ ∂φl

∂t
+ 1

2
|∇φl |2 z = ζ. (3.2.7)

Taking the total derivative of (3.2.7)(
∂

∂t
+u ·∇

)
Pa

ρl
+

(
∂

∂t
+u ·∇

)(
∂φl

∂t
+ u2

2
+ gζ

)
= 0 z = ζ (3.2.8)

Then using (3.2.6) along with

u ·∇∂φl

∂t
= ∂

∂t
1
2

u2 (3.2.9)
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we have from (3.2.8)

D
Dt

Pa

ρl
+

[
∂2φl

∂t2 + g
∂φl

∂z
+ ∂u2

∂t
+ 1

2
u ·∇u2

]
= 0 z = ζ. (3.2.10)

Then with Pa considered constant and ignoring non-linear terms (3.2.10) becomes the
linearised, combined dynamic and kinematic boundary condition

∂2φl

∂t2 + g
∂φl

∂z
= 0. (3.2.11)

Following [16], the fault’s ground motion is confined to a rigid, slender rectangular stripe
of width 2b and length 2L, with a slenderness parameter ε = b/L ≪ 1 (see Figure 3.1),
such that

∂φl

∂z
=w(x, y)τ(t), z = 0, (3.2.12)

where

w(x, y)=
W0 = const |x| < b, |y| < L

0 elsewhere
, τ(t)=

1 −T < t < T

0 |t| > T
, z = 0. (3.2.13)

where w(x, y) defines the spatial extent of the rupture, τ defines the time the rupture is
active and W0 is the uplift velocity. To study the long distance propagation of acoustic–
gravity waves we introduce re-scaled co-ordinates (see [16])

X = ε2x, Y = εy. (3.2.14)

Letting φl = φl0(x, X ,Y , z, t)+ ε2φl2(x, X ,Y , z, t)+ ·· · , the potential reduces to the two-
dimensional wave equation to leading order

∂2φl0

∂x2 + ∂2φl0

∂z2 − 1
C2

l

∂2φl0

∂t2 = 0, (3.2.15)

with boundary conditions given by

∂2φl0

∂t2 + g
∂φl0

∂z
= 0, z = h (3.2.16)

∂φl0

∂z
=

W0τ(t) |x| < b, |y| < L

0 elsewhere
, τ(t)=

1 −T < t < T

0 |t| > T
, z = 0. (3.2.17)
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The envelope of the radiated waves is governed by

∂2φl2

∂x2 + ∂2φl2

∂z2 − 1
C2

l

∂2φl2

∂t2 =−
[
∂2φl0

∂Y 2 +2
∂2φl0

∂x∂X

]
, (3.2.18)

with the boundary conditions

∂2φl2

∂t2 + g
∂φl2

∂z
= 0, z = h (3.2.19)

∂φl2

∂z
= 0, z = 0. (3.2.20)

Note that the boundary conditions for φl0 and φl2 at z = h here are different to those in
the “no-gravity” case (φl0 =φl2 = 0).

3.3 Solutions

3.3.1 Leading order

To derive the desired velocity potential first transform the wave equation and boundary
conditions utilising the double Fourier transform Φ = ∫ ∞

−∞
∫ ∞
−∞φl0e−i(kx−ωt)dtdx, with ω

representing angular velocity and k the wave number and solve. Once the transformed
velocity potential has been obtained in the k,ω domain we can then transform back into
the x, t domain using an inverse transform. Begin with (3.2.15) - after both transforms we
arrive at

∂2Φ

∂z2 +
(
ω2

C2
l

−k2

)
Φ= 0, µ=

√√√√ω2

C2
l

−k2. (3.3.21)

This is simple harmonic motion in the z direction and has solution of the form

Φ= A cos
(
µz

)+Bsin
(
µz

)
, (3.3.22)

where A and B are integration constants to be determined. Next transform (3.2.16)

∫ ∞

−∞

(
∂2φl0

∂t2 + g
∂φl0

∂z

)
eiωtdt =

∫ ∞

−∞
∂2φl0

∂t2 eiωtdt+ g
∂

∂z

∫ ∞

−∞
φl0eiωtdt,

=
[
∂φl0

∂t
eiωt

]∞
−∞

− iω
∫ ∞

−∞
∂φl0

∂t
eiωtdt+ g

∂φ̄l0

∂z
= 0.

(3.3.23)
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Under the assumptions ∂φl0
∂t → 0 and φl0 → 0 as |t| → 0 the term in square brackets drops

out leaving

− iω
{[
φl0eiωt

]∞
−∞− iω

∫ ∞

−∞
φl0eiωtdt

}
+ g

∂φ̄l0

∂z
=−ω2φ̄l0 + g

∂φ̄l0

∂z
= 0. (3.3.24)

Similarly, after the second transform of (3.2.16) we have

−ω2Φ+ g
∂Φ

∂z
= 0, z = h. (3.3.25)

The boundary condition at the seabed z = 0 transforms exactly as in [16] leading to

∂Φ

∂z
=W0G(k,ω), G(k,ω)= 4sin(kb)sin(ωT

kω
. (3.3.26)

Evaluating the boundary condition at the surface z = h gives

− A
[
ω2 cos(µh)+µgsin(µh)

]+B
[
µgcos(µh)−ω2 sin(µh)

]= 0. (3.3.27)

which implies

B = A

[
ω2 cos(µh)+µgsin(µh)

][
µgcos(µh)−ω2 sin(µh)

] . (3.3.28)

Evaluating the boundary condition at z = 0 gives

[−µA sin(µz)+µBcos(µz)
]

z=0 =W0G =⇒ B = W0G
µ

(3.3.29)

so that

A

[
ω2 cos(µh)+µgsin(µh)

][
µgcos(µh)−ω2 sin(µh)

] = W0G
µ

, (3.3.30)

and therefore

A = W0G
[
µgcos(µh)−ω2 sin(µh)

]
µ

[
ω2 cos(µh)+µgsin(µh)

] . (3.3.31)

From (3.3.22)

Φ= W0G
[
µgcos(µh)−ω2 sin(µh)

]
µ

[
ω2 cos(µh)+µgsin(µh)

] cos(µz)+ W0G
µ

sin(µz). (3.3.32)

After simplification this becomes

Φ= 4W0 sin(kb)sin(ωT)
µkω

{
µgcos

[
µ(h− z)

]−ω2 sin
[
µ(h− z)

][
ω2 cos(µh)+µgsin(µh)

] }
, (3.3.33)
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where µ2 = (ω2/c2)− k2. The only poles contributing to the contour integration derive
from the dispersion relation ω2 cos(µh)+µgsin(µh) = 0 in the denominator of (3.3.33).
The case k = 0 is a removable singularity, since k → 0 =⇒ sin(kb) /k → b. The first
eigenvalue µ0 is imaginary - all the rest are real. The first wave number k0 corresponding
to a gravity wave is always real. The following n ≤ N wave numbers [k1 k2 . . . kN] are
also real, and correspond to the acoustic–gravity waves where N = ⌊(ωh/πCl)+1/2⌋. The
gravity and acoustic–gravity modes are progressive waves. The next modes, n > N with
wave numbers λn correspond to decaying, evanescent modes [38]. Thus, all modes satisfy
the dispersion relation where

k0 =
√√√√ω2

C2
l

+µ2
0, kn =

√√√√ω2

C2
l

−µ2
n, λn =

√√√√µ2
n −

ω2

C2
l

. (3.3.34)

Inverting the transformation by contour integration we obtain the velocity potential

ϕl0 =−W0

π
Re

∞∫
0

i
8µ0 sin(k0b)sin(ωT)cosh

(
µ0z

)
ωk2

0
[
2µ0h+sinh(2µ0h)

] ei(k0|x|−ωt)dω

− W0

π
Re

N∑
n=1

∞∫
ωn

i
8µn sin(knb)sin(ωT)cos

(
µnz

)
ωk2

n
[
2µnh+sin(2µnh)

] ei(kn|x|−ωt)dω

− W0

π

∞∑
n=N+1

ωn∫
0

cos(ωt)
8µn sinh(knb)sin(ωT)cos

(
µnz

)
ωλ2

n
[
2µnh+sin(2µnh)

] e−λn|x|dω,

(3.3.35)

where ωn represents the cut-off frequency for mode n. Then picking out the real part for
the propagating modes gives

ϕl0 =
8W0

π

∞∫
0

µ0 sin(k0b)sin(ωT)cosh
(
µ0z

)
ωk2

0
[
2µ0h+sinh(2µ0h)

] sin(k0|x|−ωt)dω

+ 8W0

π

N∑
n=1

∞∫
ωn

µn sin(knb)sin(ωT)cos
(
µnz

)
ωk2

n
[
2µnh+sin(2µnh)

] sin(kn|x|−ωt)dω,

(3.3.36)

from which the pressure and surface elevation expressions can be obtained by differenti-
ation using

P =−ρl
∂ϕl0

∂t
, η=−1

g
∂ϕl0

∂t
. (3.3.37)
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Thus the pressure terms are now given by

P = 8ρlW0

π

∞∫
0

µ0 sin(k0b)sin(ωT)cosh
(
µ0z

)
k2

0
[
2µ0h+sinh(2µ0h)

] cos(k0|x|−ωt)dω

+ 8ρlW0

π

N∑
n=1

∞∫
ωn

µn sin(knb)sin(ωT)cos
(
µnz

)
k2

n
[
2µnh+sin(2µnh)

] cos(kn|x|−ωt)dω,

(3.3.38)

with surface elevation terms given by

η= 8W0

gπ

∞∫
0

µ0 sin(k0b)sin(ωT)cosh
(
µ0h

)
k2

0
[
2µ0h+sinh(2µ0h)

] cos(k0|x|−ωt)dω

+ 8W0

gπ

N∑
n=1

∞∫
ωn

µn sin(knb)sin(ωT)cos
(
µnh

)
k2

n
[
2µnh+sin(2µnh)

] cos(kn|x|−ωt)dω.

(3.3.39)

The expressions for pressure and surface elevation are in agreement with Stiassnie [3].

3.3.2 Long range modulation

Considering the region far from the fault, [16] showed that for pure acoustic modes the
envelopes vary slowly, allowing the derivation of an analytical solution of the pressure.
It is anticipated that the addition of gravity, would have a similar effect where the modal
envelopes of both the acoustic–gravity modes (with the correction due to gravity), and the
gravity mode (with correction due to compressibility) are all governed by the Schrödinger
equation, which is derived as follows.

Introduce unknown envelope factors A±
n(X ,Y ) and A±

0 (X ,Y )

A±
n =

1 |Y | < l = εL

0 |Y | > l = εL
, A±

0 =
1 Y | < l = εL

0 Y | > l = εL
, X = ε2x, (3.3.40)
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then re-write the propagating parts of (3.3.35) as

ϕl0 =−W0

2π
Re

∞∫
0

iA+
0

8µ0 sin(k0b)sin(ωT)cosh
(
µ0z

)
ωk2

0
[
2µ0h+sinh(2µ0h)

] ei(k0|x|−ωt)dω

− W0

2π
Re

0∫
−∞

iA−
0

8µ0 sin(k0b)sin(ωT)cosh
(
µ0z

)
ωk2

0
[
2µ0h+sinh(2µ0h)

] ei(k0|x|−ωt)dω

− W0

2π
Re

N∑
n=1

∞∫
ωn

iA+
n

8µn sin(knb)sin(ωT)cos
(
µnz

)
ωk2

n
[
2µnh+sin(2µnh)

] ei(kn|x|−ωt)dω

− W0

2π
Re

N∑
n=1

−ωn∫
−∞

iA−
n

8µn sin(knb)sin(ωT)cos
(
µnz

)
ωk2

n
[
2µnh+sin(2µnh)

] ei(kn|x|−ωt)dω,

(3.3.41)

Consider the acoustic–gravity waves (the surface wave solution can be derived in a similar
fashion). Take time Fourier transform of (3.2.18) and separate the resulting ϕ̄l2 into 3
ranges

ϕ̄l2 =


ϕ̄+

l2 ωn <ω<∞
ϕ̄e

l2 −ωn <ω<ωn

ϕ̄−
l2 −∞<ω<−ωn.

(3.3.42)

In the range ωn <ω<∞

∂2ϕ̄+
l2

∂x2 + ∂2ϕ̄+
l2

∂z2 + ω2

c2 ϕ̄
+
l2 =−∂

2ϕ̄+
l0

∂Y 2 −2
∂2ϕ̄+

l0

∂x∂X
, (3.3.43)

with

ϕ̄+
l0 =

∞∫
−∞

−W0

2π
Re

N∑
n=1

∞∫
ωn

iA+
n

8µn sin(knb)sin(ωT)cos
(
µnz

)
ωk2

n
[
2µnh+sin(2µnh)

] ei(kn|x|−ωt)dω

eiωtdt.

(3.3.44)
Therefore

ϕ̄+
l0 =−iW0

N∑
n=1

A+
n

8µn sin(knb)sin(ωT)cos
(
µnz

)
ωk2

n
[
2µnh+sinh(2µnh)

] eikn|x|
∞∫

−∞

1
2π

∞∫
ωn

eiωte−iωtdωdt.

(3.3.45)
Note that in the range ωn <ω<∞ we have

∞∫
−∞

1
2π

∞∫
ωn

eiωte−iωtdωdt =
∞∫

−∞

1
2π

∞∫
−∞

eiωte−iωtdωdt = 1, (3.3.46)
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so that

ϕ̄+
l0 =−iW0

N∑
n=1

A+
n

8µn sin(knb)sin(ωT)cos
(
µnz

)
ωk2

n
[
2µnh+sinh(2µnh)

] eikn|x|. (3.3.47)

The first term on the RHS of (3.3.43) is

− ∂2ϕ̄+
l0

∂Y 2 = iW0

N∑
n=1

∂2A+
n

∂Y 2

8µn sin(knb)sin(ωT)cos
(
µnz

)
ωk2

n
[
2µnh+sinh(2µnh)

] eikn|x|. (3.3.48)

The second term on the RHS of (3.3.43) is

−2
∂2ϕ̄+

l0

∂x∂X
= iW0

N∑
n=1

2ikn
∂A+

n

∂X
8µn sin(knb)sin(ωT)cos

(
µnz

)
ωk2

n
[
2µnh+sinh(2µnh)

] eikn|x|. (3.3.49)

Substitution into (3.3.43) gives

∂2ϕ̄+
l2

∂x2 + ∂2ϕ̄+
l2

∂z2 + ω2

c2 ϕ̄
+
l2 =iW0

N∑
n=1

∂2A+
n

∂Y 2

8µn sin(knb)sin(ωT)cos
(
µnz

)
ωk2

n
[
2µnh+sinh(2µnh)

] eikn|x|

+ iW0

N∑
n=1

2ikn
∂A+

n

∂X
8µn sin(knb)sin(ωT)cos

(
µnz

)
ωk2

n
[
2µnh+sinh(2µnh)

] eikn|x|.

(3.3.50)

Factoring

∂2ϕ̄+
l2

∂x2 + ∂2ϕ̄+
l2

∂z2 + ω2

c2 ϕ̄
+
l2 = iW0

N∑
n=1

[
∂2 A+

n

∂Y 2 +2ikn
∂A+

n

∂X

] 8µn sin(knb)sin(ωT)cos
(
µnz

)
ωk2

n
[
2µnh+sinh(2µnh)

] eikn|x|.

(3.3.51)

Assume ϕ̄+
l2 has a solution in the form ϕ̄+

l2 =
∑N

n=1ψ
+
n(ω, z)eiknx, then (3.3.50) becomes

−
N∑

n=1
ψ+

n k2
neiknx +

N∑
n=1

∂2ψ+
n

∂z2 eiknx + ω2

c2

N∑
n=1

ψ+
neiknx

= iW0

N∑
n=1

[
∂2A+

n

∂Y 2 +2ikn
∂A+

n

∂X

]
8µn sin(knb)sin(ωT)

ωk2
n
[
2µnh+sinh(2µnh)

] cos
(
µnz

)
eikn|x|.

(3.3.52)

Let Fn(z)= cos
(
µnz

)
, then equating coefficients gives

∂2ψ+
n

∂z2 +
(
ω2

c2 −k2
n

)
ψ+

n =

iW0

N∑
n=1

[
∂2A+

n

∂Y 2 +2ikn
∂A+

n

∂X

]
8µn sin(knb)sin(ωT)

ωk2
n
[
2µnh+sinh(2µnh)

]Fn(z).
(3.3.53)
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Where

µ2
n = ω2

c2 −k2
n, (3.3.54)

then

∂2ψ+
n

∂z2 +µ2
nψ

+
n =

iW0

N∑
n=1

[
∂2A+

n

∂Y 2 +2ikn
∂A+

n

∂X

]
8µn sin(knb)sin(ωT)

ωk2
n
[
2µnh+sinh(2µnh)

]Fn(z).
(3.3.55)

Where Fn(z) is a solution of the homogeneous boundary value problem

∂2Fn(z)
∂z2 +µ2

nFn(z)= 0 (3.3.56)

−ω2Fn(z)+ g
∂Fn(z)
∂z

= 0, z = h (3.3.57)

∂Fn(z)
∂z

= 0, z = 0 (3.3.58)

Multiply (3.3.53) by Fn(z) and (3.3.56) by ψ+
n then subtract

Fn(z)
(
∂2ψ+

n

∂z2 +µ2
nψ

+
n

)
−ψ+

n

(
∂2Fn(z)
∂z2 +µ2

nFn(z)
)
=

iW0

N∑
n=1

[
∂2A+

n

∂Y 2 +2ikn
∂A+

n

∂X

]
8µn sin(knb)sin(ωT)

ωk2
n
[
2µnh+sinh(2µnh)

]Fn(z)2.
(3.3.59)

Following [16]

h∫
0

[
Fn(z)

(
∂2ψ+

n

∂z2 +µ2
nψ

+
n

)
−ψ+

n

(
∂2Fn(z)
∂z2 +µ2

nFn(z)
)]

dz =
[
Fn(z)

∂2ψ+
n

∂z2 −ψn+ ∂2Fn(z)
∂z2

]h

0
= 0.

(3.3.60)

Therefore
∂2 A+

n

∂Y 2 +2ikn
∂A+

n

∂X
= 0, (3.3.61)

As in [16] in addition to the initial condition (3.3.40), we require the waves to vanish far
away from and be symmetric about the central axis

A+
n = 0, |Y |→∞;

∂A+
n

∂Y
= 0, Y = 0. (3.3.62)

The solvability requirement of ψ−
n leads to the same result for A−

n with solution due to
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[16] given by

An = 1− i
2

{
C

(√
2
πχn

Y+

)
+C

(√
2
πχn

Y−

)}
+ 1+ i

2

{
S

(√
2
πχn

Y+

)
+S

(√
2
πχn

Y−

)}
(3.3.63)

where C(z) and S(z) are Fresnel integrals and

χn = X /2kn, Y± = (l±Y )/2. (3.3.64)

This result (3.3.63) is identical in structure to that of [16], though here it is valid also
for the gravity mode n = 0. With the inclusion of these results for An(X ,Y ) the leading
order term for the velocity potential in (3.3.35) is now valid in the ranges x ≤ O(lε−2) =
O(Lε−1), y≤O(lε−1).

3.3.3 Stationary phase approximation

We now apply the stationary phase approximation for different gravity phase speed con-
ditions. We rewrite (3.3.38) as

P = 8ρlW0

π
Re

∞∫
0

µ0 sin(k0b)sin(ωT)cosh
(
µ0z

)
k2

0
[
2µ0h+sinh(2µ0h)

] ei(k0|x|−ωt)dω

+ 8ρlW0

π
Re

N∑
n=1

∞∫
ωn

µn sin(knb)sin(ωT)cos
(
µnz

)
k2

n
[
2µnh+sin(2µnh)

] ei(kn|x|−ωt)dω.

(3.3.65)

3.3.3.1 Acoustic–gravity modes

Consider the acoustic–gravity modes only - i.e. the second term in (3.3.65) - and let the
phase of mode n be denoted by Γn(ω) with

Γn (ω)= kn (ω)
x
t
−ω, where kn (ω)=

√
ω2 −ω2

n

Cl
. (3.3.66)

Take the first derivative of Γn (ω) with respect to ω and equate to zero to locate the sta-
tionary point

Γ′n(ω)= ω√
ω2 −ω2

n

x
Cl t

−1= 0. (3.3.67)
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At the point of stationary phase ω=Ωn

Ωn = ωn√
1−

(
x

Cl t

)2
, (3.3.68)

and a second derivative yields

Γ′′n(ω)=− ω2
nx

Cl t
(
Ω2

n −ω2
n
) 3

2
< 0, (3.3.69)

kn (Ωn)≡ Kn =
√
Ω2

n −ω2
n

Cl
= ωn

C2
l t

x√
1−

(
x

Cl t

)2
. (3.3.70)

Knowledge of the sign of Γ′′n(ω) and also that Γ′′n(ω) ̸= 0 is required for the stationary phase
calculations. Then, applying the known stationary phase, first approximation formula of
[39], where pa(t) is the pressure contribution due to the acoustic–gravity waves and f (ω)

is a general function of ω

pa(t)=
∞∫

0

f (ω)eiΓ(ω)tdω, (3.3.71)

pa(t)=
√

2π
t

M∑
m=1

f (ωm)√|Γ′′(ωm)|
ei(Γ(ωm)t+π

4 sgn[Γ′′(ωm)]). (3.3.72)

The index m counts the number of stationary points up to a maximum of M. In our case
there is only one stationary point and so the summation over m drops out, leaving only
the summation over the acoustic–gravity modes

f (ωn)= ρlW0

π
|An|8µn sin(Knb)sin(ΩnT)cos(µnz)

K2
n
[
2µnh+sin

(
2µnh

)] . (3.3.73)

Thus the contribution to the pressure arising from the acoustic–gravity waves becomes

pa =
N∑

n=1

ρlW0

π
|An|8µn sin(Knb)sin(ΩnT)cos(µnz)

K2
n
[
2µnh+sin

(
2µnh

)]
 2π

x
Cl

ω2
n

(Ω2
n−ω2

n)
3
2


1
2

cos
(
Kn|x|−Ωnt− π

4
+ΘAn

)
,

(3.3.74)

where ΘAn is the phase of An. The results for the acoustic–gravity modes are consistent
with the results for the (pure) acoustic modes by [16] with the difference that the modes
here have a correction due to gravity.
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3.3.3.2 Gravity-acoustic mode

To obtain the stationary phase approximation for the contribution to bottom pressure aris-
ing from the surface-gravity wave - the first term in (3.3.65) - consider the phase term
Γ0(ω) for the general (compressible) case as

Γ0(ω)= k0(ω)
x
t
−ω, Γ′0(ω)= k′

0(ω)
x
t
−1= 0, Γ′′0(ω)= k′′

0(ω)
x
t

(3.3.75)

where single and doubles primes denote first and second derivatives with respect to ω.
Noting that

k2
0 =

ω2

C2
l

+µ2
0, k0 = k0(ω) and µ0 =µ0(ω), (3.3.76)

differentiation with respect to ω yields

k′
0 =

1
k0

(
ω

C2
l

+µ0µ
′
0

)
. (3.3.77)

The stationary phase approximation requires a second derivative of k0

k′′
0(ω)= 1

k0

(
1

C2
l

+ (
µ′

0
)2 +µ0µ

′′
0

)
− 1

k2
0

(
ω

C2
l

+µ0µ
′
0

)
k′

0. (3.3.78)

Equation (3.3.78) contains terms in µ′
0 and µ′′

0, to obtain these we differentiate the general
gravity dispersion relation

ω2 = gµ0 tanh(µ0h), (3.3.79)

which gives,

µ̃′
0 =

2ω̃µ̃0

ω̃2 + µ̃2
0 − ω̃4

, µ̃′′
0 =

µ̃′
0

ω̃
− (µ̃′

0)3

ω̃

(
1− ω̃2 − ω̃4

µ̃0
+ ω̃6

µ̃2
0

)
, (3.3.80)

where, for simplicity, quantities with tilde were normalised with length scale h and
timescale

√
h/g.

Following [39] and with ω =Ω0 at the point of stationary phase, the pressure contri-
bution arising from the surface gravity wave is given by

pg = ρlW0

π
|A0|8µ0 sin(K0b)sin(Ω0T)cosh(µ0z)

K2
0
[
2µ0h+sinh(2µ0h)

] [
2π

tΓ′′0(Ω0)

] 1
2

cos
(
K0x−Ω0t+ π

4
+ΘA0

)
(3.3.81)

where ΘA0 is the phase of A0, and µ0 ̸= K0 in this case. For the total pressure contribution
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from the propagating modes, we combine (3.3.74) with (3.3.81) to give

P (x, y, z, t)= ρlW0

π
|A0|8µ0 sin(K0b)sin(Ω0T)cosh(µ0z)

K2
0
[
2µ0h+sinh(2µ0h)

] [
2π

tΓ′′0(Ω0)

] 1
2

cos
(
K0x−Ω0t+ π

4
+ΘA0

)

+
N∑

n=1

ρlW0

π
|An|8µn sin(Knb)sin(ΩnT)cos(µnz)

K2
n
[
2µnh+sin

(
2µnh

)]
 2π

x
Cl

ω2
n

(Ω2
n−ω2

n)
3
2


1
2

cos
(
Kn|x|−Ωnt− π

4
+ΘAn

)
(3.3.82)

Similarly the surface elevation terms add up to

η (x, y, t)= W0

gπ
|A0|

8µ0 sin(K0b)sin(Ω0T)cosh
(
µ0h

)
K2

0
[
2µ0h+sinh(2µ0h)

] [
2π

tΓ′′0(Ω0)

] 1
2

cos
(
K0x−Ω0t+ π

4
+ΘA0

)

+
N∑

n=1

W0

gπ
|An|

8µn sin(Knb)sin(ΩnT)cos
(
µnh

)
K2

n
[
2µnh+sin

(
2µnh

)]
 2π

x
Cl

ω2
n

(Ω2
n−ω2

n)
3
2


1
2

cos
(
Knx−Ωnt− π

4
+ΘAn

)
.

(3.3.83)

The forms of Γ′′0(Ω0),Ω0, and K0 are dependent upon any assumptions made as detailed in
the three cases considered below: (1) a general solution with the compressible dispersion
relation (3.3.79); (2) an approximate high order dispersion relation; and (3) first order
shallow water approximation. The latter two assume incompressibility. Note that for
brevity cases 2 and 3 are presented in non-dimensional form.

Case 1: Compressible gravity dispersion relation

Evaluation of the surface-gravity wave contribution to surface elevation requires a method
of calculation for µ0,Ω0,K0 andΓ′′0. To obtain µ0 we differentiate the general dispersion
relation (3.3.79) with respect to k0, and make use of Γ′0(ω) = 0 at stationary phase which
gives

2µ0
x
t

√
gµ0 tanh(µ0h)− (

gµ0 tanh(µ0h)+ gµ2
0h− gµ2

0htanh2(µ0h)
) dµ0

dk
= 0, (3.3.84)

where
dµ0

dk
=

√
1+ g

µ0C2
l

tanh(µ0h)− x
µ0C2

l t

√
gµ0 tanh(µ0h). (3.3.85)
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Equations (3.3.84) and (3.3.85) form an implicit relationship for µ0, which can be solved
numerically. Once µ0 has been obtained, Ω0 and K0 can be derived directly from

Ω0 =
√

gµ0 tanh(µ0h), and K0 =
√√√√µ2

0 +
Ω2

0

C2
l

, (3.3.86)

and
Γ′′0(Ω0)= K ′′

0 (Ω0)
x
t
= µ0

K0
µ′′

0 +
1

K3
0C2

l

(
Ω0µ

′
0 −µ0

)2 x
t
. (3.3.87)

Equation (3.3.87) contains terms in µ′
0 and µ′′

0, these are obtained from (3.3.80).

Case 2: Third order incompressible dispersion relation

Neglecting the compressibility of the water we can set µ̃0 = k̃0 in (3.3.79). Consideration
of the first two terms in the Taylor expansion of tanh(k̃0) results in explicit forms for Ω̃0,
K̃0 and Γ̃′′0 as

Ω̃0 = 1
8t̃2

[
6t̃2 − 3

2
x̃
(
x̃+

√
8t̃2 + x̃2

)] 1
2
(
x̃+

√
8t̃2 + x̃2

)
, (3.3.88)

K̃0(x̃, t̃)=
√

3
2

1−
√

1− 4
3
Ω̃2

0

 1
2

, (3.3.89)

Γ̃′′0(Ω̃0)=
(
6Ω̃2

0 +9
)(

3−2K̃2
0
)−27(

3K̃0 −2K̃3
0
)(

3−4Ω̃2
0
)(√

9−12Ω̃2
0 −3

) x̃
t̃
. (3.3.90)

Case 3: Shallow water limit

In addition to the assumption of incompressibility (µ̃0 = k̃0) we consider the case of shal-
low water, i.e. tanh(k̃0)≈ k̃0, which leads to

Ω̃0 = K̃0 =
p

2
(

t̃
x̃
−1

) 1
2

, Γ̃′′0 = K̃ ′′
0

x̃
t̃

(3.3.91)

in agreement with Stiassnie [3]. To reduce to the 2D case of [3], the contribution from the
envelope A0 is removed (i.e. by setting A0 = 1). Note that there is a factor of two magnifi-
cation in the amplitude as compared to [3], which is believed to be due to a typographical
error in [3] (see full derivation in Appendix A).
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Figure 3.2: First nine acoustic–gravity modes for slender fault as in Table 3.1, x = 1000
km, y = 0 km. All nine modes are plotted with the same vertical scale which emphasises
the rapid decrease in amplitude with increasing mode number.

3.4 Validation

For validation purposes we use input parameters similar to those found in [16] and [3],
and that are listed in Table 3.1. The number of acoustic modes is set at N = 10. This was
shown to be a “reasonable choice” in [3], wherein the convergence of the acoustic signal
was demonstrated. A signal comprising 10 modes, is compared with a signal compris-
ing 100 modes - very little difference is observed between the two. Thus 10 modes are
enough to capture the overall behaviour. As a further illustration of the convergence with
increasing mode number Figure 3.2 demonstrates the rapid decrease in amplitude with
increasing mode number. Taking the peak amplitude found over the time interval 670 s to
1450 s for each mode n = 1 . . .20 and plotting against mode number results in Figure 3.3.
The decay in amplitude is exponential and so rapid convergence can be achieved.

The uplift velocity of 0.1 ms−1, along with rupture duration of 10 s, implies a fault
displacement of 1 m. Aside from comparison with [3], further justification for using a
duration of the order of tens of seconds can be found in [29] and [40].

The current model is first validated against the theoretical solution for infinitely dis-
tributed fault, proposed by [3] and a 3D numerical solver [23, 26]. The latter solves (3.2.1)
with (3.2.11) at the surface, the movable bottom, representing the vertical uplift (3.2.12)
and (3.2.13), and an outgoing Sommerfeld boundary condition at the end of the numeri-
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cal domain. The Sommerfeld boundary condition essentially limits solutions to those that
radiate outwards from the source i.e. no reflections at infinity. The undistributed fault
length assumption for the first set of validations allows us to use the 3D numerical solver
on a vertical transect, which is computationally affordable. It allows the presence of the
surface gravity waves and all available acoustic modes to interact with each other. The
only constraint is the minimum space-time resolution, required to resolve the range of
dominant frequencies. In this simulation, proper values are used to ensure the first 10
modes exist in the domain.

Figure 3.3: Peak amplitude attained during time interval (reference Figure 3.2) for first
20 modes. The decay in amplitude is exponential, facilitating rapid convergence.

For the second set of validations, a single finite fault case is considered over a large
2D domain. The validation is conducted between the current model and a 2D numerical
solver based on the Mild Slope Equation (MSE) for weakly compressible fluid, rigid
bottom [23].

In the third case, a real-world multifault scenario is considered over a large domain,
where the theory and the depth integrated model are compared to prove the accuracy of
the theory. Then simulation on a variable bed condition is conducted to highlight the
missing processes (i.e. refraction and reflection) due to the presence of seamounts and
trenches.

Note that the solution, proposed by [3] is fast, but has constant depth limit with an
infinitely long fault assumption (2D model). The current theory provides a solution for
the fault longitudinal extent to be finite and multi-fault condition. On the other hand, the
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3D numerical solver is computationally expensive, but can take into account the entire
problem without any assumption (i.e. variable depth profile). It is manageable to run
it on transects, but requires massive computational resources for large 3D domains with
the necessary resolution to resolve the acoustic–gravity wave field. The depth integrated
model is faster than the 3D solver, but still much slower than the theoretical solution. In
addition, it requires the forcing to be decomposed and solved on spectral bands. Here the
validations are performed to prove the accuracy of each of the aforementioned models
and theories, with proper overlaps. In other words, a coherent chain of cross-validation is
performed to highlight the advantages of each method and the differences if assumptions
are considered.

3.4.1 Bottom pressure

Consider a hydrophone station located at 1000 km along the positive x-axis. With the
speed of sound fixed at 1500 ms−1, the arrival time of the acoustic–gravity wave is ap-
proximately 670 s after the rupture. The tsunami arrives later at around 5000 s. Figure
3.4a compares the bottom pressure signature calculated by the current model (top trace),
[3] (middle trace) and a 3D numerical solver, which solves (3.2.1) with proper boundary
conditions at the surface and end of the numerical domain and movable seabed (bottom
trace).

3.4.2 Surface elevation

With the inclusion of gravitational effects into the current model it is now possible to ob-
tain surface elevation information in addition to the bottom pressure. Thus, the surface
elevation results of Figure 3.4b constitute new findings for the current model. This is
of consequence when considering the inverse problem, since it enables evaluation of the
tsunami alongside the acoustic modes, thereby reducing computation time. A remarkable
correction of the tsunami amplitude is obtained (black curve) by deserting the shallow
water assumption suggested by [3], and instead solving the full compressible dispersion
relation for µ0, Ω0 and K0 numerically. To illustrate this improvement a comparison with
a full numerical solution is presented (dashed red curve). Thus, an inclusion of compress-
ibility in the tsunami calculations provides an important correction of the amplitude and
frequency [41, 20]. It is also worth noting that an accurate gravitational constant g should
be used.
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(a) Bottom pressure signals predicted by current model (top), [3] (middle) and numerical model
(bottom). Co-ordinates are x = 1000 km, y= 0 km. Note the current model reduces to Stiassnie’s
2D solution on the x axis.

(b) Surface elevation plots generated by current model (stationary phase approximation inclusive
of compressibility), [3] and the numerical model. Co-ordinates are x = 1000 km, y= 0 km.

Figure 3.4: Comparison of current model against numerical model and [3].
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Figure 3.5: Surface elevation plots. Top left: one single fault, the singularity at the critical
time is apparent. Top right: fault is now split into three parallel strips and the contributions
from each added. Bottom left: At eleven strips the shape of the tsunami begins to form.
Bottom right: At thirty-one strips the tsunami’s shape is now apparent. The curve can be
be further enhanced utilising a standard Matlab smoothing function.

At times approaching the critical time t̃c = x̃ the solution is not valid, due to constraints
arising from the limitations of the method of stationary phase and approximations made
in calculating stationary points [3]. In this case the numerical model predicts a tsunami
of peak amplitude approximately 0.6 m arriving at the critical time t̃c. Unfortunately all
of the analytic models have a singularity at times approaching the critical time. However,
by splitting up the fault into a few parallel strips (say ≥ 10 ), each strip has a shift in the
critical time which allows calculating the contribution of most of the fault at all times.
To illustrate this process Figure 3.5 shows the surface elevation plot resulting from first
a single fault, then breaking the original fault into three, eleven and finally thirty-one
strips and adding their contributions. At thirty-one strips the outline of the tsunami can
be seen. A further step making use of a standard Matlab smoothing function results in
the plot displayed in Figure 3.4b. Thus, the general compressible solution can capture the
main peak at t̃c - see Figure 3.4b which serves to further validate the linear multi-fault
approach.

3.4.3 Theoretical solution vs. Mild Slope Equation

In the previous Section, the theoretical solutions for bottom pressure (3.3.82) have been
validated against [3] where the solutions exist for an infinite fault problem (y = 0). Here,
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the bottom pressure, calculated by the theory is validated against numerical simulations
based on the Mild Slope Equation for weakly compressible fluids [23], not only for points
lying on the x axis, but also for y ̸= 0. The results are shown in Figure 3.6 for a fault
with dimensions of L = 100 km, b = 10 km and rise time of 2T = 10 s, with residual
displacement of ζ= 1 m. As y increases, especially for y≫ L, the signals become smaller
as expected.

The statistics for the plots of Figure 3.6 are presented in Tables 3.2 and 3.3. Taking
the dominant mode #1 and comparing the ranges we see agreement between theory and
numerical model to better than 0.5%. The peaks occur in each plot before t = 1400 s. The
trailing portion of each plot becomes less valid as time progresses due to elasticity of the
seabed being neglected in this case - see Section 4.6.3.

Theory 1 2 3 4 5 6 7 8
Min -18.0578 -3.4108 -1.8057 -1.2256 -16.6167 -2.7596 -1.5287 -1.0612
Max 17.9549 3.4286 1.7933 1.2101 16.6723 2.743 1.531 1.0619
Mean 0 0 0 0 0 0 0 0
Std 2.1253 1.0455 0.69 0.4281 2.0204 0.9 0.5678 0.3247
Range 36.0126 6.8394 3.5991 2.4357 33.289 5.5025 3.0597 2.1231

Table 3.2: Statistics for the eight pressure plots predicted by the Theory - see Figure 3.6.

Numerical 1 2 3 4 5 6 7 8
Min -17.9845 -3.5659 -1.6258 -1.0183 -16.1535 -2.7429 -1.2852 -0.9312
Max 17.9132 3.5381 1.6208 1.0121 16.256 2.7447 1.2836 0.9212
Mean 0 0 0 0 0 0 0 0
Std 3.6434 0.8404 0.3453 0.2176 3.4524 0.6991 0.2919 0.1688
Range 35.8977 7.104 3.2466 2.0304 32.4095 5.4876 2.5688 1.8524

Table 3.3: Statistics for the eight pressure plots predicted by the Numerical Model - see
Figure 3.6.

3.5 Multi-fault rupture

Hamling et al., [28] discussed a fault that occurred on 14th November 2016 in Kaikōura
New Zealand. This event was reported as a “complex multi-fault rupture” - complex in the
sense that at least 12 major crustal faults and extensive uplift along much of the coastline
were observed. The rupture jumped between faults located up to 15 km away from each
other, and individual sub-faults showed both positive and negative displacements as well
as translational slipping.
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Figure 3.6: (Upper) indicates the fault dimensions (L = 100 km and b = 10 km), the
numerical domain extent and the coordinates of the virtual point observations. The time
series of bottom pressure calculated from the current model (black) and extracted from
the numerical model (red). Only the first mode is considered in order to keep computation
time manageable.
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The theory developed in Section 3.3 is extended here to more complex situations,
where two, or more, slender faults can be combined by linear superposition. Each fault
may have its own uplift duration and velocity, as well as dimension and orientation. To
take account of multiple faults relative to a reference time and location, the acoustic–
gravity wave component of expression (3.3.82) is modified as

P =
M∑

i=1

N∑
n=1

ρlW0,i

π
|A i,n|

8µn sin(K i,nbi)sin(Ωi,nTi)cos(µnz)
K2

i,n

[
2µnh+sin

(
2µnh

)]
 2π

xi
Cl

ω2
n(

Ω2
i,n−ω2

n

) 3
2


1
2

×cos
(
K i,n|x|−Ωi,nt(t̄)− π

4
+ΘA i,n

)
, (3.5.92)

where i indexes the faults up to a maximum of M faults and t(t̄) is defined as

t(t̄)= H(t̄−∆i)(t̄−∆i). (3.5.93)

H is the Heaviside step function, t̄ = 0 is the time of the first fault movement, and ∆i is
the time lag for each individual fault relative to that of the first moving fault.

Consider a hydrophone located on the seabed (z = 0) and to the right of a cluster of
faults as shown in Figure 3.7. Then the (x, y) location of the hydrophone in each fault’s
co-ordinate system is given by

xi =−r i cos(θi −αi), yi =−r i sin(θi −αi), (3.5.94)

where r i is the distance between the hydrophone and the centroid of the ith fault, θi is the
angle between the positive x axis at the hydrophone and the centroid of the ith fault, αi is
the strike angle of the ith fault.

3.5.1 Multi-fault examples

[28] does not contain information on multi-fault geometries and timings etc. that would
facilitate a validation exercise, so to link the current model with real data we refer the
reader to [12] and [29]. The first paper discusses the Sumatra 2004 tsunami, and we use
this to investigate agreement between the developed theory and a numerical model for
acoustic–gravity waves (constant and variable depth). Since the DART network was not
available at that time, we could not reliably validate the surface wave using the Sumatra
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event. Satellite records of surface displacement are available for Sumatra 2004 [42], but
these vary in both time and space, as the satellite moves across the Indian ocean, and
thus introduce unnecessarily delicate challenges. Instead, we opted to use the Tohoku
2011 event [29] as reference for the surface wave validation where reliable data via the
DART network is available. The DART buoys benefit from being at fixed locations while
recording their time series of surface elevations.

Figure 3.7: Location and orientation of a slender fault cluster relative to a hydrophone -
axes and orientation of the ith fault indicated.

3.5.1.1 Tohoku 2011 - surface elevation

[29] investigated the surface gravity and acoustic–gravity wave fields produced by the
megathrust Tohoku 2011 tsunamigenic event. The surface deflections generated by this
event were recorded by the DART network deployed by NOAA (National Oceanic and
Atmospheric Administration). The event occurred at 14:46 local time (JST) [29], with
the tsunami waves arriving at DART buoy 21418 located at 38.735 N, 148.655 E (NOAA
web-site) approximately 30 minutes later [29]. This buoy lies at a distance of about 500
km east of the epicentre, and is a good candidate for testing the surface elevation predic-
tions made by the current model. The parameters used in the model were derived from
a variety of sources (see Table 3.4). The dimensions of the fault were obtained from
Encyclopædia Britannica27

The coordinates of DART buoy 21418 referenced to the epicentre were calculated
using the Haversine formula which calculates the geodesic distance between two points
on a sphere given their longitudes and latitudes. The depth used for the calculation was

27https://www.britannica.com/event/Japan-earthquake-and-tsunami-of-2011
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an average (constant) value derived from a Google Earth transect between the epicentre
and the DART buoy location (Figure 3.8a). The strike angle α was taken from [43], and
finally the uplift and rupture duration were estimated using Figure 3 of [29]. From this
figure it can be seen that the majority of the uplift had already occurred by 90 seconds
after t0 - the start of the rupture. The maximum uplift was 11.35 m [29].

Constant Description Value
g Acceleration due to gravity 9.81 ms−2

L Fault half-length 150 km
b Fault half-width 75 km
2T Rupture duration 90 s
h Water depth 5277 m
Cl Speed of sound in water 1500 ms−1

ζ0 Uplift 7 m
r Distance from epicentre 496.6 km
θ Angle to epicentre 183.555◦

α Strike angle of fault −13◦

Table 3.4: Constants and parameters used in the calculation of predicted surface elevation
at DART buoy 21418 for Tohoku 2011 event.

By employing the multi-fault approach to this rupture, it was possible to capture both
the amplitude and timing of the leading tsunami. A "kink" in the model waveform is
visible located at approximately t = 2400 s, this is due to the singularities involved in
the method as discussed in Section 3.4.3. The model over-predicts the trailing waveform
(t > 2500 s).
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(a) Depth transect between Tohoku epicentre and DART buoy 21418

(b) Surface elevation comparison between current model (general compressible) and data recorded
by DART buoy 21418 (red trace) for Tohoku 2011 event.

Figure 3.8: Comparison of current model against DART buoy data for Tohoku 2011.

3.5.1.2 Sumatra 2004 - acoustic–gravity waves

Figures 3.10 and 3.11 present results of a comparison made between the (linear) current
model and a depth integrated numerical model applied to Sumatra 2004. Details of the
parameters used in the model are summarised in Table 3.5.

Computation of the bottom pressure field is for the region to the left of the dashed line
shown in Figure 3.9. Both the time series of Figure 3.10 and the pressure maps of Figure
3.11 demonstrate agreement between theory and numerics at constant depth. Introduction
of variable depth leads to the expected discrepancies between theory and the numerical
model. However, even in the variable depth case, most of the important physics can be
captured using the model.
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Figure 3.9: Overview of area considered for the bottom pressure map. The section to the
left of the black dashed line is that used in the calculations for Figure 3.11. The origin of
x, y co-ordinates is at the earthquake epicentre (yellow star). Fault centroids are shown by
blue stars and the faults delineated by rectangles. Depth below sea-level is indicated by
the colour bar with the white areas at 4 km depth. The four points used to construct the
time series of Figure 3.10 are labelled #1, #2, #3 and #4. The transect AB is shown with
dashed line.
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Parameter Fault 1,2 Fault 3,4 Fault 5,6 Fault 7,8 Fault 9,10
longitude 94.57◦ 93.90◦ 93.21◦ 92.60◦ 92.87◦

latitude 3.83◦ 5.22◦ 7.41◦ 9.70◦ 11.70◦

∆ 0 s 212 s 528 s 853 s 1213 s
L 110 km 75 km 195 km 75 km 175 km
b 65 km 65 km 60 km 47.5 km 47.5 km
2T 60 s 60 s 60 s 60 s 60 s
ζodd 7.02 m 8.59 m 4.72 m 4.49 m 4.60 m
ζeven -3.27 m -3.84 m -2.33 m -2.08 m -2.31 m
W0 odd 0.1170 ms−1 0.1432 ms−1 0.0787 ms−1 0.0748 ms−1 0.0767 ms−1

W0 even -0.0545 ms−1 -0.0640 ms−1 -0.0388 ms−1 -0.0347 ms−1 -0.0385 ms−1

α 37◦ 12◦ 22◦ 4◦ −10◦

Table 3.5: Parameters used for Sumatra 2004 event - ten faults in total. Includes ζ - the
vertical displacement.

In Figure 3.12 we can see the superposition of pressure signals emanating from multi-
ple slender faults with differing orientations, resulting in areas of high pressure, and areas
where the signal is weaker. The pressure contours of column three in Figure 3.11 and
the third column of Figure 3.12 highlight the missing processes of refraction, diffraction
and interference induced by the variable sea depth and areas of localised elevation (red
coloured areas Figure 3.9), with refraction dominating all modes in deep water [27]. In
Figure 3.9 there is a transect with a sea-mount located approximately one third of the way
along AB. The depth profile for this transect is shown at the top of Figure 3.13. Also
shown in Figure 3.13 are pressure signals along the transect for three different times.
The variable depth case (red trace) shows attenuation of the signal for points along the
transect past 400 km (i.e. just after the sea-mount). This shadowing effect is also ap-
parent in Figure 3.12 where the sea-mount is to be found at approximately x = −1500

km, y = −100 km. More generally acoustic–gravity waves propagating into shallow sea
depth experience frequency filtering by the water layer [33, 44]. Low order modes are
associated with smaller critical depths and are therefore able to propagate further onshore
[26, 27]. These results confirm that changing sea depth cannot be ignored when making
these calculations, since it affects the timing and scale of the signals measurable at any
particular point. For instance, in the placement of hydrophones the water should be of a
depth so as to enable recording of a large frequency range [29, 44].
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Figure 3.10: Dynamic pressure time series for points #1, #2, #3 and #4 (from Figure 3.9).
The black trace is the current model (constant depth), the blue trace is a depth integrated
numerical model (constant depth), the red trace is depth integrated numerical but with
variable depth.

3.5.2 Displacement function

Aside from linear bottom displacement function (Eq. 3.2.13), the sensitivity of surface
gravity and acoustic waves are investigated numerically for a half-sine (Eq. 3.5.95) and
an exponential (Eq. 3.5.96) bottom displacement function as shown in the upper panel of
Figure 3.14 [45]:

ζs(x, y, t)= ζ0

[1
2

(
1−cos

πt
T

)
H(T − t)+H(t−T)

]
H(b2 − x2)H(L2 − y2) (3.5.95)

ζe(x, y, t)= ζ0(1−e−αt)H(b2 − x2)H(L2 − y2) (3.5.96)

where H is the Heaviside step function, ζ0 is the residual displacement and α is a decay
constant. For exponential displacement, ζe(t = T)= 2ζ0/3 or T = 1.11/α.

The linear and exponential displacement functions result in very similar surface el-
evation plots, whereas their associated acoustic–gravity wave plots show a difference in
amplitude, with the exponential displacement function delivering a smaller amplitude.
The surface elevation predicted by the current model (general compressible) for a linear
displacement function is also shown.
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Figure 3.11: Snapshots of bottom pressure fields at t=1260 s (top row), t=1800 s (middle
row) and t=2340 s (bottom row) from the current model, Eq. (3.5.92) (left column),
numerical model for the case of constant depth of 4 km (middle column) and numerical
model for the case of variable depth (right column). The domain extent is shown in
Figure 3.9 and the boundary forcing is imposed along the dashed line - also Figure 3.9.
The dynamic pressure variation is indicated with reference to the colour bar where white
corresponds to 0 Pa. The transect AB is shown with dashed line in each subplot.
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Figure 3.12: Maximum absolute values of the bottom pressure (P) of the acoustic wave
generated by the Sumatra 2004 event during the first hour since rupture.

Figure 3.13: (Upper) The ocean profile along section AB (as shown in Figures 3.9 and
3.11). Bottom pressure anomalies along transect AB at t = 1260, 1800 and 2340 s from the
current model (black), numerical model with constant depth (blue) and numerical model
with variable depth (red).
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The half-sine displacement function shows a marked difference in surface elevation
amplitude when compared to either of the linear, or the exponential displacement func-
tions - approximately 50%. Since energy is proportional to the square of the amplitude
this would imply the energy content of the half-sine surface wave to be around one-quarter
that of the other two. The half-sine displacement function is the only one of the three to
have a smooth transition in velocity at t = 0, yet has the greatest acceleration - see Fig-
ure 3.15. The amplitude of the acoustic–gravity wave produced in this case ends up one
order of magnitude larger (by t = 1600 s) than either of the linear or exponential cases
(energy content 100 times greater), suggesting that energy is directed towards producing
a larger acoustic–gravity wave at the expense of the surface wave. One could speculate
that the acoustic–gravity waves are more sensitive to accelerations than the surface wave,
but more work would be needed to establish this. Also. care is needed in interpreting
these results since when the seabed is rigid the magnitude of the acoustic–gravity wave
oscillations continue to increase with time in an unphysical way - see Section 4.6.3.

3.6 Discussion

The separation of scales between acoustic and gravity waves indeed suggests analysing
each wave type separately, as reported in literature. Such separation allows a compre-
hensive, but simplified study compromising the accuracy only slightly. However, such
compromise may lead to a two-fold negative impact on the implementation of a reliable
TEWS. The first, is that reducing the uncertainties is critical in the inverse problem, which
can be done, with the model without adversely affecting the calculation time. The second
is that an inverse approach that employs pure acoustic theory only can initially provide
properties of the fault, but then calculations of the rising tsunami need to be carried out.
Our model enables simultaneous calculation of all acoustic–gravity modes, including the
rising gravity mode (tsunami), thus minimising the calculation time.

The current model includes a constant water depth assumption, which has implications
that cannot be ignored. While the model can estimate the tsunami in the deep water, it
may not be effective in describing the propagation over varying bathymetry and the shelf
break for two principal reasons. The first lies in the assumption of constant depth, and thus
effective techniques that take into account changes due to topography without computing
the whole 3D domain need to be developed. The second reason is seabed elasticity, which
turns out to be important for both tsunami and acoustic–gravity wave arrival times [46].
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Figure 3.14: (Upper) The time series of bottom displacement for linear, half-sine (ζs) and
exponential (ζe) functions. (Middle) The time series of surface elevation (η); and (Lower)
Bottom Pressure signals. Coordinates are x= 1000 km, y = 0 km.
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Figure 3.15: The left panel shows linear displacement function. The middle panel is the
half-sine function and the right panel is the exponential function. Displacements are solid
trace, velocities are dash trace and accelerations are dots. The half-sine function has the
greatest acceleration of the three.

For the tsunami, neglecting elasticity results in overestimation of the phase speed
[47, 26, 48, 49]. The effect is even more dramatic for acoustic–gravity waves as they
can couple to the elastic seabed-floor and travel at speeds reaching 3900ms−1 which
significantly changes their arrival time [25]. The issue of how elasticity of the seabed
modifies the behaviour of the propagating acoustic–gravity waves and surface waves is
addressed in the next chapter.
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Chapter 4

Acoustic–gravity & surface waves due
to slender rupture in elastic seabed1

4.1 Introduction

Chapter 3 extended the work of [16] from a purely acoustic description of a slender fault
rupture into one that now includes the surface wave components as well. Also devel-
oped was the idea of a multi-fault whereby more complex fault arrangements can be
constructed from single slender faults by superposition. However, the seabed thus far
has been regarded as rigid, although it is known that the elastic properties of the solid
medium should not be ignored [46, 20]. Water compressibility and seabed elasticity af-
fect the phase speed of surface waves, and thus the arrival times of trans-oceanic tsunamis
[20].

A complementary work [25] investigated the consequences of imposing an elastic
seabed as support for a liquid layer residing in a gravitational field upon the form of the
dispersion relation. The inclusion of an elastic seabed, as opposed to a rigid one, results
in modification of the boundary conditions at the seabed. In this setting the dispersion
relation has a more complicated form, and the acoustic–gravity waves are able to enter
shallower water before dissipating into the elastic medium. In stark contrast to the rigid-
seabed case the first acoustic mode is able to propagate as a Scholte wave to the shore,
where it then becomes a Rayleigh wave [25]. A Scholte wave (also known as a seismic in-
terface wave) is a wave propagating along the interface between two media with different
shear speeds, such as the interface between the seabed and the water. When propagating

1[2]
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on the free surface of a solid the wave is referred to as a Rayleigh wave [50].

Note that no rupture was considered in [25]. The primary objective of this chapter is
to combine the ground movement of rectangular slender faults with an elastic seabed, in
order to study the contribution of elasticity to the propagation of both acoustic–gravity
waves and surface waves. The results of this chapter should help fill a gap in the literature
identified within [27] in which the authors claim solutions for acoustic–gravity waves
produced by disturbances over an elastic seabed in 3D are missing from the literature.

Another difference encountered when studying the elastic case is that rather than the
single surface gravity wave (found in rigid seabed analysis) there is now the possibility
of two surface gravity waves [30]. There is the usual tsunami (referred here as mode 01),
and another mode of negligible amplitude which does not propagate for all frequencies
(referred here as mode 00 [30]). In the study of the acoustic–gravity waves propagating
over an elastic seabed, we find that important information relating to the fault geometry
and dynamics can be extracted from the acoustic signal. Also in this chapter we derive
improved estimates for the acoustic–gravity wave critical frequencies, estimating the cut-
off frequency for the second surface wave (mode 00), and presentation of a method for
rapid calculation of approximate phase velocity curves which may be useful in developing
a real time tsunami early warning system. We ignore terms of second order and higher
(i.e. non-linear terms) since the free surface displacements are small in comparison with
the water depth [37], and also small in comparison with the wavelengths considered [51].
In addition the gravity term that is present in the full wave equation is omitted because its
contribution is small (see Figure 2 of [20]).

This chapter comprises seven main sections. The mathematical formulation combin-
ing ground movement with elasticity is found in Section 4.2, with its solution in Section
4.3. Section 4.4 presents improved approximations for the acoustic–gravity wave cutoff
frequencies, and an estimate of the cutoff frequency for the mode 00 surface wave. Sec-
tion 4.5 proposes a method for rapid calculation of approximate phase velocity curves
which does not necessitate solution of the dispersion relation at each data point. Section
4.6 links the developed theory to numerical results obtained from both synthetic stimulus,
and real data from hydrophone, seismograph and DART buoys. The chapter concludes
with the discussion in Section 4.7.
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(a) Cross section through x, z plane. Water depth is h, surface eleva-
tion is η(x, y, t), liquid velocity potential is φl , solid dilation poten-
tial is φs and solid rotation potential isΨ. Densities in the liquid and
solid medium are ρl and ρs respectively.

(b) Top view of
slender fault

Figure 4.1: Representation of the flow domain.

4.2 Governing equations

The water layer is considered inviscid, homogeneous, of constant depth h, residing in a
gravitational field of constant acceleration 9.81ms−2. The water layer is assumed un-
bounded in x and y and is supported by an infinitely deep elastic half-space. The origin
of coordinates is taken at the unperturbed free surface directly above the centroid of the
slender fault, with the z axis pointing vertically upwards. Assuming irrotational flow the
problem is expressed in terms of a velocity potential function for the liquid φl , along with
a dilation potential φs and rotation potential Ψ for the solid layer (note that the subscript
s was omitted from Ψ since it only exists in the solid.). As in [25] we make use of lin-
earised, irrotational flow for the liquid and linear elasticity for the solid. A representation
of the flow domain is given in Figure 4.1a with a top view of the slender fault in Figure
4.1b. With i, j, k as unit vectors the velocity in the liquid is given by,

U̇l =−∇φl = u̇li+ v̇lj+ ẇlk=−∂φl

∂x
i− ∂φl

∂y
j− ∂φl

∂z
k, (4.2.1)

which implies

u̇l =−∂φl

∂x
, v̇l =−∂φl

∂y
, ẇl =−∂φl

∂z
. (4.2.2)
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The solid displacements are then

Us =∇φs +∇×Ψ= usi+vsj+wsk, (4.2.3)

us = ∂φs

∂x
+

(
∂ψz

∂y
− ∂ψy

∂z

)
, vs = ∂φs

∂y
+

(
∂ψx

∂z
− ∂ψz

∂x

)
, ws = ∂φs

∂z
+

(
∂ψy

∂x
− ∂ψx

∂y

)
. (4.2.4)

The potentials are governed by three wave equations. In the liquid region

∂2φl

∂x2 + ∂2φl

∂y2 + ∂2φl

∂z2 = 1
C2

l

∂2φl

∂t2 , −h ≤ z ≤ 0, (4.2.5)

where Cl is the speed of sound in water. In the solid region

∂2φs

∂x2 + ∂2φs

∂y2 + ∂2φs

∂z2 = 1
C2

p

∂2φs

∂t2 , z ≤−h, (4.2.6)

∂2Ψ

∂x2 + ∂2Ψ

∂y2 + ∂2Ψ

∂z2 = 1
C2

s

∂2Ψ

∂t2 , z ≤−h, (4.2.7)

where Cp and Cs are the pressure and shear wave velocities respectively

Cp =
√

1
ρs

(
λ+2µ

)
, Cs =

√
µ

ρs
, (4.2.8)

λ,µ are Lamé constants and ρs is the density of the solid. At the free-surface we have the
combined kinematic and dynamic boundary condition

∂2φl

∂t2 + g
∂φl

∂z
= 0, z = 0. (4.2.9)

In addition, there are four boundary conditions for the seabed. The first of these ensures
the vertical component of velocity in the liquid matches that of the solid. The component
ws is the vertical component of the seabed motion when there is no rupture (as studied in
[25]) and is small, (however ∂ws/∂t may not be). The magnitude of ws ranges from 10−6

m for microseisms, to 10−2 m for severe earthquakes [25].

ẇl =
∂ws

∂t
+W(x, y, t), z =−h. (4.2.10)

The definition of W(x, y, t) closely follows that in [16] and describes the motion of the
rupture

W(x, y, t)= R(x, y)τ(t), z =−h, (4.2.11)
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R(x, y)=
W0 = const |x| < b, |Y | <L

0 elsewhere
, τ(t)=

1 −T < t < T

0 |t| > T
, L = ϵL. (4.2.12)

The duration of the rupture is 2T, the slender fault half-width is b, and the slender fault
half-length is L. The slenderness parameter is then ϵ = b/L ≪ 1 - see Figure 3.1. Note
that if there is no rupture i.e. W(x, y, t)= 0, then the boundary condition (4.2.10) reduces
to that of 25, (8a), ẇl = ∂ws/∂t. On the other hand, when the seabed is rigid, ws = 0, and
we recover the bottom boundary condition 16, (2.3), ẇl = W(x, y, t) = −∂φl /∂z, but this
time with a minus sign due to this chapter following the sign choices in 25, (1a, 1b).

The next boundary condition states that the axial stress σzz is equal in magnitude, but
of opposite direction to the liquid pressure at the seabed

σzz =λ
(
∂us

∂x
+ ∂vs

∂y
+ ∂ws

∂z

)
+2µ

∂ws

∂z
=−Pl , z =−h. (4.2.13)

The remaining two boundary conditions define no shear on the seabed

σxz =µ
(
∂us

∂z
+ ∂ws

∂x

)
= 0, σyz =µ

(
∂vs

∂z
+ ∂ws

∂y

)
= 0, z =−h. (4.2.14)

The dynamic pressure and surface elevation are obtained from

Pl = ρl
∂φl

∂t
, η= 1

g
∂φl

∂t
. (4.2.15)

We also require φl , φs,Ψ and all derivatives to decay to zero as x, y, t →±∞, z →−∞.

4.3 Solutions

We introduce multiple-scale co-ordinates following [16]

x, z, t; X = ϵ2x, Y = ϵy. (4.3.16)

The wave equations (4.2.5), (4.2.6), and (4.2.7) can then be re-written as

∂2φl

∂x2 +2ϵ2 ∂
2φl

∂x∂X
+ϵ2∂

2φl

∂Y 2 + ∂2φl

∂z2 = 1
C2

l

∂2φl

∂t2 , −h ≤ z ≤ 0, (4.3.17)

∂2φs

∂x2 +2ϵ2 ∂
2φs

∂x∂X
+ϵ2∂

2φs

∂Y 2 + ∂2φs

∂z2 = 1
C2

p

∂2φs

∂t2 , −∞≤ z ≤−h, (4.3.18)
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∂2Ψ

∂x2 +2ϵ2 ∂2Ψ

∂x∂X
+ϵ2∂

2Ψ

∂Y 2 + ∂2Ψ

∂z2 = 1
C2

s

∂2Ψ

∂t2 , −∞≤ z ≤−h. (4.3.19)

Let φl =φl0(x, X ,Y , z, t)+ϵ2φl2(x, X ,Y , z, t), with similar expressions for φs andΨ then
the perturbation equations at O(ϵ0) describe the two dimensional problem of an infinitely
long slender fault

∂2φl0

∂x2 + ∂2φl0

∂z2 − 1
C2

l

∂2φl0

∂t2 = 0, −h ≤ z ≤ 0, (4.3.20)

∂2φs0

∂x2 + ∂2φs0

∂z2 − 1
C2

p

∂2φs0

∂t2 = 0, −∞< z ≤−h, (4.3.21)

∂2Ψ0

∂x2 + ∂2Ψ0

∂z2 − 1
C2

s

∂2Ψ0

∂t2 = 0, −∞< z ≤−h. (4.3.22)

At O(ϵ2),

∂2φl2

∂x2 + ∂2φl2

∂z2 − 1
C2

l

∂2φl2

∂t2 =−
{
∂2φl0

∂Y 2 +2
∂2φl0

∂x∂X

}
, −h ≤ z ≤ 0, (4.3.23)

∂2φs2

∂x2 + ∂2φs2

∂z2 − 1
C2

p

∂2φs2

∂t2 =−
{
∂2φs0

∂Y 2 +2
∂2φs0

∂x∂X

}
, −∞≤ z ≤−h, (4.3.24)

∂2Ψ2

∂x2 + ∂2Ψ2

∂z2 − 1
C2

s

∂2Ψ2

∂t2 =−
{
∂2Ψ0

∂Y 2 +2
∂2Ψ0

∂x∂X

}
, −∞≤ z ≤−h. (4.3.25)

The fault motion, elastic properties and elastic dispersion relation are all captured at O(ϵ0).
Thus, the O(ϵ2) boundary conditions for the liquid layer are those for rigid seabed and no
fault motion:

∂2φl2

∂t2 + g
∂φl2

∂z
= 0, z = 0, (4.3.26)

∂φl2

∂z
= 0, z =−h. (4.3.27)

4.3.1 Leading order potential

By the double Fourier transforms F =
∞∫

−∞
Feiωtdt, F =

∞∫
−∞

Fe−ikxdx, with ω the an-

gular velocity and k the wave-number, equations (4.3.20), (4.3.21), (4.3.22) become

∂2φl0

∂z2 +
(
ω2

C2
l

−k2

)
φl0 = 0, (4.3.28)
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∂2φs0

∂z2 +
(
ω2

C2
p
−k2

)
φs0 = 0, (4.3.29)

∂2Ψ0

∂z2 +
(
ω2

C2
s
−k2

)
Ψ0 = 0. (4.3.30)

Let E1, E2, D1, D2 be unknowns to be solved for, then the choice exists to select ei-

ther r2 =
(
ω2

C2
l
−k2

)
, with r ∈ R, leading to a trial solution for φl0 in (4.3.28) of the form

φl0(z) = E1 cos(rz)+E2 sin(rz), or to select r2 =
(
k2 − ω2

C2
l

)
, leading to a trial solution of

the form φl0(z)= E1 cos(irz)+E2 sin(irz), as in [25]. To maintain compatibility with [25]

we choose r2 =
(
k2 − ω2

C2
l

)
. For equations (4.3.29) and (4.3.30) we take q2 =

(
k2 − ω2

C2
p

)
and

s2 =
(
k2 − ω2

C2
s

)
. As in [25] r, q, and s are wave-numbers.

To arrive at a trial solution for (4.3.29) choose φs0(z) = D1eqz, because φs0(z) → 0 as
z →−∞ implies no terms involving e−qz.

In order to obtain physical solutions in which solid displacements decrease with depth
we must also have s, q ∈R≥0. If this were not the case, then displacements would oscillate
or increase with depth - [30]. By a similar argument Ψ0(z)= D2eszj.

The boundary condition at z = 0 (leading order term) is

∂2φl0

∂t2 + g
∂φl0

∂z
= 0, z = 0. (4.3.31)

Then applying first Fourier transform gives

∫ ∞

−∞

(
∂2φl0

∂t2 + g
∂φl0

∂z

)
eiωtdt = 0 (4.3.32)

∫ ∞

−∞
∂2φl0

∂t2 eiωtdt+ g
∂

∂z

∫ ∞

−∞
φl0eiωtdt = 0 (4.3.33)[

∂φl0

∂t
eiωt

]∞
−∞

− iω
∫ ∞

−∞
∂φl0

∂t
eiωtdt+ g

∂φ̄l0

∂z
= 0. (4.3.34)

Assume φl0 → 0 as |t| → 0 and |x| → 0 along with all derivatives, then the boundary term
in (4.3.34) becomes zero, leaving

− iω
{[
φl0eiωt

]∞
−∞− iω

∫ ∞

−∞
φl0eiωtdt

}
+ g

∂φ̄l0

∂z
= 0. (4.3.35)
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Which reduces to
−ω2φ̄l0 + g

∂φ̄l0

∂z
= 0. (4.3.36)

Since (4.3.36) does not contain any terms involving x after both Fourier transforms (4.3.31)
becomes

−ω2φl0 + g
∂φl0

∂z
= 0, z = 0. (4.3.37)

Similarly applying Fourier transforms to the first boundary condition at z =−h

ẇl =
∂ws

∂t
+W(x, y, t), z =−h. (4.3.38)

Using leading order terms

ws0 = ∂φs0

∂z
+ ∂ψ0y

∂x
, and ẇl0 =−∂φl0

∂z
, (4.3.39)

− ∂φl0

∂z
= ∂2φs0

∂t∂z
+ ∂2ψ0y

∂t∂x
+W(x, y, t). (4.3.40)

It is only necessary to apply the relevant transforms to the first three terms of (4.3.40) - the
required transforms for W(x, y, t) are already known from [16]. Assembling terms gives

− ∂φl0

∂z
=−iω

∂φs0

∂z
+ωkψ0y +

4W0 sin(kb)sin(ωT)
kω

, z =−h. (4.3.41)

The second boundary condition at z =−h is σzz =−Pl

σzz =λ
(
∂us0

∂x
+ ∂ws0

∂z

)
+2µ

∂ws0

∂z
=−Pl0 =−ρl

∂φl0

∂t
, (4.3.42)

with
us0 = ∂φs0

∂x
− ∂ψ0y

∂z
, ws0 = ∂φs0

∂z
+ ∂ψ0y

∂x
. (4.3.43)

After application of both Fourier transforms we have

λ

−k2φs0 +
∂2φs0

∂z2

+2µ

∂2φs0

∂z2 + ik
∂ψ0y

∂z

= iρlωφl0, z =−h. (4.3.44)

The third boundary condition at z =−h is σxz = 0

∂us0

∂z
+ ∂ws0

∂x
= 0. (4.3.45)
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After application of both Fourier transforms we have

2ik
∂φs0

∂z
−k2ψ0y −

∂2ψ0y

∂z2 = 0, z =−h. (4.3.46)

Finally the fourth boundary condition at z =−h is σyz = 0

∂vs0

∂z
+ ∂ws0

∂y
= 0, (4.3.47)

with
vs0 = 0, and ws0 = ∂φs0

∂z
+ ∂ψ0y

∂x
. (4.3.48)

Again, after application of both Fourier transforms to (4.3.47) we arrive at

∂2φs0

∂z∂y
+ ik

∂ψ0y

∂y
= 0, z =−h. (4.3.49)

4.3.2 Transformed governing equations

Re-name potentials in accordance with (4.3.50) for ease of notation.

Φs =φs0, Φl =φl0, ψy =ψ0y, Ψ=Ψ, (4.3.50)

∂2Φl

∂z2 +
(
ω2

C2
l

−k2

)
Φl = 0,

∂2Φs

∂z2 +
(
ω2

C2
p
−k2

)
Φs = 0,

∂2Ψ

∂z2 +
(
ω2

C2
s
−k2

)
Ψ= 0.

(4.3.51)
At z = 0 we have the (transformed) boundary condition for the liquid surface

−ω2Φl + g
∂Φl

∂z
= 0. (4.3.52)

Then, at z =−h we have four (transformed) boundary conditions for the seabed

− ∂Φl

∂z
=−iω

∂Φs

∂z
+ωkψy + 4W0 sin(kb)sin(ωT)

kω
, (4.3.53)

λ

(
−k2Φs + ∂2Φs

∂z2

)
+2µ

(
∂2Φs

∂z2 + ik
∂ψy

∂z

)
= iρlωΦl , (4.3.54)

2ik
∂Φs

∂z
−k2ψy −

∂2ψy

∂z2 = 0, (4.3.55)

58 of 146



Chapter 4 Acoustic–gravity & surface waves due to slender rupture in elastic seabed11

∂2Φs

∂z∂y
+ ik

∂ψy

∂y
= 0. (4.3.56)

With the requirement that Φl ,Φs and Ψ, along with all their derivatives, decay to zero as
y→±∞, z →−∞.

4.3.3 Form for potentials

Substitute Φl(z)= E1 cos(irz)+E2 sin(irz), into boundary condition at z = 0 to arrive at

E2 =− iω2

gr
E1, (4.3.57)

in agreement with [25]. Also take Φs(z) = D1eqz + D̂1e−qz and Ψ(z) = ψyj with ψy =
D2esz + D̂2e−sz, but note; in order to obtain physical solutions in which solid displace-
ments decrease with depth must have D̂1 = D̂2 = 0 and s, q ∈ R≥0. If this were not the
case then displacements would oscillate or increase with depth - [30]. Applying boundary
condition σxz = 0 (4.3.55) at z =−h

D2 = 2ikq
k2 + s2 eh(s−q)D1. (4.3.58)

Applying boundary condition (4.3.53) at z =−h we obtain

−E1rsinh(rh)+ ω2E1

g
cosh(rh)− iωqD1e−qh

+ 2iωk2qeh(s−q)D1e−sh

k2 + s2 + 4W0 sin(kb)sin(ωT)
ωk

= 0. (4.3.59)

Applying boundary condition (4.3.54) at z =−h

λ
(
−k2D1e−qh +D1q2e−qh

)
+2µ

(
D1q2e−qh − 2k2D1qe−qhs

k2 + s2

)
− iρlω

(
E1 cosh(rh)− ω2E1

gr
sinh(rh)

)
= 0. (4.3.60)

Since (4.3.59) and (4.3.60) are essentially a pair of simultaneous equations in unknowns
E1 and D1 they can be solved in this case resulting in

E1 =− H1

ωkH2
, D1 = H3

kH2
, (4.3.61)
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with

H1 = 4grW0 sin(kb)sin(ωT)e−qh
[
−2k2µqs+ (

k2 + s2)[(
µ+ λ

2

)
q2 − λk2

2

]]
, (4.3.62)

and

H2 =
(
−2qk2ω2r

(
µs+ ρl g

2

)
+ (

k2 + s2)ω2r
(
q2

(
µ+ λ

2

)
+ ρl gq

2
− k2λ

2

))
e−qh cosh(rh)

+
(
2qk2

(
µgr2s+ ρlω

4

2

)
− (

k2 + s2)(gr2
(
µ+ λ

2

)
q2 + ρlω

4q
2

− gr2k2λ

2

))
e−qh sinh(rh) ,

(4.3.63)

H3 = 2iρlW0
(
k2 + s2)(ω2 sinh(rh)− gr cosh(rh)

)
sin(kb)sin(ωT) . (4.3.64)

Setting H2 = 0 and rearranging yields

tanh(rh)=
ω2

r

{
ρl q

(k2−s2)
(k2+s2) +

1
g

[
4k2qsµ
(k2+s2) −

((
λ+2µ

)
q2 −λk2)]}

ω4qρl
gr2

(k2−s2)
(k2+s2) +

[
4k2qsµ
(k2+s2) −

((
λ+2µ

)
q2 −λk2

)] , (4.3.65)

which is the dispersion relation of [25]. The zeros of H2 (i.e. dispersion relation solutions)
locate the poles for the residue calculations that come later. Therefore we have

Φl(z,ω,k)=− H1

ωkH2

(
cos(irz)− iω2

gr
sin(irz)

)
, (4.3.66)

Φs(z,ω,k)= H3

kH2
eqz, Ψ= 2iq

k2 + s2
H3

H2
eh(s−q)+szj. (4.3.67)

Setting q = s = 0 reduces to the rigid case where the velocity potential from [1] is recov-
ered. H1 and H2 reduce to

H1 =−2W0 grλk4 sin(kb)sin(ωT), (4.3.68)

H2 =−1
2

rλk4 (
ω2 cosh(rh)− grsinh(rh)

)
. (4.3.69)

In this case, Φl(z,ω,k) becomes

Φl(z,ω,k)=−4W0 sin(kb)sin(ωT)
µkω

{
µgcos

(
µz

)+ω2 sin
(
µz

)
ω2 cos

(
µh

)+µgsin
(
µh

)} , (4.3.70)

which is in agreement with [1] (note that the sign difference is due to the definition of the
velocity potential).
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4.3.4 Inverse Fourier transforms

The leading order potentials are retrieved by applying the inverse Fourier transforms as
follows

φ̄l0(z,ω, x)= 1
2π

∞∫
−∞

Φl(z,ω,k)eikxdk, φl0(z, t, x)= 1
2π

∞∫
−∞

Φl(z,ω,k)e−iωtdω. (4.3.71)

From (4.3.66) we have

φl0 =
1

2π

∞∫
−∞

 1
2π

∞∫
−∞

{
− H1

ωkH2

[
cos(irz)− iω2

gr
sin(irz)

]}
eikxdk

e−iωtdω, (4.3.72)

φs0 = 1
2π

∞∫
−∞

 1
2π

∞∫
−∞

{
H3

kH2
eqz

}
eikxdk

e−iωtdω, (4.3.73)

ψ0y = 1
2π

∞∫
−∞

 1
2π

∞∫
−∞

{
2iq

k2 + s2
H3

H2
eh(s−q)+sz

}
eikxdk

e−iωtdω. (4.3.74)

Re-writing these expressions gives

φl0 =
1

2π

∞∫
−∞

ie−iωtI1dω, φs0 = 1
2π

∞∫
−∞

ie−iωtI2dω, ψ0y = 1
2π

∞∫
−∞

i e−iωtI3dω,

(4.3.75)
where I1, I2, I3 are the k integrals

I1 = 1
2πi

∞∫
−∞

eikx −H1

ωkH2

[
cos(irz)− iω2

gr
sin(irz)

]
dk, I2 = 1

2πi

∞∫
−∞

eikx H3

kH2
eqzdk,

(4.3.76)

I3 = 1
2πi

∞∫
−∞

eikx 2iq
k2 + s2

H3

H2
eh(s−q)+szdk. (4.3.77)

In each case the integrand has poles at the zeros of H2, i.e. whenever the dispersion
relation (4.3.65) is satisfied. Substitute out r, q and s to make H2 purely a function of k.
Then values for I1, I2, I3 can be calculated from the residues.

Figure 4.2 shows the various zones where r, q and s take on real and imaginary val-
ues. There are zones corresponding to surface waves and acoustic–gravity waves. The
remaining zones close to k = 0 are not physical solutions, since imaginary values taken
on by q and/or s would imply oscillations at infinite depth in the elastic medium.
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Figure 4.2: Zones possible according as r, q, s real or imaginary for the case ω= 2π, Cl =
1450ms−1, Cs = 3550ms−1, Cp = 6300ms−1. Zone 1 (orange) has r, q, s ∈ R and corre-
sponds to surface-gravity waves. Zone 2 (green) has r ∈ iR,with q, s ∈ R and corresponds
to acoustic–gravity waves. The remaining zones near k = 0 (grey) are not physical solu-
tions. The points where r, s, q transition real ⇌ imaginary are designated ±kr =±0.00433
(black dots) ±ks =±0.00177 (red dots) and ±kq =±0.00099 (blue dots) respectively.

Moreover, q and s have to be real and non-negative, otherwise oscillations would
increase with increasing depth into the elastic medium. Examination of I1, I2, I3 indicate
possible poles might also exist at k = 0 and when k2 + s2 = 0. When k = 0 the sin(kb)
term in the numerator (from H1 and H3) ensures a factor of b is reached in the limit
k → 0, so k = 0 is a removable singularity. For the case k2 + s2 = 0 there is a possible
pole when k =ω/

p
2Cs, but this pole lies in the unphysical zone of Figure 4.2. From [25]

we have that s = 0 (at ks) represents a point where the energy spreads out over the whole
solid depth. At that point the wave amplitude vanishes and so ceases propagation.

When r ⇒ r0m with m = 0,1

r =
√√√√k2 − ω2

C2
l

, =⇒ k0m =
√√√√ω2

C2
l

+ r2
0m, (4.3.78)

this corresponds to surface waves.
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Figure 4.3: Acoustic–gravity wave solutions to dispersion relation are located at the in-
tersections of dashed and solid curves (blue diamonds) for ω= 2π and depth h = 4000 m.
Dash curve is LHS of (4.3.65), solid curve is RHS of (4.3.65) when r ∈ iR.

There are two possible modes for surface waves, mode 00 can propagate if ω>ω00 -
the cutoff frequency for this mode, and mode 01 is the usual tsunami. If instead r ⇒ irn,
then acoustic–gravity waves are possible and

kn =
√√√√ω2

C2
l

− r2
n (4.3.79)

up to a maximum value of n = N, after which the evanescent waves exist with wave-
number Λn

kn = iΛn = i

√√√√r2
n −

ω2

C2
l

=
√√√√ω2

C2
l

− r2
n. (4.3.80)

Solutions to the dispersion relation involving acoustic–gravity waves for the case ω= 2π

occur between ks = 0.00177 and kr = 0.00433. They are marked with blue diamonds in
Figure 4.3.
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Consider the liquid terms first, and break φl0 into the different regions according to
varying ω, for r ∈ iR:

φl0 =
1

2π

−ωn∫
−∞

ie−iωt 1
2πi

∞∫
−∞

eikx −H1

ωkH2

[
cos(irz)− iω2

gr
sin(irz)

]
dkdω

+ 1
2π

ωn∫
−ωn

ie−iωt 1
2πi

∞∫
−∞

eikx −H1

ωkH2

[
cos(irz)− iω2

gr
sin(irz)

]
dkdω

+ 1
2π

∞∫
ωn

ie−iωt 1
2πi

∞∫
−∞

eikx −H1

ωkH2

[
cos(irz)− iω2

gr
sin(irz)

]
dkdω,

(4.3.81)

whereas for r ∈R:

φl0 =
1

2π

0∫
−∞

ie−iωt 1
2πi

∞∫
−∞

eikx −H1

ωkH2

[
cos(irz)− iω2

gr
sin(irz)

]
dkdω

+ 1
2π

∞∫
0

ie−iωt 1
2πi

∞∫
−∞

eikx −H1

ωkH2

[
cos(irz)− iω2

gr
sin(irz)

]
dkdω

+ 1
2π

−ω00∫
−∞

ie−iωt 1
2πi

∞∫
−∞

eikx −H1

ωkH2

[
cos(irz)− iω2

gr
sin(irz)

]
dkdω

+ 1
2π

∞∫
ω00

ie−iωt 1
2πi

∞∫
−∞

eikx −H1

ωkH2

[
cos(irz)− iω2

gr
sin(irz)

]
dkdω.

(4.3.82)

It might be noticed that in (4.3.82) the integration limits in the third and fourth terms do
not encompass the entire real line. This is because there is no contribution to Mode 00
until |ω| >ω00. At the cut-off frequency ω00 there is a bifurcation when one propagating
mode becomes two - see Figure 4.4.

We demonstrate the application of Rayleigh damping and contour integration using
residues for φl0 from (4.3.75) along an integration path valid when ωn < ω < ∞. The
remaining paths when −∞<ω<ωn and −ωn <ω<ωn are handled in a similar fashion.

Considering only the acoustic–gravity waves break the ω integral in (4.3.75)

φl0 =
1

2π

∞∫
−∞

ie−iωtI1dω= 1
2π

−ωn∫
−∞

ie−iωtI−dω+ 1
2π

+ωn∫
−ωn

ie−iωtI edω+ 1
2π

∞∫
+ωn

ie−iωtI+dω.

(4.3.83)

64 of 146



Chapter 4 Acoustic–gravity & surface waves due to slender rupture in elastic seabed17

Figure 4.4: Activation of the surface wave modes with varying ω. For frequencies |ω| ≤
ω00 the only propagating mode is Mode 0 (tsunami). For frequencies |ω| ≥ω00 two modes
propagate, namely Mode 0 (tsunami) and Mode 00 (a small surface wave).

To enable the indentation of the path of integration in the complex k-plane follow [16]
and apply the method of Rayleigh damping by replacing ω by ω′ =ω+ iδ′ where δ′ > 0 is
a small positive number set to zero in the limit. Thus

±k′
n ≈±

√
(ω+ iδ′)2 −ω2

n

Cl
, n = 1,2,3, . . . , N. (4.3.84)

Expanding as a series in δ′ and ignoring the very small terms of O(δ′2) gives

k′
n ≈ kn + i

δ′ω

Cl

√
ω2 −ω2

n

, (4.3.85)

with k1 > k2 > ·· · > kN . Due to Rayleigh damping +k′
n is slightly above the k axis (the

integration path) if ω > 0 and slightly below the real axis if ω < 0. Conversely −k′
n is

slightly below the real axis if ω > 0 and slightly above the real axis if ω < 0. Now, take
the limit as δ′ → 0+. For the integral I+ from (4.3.83) indent the path below the poles on
the positive real side and above the poles on the negative real side of the k plane. The
anticlockwise contour is closed by a large semi-circle in the upper k plane - see Figure
4.5. From [52] if

f (z)= P(z)
Q(z)

, (4.3.86)

and a is a simple root of Q, then

Res [ f (z),a]= P(a)
Q′(a)

. (4.3.87)
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Figure 4.5: Integration path in the k plane for the case when ω> 0.

Thus in our case

I+ = −H1|k=kn

ωkn∂kH2|k=kn

[
cos(irz)− iω2

gr
sin(irz)

]
eiknx (4.3.88)

Similar calculations determine I− and I e see [16] for more details. Therefore, after appli-
cation of the Rayleigh damping method and contour integration using the residue theorem
around a positively oriented simple closed curve, we have

φl0 =
1

2π

N∑
n=1

−ωn∫
−∞

ie−iωt −H1|k=−kn

−ωkn∂kH2|k=−kn

[
cos(irz)− iω2

gr
sin(irz)

]
e−iknxdω

+ 1
2π

∞∑
n=N+1

ωn∫
−ωn

ie−iωt −H1|k=iΛn

ωiΛn∂kH2|k=iΛn

[
cos(irz)− iω2

gr
sin(irz)

]
e−Λnxdω

+ 1
2π

N∑
n=1

∞∫
ωn

ie−iωt −H1|k=kn

ωkn∂kH2|k=kn

[
cos(irz)− iω2

gr
sin(irz)

]
eiknxdω,

(4.3.89)

with r = irn ∈ iR, ∂k = ∂/∂k

H1|k=kn = 4igrnW0 sin(knb)sin(ωT)e−qnh
[
−2k2

nµqnsn +
(
k2

n + s2
n
)[(

µ+ λ

2

)
q2

n −
λk2

n

2

]]
,

(4.3.90)
H1|k=−kn =−H1|k=kn , (4.3.91)
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H1|k=iΛn = 4igrnW0 sin(iΛnb)sin(ωT)e−qnh
[
2Λ2

nµqnsn +
(
s2

n −Λ2
n
)[(

µ+ λ

2

)
q2

n +
λΛ2

n

2

]]
.

(4.3.92)
The derivative terms are calculated by first making (4.3.63) for H2 a function of k only
using the following substitutions

q(k)=
√

k2 − ω2

C2
p

, s(k)=
√

k2 − ω2

C2
s
, r(k)=

√√√√k2 − ω2

C2
l

, (4.3.93)

then differentiate with respect to k using Maple. The derivative terms so obtained are
given in Appendix (B). The Maple code for these operations is available.

In support of the validity of the integration process Figure 4.6 shows a plot of |H2|−1

in the complex plane when H2 = H2(k) and k is allowed to take on complex values.
Cross-sections through the real and imaginary axes appear in Figures 4.7a and 4.7b re-
spectively. The poles of the function lie on the real axis, whereas the zeroes lie on the
imaginary axis. If the range of the plots were to be extended then the function decays
to zero everywhere. As empirical evidence for the validity of the integration, when the
calculations are complete, we find good agreement with existing synthetic and real data
plots for both acoustic–gravity waves and surface waves (e.g. see Figures 4.20 and 4.24).

In the case where r ⇒ r0m, k ⇒ k0m with r0m a real number and m = 0,1 then there
may exist two possibilities for surface waves

φl0 =
1

2π

0∫
−∞

ie−iωt −H1|k=−k01

−ωk01∂kH2|k=−k01

[
cos(irz)− iω2

gr01
sin(irz)

]
e−ik01xdω

+ 1
2π

∞∫
0

ie−iωt −H1|k=k01

ωk01∂kH2|k=k01

[
cos(irz)− iω2

gr01
sin(irz)

]
eik01xdω

+ 1
2π

−ω00∫
−∞

ie−iωt −H1|k=−k00

−ωk00∂kH2|k=−k00

[
cos(irz)− iω2

gr00
sin(irz)

]
e−ik00xdω

+ 1
2π

∞∫
ω00

ie−iωt −H1|k=k00

ωk00∂kH2|k=k00

[
cos(irz)− iω2

gr00
sin(irz)

]
eik00xdω.

(4.3.94)
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Figure 4.6: Plot of 1
|H2| in the complex plane when H2 = H2(k) and k is allowed to take

on complex values. The angular frequency in this case is ω= 2π as in Figure 4.3.

(a) (b)

Figure 4.7: (a) Cross-section of Figure 4.6 through real axis showing locations of the poles
when ω = 2π. (b) Cross-section of Figure 4.6 through imaginary axis showing locations
of the zeroes when ω= 2π
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Figure 4.8: Left panel: ω<ω00 in this case the dispersion relation has only one solution
at the intersection of the red and blue curves - this is the usual tsunami mode. Middle
panel: this is just at the point where the second mode becomes active. Right panel: for
frequencies ω > ω00 two intersections (solutions to the dispersion relation) are possible.
The first being mode 00 and the second mode 0 (tsunami). Note in this figure the blue
curve is not drawn to scale in order to give a better qualitative description of the behaviour.

In this case

H1

∣∣∣
k=k0m

= 4gr0mW0 sin(k0mb)sin(ωT)e−q0mh

×
(
−2k2

0mµq0ms0m + (
k2

0m + s2
0m

)(
q2

0m

(
µ+ λ

2

)
− λk2

0m

2

))
, (4.3.95)

H1

∣∣∣
k=−k0m

=−H1

∣∣∣
k=k0m

. (4.3.96)

The derivative term is again to be found in Appendix (B).

Using the substitutions

k =
√√√√r2 + ω2

C2
l

, q =
√√√√r2 + ω2

C2
l

− ω2

C2
p

, s =
√√√√r2 + ω2

C2
l

− ω2

C2
s
, (4.3.97)

the dispersion relation (4.3.65) can be written in terms of r and ω alone, and in this case
the condition for the existence of the 00th mode for a particular ω is

d
dr

tanh(rh)> d
dr

[RHS of (4.3.65)] . (4.3.98)

Also see Figure 4.8 for an illustration of the mode 00 cutoff frequency ω00.
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The expressions for the velocity potential in the liquid layer can be further reduced to

φl0 =
1
π

N∑
n=1

∞∫
ωn

ie−iωt −H1|k=kn

ωkn∂kH2|k=kn

[
cos(irz)− iω2

gr
sin(irz)

]
eiknxdω

+ 1
π

∞∫
0

ie−iωt −H1|k=k01

ωk01∂kH2|k=k01

[
cos(irz)− iω2

gr
sin(irz)

]
eik01xdω

+ 1
π

∞∫
ω00

ie−iωt −H1|k=k00

ωk00∂kH2|k=k00

[
cos(irz)− iω2

gr
sin(irz)

]
eik00xdω

+ 1
π

∞∑
n=N+1

ωn∫
0

ie−iωt −H1|k=iΛn

ωiΛn∂kH2|k=iΛn

[
cos(irz)− iω2

gr
sin(irz)

]
e−Λnxdω.

(4.3.99)

Returning to the expression for the displacement potential in the solid given by

φs0 = 1
2π

∞∫
−∞

ie−iωt 1
2πi

∞∫
−∞

eikx H3

kH2
eqzdkdω, (4.3.100)

and following a similar procedure to that of the liquid velocity potential case arrive at

φs0 = 1
π

N∑
n=1

∞∫
ωn

ie−iωt H3|k=kn

kn∂kH2|k=kn

eqnzeiknxdω

+ 1
π

∞∫
0

ie−iωt H3|k=k01

k01∂kH2|k=k01

eq01zeik01xdω

+ 1
π

∞∫
ω00

ie−iωt H3|k=k00

k00∂kH2|k=k00

eq00zeik00xdω

+ 1
π

∞∑
n=N+1

ωn∫
0

ie−iωt H3|k=iΛn

iΛn∂kH2|k=iΛn

eqnz−Λnxdω,

(4.3.101)

with

H3|k=kn =−2ρlW0
(
k2

n + s2
n
)
sin(knb)sin(ωT)

(
ω2 sin(rnh)− grn cos(rnh)

)
,

H3|k=k0m = 2iρlW0
(
k2

0m + s2
0m

)
sin(k0mb)sin(ωT)

(
ω2 sinh(r0mh)− gr0m cosh(r0mh)

)
,

H3|k=iΛn = 2iρlW0
(
s2

n −Λ2
n
)
sinh(Λnb)sin(ωT)

(
ω2 sin(rnh)− grn cos(rnh)

)
.

(4.3.102)

The derivative terms evaluated at k = kn, k = iΛn and k = k0m remain as before. In a
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similar way the rotation potential can be written as

ψ0y = 1
2π

∞∫
−∞

i e−iωt 1
2πi

∞∫
−∞

eikx 2iq
k2 + s2

H3

H2
eh(s−q)+szdkdω, (4.3.103)

which becomes

ψ0y = 1
π

N∑
n=1

∞∫
ωn

ie−iωt 2iqn

k2
n + s2

n

H3|k=kn

∂kH2|k=kn

eh(sn−qn)+snzeiknxdω

+ 1
π

∞∫
0

ie−iωt 2iq01

k2
01 + s2

01

H3|k=k01

∂kH2|k=k01

eh(s01−q01)+s01zeik01xdω

+ 1
π

∞∫
ω00

ie−iωt 2iq00

k2
00 + s2

00

H3|k=k00

∂kH2|k=k00

eh(s00−q00)+s00zeik00xdω

+ 1
π

∞∑
n=N+1

ωn∫
0

ie−iωt 2iqn

s2
n −Λ2

n

H3|k=iΛn

∂kH2|k=iΛn

eh(sn−qn)+snz−Λnxdω.

(4.3.104)
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4.3.5 Long range modulation - liquid layer

We introduce unknown envelope factors for the liquid layer A±
n(kn, X ,Y ) and A±

0m(k0m, X ,Y )

φl0 =
1

2π

N∑
n=1

∞∫
ωn

ie−iωt A+
n

−H1|k=kn

ωkn∂kH2|k=kn

[
cos(irz)− iω2

grn
sin(irz)

]
eiknxdω

+ 1
2π

∞∫
0

ie−iωt A+
01

−H1|k=k01

ωk01∂kH2|k=k01

[
cos(irz)− iω2

gr
sin(irz)

]
eik01xdω

+ 1
2π

∞∫
ω00

ie−iωt A+
00

−H1|k=k00

ωk00∂kH2|k=k00

[
cos(irz)− iω2

gr
sin(irz)

]
eik00xdω

+ 1
2π

N∑
n=1

−ωn∫
−∞

ie−iωt A−
n

−H1|k=−kn

−ωkn∂kH2|k=−kn

[
cos(irz)− iω2

gr
sin(irz)

]
e−iknxdω

+ 1
2π

0∫
−∞

ie−iωt A−
01

−H1|k=−k01

−ωk01∂kH2|k=−k01

[
cos(irz)− iω2

gr
sin(irz)

]
e−ik01xdω

+ 1
2π

−ω00∫
−∞

ie−iωt A−
00

−H1|k=−k00

−ωk00∂kH2|k=−k00

[
cos(irz)− iω2

gr
sin(irz)

]
e−ik00xdω

+ 1
2π

∞∑
n=N+1

 0∫
−ωn

+
ωn∫
0

 ie−iωt −H1|k=iΛn

ωiΛn∂kH2|k=iΛn

[
cos(irz)− iω2

gr
sin(irz)

]
e−Λnxdω.

(4.3.105)

The initial conditions are given by

A±
n =

1 |Y | <L = ϵL
0 |Y | >L = ϵL

, A±
0m =

1 Y | <L = ϵL
0 Y | >L = ϵL

, X = ϵ2x → 0. (4.3.106)

Proceeding with acoustic modes, taking the time Fourier transform of (4.3.23) and sepa-
rating φ̄l2 into 3 ranges yields

φ̄l2 =


φ̄+

l2 ωn <ω<∞
φ̄e

l2 −ωn <ω<ωn

φ̄−
l2 −∞<ω<−ωn.

(4.3.107)
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In the range ωn <ω<∞

∂2φ̄+
l2

∂x2 + ∂2φ̄+
l2

∂z2 + ω2

C2
l

φ̄+
l2 =−∂

2φ̄l0

∂Y 2 −2
∂2φ̄l0

∂x∂X
. (4.3.108)

From this point the solution proceeds in an analogous way to that derived by [16],

∂2φ̄+
l2

∂x2 + ∂2φ̄+
l2

∂z2 + ω2

C2
l

φ̄+
l2 =−i

N∑
n=1

[
∂2A+

n

∂Y 2 +2ikn
∂A+

n

∂X

] −H1|k=kn

ωkn∂kH2|k=kn

×
[
cos(irz)− iω2

gr
sin(irz)

]
eiknx. (4.3.109)

Assuming φ̄+
l2 has solutions in the form

∑N
n=1 ξ

+
n(ω, z)eiknx, then substituting into (4.3.109)

gives

−
N∑

n=1
ξ+n k2

neiknx +
N∑

n=1

∂2ξ+n
∂z2 eiknx + ω2

C2
l

N∑
n=1

ξ+neiknx =−i
N∑

n=1

[
∂2A+

n

∂Y 2 +2ikn
∂A+

n

∂X

]
× −H1|k=kn

ωkn∂kH2|k=kn

Fn(z)eiknx. (4.3.110)

Equating coefficients gives

∂2ξ+n
∂z2 +

(
ω2

C2
l

−k2
n

)
ξ+n =−i

[
∂2A+

n

∂Y 2 +2ikn
∂A+

n

∂X

] −H1|k=kn

ωkn∂kH2|k=kn

Fn(z), (4.3.111)

where

r2 = k2 − ω2

C2
l


r = r0m, ω2

C2
l
−k2

0m =−r2
0m, surface waves

r = irn, ω2

C2
l
−k2

n =+r2
n, acoustic–gravity waves

(4.3.112)

resulting in

∂2ξ+n
∂z2 + r2

nξ
+
n =−i

[
∂2A+

n

∂Y 2 +2ikn
∂A+

n

∂X

] −H1|k=kn

ωkn∂kH2|k=kn

Fn(z), (4.3.113)

where

Fn(z)= cos(rnz)+ ω2

grn
sin(rnz). (4.3.114)
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The ground motion is captured at O(ϵ0), so the boundary conditions on φ̄+
l2 (and therefore

ξ+n) at O(ϵ2) are

−ω2φ̄+
l2 + g

∂φ̄+
l2

∂z
= 0, z = 0, (4.3.115)

∂φ̄+
l2

∂z
= 0, z =−h. (4.3.116)

Fn(z) is a solution to the boundary value problem,

∂2Fn

∂z2 + r2
nFn = 0, (4.3.117)

Fn = 1,
∂Fn

∂z
= ω2

g
, z = 0, (4.3.118)

Fn = cos(rnh)− ω2

grn
sin(rnh),

∂Fn

∂z
= rn sin(rnh)+ ω2

g
cos(rnh) , z =−h.

(4.3.119)

A similar process could be carried out for surface waves.

The next step is to extract the Schrödinger equation from (4.3.113). Multiply (4.3.113)
by Fn(z) and (4.3.117) by ξ+n then subtract

Fn

(
∂2ξ+n
∂z2 + r2

nξ
+
n

)
−ξ+n

(
∂2Fn

∂z2 + r2
nFn

)
=−i

[
∂2A+

n

∂Y 2 +2ikn
∂A+

n

∂X

] −H1|k=kn

ωkn∂kH2|k=kn

F2
n(z).

(4.3.120)
Now integrate the LHS of (4.3.120) over the range −h ≤ z ≤ 0.

0∫
−h

[
Fn

(
∂2ξ+n
∂z2 + r2

nξ
+
n

)
−ξ+n

(
∂2Fn

∂z2 + r2
nFn

)]
dz =

[
Fn

∂ξ+n
∂z

−ξ+n
∂Fn

∂z

]0

−h
. (4.3.121)

Evaluating the boundary term at z = 0 gives

[
Fn

∂ξ+n
∂z

−ξ+n
∂Fn

∂z

]0

= ω2

g
ξ+n −ξ+n

ω2

g
= 0. (4.3.122)

While the boundary term at z =−h gives[
Fn

∂ξ+n
∂z

−ξ+n
∂Fn

∂z

]
−h

=
[
cos(rnh)− ω2

grn
sin(rnh)

]
×0−ξ+n

[
rn sin(rnh)+ ω2

g
cos(rnh)

]
= 0.

(4.3.123)
Note the term inside the square brackets of (4.3.123) is the rigid dispersion relation which
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must be zero for valid solutions (no ground movement at O(ϵ2)). Therefore the integral
(4.3.121) must be zero and for this to be true we must have

∂2A+
n

∂Y 2 +2ikn
∂A+

n

∂X
= 0, r ∈ iR. (4.3.124)

As in [16], the result is the Schrödinger equation for the 2D evolution of the envelope
factors.

Having obtained the Schrödinger equation (4.3.124) for the acoustic–gravity wave
case in the liquid layer the solution is analogous to that found in [16], but with mode
properties now incorporating elasticity, via kn. The envelope solution is derived following
[16]. Consider the side x > 0 and re-name A+

n to An for brevity. Re-write (4.3.124) as

∂An

∂X
= i

2kn

∂2An

∂Y 2 . (4.3.125)

We make use of the following cosine transform/inverse transform

Â(X ,γ)=
∞∫

0

A(X ,Y )cos
(
γY

)
dY , A(X ,Y )= 2

π

∞∫
0

Â(X ,γ)cos
(
γY

)
dγ. (4.3.126)

Then transforming ∂An/∂X gives

∞∫
0

∂An

∂X
cos

(
γY

)
dY = ∂

∂X

∞∫
0

An cos
(
γY

)
dY = ∂Â

∂X
. (4.3.127)

Transforming ∂2An/∂Y 2

∞∫
0

∂2An

∂Y 2 cos
(
γY

)
dY =

[
∂An

∂Y
cos

(
γY

)]∞
0
+γ

∞∫
0

∂An

∂Y
sin

(
γY

)
dY . (4.3.128)

Note we require the waves to vanish far away from and be symmetric about the central
axis so that

An = 0, |X |, |Y |→∞ and
∂An

∂Y
= 0, Y = 0, (4.3.129)

and in this case, the boundary term vanishes

γ

∞∫
0

∂An

∂Y
sin

(
γY

)
dY = γ

[
An sin

(
γY

)]∞
0
−γ

∞∫
0

An cos
(
γY

)
dY

=−γ2 Ân. (4.3.130)
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From (4.3.125)
∂Ân

∂X
= i

2kn

(−γ2 Ân
)= −iγ2

2kn
Ân. (4.3.131)

Solving for Â gives

Ân(X ,γ)= β̂(γ)e−
iγ

2kn X , β̂(γ)=
∞∫

0

β(γ)cos
(
γY

)
dY . (4.3.132)

Where β̂(γ) is a function of γ only. However β̂(γ)= Â(0,γ) so by the initial conditions on
An (4.3.106)

β̂(γ)=
∞∫

0

β(γ)cos
(
γY

)
dY =

l∫
0

cos
(
γY

)
dY =

[
sin(γY )

γ

]l

0
= sin(γl)

γ
(4.3.133)

and therefore
Ân(X ,γ)= sin(γl)

γ
e

−iγ2 X
2kn (4.3.134)

Let ν= X /kn then the inverse is

An(X ,Y )= 2
π

∞∫
0

{
sin(γl)
γ

e
−iγ2ν

2

}
cos

(
γY

)
dγ, (4.3.135)

An(X ,Y )= 1
π

∞∫
0

1
γ

[
sin

(
γ(l+Y )

)+sin
(
γ(l−Y )

)]
cos

(
γ2ν

2

)
dγ

− i
π

∞∫
0

1
γ

[
sin

(
γ(l+Y )

)+sin
(
γ(l−Y )

)]
sin

(
γ2ν

2

)
dγ.

(4.3.136)

Again for brevity let χ= ν/2, 2Y+ = l+Y , 2Y− = l−Y then since

1
2

d
dγ

∞∫
0

1
γ

cos
(
χγ2)

sin
(
2γY

)
dγ=

∞∫
0

cos
(
χγ2)

cos
(
2γY

)
dγ= 1

2

√
π

2χ

{
cos

(
Y 2

χ

)
+sin

(
Y 2

χ

)}
(4.3.137)

1
2

d
dγ

∞∫
0

1
γ

sin
(
χγ2)

sin
(
2γY

)
dγ=

∞∫
0

sin
(
χγ2)

cos
(
2γY

)
dγ= 1

2

√
π

2χ

{
cos

(
Y 2

χ

)
−sin

(
Y 2

χ

)}
(4.3.138)
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After using the known integration formulas [53] it follows that

∞∫
0

1
γ

cos
(
χγ2)sin

(
2γY

)
dγ=

Y∫
0

√
π

2χ

{
cos

(
Y 2

χ

)
+sin

(
Y 2

χ

)}
dγ

= π

2

{
C

(√
2
πχn

Y+

)
+S

(√
2
πχn

Y−

)}
,

(4.3.139)

and

∞∫
0

1
γ

sin
(
χγ2)sin

(
2γY

)
dγ=

Y∫
0

√
π

2χ

{
cos

(
Y 2

χ

)
−sin

(
Y 2

χ

)}
dγ

= π

2

{
C

(√
2
πχn

Y+

)
−S

(√
2
πχn

Y−

)}
,

(4.3.140)

and so the envelope solution is obtained as

An = 1− i
2

{
C

(√
2
πχn

Y+

)
+C

(√
2
πχn

Y−

)}
+ 1+ i

2

{
S

(√
2
πχn

Y+

)
+S

(√
2
πχn

Y−

)}

χn = X
2kn

Y± = L ±Y
2

,

(4.3.141)

where C(z) and S(z) are Fresnel integrals. A similar process beginning at (4.3.107) can
be applied to derive the expressions for the surface waves mode 01 and mode 00. Finally,
the pressure obtained from the velocity potential (4.3.99) in the liquid (propagating parts)
along with (4.2.15) inclusive of envelope factors is given by

Pl =
ρl

π

N∑
n=1

∞∫
ωn

−H1|k=kn An

kn∂kH2|k=kn

[
cos(rz)+ ω2

gr
sin(rz)

]
ei(knx−ωt)dω

+ ρl

π

∞∫
0

−H1|k=k01 A01

k01∂kH2|k=k01

[
cosh(rz)+ ω2

gr
sinh(rz)

]
ei(k01x−ωt)dω

+ ρl

π

∞∫
ω00

−H1|k=k00 A00

k00∂kH2|k=k00

[
cosh(rz)+ ω2

gr
sinh(rz)

]
ei(k00x−ωt)dω.

(4.3.142)
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Similarly, the surface elevation is given by

η= 1
gπ

N∑
n=1

∞∫
ωn

−H1|k=kn An

kn∂kH2|k=kn

ei(knx−ωt)dω+ 1
gπ

∞∫
0

−H1|k=k01 A01

k01∂kH2|k=k01

ei(k01x−ωt)dω

+ 1
gπ

∞∫
ω00

−H1|k=k00 A00

k00∂kH2|k=k00

ei(k00x−ωt)dω.

(4.3.143)

4.4 Improved critical frequency approximations

In a practical application of (4.3.142) and (4.3.143) numerical solutions approximate the
integrals over a finite range, and so knowledge of the critical frequencies ωn,ω00 is es-
sential. The critical frequencies ωn represent the cutoff for acoustic–gravity wave mode
numbers n ≥ 2, and ω00 is the cutoff for the surface wave mode 00. The first acoustic–
gravity wave mode does not have a cutoff frequency, see Figure 4.9b. An approximation
for ωn exists in the form of (4.4.144), [25], but this approximation is based upon the loca-
tion of the vertical asymptotes found in the dispersion relation plots, an example of which
is shown in Figure 4.9a. This approximation - although compact and easy to use - is not
as accurate as it might be. The following subsections construct a more accurate approxi-
mation for ωn (albeit more complicated), and an approximation to the surface wave mode
00 cutoff frequency based on the gradient condition (4.3.98).

4.4.1 Acoustic–gravity waves

When the acoustic–gravity wave propagating modes (n = 2,3, ...) terminate, the phase

velocity becomes equal to Cs and s =
√

k2 − ω2

C2
s
= 0 [25]. The first progressive mode

(n = 1) for an elastic seabed is a Scholte wave, which propagates all the way to the shore,
where it turns into a Rayleigh wave. From 25, (30) the critical frequency for a particular
depth is given by

ωen =
(
n− 3

2

)
π

ClCs

hen

√
C2

s −C2
l

n = 2,3, ..., (4.4.144)

which is a good approximation to the actual critical frequency, though it is based on the
location of the vertical asymptotes in the dispersion relation plot - location of red dot in
Figure 4.9a. For accuracy, we require a better approximation to the actual intersection of
the two curves in the dispersion relation plot - blue dot in Figure 4.9a.
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(a)

(b)

Figure 4.9: Approximate critical values from (4.4.144) - (red dots), actual critical values
(blue dots). Fig 4.9a is the dispersion relation plot for h = 4000 m . Red dot marks vertical
asymptote. Blue dot marks r2 - the actual cutoff for mode 2. Dash trace LHS (4.3.65),
solid trace RHS (4.3.65). Fig 4.9b Phase velocity curves for first four modes at constant
depth of h = 4000 m. Dotted line is Cs = 3550ms−1
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Begin with the dimensionless form of the dispersion relation (4.3.65)

tanh(r̃)=
ω̃2

r̃ (ε2 +ε1)
ω̃4

r̃2 ε2 +ε1
, ε1 = 4k̃2 q̃s̃µ̃

k̃2 + s̃2
+ λ̃k̃2 − (

λ̃+2µ̃
)
q̃2, ε2 = q̃

(
k̃2 − s̃2

k̃2 + s̃2

)
(4.4.145)

with r, k, q, s,ω, λ, µ, Cl , Cs, Cp made dimensionless according to

r̃ = hr k̃ = hk q̃ = hq s̃ = hs ω̃=
√

h
g
ω λ̃= λ

ρl gh

µ̃= µ

ρl gh
C̃l =

Cl√
gh

C̃s = Cs√
gh

C̃p = Cp√
gh

.
(4.4.146)

Substitute (4.4.147) into (4.4.145) to obtain a function of r̃ alone, followed by the substi-
tution r̃ ⇒ ir̃ to retrieve the acoustic–gravity wave solutions.

k̃ =
√√√√r̃2 + ω̃2

C̃l
2 , q̃ =

√√√√r̃2 + ω̃2

C̃l
2 − ω̃2

C̃p
2 , s̃ =

√√√√r̃2 + ω̃2

C̃l
2 − ω̃2

C̃s
2 , (4.4.147)

Let ω̃ = r̃C̃sC̃l√
C̃s

2−C̃l
2
, which is the s̃ = 0 condition for the termination of progressive

modes, and then let r̃ = (
n− 3

2

)
π+δ(n), where δ(n) represents a small (mode dependent)

positive offset away from the vertical asymptotes located at r̃ = (
n− 3

2

)
π. With

R =

√√√√√√−
(2nπ−3π+2δ)2 C̃l

2
(
C̃p

2 − C̃s
2
)

C̃p
2
(
C̃l

2 − C̃s
2
) (4.4.148)

the dispersion relation now becomes

tan
[(

n− 3
2

)
π+δ

]
=

−4C̃s
2
{

1
4 C̃p

2
(
C̃l

2 − C̃s
2
)
R+ C̃l

2 [(
n− 3

2
)
π+δ]2

[(
−µ̃− λ̃

2

)
C̃s

2 + µ̃C̃p
2
]}

[(
n− 3

2
)
π+δ]{

C̃s
4C̃l

2C̃p
2R−4

(
C̃l

2 − C̃s
2
)[(

−µ̃− λ̃
2

)
C̃s

2 + µ̃C̃p
2
]} (4.4.149)

The desired δ(n) is the r̃ separation between the blue and red dots in Figure 4.9a. Ignoring
terms of O(δ(n)2) in (4.4.149) an approximation of the dispersion relation can be written
as

−cot(δ(n))= an +bnδ(n)
cn +dnδ(n)

, (4.4.150)
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where the coefficients an, bn, cn, dn are

an =−2πC̃s
2C̃p

2
(
C̃l

2 − C̃s
2
)√√√√√√ (2n−3)2 C̃l

2
(
C̃s

2 − C̃p
2
)

C̃p
2
(
C̃l

2 − C̃s
2
) +4π2C̃s

2C̃l
2
(
n− 3

2

)2 [(
λ̃+2µ̃

)
C̃s

2 −2µ̃C̃p
2
]

,

bn =−2C̃s
2C̃p

2

(
C̃l

2 − C̃s
2
)

(
n− 3

2
)

√√√√√√ (2n−3)2 C̃l
2
(
C̃s

2 − C̃p
2
)

C̃p
2
(
C̃l

2 − C̃s
2
) +8πC̃s

2C̃l
2
(
n− 3

2

)[(
λ̃+2µ̃

)
C̃s

2 −2µ̃C̃p
2
]

,

cn = 2
(
n− 3

2

)
π2C̃s

4C̃l
2C̃p

2

√√√√√√ (2n−3)2 C̃l
2
(
C̃s

2 − C̃p
2
)

C̃p
2
(
C̃l

2 − C̃s
2
) +4π

(
n− 3

2

)(
C̃l

2 − C̃s
2
)[(

λ̃+2µ̃
)
C̃s

2 −2µ̃C̃p
2
]

,

dn = 4πC̃s
4C̃l

2C̃p
2

√√√√√√ (2n−3)2 C̃l
2
(
C̃s

2 − C̃p
2
)

C̃p
2
(
C̃l

2 − C̃s
2
) +4

(
C̃l

2 − C̃s
2
)[(

λ̃+2µ̃
)
C̃s

2 −2µ̃C̃p
2
]

.

(4.4.151)

Then using the approximation −cot(δ(n)) ≃ − 1
δ(n) for small δ(n), (4.4.150) can be put

into quadratic form
bnδ(n)2 + (an +dn)δ(n)+ cn = 0. (4.4.152)

This can be solved for δ(n), and then the value of r̃n and the critical frequency ωn can be
obtained from

r̃n =
(
n− 3

2

)
π+δ(n). (4.4.153)

To determine how well the δ(n) predicts the offset a comparison was made between the
approximate value of ωn calculated using (4.4.153) and that found by using the dispersion
relation

error [%]=
∣∣∣∣ωn(approx)−ωn(dispersion)

ωn(dispersion)
×100

∣∣∣∣ . (4.4.154)

The comparison was carried out for depths ranging from 500 m to 8000 m and all available
modes. The maximum error occurred in the second mode at a depth of 8000 m, but was
still less than 0.1% - see Figure 4.10. In Section 4.5 the results for r̃n and δ(n) are used
to construct approximate phase velocity curves.
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Figure 4.10: Percentage error for approximate critical frequencies ωn from (4.4.153).
Depths range between 500 m (lower error bound) and 8000 m (upper error bound) - all
available modes.

4.4.2 Surface wave

The surface gravity mode 00 does not exist for all frequencies in the elastic seabed case
and never exists for a rigid seabed. The cutoff condition for mode 00 is given by (4.3.98)
which can be solved numerically to find the cutoff frequency at any particular depth.
Alternatively a good approximation can be obtained by seeking the frequency at which
the gradient of the left-hand-side of the dimensionless dispersion relation in (4.4.145) is
equal to the right-hand side. This will occur for small (ultimately zero) r̃. In this case
make the approximation tanh(r̃)≃ r̃. Now differentiate (4.4.145) with respect to r̃. Then
express result as a series in r̃2 to arrive at

1= 1
ω̃2 + A

ω̃
+O(r̃2). (4.4.155)

In the limit r̃ → 0 (4.4.155) can be written as the quadratic ω̃2 −A ω̃−1= 0 with

A = 2

[(
µ̃+ λ̃

2

)
C̃2

l − µ̃C̃2
p

](
2C̃2

s − C̃2
l

)√
C̃2

s − C̃2
l +2C̃pC̃sµ̃

√
C̃2

p − C̃2
l

(
C̃2

s − C̃2
l

)
C̃3

l C̃p

√
C̃2

p − C̃2
l

√
C̃2

s − C̃2
l

.

(4.4.156)
Taking the positive root of the quadratic gives the approximate cutoff frequency which
we will name Ω̃00. The dimensional form can be recovered from Ω00 = Ω̃00

√
g/h. A

workable approximation to the cutoff frequency can be obtained by taking A - call this
approximation A00. Table 4.1 gives values for ω00 found using a numeric solver and
compares with the approximations Ω00 and A00 indicating errors for various depths. The
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error values were calculated from

error [%]=
∣∣∣∣Ω00( orA00)−ω00

ω00
×100

∣∣∣∣ . (4.4.157)

h [m] ω00 [rads−1] Ω00 [rads−1] error [%] A00 [rads−1] error [%]
1000 27.79791617 27.79788874 9.86765E-05 27.79753583 0.001368232
2000 13.89917645 13.89912044 0.000402974 13.89876753 0.002942045
3000 9.266281835 9.266198102 0.000903631 9.265845209 0.00471198
4000 6.949848492 6.949736802 0.001607085 6.949383913 0.006684736
5000 5.559999661 5.559859937 0.002513022 5.559507051 0.008859893
6000 4.633443082 4.633275403 0.003618886 4.632922521 0.011234863
7000 3.971624933 3.971429412 0.004922947 3.971076536 0.013807875
8000 3.475268301 3.475044738 0.006432971 3.474691865 0.016586806
9000 3.089219349 3.088967935 0.008138431 3.088615067 0.019560994

10000 2.78038577 2.780106363 0.010049217 2.779753499 0.022740406
11000 2.527708826 2.52740152 0.012157492 2.527048661 0.02611713

Table 4.1: Comparison of cutoff frequencies obtained from numeric solver (ω00) with
approximations from quadratic solution (Ω00) and coarse approximation A00 for various
depths h.

4.5 Approximate phase velocity curves - shearing method

When plotting phase velocity curves it is typical to choose one or other of the following
scenarios, either, (i) fix constant frequency ω and plot phase velocity vs depth h as in
[25] Figure 2a or, (ii) fix a constant depth and plot phase velocity vs frequency (as in this
chapter). In either case for each data point on every curve the dispersion relation has to
be solved numerically which can be time consuming. Also, care has to be taken to ensure
solutions are valid. The facility to quickly produce approximate phase velocity curves
may help in reducing the computational burden in real-time analysis. In a side-by-side
comparison of the shearing method against the dispersion solving method, the shearing
method was found to be approximately twice as fast. The comparison was run on the
same computer (Intel(R) i9 CPU, 3.60 GHz, 128GB RAM) and used the same software
(Maple) to produce phase velocity curves for 16 modes with ω= 20rads−1 and depth of
h = 4000 m.

Here we present an alternative method for quickly plotting an approximate version of
the elastic seabed phase velocity curves. The rational behind the method is to first con-
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struct a template curve for the phase velocity by manipulating the tanh−1 function, Then
utilise the observation that the phase velocity curves for the rigid seabed case "encode"
the degree of shearing required to produce the elastic phase velocity curves. However,
before the rigid phase velocity curves can be used in this sense they have to be "inverted"
- see Figure 4.17a and 4.17b.

In the following variables with a tilde are made dimensionless according to (4.4.146).
The method is based around the tanh−1 function which is manipulated in the following
ways:

1. Scale along the horizontal r̃ axis (the independent variable) so as to fit the range(
n− 3

2

)
π · · ·(n− 1

2

)
π, with n being the mode number (Figure 4.11)

− tanh−1
[

2
π

(r̃− (n−1)π)
]

. (4.5.158)

Figure 4.11: Plot of the function −tanh−1 [ 2
π (r̃− (n−1)π)

]
when n = 1.

2. Shift up the vertical axis so that at centre range r̃ = (n−1)π the value is αC̃s - the
Rayleigh wave phase velocity where the first acoustic mode intersects the vertical
axis, see Figure 4.9b and 4.12. The value of α= 0.922231 is taken from [30].

αC̃s − tanh−1
[

2
π

(r̃− (n−1)π)
]

. (4.5.159)
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Figure 4.12: Plot of the function αC̃s − tanh−1 [ 2
π (r̃− (n−1)π)

]
when n = 1.

3. Next, stretch the plot along the vertical axis by a factor κ̃(n) so that the curve hits
the shear velocity C̃s at the critical value r̃n determined from (4.4.153)

αC̃s − κ̃(n)tanh−1
[

2
π

(r̃− (n−1)π)
]

, (4.5.160)

where

κ̃(n)= C̃s (α−1)
tanh−1 [ 2

π

(−π
2 +δ(n)

)] , (4.5.161)

and δ(n) is the critical offset calculated via the procedure described in Section 4.4 -
see Figure 4.13.
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Figure 4.13: Plot of the function αC̃s − κ̃(n)tanh−1 [ 2
π (r̃− (n−1)π)

]
when n = 1. In this

example δ(1)= 0.1464196273, κ̃(n)= 1.306037799 and r̃1 =−1.4243767

4. Include a multiplicative factor Ỹ (r̃,n) to ensure that the curve has its region of rapid
desent shifted away from the

(
n− 1

2

)
π asymptote to better align with the “reference”

phase velocity curves derived from the dispersion relation, and so help minimise
errors. The function ṽ(r̃,n) so obtained is the generating function from which all
the phase velocity curves are derived

ṽ(r̃,n)=αC̃s − Ỹ (r̃,n)κ̃(n)tanh−1
[

2
π

(r̃− (n−1)π)
]

, (4.5.162)

where

Ỹ (r̃,n)=
(
n− 1

2

)
π− r̃√[(

n− 1
2

)
π− r̃

]2 − (
π
18

)2
. (4.5.163)

See Figure 4.14.
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Figure 4.14: Plot of the function ṽ(r̃,n) when n = 1. In this example δ(1) =
0.1464196273, κ̃(n)= 1.306037799, r̃1 =−1.4243767 and r̃∗ ≈ π

2 − π
18 .

The resulting curve for the case n = 1 is shown in Figure 4.15. Curves for higher modes
are obtained by shifting the n = 1 case by appropriate multiples of π along the positive r̃
axis. The variable r̃ ranges over the interval r̃n ≤ r̃ ≤ (r̃∗−ϵ) with 0 < ϵ≪ 1, defined by(
n− 3

2

)
π< r̃n ≤ r̃ ≤ (r̃∗−ϵ) <

(
n− 1

2

)
π and r̃∗ is such that ṽ(r̃∗,n) = C̃l . This represents

the phase velocity asymptotically approaching Cl with increasing frequency (all modes).

5. Take the generating function for each mode and translate, so that the known point
(ω̃n, C̃s)→ (0,0). This is the black curve t̃(r̃,n) in Figure 4.16

t̃(r̃,n)= r̃
C̃sC̃l√
C̃2

s − C̃2
l

+ iṽ− z̃n, z̃n = r̃n
C̃sC̃l√
C̃2

s − C̃2
l

+ iC̃s, r̃n =
(
n− 3

2

)
π+δ(n).

(4.5.164)
Where z̃n is a fixed complex number representing the known cutoff point (ω̃n, C̃s).
In this example z̃1 =−16.15388791+25.34421543i and r̃1 =−1.424376700.
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Figure 4.15: Generating function ṽ(r̃,n) for first acoustic–gravity mode (n = 1) with depth
h = 2000 m. Other modes are derived by shifting the horizontal axis through (n−1)π and
using the appropriate values for r̃n and r̃∗

6. Apply the shearing function S̃(ã,n) to distort the black curve into the appropriate
shape for the mode considered - the coloured curves z̃t in Figure 4.16

z̃t =
[ℜ(

t̃
)− S̃ℑ(

t̃
)]+ iℑ(

t̃
)
, (4.5.165)

S̃(ã,n)= 1
ã

[w̃(ã,n)− w̃(0,n)] . (4.5.166)

The function w̃(ã,n) is derived from the phase velocity curves for the rigid seabed case
(Figure 4.17a) by inverting (4.5.167) to give ω̃ in terms of rigid seabed phase velocity ṽr

ṽr = ω̃

k̃n
, k̃n =

√√√√ ω̃2

C̃2
l

− ω̃2
rn

C̃2
l

, ω̃rn =
(
n− 1

2

)
πC̃l . (4.5.167)

The expressions for k̃n and ω̃rn appearing in (4.5.167) are from 16, (3.9), (3.10) here
made dimensionless. After performing the inversion

ω̃= ṽrω̃rn√
ṽ2

r − C̃2
l

= ṽr√
ṽr

2 − C̃2
l

(
n− 1

2

)
πC̃l . (4.5.168)
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Figure 4.16: The black trace t̃ is sheared by the action of S̃ into each of the coloured
curves for each mode. Depth in this case is 2000 m, first eight modes shown. Then the
result is translated and scaled to give the final phase velocity curves.

Substitute ṽr = C̃s − ã into (4.5.168) then re-name ω̃ to w̃ to arrive at

w̃(ã,n)= C̃s − ã√(
C̃s − ã

)2 − C̃2
l

(
n− 1

2

)
πC̃l . (4.5.169)

The function ã is a measure of the vertical drop from the constant line C̃s down to the
phase velocity curves ṽr, see Figure 4.17a. In order to apply S̃(ã,n) to the generating
function define ã = Cs − ṽ(r̃,n) so now ã represents the vertical drop from the constant
line C̃s down to the phase velocity curves ṽ(r̃,n) (see Figure 4.15).

7. Add z̃n to undo the translation from step 5

z̃ = z̃tn + z̃n = [ℜ(
t̃
)− S̃ℑ(

t̃
)]+ iℑ(

t̃
)+ z̃n. (4.5.170)

8. Finally re-scale to obtain the desired phase velocity curves - solid black trace Figure
4.18

ω+ ive = ω̃
√

g
h
+ iṽe

√
gh =ℜ (z̃)

√
g
h
+ iℑ(z̃)

√
gh. (4.5.171)

The solid black trace of Figure 4.18 is a complex plot with real part representing the
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angular frequency ω, and imaginary part representing the elastic seabed phase velocity ve.
The dashed curves of Figure 4.18 are those obtained by numerically solving the dispersion
relation (4.3.65). To quantify the errors between the phase velocity obtained using the
shearing method and that obtained by solving the dispersion relation use

error [%]=
∣∣∣∣ve(shear)−ve(dispersion)

ve(dispersion)
×100

∣∣∣∣ . (4.5.172)

The resulting error plot - Figure 4.19 - indicates that the maximum error occurs for the first
mode and that errors decrease with increasing frequency and increasing mode number.
There is some freedom in the expression for Ỹ (r̃,n) which could potentially reduce the
errors a little by carefully replacing the π/18 term with an alternative value derived from
some error minimisation technique (e.g. minimax approximation [54]), which we did not
pursue further here.

4.6 Numerical results

4.6.1 Acoustic–gravity waves

Figure 4.20 compares the first acoustic mode for the elastic case (4.3.142) and the rigid
case 1, (3.22). As in [25] the values used for ρl , ρs, Cl , Cs andCp are average values
taken from [31]. One obvious difference, is that the signal terminates after some time
in the elastic case, whereas the signal continues indefinitely in the rigid case. Another
difference is the presence of signal at times earlier than the main pulse in the elastic case,
but no signal at all in the rigid stationary phase model. The phase velocity curves for the
elastic case Figure 4.18 indicate that frequencies close to the critical frequency for each
mode receive a boost in phase velocity enabling signals to propagate faster. For these
frequencies speeds close to Cs are achievable. The rigid seabed stationary phase model
produces complex numbers for times earlier than x/Cl due to a singularity induced by the
stationary phase method [3]. The pressure amplitudes are similar.
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(a)

(b)

Figure 4.17: Rigid seabed phase velocity curves along with shearing function. Figure
4.17a shows rigid seabed phase velocity Ṽr vs ω̃. Depth h = 2000 m. First eight modes.
Figure 4.17b is plot of shear function S̃ vs ã. Depth h = 2000 m. First eight modes.
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Figure 4.18: Overlay of phase velocity curves for depth of h = 4000 m. Solid black are
the approximate curves, dashed are those obtained from solving the dispersion relation.
First 16 modes shown.

Figure 4.19: Percentage error for first 16 modes from Fig 4.18. The maximum error
occurs at the knee of each phase velocity curve (≈ 3000ms−1). Depth h = 4000 m
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Figure 4.20: Top plot, first acoustic mode with elastic seabed, bottom plot with rigid
seabed

Parameter Description Elastic Rigid
g Acceleration due to gravity 9.81 ms−2 9.81 ms−2

L Fault half-length 400 km 400 km
b Fault half-width 40 km 40 km
2T Rupture duration 10 s 10 s
h Water depth 4 km 4 km
ρl Water density 1020 kgm−3 1020 kgm−3

ρs Solid density 2750 kgm−3 · · ·
Cl Speed of sound in water 1450 ms−1 1450 ms−1

Cs Speed of shear waves in solid 3550 ms−1 · · ·
Cp Speed of compression waves in solid 6300 ms−1 · · ·
λ Lamé first parameter 3.9833750×1010 Pa · · ·
µ Lamé second parameter 3.4656875×1010 Pa · · ·
W0 Uplift velocity 0.1 ms−1 0.1 ms−1

Table 4.2: Constants and parameters used in comparison of elastic seabed with rigid
seabed.

A sensitivity analysis was carried out looking at the effects of six parameters on the
signal duration - see Figure 4.21. Each parameter was varied individually away from its
reference value, Table 4.2, while holding all other parameters at reference. Then the per-
centage change in pulse duration was divided by the percentage change in the parameter
to arrive at the sensitivity value. It was found that the rigidity of the seabed most affected
the signal duration. Increasing the Lamé parameters increases Cs and Cp in accordance
with (4.2.8), the ratio Cp/Cs was kept constant.

93 of 146



Chapter 4 Acoustic–gravity & surface waves due to slender rupture in elastic seabed46

Figure 4.21: Response of signal duration when changing parameters.

Figure 4.22: FFT of First four available modes h = 4000 m.
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Another difference between the elastic seabed case and the rigid seabed case appears
when a Fast Fourier Transform (FFT) of the signals is examined. The elastic case shows
a slight upward shift in the frequency peak, see Figure 4.22. This is in contrast to the
slight downward shift found when a viscous compressible sediment layer is overlying the
seabed as in [26]. Whilst investigating the synthetic acoustic–gravity waves, we found
that band-pass filtering applied to the signal generated by combining the first 10 modes
(Figure 4.23a), revealed some interesting peaks located close to the expected arrival time
for a phase velocity of Cl (Figure 4.23b). There are four peaks of particular interest
labelled 1,2,3,4. The presence of the peaks is a consequence of the fault’s geometry and
motion, and is not related to the rigidity of the seabed, since the peaks are also present
under rigid seabed conditions, and even when the signal considered was purely acoustic,
as in [16]. The time spacing between pairs of peaks respond to changes in either fault
half-width b, or rupture duration τ = 2T in a linear fashion, so that details of the fault’s
geometry and dynamics are encoded in the acoustic–gravity waves. Time ∆t1 between
peak numbers 1 and 2 (or 3 and 4) is exactly the rupture duration, and ∆t2 between peaks
1 and 3 (or 2 and 4) is linearly related to the fault half-width through ∆t2 = 2b/Cl . When
the slender fault begins to move peaks 1 and 3 are generated at the edges of the slender
fault and begin to propagate. The time separation between these peaks is explained as the
time required for a wave travelling at speed Cl to cross the fault width of 2b. At the end
of the fault’s motion, after τ seconds, the second pair of peaks (2 and 4) is generated and
propagates away - also separated in time by∆t2. The resultant waveform as would be seen
in the far-field is a collection of four peaks. The amplitude of the peaks depends linearly
on the uplift velocity W0. The timings between peaks agree well with the figures given in
Table 4.3. Let the subscripts 1,2,3,4 represent the peaks denoted by the numbers 1,2,3,4
respectively. Then, ∆t12 = 10.97 s ∆t34 = 8.9 s ∆t13 = 57.67 s ∆t24 = 55.46 s. The
times ∆t12 and ∆t34 represent τ - the uplift time - which (from Table 4.2) is actually 10
s. The times ∆t13 and ∆t24 are the transit times for an acoustic signal to cross the fault
width 2b, which again, from Table 4.2 is actually 55.17 s. The information that could be
extracted from the timings embedded in the acoustic modes would be of interest to the
inverse process that reconstructs fault parameters from received signals [17]. In Section
4.6.3 an actual hydrophone recording made during the Samoa 2009 event is filtered to
reveal the four peaks encoded within it. [15] concludes that the acoustic modes have a
frequency spectrum which depends on the time history and spatial structure of the bottom
displacement - which is referred to as the tsunami’s voice. This is exactly what we find
encoded into the characteristic (four) peaks.
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(a)

(b)

Figure 4.23: Band-pass filtering applied to the 10 combined modes of the synthetic
acoustic–gravity wave generated by a single slender fault. The data in Figure 4.23a shows
the first 10 modes combined and is sampled at a rate of 100 Hz. Figure 4.23b shows the
resulting signal after application of band-pass filtering with passband 0.45 Hz to 0.6 Hz.
The characteristic peaks are numbered 1,2,3,4. The passband was chosen to eliminate
low/high frequencies.
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(a) (b)

Figure 4.24: Surface elevation comparison (elastic vs rigid). Co-ordinates are x = 1000
km, y= 0 km Co-ordinate origin at fault centroid. Figure 4.24a h = 4000 m. Figure 4.24b
h = 1000 m

4.6.2 Surface wave

Consider now the surface waves generated by the single slender fault with parameters as
per Table 4.2. The equations generating the surface waves are (4.3.143) for the elastic
case, and 1, (3.23) for the rigid case. At a depth of h = 4000 m there is little difference
between elastic and rigid cases (Figure 4.24a), but at the depth of h = 1000 m differences
are more apparent (Figure 4.24b). In deeper water the surface wave is almost unaffected
by the elasticity of the seabed [30]. This surface wave is the main tsunami, i.e. mode 01.

When the seabed is elastic the possibility of a second surface wave arises. This wave
does not exist for all frequencies and never exists in the rigid case [30]. The gradient
condition (4.3.98) has to be satisfied before mode 00 can propagate, see Figure 4.25. The
mode 00 surface wave has a phase velocity Cl , and a negligible amplitude, in the order
of µm. A plot of mode 00 under the conditions of Table 4.2 can be found in Figure 4.26.
In the plot there are four distinct peaks numbered 1 to 4. These peaks in the mode 00
surface wave correspond to the peaks numbered 1,2,3,4 found in the acoustic signal. The
assumption of a rectangular fault moving at a uniform speed results in symmetric peaks,
whereas in reality the motion is much more complicated thus upsetting the symmetry of
the peaks seen in Figure 4.26.

4.6.3 Hydrophone recordings

The theory developed in this chapter leading to the equations for pressure (4.3.142) and
surface elevation (4.3.143) is linear. Therefore, as in [1], more complicated multi-fault
scenarios can be constructed from single slender fault solutions by linear superposition,
given that the parameters for each individual fault are known.
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Figure 4.25: LHS of dispersion relation (4.3.65) - dash trace - and RHS of dispersion
relation - solid trace - when r ∈R. The frequency is at the point where mode 00 becomes
active ω ≃ 6.95rads−1, h = 4000 m (see Table 4.1). The top log-plot indicates overall
behaviour. The next two plots provide an expanded view. The mode 00 solution in the
middle plot where the solid curve touches the dashed curve 0≤ r ≤ 0.0001, and the mode
01 solution (the usual tsunami) in the bottom plot where the solid curve again makes
contact with the dashed curve in the descending phase 4≤ r ≤ 6.

Figure 4.26: Mode 00 surface-gravity wave with envelope.

98 of 146



Chapter 4 Acoustic–gravity & surface waves due to slender rupture in elastic seabed51

To contrast the case of elastic seabed with that of a rigid seabed we revisit the Sumatra
2004 earthquake discussed in Section 5.1.2 of [1]. The geographical area considered here
ranges over [70◦ . . . , 100◦]E longitude and [−15◦ . . . , 20◦]N latitude. This curved patch
on the (idealised) spherical earth is mapped to flat x, y coordinates. The conversion factor
of meters per degree is fixed for the latitude (y) direction, but the meters per degree in
the longitudinal (x) direction varies with latitude, being maximum at the equator and
decreasing as the poles are approached. To simplify the calculations an average value for
meters per degree longitude was used, and the area considered kept reasonably small.

The fault centroids are marked by black stars in Figures 4.27a and 4.27b and all faults
are contained within the masked off “earthquake zone”. The purpose of the earthquake
zone was to avoid pressure calculations too close to the faults. The location of hydrophone
H08N is marked with a red star. Figure 4.27 indicates the time evolution of the bottom
pressure signal for both rigid and elastic seabeds. The elastic seabed has pressure signals
already close to the hydrophone at t = 1000 s, whereas the rigid seabed only has pressure
signals local to the earthquake zone at this time. This is due to the twin effects of a boost
in phase velocity for frequencies close to critical in the elastic case, and the absence of
signal ahead of the main pulse in the rigid stationary phase model. As time proceeds
the pressure signals for the elastic case can be seen to traverse the area considered, so
that by t = 3625 s the area is largely clear of pressure oscillations. In contrast, the rigid
stationary phase model shows persistent and ever-increasing pressure oscillations around
the earthquake zone. The elastic seabed could therefore be considered more physically
realistic.

Figure 4.28 compares the predictions made by the elastic seabed model, against data
for the Sumatra event derived from the southern (H08S1) hydrophone and the seismo-
graph at nearby Diego Garcia. The signals recorded by the three hydrophones at station
H08S were very similar to each other, and so only H08S1 is displayed in the plots (sim-
ilarly for station H08N). The amplitude of the main acoustic–gravity wave signal for the
northern triad is much smaller than that of the southern triad - possibly due to the shield-
ing effect of the Chagos Archipelago (see Figure 4.29a and Figure 4.30). However, the
leading pulses (P-waves) are of similar amplitude. This suggests that the detection of
the P-waves by the hydrophones is largely unaffected by the presence of the island - un-
like signals that travel only through the water. The hydrophone data was obtained from
the Comprehensive nuclear-Test-Ban Treaty Organisation (CTBTO), and the seismic data
from the Incorporated Research Institutions for Seismology (IRIS). The fault configura-
tion is that of [1] and the start time given by the USGS (United States Geological Survey)
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website is UTC 2004-12-26 00:58:53, which corresponds to t = 0. In the plots the blue
vertical lines correspond to the expected arrival time of acoustic–gravity waves travelling
at phase speed of 1450ms−1. The green vertical lines for acoustic–gravity waves travel-
ling at a phase speed of Cs = 3550ms−1, and the red vertical lines correspond to a phase
speed of ≃ 8000ms−1. The Diego Garcia (DGAR) seismometer records small amplitude
P-waves arriving at the red vertical line, which then transition to larger amplitude S-
waves at the green line. The hydrophone H08S weakly detects the P-wave activity. The
seismic S-waves do not exist in the liquid (no shear). The main acoustic–gravity wave
signal then arrives and is detected by the hydrophone at the blue line. The re-scaled plot
of the hydrophone signal shows this behaviour more clearly. Since Cs is the speed limit
for the acoustic–gravity waves in the elastic model, the model is unable to predict the
P-wave portion of the hydrophone signal. Modifications to the existing model, or maybe
a new model would be needed to capture this behaviour. Between the green and blue lines
the elastic model predicts acoustic–gravity waves that can travel at phase speeds close to
Cs for some frequencies. The hydrophones show weak signal in this region, possibly due
to the filtering effect of the hydrophone’s response. After the blue line the elastic model
predicts a signal that is close in amplitude to the hydrophone recordings, but decays more
slowly - possibly due to a lack of dissipation included in the model. However, the signal
duration is at least finite in the elastic case. There are processes missing from the elastic
model, (varying bathymetry, reflection, refraction, dissipation etc.) so an exact match is
not expected. Examination of Figure 4.28 shows the arrival times for P-waves, S-waves
and the main acoustic–gravity wave pulse (travelling at a phase speed of Cl) are consis-
tent with our assumptions of constant water density, constant speed of sound in liquid
and constant speed of propagation in the solid. The leading pulse seen in the hydrophone
recordings is primarily made up of lower frequency components. To show this, a band-
pass filter was applied to the hydrophone recording at H08S. The filter eliminates most of
the frequency components below 3 Hz and has largely flattened the leading pulse of the
H08S signal (Figure 4.31). In order to enhance the detection of acoustic signal between
the red and blue lines ultra low frequency hydrophones (ULF) should be used.

To demonstrate the extraction of fault timing and geometry from acoustic–gravity
wave signals a band-pass filter was applied to the data obtained from hydrophone H11
located at Wake Island during the Samoa 2009 event (data supplied by CTBTO). The
timings for the peaks are ∆t12 = 15.46s, ∆t34 = 27.75s, ∆t13 = 29.89s, ∆t24 =
42.18s, (Figure 4.32). Note that the time axis in Figure 4.32 does not begin from the start
of the rupture. The time axis in this case represents an 1800 s window around the main
hydrophone signal.
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(a) Rigid seabed, bottom pressure map calculated at 9 time intervals after first fault movement.

(b) Elastic seabed, bottom pressure map calculated at the same time intervals.

Figure 4.27: Bottom pressure comparison between rigid and elastic seabed. The location
of H08N hydrophone is indicated by a red star bottom left. By 3625 s the elastic model
has largely cleared of acoustic–gravity waves whereas the rigid model still has strong
oscillations around the earthquake zone.
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Figure 4.28: Comparison of the current elastic model with both hydrophone and seismic
data for the Sumatra 2004 event. The time axis begins at UTC 2004-12-26 00:58:53 (t =
0). The vertical red line represents the arrival time for a propagation speed 8000ms−1, the
vertical green line represents the arrival time for a propagation speed Cs = 3550ms−1 and
the vertical blue line represents the arrival time for a propagation speed Cl = 1450ms−1.

(a) (b)

Figure 4.29: (a) Locations for the H08N and H08S hydrophone triads, along with the
Diego Garcia seismograph (yellow markers). The northern triad is shielded by the Chagos
Archipelago. (b) Expanded view of island, and west coast of Sumatra. Images from
Google Earth
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Figure 4.30: Top left and right: Overlay of elastic model prediction onto hydrophone data
north and south locations. Bottom left and right: North and south hydrophone data with
re-scaled vertical axis. Red vertical line = arrival time for phase speed 8000ms−1, green
vertical line = arrival time for phase speed Cs = 3550ms−1, blue vertical line = arrival
time for phase speed Cl = 1450ms−1

Figure 4.31: Leading pulse of hydrophone signal is largely made up of low frequency
components which filtering is able to suppress.
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This is not a concern here since only time differences (∆t’s) are required. Unlike in
the synthetic case this event is asymmetric in the sense that the timings suggest either a
trapezoidal rupture geometry, or non-uniform uplift velocity (or both). The time ∆t12 =
15.46 s represents the uplift time for the leading edge of the fault. Assuming that the front
and back edges of the fault begin moving together, then ∆t13 = 29.89 s represents the time
for the acoustic signal to travel from the back of the fault, across the fault width, to the
front and thus indicates a fault width of 2b = Cl∆t13 ≡ 43.3 km. the time ∆t34 = 27.75

s represents the total time for the fault movement (the back end continues moving after
the front has stopped). These figures compare quite well with those retrieved via inverse
modelling in [5]. Also, the fault width and timing is approximately that found in the
USGS finite fault model (see Figure 4.3356) .

Parameter ∆t1,2,3,4 Gomez 2022 USGS
τ= 2T 27.75 s 25.46 s s ≃ 25→ 35 s
2b 43.3 km 22.6 km ≃ 30 km

Table 4.3: Comparison of two key fault parameters (rupture duration and width) obtained
by different methods. The first column (∆t1,2,3,4) reports figures obtained by filtering
the H11 hydrophone signal and measuring timings between peaks. The second column
reports figures obtained by the methods described within [5]. The data in the third column
are estimates derived from USGS website figures.

4.6.4 DART buoy data

For the validation of the surface wave calculations against real data we consider the To-
hoku event of March 2011 as covered in [1]. The parameters used in the elastic model
of this chapter were changed slightly from those found in [1] and are listed in Table 4.4.
In [1] the event was treated as a multi-fault, so as to capture the main tsunami. However,
this chapter uses the elastic model and the middle term of (4.3.143), integrated directly to
describe the tsunami (mode 01). It was not necessary to split the fault into a number of
faults. By integrating directly the tsunami could be modelled by a single fault. The main
peak of the tsunami is described quite well by the elastic model, both in terms of timing
and amplitude, see Figure 4.34.

56https://earthquake.usgs.gov/earthquakes/eventpage/usp000h1ys/
executive
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Figure 4.32: Left frame: recorded hydrophone data from H11 at Wake Island for Samoa
2009 event. Note t = 0 does not correspond to the rupture start time. Right frame: Signal
after application of band-pass filtering, focusing on the time interval containing the initi-
ation of the main pulse. Data sampling occurs at 250 Hz (1 sample every 4 ms).

(a) USGS Finite fault model for Samoa 2009
event with scale bottom left corner. Rectangular
region shown is approximately 30km x 180km (b) USGS moment rate function for Samoa 2009

event. The main peak ends between 25 and 35
seconds.

Figure 4.33: USGS finite fault model dimensions and timings
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Parameter Description Value
g Acceleration due to gravity 9.81 ms−2

L Fault half-length 150 km
b Fault half-width 80 km
2T Rupture duration 90 s
h Water depth 5277 m
Cl Speed of sound in water 1500ms−1

Cs Shear speed in solid 3550ms−1

Cp Compression speed in solid 6300ms−1

ζ0 Uplift 6 m
r Distance from epicentre 496.6 km
θ Angle to epicentre 183.555◦

α Strike angle of fault −13◦

Table 4.4: Constants and parameters used in the calculation of surface elevation at DART
buoy 21418 for Tohoku 2011 event - elastic model. Also refer to [1]

Figure 4.34: Surface elevations compared for Tohoku 2011 event at DART buoy 21418
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4.7 Discussion / summary

We have developed a new mathematical model which combines ground movement of a
rectangular slender fault with the properties of an elastic seabed. The model derives ex-
pressions for the velocity potential in the liquid, along with dilation potential and rotation
potential for the solid. From the liquid velocity potential, we derived expressions for the
dynamic pressure (acoustic–gravity waves), and the surface elevation. Far-field behaviour
is described by envelope functions containing Fresnel integrals. Elasticity has been shown
to be an important consideration when calculating tsunami and acoustic–gravity wave ar-
rival times [26, 20, 46]. The model developed in this chapter demonstrates the capacity
for the acoustic–gravity waves to travel at speeds near the shear wave velocity for fre-
quencies close to critical. Examination of hydrophone data for the Sumatra 2004 event at
H08N and H08S locations revealed a leading acoustic signal travelling ahead of the main
acoustic–gravity waves at phase speeds in excess of the shear wave velocity Cs. The
elastic model developed in [25] and applied in this chapter has Cs as the speed limit for
acoustic–gravity waves, and so does not describe the leading signal in its entirety. Future
work could involve modification to the present model, or development of a new elastic
model to remedy this.

The tsunami profile is affected by seabed elasticity in shallower water. The inclusion
of elasticity induces a decay into the acoustic–gravity wave signals so that the signals
terminate after some finite time, unlike the rigid, stationary phase model. From the pa-
rameters studied, we find that the signal duration is most affected by the seabed rigidity,
with duration increasing alongside rigidity until the totally rigid condition is achieved, at
which point the signals persist indefinitely. Thus the inclusion of elasticity helps facili-
tate a more realistic representation of the pressure field. When the seabed is elastic there
exists the possibility of two surface waves. The first (mode 01) is the usual tsunami, but
the second (mode 00) is an interesting mode which does not propagate for all frequencies
in the elastic case, and never exists in the rigid case. Linear relationships between mode
00 timing of signal peaks and the fault parameters b (half-width) and τ (rupture duration)
are found and explained. There is also a linear relationship between uplift velocity and
mode 00 amplitude. Information on the fault geometry and timing is encoded into the
mode 00 surface wave, and is also found to be imprinted into the acoustic–gravity wave
signals as well. With appropriate filtering it is possible to extract this information from
the acoustic–gravity wave signal (at least in some instances), which would be helpful
in solving the inverse problem of deriving fault properties from acoustic/seismic infor-
mation. Additionally, an improved estimate of the critical cutoff frequency for acoustic
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modes n ≥ 2 is presented, which is then used in a new method for calculating approximate
phase velocity curves which does not rely on solving the dispersion relation (4.3.65) at
each point.

An approximation for the mode 00 surface wave cutoff frequency is also derived. As in
many previous studies, the model developed here has a constant water depth assumption,
so while the model can determine the tsunami properties for deep water, it may fail for
varying bathymetry. It remains to develop techniques that can account for changes in
bathymetry without computation of the entire 3D domain. For slowly varying bathymetry
(i.e. mild slopes where |∇h(x, y, t)| ≪ kh ) there already exist techniques in the form of
the depth-integrated equations [26, 55, 27]. In the conclusion to [27] the authors remark
that models of tsunamigenic events over an elastic seabed do not appear in the literature
to date. This topic is addressed and solved (at least for constant depth) in Section 3.3 of
this chapter.

In the study of the bottom pressure field for the Sumatra 2004 event covered in Section
4.6 a curved patch of the earth’s surface was mapped to a flat x, y plane. An interesting
extension to this work could be to move the perspective of the study into a more global
viewpoint by use of spherical co-ordinates. In that way far-field predictions may become
more accurate. The extension into spherical co-ordinates is the topic of the next chapter.
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Chapter 5

Propagation of acoustic–gravity waves
on a sphere: focusing and defocusing

5.1 Introduction

For oceanic studies involving acoustic–gravity waves on a global scale, the curvature of
the earth can have a measurable effect on propagation. For local, near-field, calculations
it is common practice to make use of Cartesian or cylindrical coordinates systems. How-
ever, these coordinate systems are only valid locally, where a tangent plane to the earth’s
surface can be taken as an approximation to the actual curved surface. At large distances
rectilinear coordinate systems fail to describe the intrinsic curvature, and the spherical
coordinate system becomes a better representation of the earth’s geometry. This chapter
investigates the effects upon tsunami and acoustic–gravity wave propagation of shifting
from a local cylindrical coordinate system, to a global spherical coordinate system. The
investigation is carried out in two different length scale regimes. The first normalises
lengths to the (constant) water depth. The second regime normalises lengths to the earth’s
radius, and thus provides a global perspective. It is found that the amplitude of the tsunami
and acoustic–gravity waves undergo a defocusing effect as the waves propagate from their
source (the North pole) to the equator. Then continuing past the equator the waves focus
again approaching the antipodal point (the South pole). A qualitative comparison with
the 2022 Hunga Tonga–Hunga Ha’apai eruption in the South Pacific is made in the case
of acoustic–gravity wave propagation through the atmosphere by treating the air layer as
a low density fluid.
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(a) (b)

Figure 5.1: A tangent plane can approximate spherical geometry locally over a limited
range. (a) Unit sphere with tangent plane incident at (x, y, z) = (0,0,1). (b) Cross-section
through x/z plane. The ∆z represents the difference between the tangent approximation
and the actual curved surface.

In many calculations involving propagation of either surface–gravity waves or acoustic–
gravity waves in the earth’s oceans a Cartesian coordinate system is employed [14, 3, 25,
16]. The axes are unbounded, and the origin is typically located either at the seabed, or
at the unperturbed liquid surface. In setting up such a Cartesian coordinate system one
assumption made is that a tangent plane to the sphere will remain a close approximation
over the area of interest - see Figure 5.1a. If ∆z in Figure 5.1b is taken as a measure
of error between the tangent plane approximation and the actual curved surface, then it
is possible to derive a coarse value for how far along a geodesic on the surface of the
sphere can be travelled before the error exceeds some specified limit, e.g., 1% (which
corresponds to ∆Z = 0.01 in Figure 5.1b). Since the circle in Figure 5.1b is of unit radius
the angle ψ is given by

ψ= tan−1

(
1−∆Z√

1− (1−∆Z))2

)
. (5.1.1)

Taking the earth’s radius re = 6371 km ([31]) the arc length from the point of tangency
[(0,1) in the x/z plane] to the 1% error point is given by

L = re

[π
2
−ψ

]
= re

[
π

2
− tan−1

(
1−∆Z√

1− (1−∆Z))2

)]
= 901.7km. (5.1.2)

Thus in the study of long-range propagation of tsunamis, and their accompanying acoustic–
gravity waves, a 1% deviation from Cartesian is apparent after travelling approximately
900 km from the source. In addition, the error does not increase linearly with distance
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travelled. For propagation in large bodies of water, such as the Pacific ocean, these er-
rors may be significant. To examine some of the consequences of moving to a global
framework, where the earth is modelled as a rigid sphere supporting a thin, constant depth
ocean, we employ spherical coordinates and solve the wave equation in these coordinates.

The method employed in the solution normalises lengths to two different scales, cor-
responding to two regimes, in the near and far fields. In the near-field we take the water
depth h as the reference length scale. In this regime, the earth’s curvature is neglected,
and we consider the generation of acoustic–gravity waves and the tsunami due to an up-
lifting cylinder. For the near-field view we can use axisymmetric cylindrical coordinates
as studied in [4]. In the far-field we normalise length scales to that of earth’s radius re. At
the interface between the near-field and far-field regions, both the value, and first deriva-
tive, of the velocity functions either side of the interface must match. These matching
conditions are enough to establish the unknowns of the equations and admit a full solu-
tion.

The outcome reveals that the amplitude of the tsunami and acoustic–gravity waves
undergo a modulation governed by the envelope of the theta function Θ(θ). This function
determines the degree of defocusing (i.e., attenuation) dependent upon how far around the
spherical body the wave has travelled. For example, for a wave originating at the north
pole, maximum defocusing occurs in the vicinity of the equator. Continued travel beyond
the equator towards the south pole would then see a focusing effect as evidenced in [19].
Reflections, at or near, the poles have not been considered in this work. The envelope
itself can be described by a modified form of Bernstein’s equation , which is discussed in
Section 5.4.

It should be noted that although we are working at a global scale in these studies,
we have not taken into account any tidal effects. For acoustic–gravity waves this should
not pose a problem since their speeds are much greater than those of tides. However, for
completeness, tidal effects should be part of any future work.

5.2 Formulation

The water layer is considered inviscid, homogeneous, of constant depth h, residing in a
gravitational field of constant magnitude g = 9.81ms−2. The water layer is supported by
a rigid, solid, homogeneous and isotropic sphere of fixed radius re.
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Figure 5.2: Water layer of constant depth h covering a rigid, solid non-rotating sphere of
radius re.

Spherical coordinates (r,θ,φ) are employed, with the origin of coordinates taken to
be the centre of the sphere (see Figure 5.2). The radial coordinate is denoted by r, the
polar coordinate by θ and the azimuthal coordinate by φ. Assuming irrotational flow the
problem is expressed in terms of a velocity potential function for the liquid ϕ. We make
use of linearised, irrotational flow for the liquid. A representation of the flow domain
is given in Figure 5.2. Taking into account the small compressibility of the sea, and
neglecting the gravitational potential term, gϕz, the velocity potential is governed by the
wave equation [20]

∇2ϕ− 1
c2
∂2ϕ

∂t2 = 0, re ≤ r ≤ re +h, 0≤ θ ≤π, 0≤φ≤ 2π, t ≥ 0, (5.2.3)

where h = 4000 m is the (constant) depth of the water layer and c = 1500ms−1 is the
speed of sound in water. When the Laplacian for spherical coordinates is applied the
wave equation becomes

∂2ϕ

∂r2 + 2
r
∂ϕ

∂r
+ 1

r2 sin(θ)
∂

∂θ

(
sin(θ)

∂ϕ

∂θ

)
+ 1

r2 sin2 (θ)

∂2ϕ

∂φ2 − 1
c2
∂2ϕ

∂t2 = 0, (5.2.4)

subject to boundary conditions. Following the derivations given in [8], at the free-surface
we have the combined kinematic and dynamic boundary condition

∂2ϕ

∂t2 + g
∂ϕ

∂r
= 0, r = re +h. (5.2.5)

At the rigid seabed (inner and outer regions) the radial component of velocity in the liquid
is zero

∂

∂r
ϕ

(
r,θ,φ, t

)∣∣∣
r=re

= 0. (5.2.6)
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(a)
(b)

Figure 5.3: Representation of the seabed rupture as an uplifting cylinder of radius Rc.
Surrounding the cylinder is an annulus of outer radius R0. Solutions involve matching
function values and first derivatives of the velocity potential at R0. (a) Uniform cylindrical
uplift at the seabed of compressible ocean of constant depth h. (b) Top view of rupture
regions. The black disc is the uplifting cylinder, the surrounding grey annulus is the inner
region and everything at distance > R0 is referred to as the outer region.

Since φ is an angular coordinate, solutions should be single-valued, i.e., unchanged as
φ→φ+2π

ϕ
(
r,θ,φ, t

)=ϕ(
r,θ,φ+2π, t

)
. (5.2.7)

The rupture in the seabed is modelled in the same way as in [4]. The model consists of
a transient, uniform vertical uplift with circular cross-section located at the seabed where
the spherical coordinate θ = 0 (i.e., the north pole of the sphere) - see Figures 5.3a and
5.3b. There is no loss of generality in choosing the North pole as the origin of the rupture,
since any other location on the sphere can be reached with a single rotation. Located
immediately outside of the rising cylinder we have an annulus between radii Rc (the wall
of the cylinder) and R0. This annulus is designated the inner region, and is made large
enough to ensure the evanescent waves arising from the rupture have decayed away, but
not so large as to introduce curvature errors.

5.3 Solutions

5.3.1 Short-range inner region

The tsunami will travel at speed
√

gh, with timescale
√

h/g and length-scale h. The
acoustic–gravity waves will propagate with velocity c, timescale h/c, and length-scale
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h. Let ξ = √
gh/c be a non-dimensional parameter. Then with ω as the frequency and

variables made non-dimensional and denoted with a hat circumflex as follows

r̂ = r
h

, t̂ = t√
(h/g)

=
√

g
h

t, ω̂=
√

h
g
ω, (5.3.8)

the wave equation becomes

∂2ϕ

∂r̂2 + 2
r̂
∂ϕ

∂r̂
+ 1

r̂2 sin(θ)
∂

∂θ

(
sin(θ)

∂ϕ

∂θ

)
+ 1

r̂2 sin2 (θ)

∂2ϕ

∂φ2 −ξ2∂
2ϕ

∂t̂2 = 0. (5.3.9)

Let h/re = ϵ≪ 1, and with Z the height above the seabed r = re +Z, 0 ≤ Z ≤ h, then the
non-dimensional forms become

r̂ = 1
ϵ
+ Ẑ, Ẑ = Z

h
. (5.3.10)

Substituting in the wave equation gives

∂2ϕ

∂Ẑ2
+2ϵ

∂ϕ

∂Ẑ
+ ϵ2

sin(θ)
∂

∂θ

(
sin(θ)

∂ϕ

∂θ

)
+ ϵ2

sin2 (θ)

∂2ϕ

∂φ2 −ξ2∂
2ϕ

∂t̂2 = 0. (5.3.11)

For small θ (near-field solution), we have

∂2ϕ

∂Ẑ2
+2ϵ

∂ϕ

∂Ẑ
+ ϵ2

θ

∂ϕ

∂θ
+ϵ2∂

2ϕ

∂θ2 + ϵ2

θ2
∂2ϕ

∂φ2 −ξ2∂
2ϕ

∂t̂2 = 0. (5.3.12)

Note that θ≪ 1, but not φ. From Figure 5.4 we see that the arc length from the north pole
is given by R = θre. For small θ we have sin(θ) ≈ θ, θ = R

re
= h

re
R
h = ϵR̂ with R̂ = R

h

being the arc length scaled to the water depth h. Thus

∂2ϕ

∂Ẑ2
+2ϵ

∂ϕ

∂Ẑ
+ 1

R̂
∂ϕ

∂R̂
+ ∂2ϕ

∂R̂2
+ 1

R̂2

∂2ϕ

∂φ2 −ξ2∂
2ϕ

∂t̂2 = 0. (5.3.13)

Also note ξ=O(ϵ
1
2 ). Assuming axisymmetric propagation, ∂φ = 0. Then for the near-field

solution, to leading order, we reduce to symmetric cylindrical coordinates

∂2ϕ

∂Ẑ2
+ 1

R̂
∂ϕ

∂R̂
+ ∂2ϕ

∂R̂2
−ξ2∂

2ϕ

∂t̂2 = 0, (5.3.14)

along with the boundary conditions.
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Figure 5.4: Arc length R = reθ. In practice θ is small for the inner region i.e θ < L
re

≈ 0.14
- see (5.1.2).

At the surface
∂2ϕ

∂t̂2 + ∂ϕ

∂Ẑ
= 0. (5.3.15)

At the seabed
∂ϕ

∂Ẑ
= 0, (5.3.16)

with continuity conditions given by

ϕin|R̂0
=ϕout|θ0=ϵR̂0

, (5.3.17)

∂

∂R̂
ϕin

∣∣∣
R̂0

= ∂θ

∂R̂
∂

∂θ
ϕout = ϵ ∂

∂θ
ϕout

∣∣∣
θ0=ϵR̂0

. (5.3.18)

The point at which the matching takes place in the continuity equations is R0 on the LHS
of the continuity equations where ϕ=ϕin(R, Z, t) and its equivalent θ0 = ϵR0 on the RHS
where ϕout =ϕout(t,θ).

The velocity potential ϕin appearing in the continuity conditions is already known
in integral form from [4] and will be referenced in the following text as the Cylindrical
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Solution (CS):

ϕin(R, Z, t)= 4RcW0

∫ ∞

0

µ0 cosh(µ0Z)sin
(
ωτ
2

)
ωq0

[
sinh(2µ0h)+2µ0h

] [
Y0(q0R)cos

(
ωt− ωτ

2

)
−J0(q0R)sin

(
ωt− ωτ

2

)]
J1(q0Rc)dω

+4RcW0

∞∑
n=1

∫ ∞

ωn

µn cos(µnZ)sin
(
ωτ
2

)
ωqn

[
sin(2µnh)+2µnh

] [
Y0(q0R)cos

(
ωt− ωτ

2

)
−J0(qnR)sin

(
ωt− ωτ

2

)]
J1(qnRc)dω

(5.3.19)

In (5.3.19) W0 is the cylinder uplift velocity, µ and q are wave numbers, τ is the rupture
duration, R is distance from the cylinder centre, and J, Y are Bessel functions. Assume
ϕ(Ẑ, R̂, t̂)= ζ(Ẑ)ρ(R̂)Υ(t̂) and substitute into (5.3.14) to give

1
ζ

d2ζ

dẐ2
+ 1
ρR̂

dρ
dR̂

+ 1
ρ

d2ρ

dR̂2
− ξ2

Υ

d2Υ

dt̂2 = 0. (5.3.20)

Re-arranging (5.3.20) gives

1
ζ

d2ζ

dẐ2
+ 1
ρR̂

dρ
dR̂

+ 1
ρ

d2ρ

dR̂2
= ξ2

Υ

d2Υ

dt̂2 = constant=−k̂2
s , (5.3.21)

=⇒ Υ(t̂)= A1 cos

(
k̂s

ξ
t̂

)
+ A2 sin

(
k̂s

ξ
t̂

)
, (5.3.22)

with ks a wave-number. From (5.3.21), and following [4] we have

1
ρR̂

dρ
dR̂

+ 1
ρ

d2ρ

dR̂2
=−

(
1
ζ

d2ζ

dẐ2
+ k̂2

s

)
= q̂2, (5.3.23)

where q̂2 is the separation constant between R̂ and Ẑ. The separation produces a set of
two ODE’s,

d2ζ

dẐ2
+ (

k̂2
s + q̂2)ζ= 0,

d2ρ

dR̂2
+ 1

R̂
dρ
dR̂

− q̂2ρ = 0. (5.3.24)

The solution in the Ẑ direction is

ζ(Ẑ)= B1 cos
(
µ̂Ẑ

)+B2 sin
(
µ̂Ẑ

)
, µ̂=

√
k̂2

s + q̂2, (5.3.25)

which is in agreement with [4].
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5.3.2 Dispersion relation

At this point it is possible to derive the dispersion relation even without knowledge of
the function ρ(R̂). The method shown here utilises (5.3.22) and (5.3.25), along with
ϕ(Ẑ, R̂, t̂) = ζ(Ẑ)ρ(R̂)Υ(t̂), and reverts back to dimensional quantities for the calculation.
Let A1, A2,B1,B2,C1,C2 be constants then

Υ(t̂)= A1 cos

(
k̂s

ξ
t̂

)
+A2 sin

(
k̂s

ξ
t̂

)
=⇒ Υ(t)= A1 cos(ωt)+A2 sin(ωt) ,

k̂s

ξ
t̂ = ksct =ωt,

(5.3.26)
ζ(Ẑ)= B1 cos

(
µ̂Ẑ

)+B2 sin
(
µ̂Ẑ

) =⇒ ζ(Z)= B1 cos
(
µZ

)+B2 sin
(
µZ

)
. (5.3.27)

Application of the boundary conditions for the surface (Z = h) and the seabed (Z = 0)

∂2ϕ

∂t2 + g
∂ϕ

∂Z
= 0

∣∣∣
Z=h

,
∂ϕ

∂z
= 0

∣∣∣
Z=0

, =⇒ tan(µh)=−ω
2

gµ
. (5.3.28)

Re-arrangement of the expression for µ from (5.3.25), and examination of the roots of the
dispersion relation - (5.3.28), produces three categories

(i) Single imaginary root µ= iµ0, =⇒ q0 = i|q0| = i
√

k2
s +µ2

0 = i

√
ω2

c2 +µ2
0, (5.3.29)

(ii) Finite number of real roots µn, when µ2
n < ω2

c2 , =⇒ qn = i|qn| = i

√
ω2

c2 −µ2
n,

(5.3.30)

(iii) Infinite number of real roots µn, when µ2
n > ω2

c2 =⇒ qn =
√
µ2

n −
ω2

c2 . (5.3.31)

The general solution for the radial ODE - (5.3.32) - is a linear combination of the Bessel
functions J0 and Y0 ([56])

d2

dR̂2
ρ(R̂)+ 1

R̂
d

dR̂
ρ(R̂)− q̂2ρ(R̂)= 0, ρ(R̂)= C1J0(iq̂R̂)+C2Y0(iq̂R̂). (5.3.32)

For the tsunami and acoustic–gravity modes n = 0, . . . , N and qn is purely imaginary and
so the argument of the Bessel functions becomes real indicating oscillating, progressive
modes. When n = N +1, . . .∞, qn is real and in that case we have the modified Bessel
functions representing non-progressive modes. Thus the situation for the near-field region
is exactly that found in [4] with solution given by (5.3.19).
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5.3.3 Long range outer region

To tackle the far-field solution re-scale r to length scale re and to time-scale
√

re/g. The
non-dimensional parameter is now χ=p

gre/c

r̄ = r
re

, r̄e = 1, Z̄ =O(ϵ), t̄ = t√
(re/g)

=
√

g
re

t. (5.3.33)

So now r = re +Z becomes r̄ = 1+O(ϵ) and ∂r̄ = 0. The small angle approximation is no
longer valid in the far-field (the outer region). Substitute into the wave equation, whilst
maintaining the axial symmetry from the inner region. Then take the leading term and
remove the remaining dimensionless t̄, to arrive at

1
sin(θ)

∂

∂θ

(
sin(θ)

∂ϕ

∂θ

)
− r2

e

c2
∂2ϕ

∂t2 = 0. (5.3.34)

5.3.4 Constructing the outer solution

Take the functionϕ= A
(
T,β

)
Θ(θ)e−iωt where T =σ1

(
t− τ

2

)
, β=σ2θ with σ2

i ≪σi, σ1 ≈
σ2, σi ≪ 1, i = 1,2. We seek to demonstrate that the function A(T,β) appearing in the
ansatz solution φ to (5.3.34) is equivalent to the long range version of the solution for the
inner region CS which is already known from [4] and appears in (5.3.19). Take only the
tsunami (Z = h) contribution from the propagating parts of (5.3.19), i.e., the first line

ϕin(R, t)= 4RcW0

∫ ∞

0

µ0 cosh(µ0h)sin
(
ωτ
2

)
ωq0

[
sinh(2µ0h)+2µ0h

] [
Y0(q0R)cos

(
ωt− ωτ

2

)
−J0(q0R)sin

(
ωt− ωτ

2

)]
J1(q0Rc)dω. (5.3.35)

The long range approximations for the Bessel functions 57, e.q. (10.7.8) are

J0 (q0R)=
√

2
πq0R

cos
(
q0R− π

4

)
, Y0 (q0R)=

√
2

πq0R
sin

(
q0R− π

4

)
. (5.3.36)

With these approximations substituted into (5.3.35) along with the trigonometric identity
sin(A−B)= sin(A)cos(B)−cos(A)sin(B) we have

ϕin(R, t)= 4W0Rc

∫ ∞

0

µ0 cosh(µ0h)sin
(
ωτ
2

)
ωq0

[
sinh(2µ0h)+2µ0h

]√
2

πq0R
sin

[
−ω

(
t− τ

2

)
+ q0R− π

4

]
J1(q0Rc)dω.

(5.3.37)
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Substitute ϕ= A
(
T,β

)
Θ(θ)e−iωt into (5.3.34) to give

cot(θ)
∂A
∂β

σ2Θ+ A cot(θ)
dΘ
dθ

+σ2
2Θ

∂2A
∂β2 +2σ2

∂A
∂β

dΘ
dθ

+ A
d2Θ

dθ2

− r2
e

c2

[
σ2

1Θ
∂2A
∂T2 −2iσ1Θω

∂A
∂T

−ω2ΘA
]
= 0. (5.3.38)

Collecting leading order terms, and applying the change of variable w = cos(θ), (5.3.38)
can be re-written as

(1−w2)
d2Θ

dw2 −2w
dΘ
dw

+ r2
e

c2ω
2Θ= 0. (5.3.39)

This is a Legendre equation which has solutions that are a linear combination of the
Legendre functions Pλ(w) and Qλ(w), where λ is the degree of the Legendre function.
Thus with E1,E2 as integration constants to be determined we have

Θ(w)= E1Pλ(w)+E2Qλ(w), λ= 1
2

√
4

r2
e

c2ω
2 +1− 1

2
, w = cos(θ). (5.3.40)

Then ignoring the small terms containing σ2
i we arrive at the order O(σ) equation from

which, after some re-arrangement, we find ∂A/∂T can be written in terms of ∂A/∂β as
follows

∂A
∂T

= ic2 [Θcot(θ)+2Θθ]
2r2

eΘω

∂A
∂β

. (5.3.41)

The equation ∂A/∂T = i∂A/∂β has solutions of the form A(T,β) = f (iT +β), where f is
some arbitrary function. The solution of (5.3.41) is of the form

A(T,β)= f
([
Θcot(θ)+2Θθ

2r2
eΘω

]
ic2T +β

)
. (5.3.42)

Where again f is some arbitrary function. Let

Pλ0 = Pλ(cosθ0), Qλ0 =Qλ(cosθ0), Pλ0+1 = Pλ+1(cosθ0), Qλ0+1 =Qλ+1(cosθ0),

Pλ = Pλ(cosθ), Qλ =Qλ(cosθ), Pλ+1 = Pλ+1(cosθ), Qλ+1 =Qλ+1(cosθ),

x =
[
Θcot(θ)+2Θθ

2Θr2
eω

]
ic2T +β,

(5.3.43)

with

Θθ = (λ+1)sin(θ)
cos2(θ)−1

[
E1

(
cos(θ)Pλ−Pλ+1

)
+E2

(
cos(θ)Qλ−Qλ+1

)]
. (5.3.44)
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Figure 5.5: Plot of q0(ω). Solid trace is dispersion relation, dash trace is (5.3.46), dot
trace (5.3.47), is an approximate expression derived in [4].

Then the sine term with square brackets in (5.3.37) can be written in the form f (x) =
sin[ax+b] with a = q0re

σ2
and b =−π

4 . This implies

q0re

σ2

[
Θcot(θ)+2Θθ

2Θr2
eω

]
ic2 =− ω

σ1
,

q0re

σ2
β= q0R. (5.3.45)

From (5.3.29), (σ1,σ2 ̸= 0), and with q0 numerically positive (so we are able to drop the
magnitude bars) we have

q0 (ω)= 2Θre

c2 (Θcot(θ)+2Θθ)
ω2,

q0re

σ2
β= q0R. (5.3.46)

As numerical verification of the relationship between q0 and ω in (5.3.46), Figure 5.5
compares values for q0 obtained from solving the dispersion relation at the matching
point θ0, against values given by (5.3.46) and an approximate expression derived in [4] -
(5.3.47)

q0 = ω√
gh

(
1+ ω2h

6g

)
. (5.3.47)

The values for q0 obtained from (5.3.46) remain close to the dispersion relation solution
as far as ω= 0.6rads−1. Thus A(T,β) can be written as (5.3.37) since we require equality
at the interface between inner and outer regions, hence ϕout can now be written as

ϕout(t,θ)= A(t,R) [E1Pλ+E2Qλ]e−iωt, R = θre (5.3.48)
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5.3.5 Continuity at interface between inner and outer regions

The initial conditions are determined by the particular rupture conditions studied. The
near-field solution is given by (5.3.19), so we can take this as our given velocity potential.
Matching at R0 then ensures a smooth transition between the CS of the inner region, and
the long range spherical coordinates of the outer region. The velocity potential functions
either side of R0 must match in value and first derivative at R0

ϕin(t,R)|R0 =ϕout(t,θ)|
θ0=R0

re
(5.3.49)

∂

∂R
ϕin(t,R)

∣∣∣
R0

= 1
re

∂

∂θ
ϕout(t,θ)

∣∣∣
θ0=R0

re

(5.3.50)

(5.3.50) is obtained via the chain rule as follows

∂ϕ

∂R
= ∂θ

∂R
∂ϕ

∂θ
, where

∂θ

∂R
= 1

re
. (5.3.51)

5.3.6 Determine unknown constants

The known velocity potential ϕin(R, t) for the inner region now has to satisfy the conti-
nuity conditions (5.3.49) and (5.3.50) with the outer region. Choose R0 = 120 km and
t = t0 = R0/

√
gh (the arrival time of the tsunami at the distance R0) to carry out the

matching. The value of 120 km for R0 is a compromise between being far enough away
from the rising cylinder in order for the evanescent waves to decay away, while not being
so far as to introduce curvature issues - see (5.1.2) for upper limit. Allowing 5h = 20 km
for evanescent wave decay in addition to the cylinder radius of Rc = 40 km gives a lower
limit of 60 km. So choose R0 = 120 km to be safely within these constraints. Increasing
this radius up to the upper limit of (5.1.2) would retain the inner solution for longer before
the defocusing effects begin. Conversely decreasing the radius would begin the defocus-
ing earlier. Given the radius of the earth the overall effect of relocating R0 on defocusing/
focusing would be negligible.

The first continuity condition gives

Φ=ϕin(R0, t0)= A(t0,R0)
[
E1Pλ0 +E2Qλ0

]
e−iωt0 , θ0 = R0

re
. (5.3.52)
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The second continuity condition then gives

ΦR = ∂

∂R
ϕin

∣∣∣
t0,R0

= ∂θ

∂R
∂

∂θ
ϕout

∣∣∣
t0,θ0

,
∂θ

∂R
= 1

re
, (5.3.53)

To obtain the left-hand side of (5.3.53) differentiate (5.3.35) with respect to R to give

ΦR = 4RcW0

∫ ∞

0

µ0 cosh(µ0h)sin
(
ωτ
2

)
ω

[
sinh(2µ0h)+2µ0h

] [
−Y1(q0R0)cos

(
ωt0 − ωτ

2

)
+J1(q0R0)sin

(
ωt0 − ωτ

2

)]
J1(q0Rc)dω. (5.3.54)

To obtain the right-hand side of (5.3.53) use

1
re

∂

∂θ
ϕout

∣∣∣
t0,θ0

= 1
re

∂

∂θ

{
σ2

∂

∂β
A

(
T,β

)[
E1Pλ0 +E2Qλ0

]
+A

(
T,β

) (λ+1)sin(θ0)
cos2(θ0 −1)

[
E1 cos(θ0)Pλ0 +E2 cos(θ0)Qλ0 −E1Pλ0+1 −E2Qλ0+1

]}
e−iωt

(5.3.55)

Equations (5.3.52), (5.3.53) form a set of simultaneous equations in unknowns E1 and E2

which can be solved to give

E1 =−
((−Φ (λ+1)Qλ0+1 +Qλ0 (Φ (λ+1)cos(θ0)+sin(θ0) reΦR)

)−sin(θ0) reΦRQλ0

)
eiωt0

Φ (λ+1)
(
Pλ0Qλ0+1 −Qλ0 Pλ0+1

) ,

(5.3.56)

E2 =
((−Φ (λ+1)Pλ0+1 +Pλ0 (Φ (λ+1)cos(θ0)+sin(θ0) reΦR)

)−sin(θ0) reΦRPλ0

)
eiωt0

Φ (λ+1)
(
Pλ0Qλ0+1 −Qλ0 Pλ0+1

) ,

(5.3.57)

With E1 and E2 now determined (5.3.48) can be reduced by cancellation of the e±iωt0

terms to
ϕout(t,θ)= A(t,R) [E1Pλ+E2Qλ] , R = θre. (5.3.58)

Note that it is not necessary to assign numerical values to σi since the terms cancel out
during the derivations. Taking the water density to be ρl , the surface elevation and dy-
namic pressure can be derived from

η=−1
g
∂

∂t
ϕout(t,θ), P =−ρl

∂

∂t
ϕout(t,θ). (5.3.59)
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Constant Description Value
g Acceleration due to gravity 9.81 ms−2

re Radius of earth 6371 km
Rc Radius of cylindrical rupture 40 km
R0 Radius of inner region 120 km
c Speed of sound in water 1500 ms−1

W0 Uplift velocity 0.1 ms−1

Table 5.1: Constants and parameters used in surface elevation comparison of Figure 5.7.

5.4 Results and discussion

Many studies of acoustic–gravity wave propagation use Cartesian or cylindrical coordi-
nates. However, the curvature of the earth unavoidably introduces errors for points far
removed from the source. In this chapter we have considered an axially symmetric rup-
ture occurring at the north pole and studied the propagation over the surface of the sphere.
The earth system being modelled as a thin water layer of constant depth overlying a rigid
sphere.

To achieve this goal we split our studies into two regions (inner and outer) with differ-
ent scales in each. By employing a suitable scaling for the inner region (the near-field), we
were able to show that the situation is exactly analogous to that studied in an earlier work
[4]. This correspondence allowed us to take an established integral solution (5.3.19) as
our desired initial velocity potential, valid for the region outside of the uplifting cylinder,
but within some arbitrary radius R0. The radius R0 being chosen so as to be far enough
away from the rupture for the evanescent waves to decay, but not so far as to suffer from
curvature effects. A value of 120 km was taken to satisfy these requirements.

For the outer region (R > R0) the scaling was changed to reflect the reference length
scale switching from h to re thus providing a far-field perspective. We found that the
amplitude derived in the CS is multiplied by Θ(θ) when moving to the spherical case.
Θ(θ) governs the defocusing/focusing behaviour of the wave-forms due to the spherical
geometry involved. The action of Θ(θ) is as follows: Θ(θ) begins with a value of 1 at θ0

since the amplitudes of the CS and the spherical solution must match at this radius. Then,
as θ increases, we see a decrease in amplitude (defocusing) as θ approaches π/2. From
this point Θ(θ) begins to increase in magnitude (focusing effect) until the value of 1 is
again attained at θ =π−θ0.
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Figure 5.6: Plot of theta function (5.3.40) (grey), upper and lower limits ±1 (red), and
approximate envelope function (5.4.60) (black). North pole (rupture origin) is located
at θ = 0, matching point at θ = θ0 = R0/Re = 0.01884, maximum defocusing occurs at
θ =π/2, antipodal matching point is at θ =π−θ0, and the South pole is at θ =π.

Since Θ(θ) multiplies the CS then the amplitude of the CS is modulated by Θ(θ) as
the waves propagate over the surface of the sphere, first defocusing as they approach
the equator θ = π/2, and then focusing again as they near the South pole θ = π. The
acoustic–gravity waves resulting from the second term in (5.3.19), would undergo similar
defocusing/focusing. A plot ofΘ(θ) is shown in Figure 5.6. Note thatΘ(θ) is only valid in
the range θ0 ≤ θ ≤ (π−θ0). If calculations are carried out using the outer velocity potential
for distances not falling within this range, then amplification of the surface elevation can
be reported. However, this is not valid (see Figure 5.7d).

The envelope governing the changing magnitude of Θ(θ) can be closely approximated
by a modified form of a result found in [58] and attributed to Bernstein. The modification
involves a re-scaling of Bernstein’s original result by a constant K :

|Θ(θ)| ≤ K

√
2
πλ

(
1−cos2(θ)

)− 1
4 , K = 1√

2
πλ

(
1−cos2(θ0)

)− 1
4

. (5.4.60)

The black traces in Figure 5.6 were obtained with (K = 8.68). As a numerical example we
take those parameters listed in Table 5.1 which reproduce Figure 5.2 from [4]. The aim is
to compile a side-by-side comparison of the tsunami contribution of the CS, against the
solution for η generated by (5.3.59), which utilises spherical coordinates. Comparisons
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are made at four distances from the source, namely 120 km (the matching point), 1000
km (as in Figure 5.2 [4]), 10000 km (which corresponds to θ ≈π/2) and 20000 km (which
corresponds to θ ≈ π). The resulting surface elevation wave-forms are found in Figure
5.7.

Having described the spherical solution, (5.3.58), some of the underlying assumptions
and limitations of the model can be discussed. The model consists of a constant depth
water layer covering a rigid sphere with no protruding land masses - “a water world”. In
practice the water depth is not constant, with many deep trenches, sea-mounts and land
masses dispersed over the surface of the approximately spherical earth. The land masses
in particular would break up the uniform film of water covering the sphere into distinct
oceans. This alone is enough to introduce reflection/refraction effects unaccounted for
in the model. The model does not take into account any dissipative mechanisms such as
friction, and with the sphere being considered rigid, no elastic effects of the seabed are
considered either. It is known that elasticity can be important [20, 46]. Also, a more
realistic model of the earth system would require the rotation of the planet to be taken in
account along with the tidal forces generated by the moon and (to a lesser extent) the sun.

Constant Description Value
g Acceleration due to gravity 9.81 ms−2

re Radius of earth 6371 km
Rc Radius of cylindrical rupture 1100 m
R0 Radius of inner region 120000 m
ρa Air density 1.2 kgm−3

c Speed of sound in air 343 ms−1

W0 Uplift velocity 400 ms−1

n Acoustic mode 1
τ Uplift duration 0.2 s

Table 5.2: Constants and parameters used in Tonga qualitative model.

5.4.1 Hunga Tonga–Hunga Ha’apai eruption

The axially symmetric, cylindrical rupture model developed in [4], coupled with the
global extent of the results obtained in this chapter suggest a qualitative comparison may
be made with the Hunga Tonga–Hunga Ha’apai eruption studied in [19]. The Tonga vol-
canic eruption of 15th January 2022 was one of the largest of the last 30 years, and gen-
erated concentric, propagating atmospheric acoustic–gravity waves which radiated out-
wards globally from the source.
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Figure 5.7: Comparison between the surface elevation from (5.3.19), against (5.3.59)
which uses spherical coordinates. CS is red dash trace, spherical solution is blue solid
trace. (a) Distance from source 120 km. This is the matching point. (b) Distance from
source 1000 km as in [4] (c) Distance from source 10000 km. Near the maximum de-
focusing point. (d) Distance from source 20000 km. As this distance is slightly further
away than the antipodal matching point (θ = π−θ0 ) some amplification is seen. How-
ever, this is not a valid result because the calculation was carried out beyond the range of
applicability of Θ(θ).

The Tonga eruption was modelled in [19] as a moving atmospheric source, coupled to
the ocean surface, able to transfer energy into the ocean via a triad resonance mechanism
[19]. For comparison purposes we regard the volcanic eruption as an uplifting cylinder
moving in a low density fluid (the atmosphere). The parameters used for the comparison
are those found in Figure 7 of [19], and reproduced in Table 5.2. The explosive nature of
the event is reflected in the supersonic uplift velocity and short duration. Our model is that
of a point source, rather than a moving source, as in [19], and no coupling (resonance)
with the liquid layer is considered. These constraints limit our comparison to be quali-
tative only. Figure 5.8 shows the progression of the acoustic–gravity wave front at four
distinct times. Figure 5.8(a) is just after the eruption, and shows the circular wave-front
of the acoustic–gravity waves as pictured in the satellite imagery of Figure 1 [19]. Figure
5.8(b) and (c) represent the acoustic–gravity wave’s progression just before, and just af-
ter, the point of maximum defocusing respectively. Figure 5.8(d) has the acoustic–gravity
wave focusing at its antipodal point lying over north Africa. The defocusing is apparent in
the less intense acoustic–gravity wave in Figures 5.8(b) and (c) when compared to Figures
5.8(a) and 5.8(d) - see supplementary video.

126 of 146



Chapter 5 Propagation of acoustic–gravity waves on a sphere: focusing and defocusing

Figure 5.8: Progression of acoustic–gravity waves generated by point source model of
the Tonga 2022 eruption. (a) Circular wavefront shortly after eruption, (b) Wavefront has
now travelled almost half way around the world. This is just before maximum defocusing
is achieved. (c) Just after maximum defocusing, the wavefront is now past the half-way
point and is beginning to focus again. (d) The wavefront has reached its antipodal point
over north Africa and has focused here.

5.4.2 Future work

The work presented in this chapter could be extended in a number of ways. One of which
could be the development of a computational fluid dynamics (CFD) validation model. The
assumptions of constant depth, solid and rigid sphere, no tides and no rotation discussed
earlier could make validation using recorded data difficult. Experiments using water tanks
are also of no help due to the global scale and curvature involved. Once the CFD model
had been set up, and the focusing/defocusing effects verified, then other assumptions
could be investigated. Elasticity, tides, rotation (Coriolis) and dissipation would all be
candidates for further study. Also, the small correction due to earth’s geometry being
closer to an oblate spheroid rather than a perfect sphere could be included.
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Chapter 6

Concluding remarks

This concluding chapter to the thesis will be composed of a general discussion around the
contents of Chapters 2 to 5, and highlight how the aims of the thesis proposed in Section
(2.2) have been met. Finally, some ideas for ways in which the work could be extended
in future will be proposed.

Fluid flow in its most general sense is a difficult phenomenon to study. For flow veloc-
ities that are small when compared to the speed of light, the governing equations for New-
tonian fluids are the Navier–Stokes (NS) equations. These are a collection of coupled non-
linear differential equations that are notoriously difficult to solve. The equations in their
purest form do not have a closed form solution. In this guise they are principally found in
Computational Fluid Dynamics (CFD). The study of tsunami and acoustic–gravity wave
propagation in the oceans would ideally make use of the full NS equations, taking into
account varying bathymetry, the elastic properties of the seabed, varying sound speed,
tidal effects, Coriolis forces, dissipation and the possibility of many more variables. In
practice, with current technology, the NS equations are too difficult to solve this way, and
simplifying assumptions are made in order to make the problem more tractable. A func-
tional mathematical model is always a balance between simplicity, accuracy and speed
of computation, and modelling of tsunamis is no exception. In the construction of any
mathematical model it is necessary to identify those parameters that are essential for the
mathematical description of the underlying physics. Then there are those that can be re-
garded as optional - in the sense that their inclusion provides a fine-tuning effect - and
those that can be ignored. For example, in the study of tsunamis and acoustic–gravity
waves, essential parameters might include the fault’s geometry and dynamics along with
the compressibility of water. Optional parameters could include elasticity and the varying
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depth of the ocean, while parameters that can be ignored might include the movements
of marine life. Over the course of the timeline in Chapter 2 there has been an evolution
in terms of adding/refining essential and optional parameters and adding/refining math-
ematical techniques. The fault geometry has been represented by infinite strips (both
oscillating and transient) [14, 3], cylinders [4] and, more recently, by rectangular blocks
[16, 1, 2]. The inclusion of water compressibility is essential if acoustic–gravity waves
are to be studied [18, 21]. The development of stationary phase techniques has helped
reduce computational burden where they can be applied [3, 4]. Progress has been made
on the issue of varying bathymetry by depth-integrated/mild-slope equations [55, 26] and
the effects of elasticity have been studied in the absence of ground motion [25].

Chapter 3 extends the results of [16] by adding gravitational effects to the existing pure
acoustic analysis. The motion of the seabed was modelled in [16] as the transient uplift
of a rectangular block. Gravity would enter the equations through the surface boundary
condition, and once the analysis was completed, we would have equations describing
both the acoustic–gravity waves (with slight correction due to gravity) and the tsunami.
The tsunami equations were a new result. Also, the finite extent of the rectangular block
representing the fault, and the linear nature of the model, meant that more complex fault
clusters could be addressed via superposition. This completed thesis aims 1 and 2 Section
2.2.

Chapter 4 added fault motion to the elastic seabed analysis of [25] and yielded some
interesting results. Considering the acoustic-gravity wave signals first, a new result that
emerged was that the signals terminate after some finite time. In contrast, the signals
derived using a rigid seabed analysis persist indefinitely. The determining factor in the
longevity of the signals turned out to be the seabed rigidity. Another new result found that
the fault’s geometry and dynamics were encoded into the acoustic–gravity wave signals
in such a way that - in some cases - the uplift duration and fault width could be retrieved
by careful filtering of the signals received in the far-field. In the highly symmetric case of
a rectangular block playing the part of a fault the information could be easily retrieved.
However, when examining real data, the interpretation became more difficult. The elas-
tic solutions involve integrals whereas the solutions for a rigid seabed could be obtained
through application of the stationary phase method, eliminating the integrals. A conse-
quence of the integral method was that solutions could be obtained for times preceding the
critical arrival time and thus the timing relationships buried in the acoustic–gravity wave
signals were noticed. Although the stationary phase method is much faster to calculate, it
does introduce a singularity at the critical time [3] and so information before the critical

129 of 146



Chapter 6 Concluding remarks

time is lost.

In addition, more accurate estimates for the cut-off frequencies for acoustic–gravity
wave modes n ≥ 2 were obtained.

Turning to the surface waves, it was found that the main tsunami was almost unaf-
fected by the elastic seabed when travelling over deep water - the wave did not “feel”
the seabed. In shallower water the elasticity of the seabed does make a difference to the
tsunami amplitude and wave shape. Also when the seabed is elastic there is a possibility
of second - very small - surface wave which propagates with the speed of sound. The
shape of this small wave also encodes the fault’s geometry and dynamics within it. An es-
timate for the cut-off frequency for this surface wave was derived. This completes thesis
aim 3 Section 2.2.

Finally, in Chapter 5, the perspective was broadened to a global scale. In this chapter
the influence of the (approximately) spherical geometry of the earth upon tsunami and
acoustic–gravity wave propagation was studied. Our studies found that the near-field
solution given in cylindrical coordinates, and valid for regions close to the rupture (located
at the north pole), underwent a modulation when moving to the far-field. Firstly, the
modulation resulted in a defocusing effect as the waves spread away from the north pole
towards the equator. Then, once propagation had passed the equator, the modulation
produced a focusing effect until the antipodal point (south pole) was approached. The
end of Chapter 5 completes thesis aim 5 Section 2.2.

6.1 Future work

Extensions to the model developed in Chapter 3 could be developed in many ways, one
of which would be to address the assumption of constant sound speed. The work of [51]
highlighted the importance of including variable sound speed profiles into practical appli-
cations such as tsunami early warning. Another area in which the model may be improved
lies in the assumption of an idealised rectangular geometry for the faults. Although [16]
shows the rectangular fault assumption to be valid in many cases, it is obviously not valid
for all. Future work could include the addition of dip and rake angles as parameters and
also provision for the fault to rise with different velocities along its length, rather than the
whole fault moving together with one set velocity. It remains to develop techniques that
can account for changes in bathymetry without computation of the entire 3D domain. For
slowly varying bathymetry (i.e. mild slopes where |∇h(x, y, t)|≪ kh ) there already exist
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techniques in the form of the depth-integrated equations [26, 55, 27].

For Chapter 4, the possibility of capturing the behaviour of acoustic–gravity waves
propagating at speeds higher than Cs could be investigated. Modifications to the model
developed in Chapter 4 might be possible, or maybe a new model would be required to
capture the leading pulse of hydrophone H08S (Figure 4.28).

The work presented in Chapter 5 could be extended in a number of ways. One of
which could be the development of a computational fluid dynamics (CFD) validation
model. The assumptions of constant depth, solid and rigid sphere, no tides and no rota-
tion discussed earlier could make validation using recorded data difficult. Experiments
using water tanks are also of no help due to the global scale and curvature involved. Once
the C.F.D. model had been set up, and the focusing/defocusing effects verified, then other
assumptions could be investigated. Elasticity, tides, rotation (Coriolis) and dissipation
would all be candidates for further study. Also, the small correction due to earth’s geom-
etry being closer to an oblate spheroid rather than a perfect sphere could be included.
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Appendix A

Derivation of first term in equation (4.2)
[3]

While analysing the equations and plot data for Chapter three 3.4b it was noticed that
the amplitude of the tsunami waveform derived from Stiassnie’s equations [3] was ap-
proximately half that predicted by the equations of [1] and the numerical model. Further
investigation revealed a possible typo in the derivations appearing in [3]. These investiga-
tions showed the equations for tsunami amplitude and the pressure contribution resulting
from the tsunami wave to be missing a factor of two. The calculations in this appendix
illustrate this discrepancy.

Starting with the contribution to bottom pressure arising from the surface wave i.e.
the first integral in [3] (3.14).

8ρζ̃0

πτ

∫ ∞

0

µ0 sin(ωτ/2)sin(k0b)
k2

0
[
2µ0h+sinh(2µ0h)

] cos
(
k0x−ωt+ ωτ

2

)
dω (1.0.1)

• x̂ = x
h , ⇒ x = x̂h

• b̂ = b
h , ⇒ b = b̂h

• t̂ = t̃− τ̂
2 =

√
g
h t− 1

2

√
g
hτ=

√
g
h

(
t− τ

2

)
, ⇒ t− τ

2 =
√

h
g t̂

• τ̂=
√

g
hτ, ⇒ τ=

√
h
g τ̂

• k̂0 = k0h, ⇒ k0 = k̂0
h
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√

h
gω, ⇒ω=

√
g
h ω̂ also dω=

√
g
hdω̂
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• k0 =
√
µ2

0 + ω2

c2 , [3] (3.7a) & (3.8)

ω2

c2 ≪ 1, so that µ0 ≈ k0 (incompressible).

8ρζ̃0

π
√

h
g τ̂

Re
∫ ∞

0

sin
(√

g
h ω̂

√
h
g
τ̂
2

)
sin

(
k̂0
h b̂h

)
k̂0
h

[
2 k̂0

h h+sinh(2 k̂0
h h)

] e
i
(

k̂0
h x̂h−

√
g
h ω̂

√
h
g t̂

)√
g
h

dω̂ (1.0.2)

8ρgζ̃0

πτ̂
Re

∫ ∞

0

sin(ω̂τ̂/2)sin(k̂0b̂)
k̂0

[
2k̂0 +sinh(2k̂0)

]ei
(
k̂0 x̂−ω̂t̂

)
dω̂ (1.0.3)

The phase is given by,

g0 (ω̂)= k̂0 (ω̂)
x
t
− ω̂. (1.0.4)

Differentiation of the phase term leads to,

∂g0 (ω̂)
∂ω̂

= dk̂0 (ω̂)
dω̂

x
t
−1= 0 at stationary point, (1.0.5)

with dk̂0(ω̂)
dω̂ obtained by differentiation of the dispersion relation ω̂2 = k̂0 tanh k̂0,

dk̂0 (ω̂)
dω̂

= −2ω̂
k0 (ω̂)tanh2 k0 (ω̂)− tanhk0 (ω̂)−k0 (ω̂)

. (1.0.6)

The stationary phase calculation requires the second derivative of g0 (ω̂) so differentiate
1.0.6 again to give,

d2k̂0 (ω̂)
dω̂2 = −2

k̂0 (ω̂)tanh2 k̂0 (ω̂)− tanh k̂0 (ω̂)− k̂0 (ω̂)

+
(
4ω̂k̂0 tanh k̂0 (ω̂)dk̂0(ω̂)
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)(
1− tanh2 k̂0 (ω̂)
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k0 (ω̂)tanh2 k0 (ω̂)− tanhk0 (ω̂)−k0 (ω̂)
)2
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dω̂

(
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)+2ω̂dk̂0(ω̂)
dω̂(

k0 (ω̂)tanh2 k0 (ω̂)− tanhk0 (ω̂)−k0 (ω̂)
)2 .

(1.0.7)
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The expression 1.0.7 contains dk̂0(ω̂)
dω̂ terms, so to eliminate them substitute 1.0.6 to give,

d2k̂0 (ω̂)
dω̂2 = 8ω̂2 (

k̂0 (ω̂)tanh3 k̂0 (ω̂)
)− tanh2 k̂0 (ω̂)− k̂0 (ω̂)tanh k̂0 (ω̂)+1(

k̂0 (ω̂)tanh2 k̂0 (ω̂)− tanh k̂0 (ω̂)− k̂0 (ω̂)
)3

− 2
k̂0 (ω̂)tanh2 k̂0 (ω̂)− tanh k̂0 (ω̂)− k̂0 (ω̂)

.
(1.0.8)

Further remove the tanh terms by substituting from the dispersion relation tanh
(
k̂0 (ω̂)

)=
ω̂2

k̂0(ω̂)
to arrive at,
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−ω̂4 + k̂0 (ω̂)2 + ω̂2

.

(1.0.9)

Finally making use of the shallow water approximation k̂0 (ω̂)= ω̂ [3] reduces the expres-
sion for the second derivative to,

d2k̂0 (ω̂)
dω̂2 = 6ω̂3 −8ω̂(

ω̂2 −2
)3 = ω̂+ 3

4
ω̂3 + 3

8
ω̂5 +O(ω̂7). (1.0.10)

Which to leading order becomes,

d2k̂0 (ω̂)
dω̂2 = ω̂= Ω̂0 at point of stationary phase. (1.0.11)

Therefore,
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Stationary phase approximation now gives,
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Note that,
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substituting and re-arranging 1.0.12 gives,
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Since we also have,
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Using cos(−θ)= cos(θ),

cos
[
K̂0 x̂− Ω̂0 t̂+ π

4

]
= cos

[
−

(
K̂0 x̂− Ω̂0 t̂+ π

4

)]

cos
[
Ω̂0 t̂− K̂0 x̂− π

4

]
= cos

[p
2

(
t̂
x̂
−1

) 1
2

t̂−
p

2
(

t̂
x̂
−1

) 1
2

x̂− π

4

]

= cos

[p
2

(
t̂
x̂
−1

) 1
2 (

t̂− x̂
)− π

4

]
but, (

t̂− x̂
)= x̂

(
t̂
x̂
−1

)
so that,

cos

[p
2

(
t̂
x̂
−1

) 1
2 (

t̂− x̂
)− π

4

]
= cos

[p
2x̂

(
t̂
x̂
−1

) 3
2

− π

4

]

so the final result is identical with the first line of equation (4.2) in [3] with the exception
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of an extra factor of 2 in the numerator.
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In summary the first line of equation (4.2) in [3] is given as,
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but should read,
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A similar derivation applies to the first term in equation (4.1) of [3] relating to the surface
elevation.
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Appendix B

Derivative terms from section 4.3.4
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