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System-level operational cyber risks identification in 
industrial control systems
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ABSTRACT
In Industrial Control Systems (ICS), where complex interde-
pendencies abound, cyber incidents can have far-reaching 
consequences. Dependency modelling, a valuable technique 
for assessing cyber risks, aims to decipher relationships 
among variables. However, its effectiveness is often ham-
pered by limited data exposure, hindering the analysis of 
direct and indirect impacts. We present a unique method 
that transforms dependency modelling data into a Bayesian 
Network (BN) structure and leverages causality and reason-
ing to extract inferences from seemingly unrelated events. 
Using operational ICS data, we confirm our method enables 
stakeholders to make better decisions about system security, 
stability, and reliability.
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1. Introduction

The cyber security landscape in the Industrial Control Systems (ICS) con-
tinues to evolve rapidly, and it is vital for asset owners to adapt their risk 
identification process to protect their assets from cyber-attacks [1]. While 
external threats often dominate discussions on cyber security, it is essen-
tial to recognise that the inherent architecture and operational depen-
dencies within an ICS environment can be a breeding ground for 
vulnerabilities and introduce points of exposure. For instance, the lack 
of well-defined access controls can permit unauthorised personnel to 
access critical control functions, leading to potential disruptions or 
unauthorised alterations of processes. In today’s ever-changing field, 
where the digital landscape is both a playground and a battleground, 
the pursuit of cyber security is a continuous journey, navigating through 
evolving threats, embracing innovation, and ensuring uninterrupted 
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service delivery. It is a continuum that varies based on evolving threats, 
vulnerabilities, and organisational measures. It relies not solely on tech-
nological solutions but is deeply intertwined with human factors, policies, 
and practices [2,3].

1.1. Motivation and challenges

In a 2023 SANS’ survey, the risk associated with ICS showed a steady upward 
trajectory from 38% of those surveyed who categorised ICS threats as ‘high’ in 
2020 to 44% in 2023 [4]. Table 1 illustrates notable ICS cyber attacks between 
2000 and 2023. It shows a significant upsurge in cyber incidents post-2010 
compared to the previous decade regarding attack frequency, surface, sophis-
tication, and impact.

Additionally, the intricate nature and interconnectedness of the ICS environ-
ment harbours the potential for unforeseen or unique events, which have 
remained a challenge yet to be adequately addressed. It is known to have 
properties that can fail due to a combination of unrelated stochastic events 
and phenomena [5]. These phenomena, namely interactive complexity and 
tight coupling [6], are a product of the intricate interplay of components within 
an ICS, rendering ICS susceptible to known cyber risks and sophisticated, pre-
viously unforeseen targeted attacks, posing substantial risks to industrial pro-
cesses’ operational and safety aspects [7]. These phenomena have manifested in 
recent successful attacks in the ICS environment, hence the focus of this 
research.

1.2. Tight coupling and interactive complexity

Each set of components in the ICS environment is designed to function in 
a specific manner to facilitate the execution of operations. These components 

Table 1. Notable ICS cyberattacks (2000 – 2023).
Year Target Method

2000 Australian Sewage Plant Insider
2010 Iranian Uranium Enrichment Stuxnet
2013 ICS Supply Chain attack Havex
2014 German Still Mill Stuxnet
2015 Ukraine Power Grid BlackEnergy
2016 Ukraine Substation CrashOveride
2017 Global shipping company NotPetya
2017 Healthcare, Automotive, others WannaCry
2017 Saudi Arabia Petrochemical Triton/Trisis
2019 SolarWinds Supply Chain attack Sunburst
2019 Norwegian Aluminum Company LockerGaga
2021 Colonial Pipeline Ransomware
2021 JBS Food Ransomware
2023 Johnson Controls International (JCI) Ransomware
2023 Dole Food Ransomware
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are interconnected within their respective sets and across multiple sets, forming 
a network connection, referred to as coupling [8,9]. The coupling concept 
denotes components” interconnection and mutual dependence, varying from 
loose to tight associations. In numerous industrial processes, optimal efficiency 
and precision hinge upon tightly coupled interactions. These interactions are 
widely detailed in Operation manuals, system architecture, and User guides. 
Therefore, system engineers and operators are thoroughly familiar with these 
interconnections [10].

Tight coupling signifies the extent of interdependence among diverse com-
ponents or subsystems. When tightly coupled, alterations or disruptions in one 
section of the system can swiftly and substantially impact other segments, 
potentially resulting in unforeseen cascading effects. This heightened interde-
pendence poses challenges in industrial settings, as it amplifies the vulnerability 
to cascading failures. For instance, a malfunctioning single component or 
a flawed control algorithm in one part of the system can quickly disrupt the 
entire operational chain, resulting in losses in production, safety hazards, and 
significant economic consequences. Consequently, understanding tight cou-
pling is a frequently sought-after objective in ICS behaviour, aiming to bolster 
system stability, reliability, and maintenance simplicity. The 2015 cyber-attack 
on Ukraine’s power grid is an example of how tight coupling can amplify the 
impacts of a targeted attack [11].

The concept of interactive complexity is closely related to the tight coupling 
phenomenon. It refers to interdependence among diverse components and 
subsystems within the ICS, stemming from the imperative of real-time coordi-
nation and communication among various subsystems and devices [12]. Such 
interdependencies are unknown to the system engineers and operators and are 
not documented in the User or Operation manual. These interactions can be 
challenging to predict or manage, especially when there are numerous feed-
back loops, interconnected processes, and dependencies.

The interconnectedness and interdependencies of ICS components render 
them vulnerable to interactive complexity, where the behaviour of one part can 
profoundly impact others, potentially yielding unintended consequences dur-
ing operational disruption [13]. This complexity heightens the challenge of 
detecting and mitigating cyber attacks, given that a breach in one component 
could trigger a chain reaction throughout the system, leading to domino effect 
disruptions and potentially catastrophic failures.

The combination of interactive complexity and tight coupling in ICS envir-
onments creates several cyber security challenges such as increased attack 
surface, with more entry points and potential vulnerabilities for attackers to 
exploit, difficult risk assessment, limited isolation and containment, and 
unpredictable consequences where seemingly minor issues can escalate 
into major incidents due to the intricate relationships between components. 
This reality was starkly illustrated in the Colonial Pipeline attack. Similarly, the 
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Stuxnet worm’s impact on Iran’s nuclear facilities showcased how an attack 
on a seemingly isolated section of the ICS could propagate throughout the 
entire system.

1.3. Research gap and research questions

Researchers have directly or indirectly proposed approaches and techniques to 
mitigate the challenges of interactive complexity and tight coupling. The main 
difficulty lies in developing a systematic approach that integrates all the factors 
and comprehensively understands the system’s behaviour, dependencies, and 
potential risks associated with tight coupling and interactive complexity.

Cyber risk practitioners have employed the conventional method of risk 
matrix scoring table. Here, assets are categorised and aggregated into portfo-
lios, which are then plotted against other portfolios to determine the risk of 
most importance [14]. However, despite their utility, this approach often over-
looks the subtleties inherent to individual assets and their specific contextual 
environments [15]. Also, an ongoing discourse has underscored the mathema-
tical inadequacies and inconsistencies in risk matrices, underscoring the critical 
importance of meticulous calibration and nuanced consideration of their limita-
tions [16].

To overcome these limitations, the United Kingdom’s National Cyber Security 
Centre proposed a system-driven concept of top-down analysis in their cyber 
risk framework [1]. Additionally, research techniques such as the 
Comprehensive Risk Identification Model (CRIM) for SCADA Systems [17] and 
Attack-Defense Trees (ADTool) [18] have studied the relationships and interac-
tions between various components. They offer visual representations of possi-
ble attack pathways and defensive tactics. However, they typically concentrate 
mainly on technical and system elements, which can result in the neglect of the 
behaviour-based aspects of risk identification. These methods fall short in 
tackling the issue of detecting cyber risks in ICS arising from interactive com-
plexity and tight coupling.

Other methods, such as System Theoretic Process Analysis for Security (STPA- 
Sec) [19] and Dependency Modelling (DM) [20], emphasised analysing the 
system to gain a comprehensive understanding of its unique components and 
contexts. While the STPA-Sec and DM methods offer analysis and understanding 
of the interconnectedness among the components and resources, their visibility 
into cyber risks within complex systems remains limited, and their analysis has 
not sufficiently addressed the cyber security risks in ICS that result from the 
interactive complexity and tight coupling phenomena.

In particular, DM struggles to assess how changes in a system’s state may 
impact other aspects of the model and cannot analyse changes from multiple 
independent nodes that may occur sequentially or simultaneously. The focus of 
our research is to answer the question: How can an existing operational risk 
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identification methodology be enhanced and expanded to detect hidden and 
unpredictable risks within complex industrial systems more effectively?

1.4. Contribution

The overarching aim of this research is to address the difficulties associated with 
identifying and discovering hidden risks within ICS, brought about by the 
interactive complexity and tight coupling nature of the environment. Such 
risks, which can elude detection through existing methodologies, are 
embedded within the intricate architectures of the ICS domain.

Our contribution involved integrating causal inference into DM, enabling an 
in-depth analysis of numerous independent nodes while considering alterations 
simultaneously or sequentially within the model. This multi-nodal analysis sig-
nificantly augments the detection of risks, particularly aligning with the phe-
nomena of tight coupling characteristics present in complex systems, where 
multiple events can fail synchronously. The proposed approach operates based 
on causal reasoning to achieve this objective. By amalgamating the Bayesian 
Network (BN) method with the Variable Elimination (VE) technique, we devel-
oped a tool named RiskED, which amplifies the capabilities of the established 
DM methodology, facilitating the identification of risks associated with inter-
active complexity and tight coupling in complex systems. Through the utilisa-
tion of RiskED, hitherto unidentified risks were identified, and subtle alterations 
in system states were discerned. By leveraging RiskED, a significant contribution 
is made towards advancing comprehensive risk identification in complex 
systems.

The rest of this paper is organised as follows: Section 2 discusses the back-
ground and related work within Bayes’ theorem, dependency and cyber risk 
domains, Section 3 provides a description of the method used to build RiskED 
and the integration of various techniques, Section 4 provides the case study, the 
data, and the analysis of results obtained, Section 5 provides discussions and 
limitations of the proposed approach, and Section 6 concludes the paper.

2. Background and related work

The original approach of the DM methodology is primarily oriented towards 
identifying the factors crucial for the overall success of a system rather than 
focusing on isolated process failures. It achieves this by inquiring about the 
essential dependencies for each process, specifically asking, ‘What factors con-
tribute to achieving the operational objectives?’ The approach focuses on the 
ultimate goals of a system’s successful operation instead of dwelling on 
hypothetical component failures, avoiding questions such as, ‘What if this 
component were to fail?’

CYBER-PHYSICAL SYSTEMS 5



[21]. This original concept means that the DM was designed to analyse and 
identify single independent nodes with the highest influence on the goal.

In the context of cyber risk, DM represents risk as the uncertainty surrounding 
the achievement of a desired state of a system or process. The probability of 
attaining the desired state, while being influenced by external factors beyond 
the understanding or control of the system’s owner, determines the level of risk. 
This probability indicates the likelihood of being in a particular state rather than 
the severity of its impact. Statistically, DM is used to identify and analyse the 
relationships and dependencies between variables in a model [22]. Often repre-
sented using a directed acyclic graph (DAG), which shows the dependencies 
between variables and the probabilities that describe these relationships, the 
probabilistic inferences compute the likelihood of each subsystem’s state. The 
graph demonstrates the impact of dependencies by tracing changes in the state 
of lower subsystems to upper subsystems, up to the root node of the entire 
system [20].

As shown in Figure 1, the concept of dependency conditional probability is 
visualised using a Probabilistic Graphical Model (PGM).

In this model, the graph consists of nodes representing goals, including 
sub-goals and acyclic edges that signify the probabilistic dependency 
relationship. Travelling from right to left, where the leftmost node is the 
‘goal’ or ‘root’ , the success probability of a root node is determined 
based on the success probabilities of its ‘parent’ nodes. Within this model, 
the rightmost nodes, without any parents, are the ‘leaf’ nodes. They are 
known as ‘uncontrollable’ nodes, meaning that the availability of such 
nodes is out of the control of the system owners. The colour coding 
employed in the model illustrates that the red segment represents the 
probability of not achieving the required state of the goal or sub-goal. In 

Figure 1. Dependency modelling graph.
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contrast, the green segment represents the probability of attaining the 
desired state

While DM features robust techniques, its application for risk identification in 
ICS is currently limited. These limitations hinder the complete adaptation of DM 
for this of addressing the interactive complexity and tight coupling phenomena:

● Notably, DM falls short in providing a comprehensive analysis of the 
broader system’s impact and lacks a formalised approach to measure 
both the direct and indirect consequences of a state change on other 
parts of the model tree. Additionally, it lacks the formalism required to 
stochastically test multiple and independent failures in a complex system, 
a common occurrence in ICS environments.

● DM can only reveal the impact on its branch but cannot understand or 
accurately assess any direct or indirect impact of a state change on other 
parts of the model tree.

● DM techniques are limited in their ability to analyse multiple simultaneous 
or sequential changes in independent nodes within the model. Due to 
interactive complexity and tight coupling phenomena, this limitation 
restricts the comprehensive analysis that can be achieved through DM.

● Operationally, the DM technique could be more resource-efficient if it were 
to perform extended statistical analysis, such as causal inference and pre-
dictions in a substantial ICS estate.

BN exhibits some features that give it notable advantages over DM; hence, its 
adoption by researchers as a robust technique for modelling and managing risk, 
uncertainty, and decision-making [23]. Similar to DM, BN represents relation-
ships among variables and their dependencies through a DAG. However, BN has 
the additional capability to allow each variable to take on a finite set of values 
and conditional dependency between two variables. Furthermore, it allows the 
learning of the joint probability distribution of all variables of interest, thereby 
enabling probabilistic modelling, which is perfect for causal reasoning, risk 
prediction, and decision-making under uncertainty [24]. This is possible using 
Bayes’ theorem, which states that the probability of an event occurring given 
some evidence is proportional to the prior probability of the event and the prob-
ability of the evidence given the event.

BN, as a member of the family of probabilistic graphical models (PGMs), is 
a practical choice for risk identification. Its ability to efficiently handle large 
amounts of uncertain and incomplete data, a common scenario in risk manage-
ment, is a significant advantage. By leveraging PGM, BN can identify variables 
that are most likely to contribute to the risk profile and quantify the level of risk 
associated with each variable reliably. Moreover, BN’s capability to capture the 
intricate relationships between variables in such systems enhances the accuracy 
and comprehensiveness of risk identification.

CYBER-PHYSICAL SYSTEMS 7



BN often starts with a graph based on an expert understanding of causal 
relationships among parameters. However, BN has an advantage because it 
explicitly encodes the independence of distributions from its predecessors. In 
a BN, each parameter’s probability distribution is determined by a subset of 
preceding parameters, chosen such that knowing this subset makes the dis-
tribution independent of the other predecessors. This subset defines the incom-
ing arcs for each node in the graph. When applied to dependency modelling, BN 
can use causal inference to identify the most critical and relevant variables, 
making the relationships clearer and more manageable.

2.1. Related work

In identifying related work, the focus was on research and tools that used 
probability inference to analyse relationships and dependencies among com-
ponents in complex systems.

2.1.1. Generic
Both [25] and [26] presented a generic overview of BN. On the one hand [25], 
provided a framework for developing comprehensive models of CPSs that can 
be used to discover and analyse interdependencies among different compo-
nents. On the other hand [26], provided an overview of the literature on the use 
of BNs for risk assessment and management and discussed the advantages and 
limitations of BNs for risk analysis. Although these publications offered a generic 
overview, they did not address DM and the application of BN as a method to 
enhance its capabilities.

2.1.2. Techniques
Mo et al. [27] proposed a BN-based approach to evaluate cyber risk via the 
construction of a security risk score model which employs a set of probabilistic 
values for capturing the inter-dependencies between threats and vulnerabilities 
in the network. Similarly [28], utilised BN to capture the severity, scope, and 
potential countermeasures of network intrusion events in real-time. Both 
approaches explored the dependency relationship between components but 
did not use causal inference to analyse the relationship or the impact of network 
intrusion.

2.1.3. Risk
CyberRiskDELPHI was proposed by [29] as a modified version of the Delphi 
method to address the dynamic threat landscape of mission-critical systems. 
Subjectivity and variability in cyber risk assessment for mission-critical systems. 
The authors demonstrated the use of CyberRiskDELPHI for risk identification and 
prioritisation, but the work did not address the identified phenomena in ICS. 
Both [30] and [31] focused on the application of BN to risk assessment. While 
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[31] proposed the use of BN in risk assessment for oil and gas processing 
equipment [30], proposed a BN-based method to validate and improve risk 
assessment and decision-making process. Neither of these research works 
provides a focus on risk identification nor addresses the issue of interactive 
complexity and tight coupling concerning complex systems.

2.1.4. Tools
There exist three commercial tools for building Bayesian network models and 
performing probability inference: Netica [32], AgenaRisk [33], and Genie [34]. All 
these software support building Bayesian network models using a graphical 
interface that specifies variable relationships assigns probability distributions to 
variables and performs probabilistic inference to calculate outcome probabil-
ities. Sensitivity analysis is also provided in all three tools, enabling the identi-
fication of the most significant variables in the model and evaluation of the 
robustness of the results to altered model parameters. While sharing similar 
principles with our proposed approach, these three commercial tools differ in 
their outcomes. They are suited only for less complex models, whereas our 
proposed tool offers scalability and the ability to handle large and complex 
models. Moreover, the three tools are incapable of analysing multiple indepen-
dent nodes.

3. Our approach

To understand the interactive complexity and tight coupling characteristics of 
a complex system, our research constructs a model capable of sufficiently 
describing the system’s current state and reflecting the dependency relation-
ships between components and tasks. This is built as a statistical, computational 
model that relies on the overall function of the system and how the presence (or 
absence) of each component impacts the overall goal. To achieve this, RiskED 
was developed as a new approach that integrates four multivariate methods 
and techniques within a unified model-fitting framework for modelling a DAG 
causal system by applying BN and causal inference principles to DM to infer 
connections among unrelated events and reveal concealed insights. In this 
approach, we leveraged and upheld the underlying assumption of BN that the 
occurrence of Event B following Event A indicates causal influence from A to B, 
rather than assuming a specific temporal order between events A and B [35]. By 
considering both events as distinct and independent occurrences within the BN 
framework, their relationship can effectively be analysed, and meaningful 
insights can be uncovered.

To comprehend the interactive complexity and tightly coupled charac-
teristics inherent in a complex system, the research endeavours to con-
struct a model that effectively describes the system’s current state while 
reflecting the dependency relationships among its components and tasks. 
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This model is developed as a statistical and computational framework that 
relies on the overall functionality of the system and the impact of each 
component’s presence or absence on the overarching objective. RiskED is 
underpinned by a set of proprietary scripts developed in Python and using 
Python libraries to manipulate data. RiskED accepts variables or nodes to 
include in a causal model. Attributes of these variables include name, 
dependency relationship (children and/or parents), and the probability of 
their state (availability).

The DAG principle was used to transform these variables into a dependency 
model, revealing the interdependencies among nodes and events. The depen-
dency model is illustrated through an abstract model that captures the relation-
ship between a goal and its dependent components, as well as the 
dependencies among these components and subsequent dependencies that 
follow. The process flow of RiskED is illustrated in Figure 2, and the following are 
the explanations for each step in the process flow:

● STEP 2b: BN belongs to the PGM family, which employs edges to represent 
direct causal relationships between variables [30]. PGMs provide a compact 
and interpretable representation of dependencies, enabling efficient infer-
ence and handling of uncertainty. Leveraging PGM techniques enables the 
identification of variables that are most likely to contribute to the risk 
profile and reliably quantifies the associated risks for each variable [24]. 
The intricate relationships between variables in the model were captured in 
a DAG model, leading to a more comprehensive and accurate risk identi-
fication [36,37]. The result of this Step is the DAG model.

● STEP 3: To investigate the dependencies and the strength of coupling, BN 
methodology is integrated into RiskED to compute the conditional prob-
ability of unknown variables based on observed values of other variables. 
RiskED assumes that each random variable is independent of its non- 
descendants when its parents are known. Each node has a set of associated 
variables known as its parents, which describe cause-and-effect relation-
ships between the parents and the variable (child). Here, each node in the 
model is treated as conditionally independent of the other. Each node can 
be in either of two states: S0 and S1, where S0 represents a failed state and 
S1 represents an optimum functional state. RiskED represents each node as 
a TabularCPD python class object in a graphical model [36]. The result of 
this Step is the BN with conditional probabilities.

● STEP 4: To draw probabilistic inferences about the BN model, the result 
obtained in Step 3 is passed to the Variable Elimination (VE) algorithm. VE 
provides a systematic inference approach to calculating the marginal 
probabilities of a target variable by eliminating the other network variables 
that are irrelevant to the target variable. It is one of the inference algo-
rithms used in BN for probabilistic reasoning. The VE algorithm proceeds by 
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iteratively eliminating variables from the joint distribution, exploiting the 
conditional independence relationships encoded in the graphical model.

● STEP 5: This is a pivotal step in the process. It involves building hypothe-
tical ‘what-if’ scenarios based on the causal relationships within the 
Bayesian network result of Step 4. The aim is to understand the potential 
consequences of different interventions. This is achieved by determining 
how the values of certain variables would change if other variables were set 

Figure 2. RiskED process flow.
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to different values. The step requires identifying the variables to intervene 
on and setting them to the desired values. These are the variables used to 
estimate the resulting changes.

● This process flow is further explained with Algorithm 1, which describes 
Steps 2, 3, and 4 and how Variable Elimination (VE) was adapted to 
compute inference in RiskED.

Algorithm 1. RiskED Process Flow
1: procedure transform
2:      global root infer, labellist, t0
3:      f ← open(”posterior.csv”, ”rt”, encoding = ”utf − 8”)
4:      for x in range(len(valuea)) do
5:            valueb.append(round(float(1 − valuea[x]), 4))
6:      end for
7:      values ← [valueb, valuea]
8:      if len(evidence) == 0 then
9:            model.add node(labellist[num])
10:          cpd[num] ← TabularCPD(variable = labellist[num], variable card = 2, values = values)
11:         model.add cpds(cpd[num])
12:    else
13:        model.add node(labellist[num])
14:       for x in range(len(evidence)) do
15:           model.add edge(evidence[x], labellist[num])
16:       end for
17:      cpd[num] ← TabularCPD(variable = labellist[num], variable card = 2, values = values,  

evidence = evidence, evidence card = evidence card)
18:      model.add cpds(cpd[num])
19:    end if
20:    root infer ← VariableElimination(model)
21:    rootvariable ← root infer.query(variables = [labellist[0]])
22:    t0 ← rootvariable.get value(labellist[0], 1)
23: end procedure
24: return

As an illustration, Figure 3 presents a high-level depiction of the dependency 
model utilised in this research study. In this model, the variable Secured system serves 
as the primary goal (root node), while its dependencies (parents) include variables 
such as SPE1, SPE2, SPE3, SPE4, SPE5, SPE6, SPE7, and SPE8. Similarly, the node labelled 
SPE2 relies on both the Inventory management and Change control nodes.

Due to the complexity and size of the complete dependency model, it is 
impractical to display it in its entirety within this paper; instead, the model is 
available in PNG format at this https://git.cardiff.ac.uk./c1001323/RiskED/-/blob/ 
main/eDependency.pnglink

To investigate these dependencies and the level of coupling, BN metho-
dology is integrated to compute the conditional probability of unknown 
variables based on observed values of other variables. RiskED assumes that 
each random variable is independent of its non-descendants when its par-
ents are known. Each variable has a set of associated variables known as its 
parents, which describe cause-and-effect relationships between the parents 
and the variable (child). Here, each variable in the model is treated as 
conditionally independent of the other, and each variable can be in either 
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of two states: S0 and S1, where S0 represents a failed state and S1 represents 
a functional state. RiskED represents each variable as a TabularCPD python 
class object in a graphical model [36]. For instance, the TabularCPD for the 
Secured System variable is defined as a variable with two states. It has eight 
parents, each of which can be in two states. Consequently, the probability 
value associated with the Secured System variable combines 32 (8� 2� 2) 
arguments or possible outcomes. This probability value reveals additional 
information not available to decision makers [36].

Causal inference provides system owners with the knowledge of which 
uncontrollable factor holds the greatest positive or negative impact on the overall 
goal’s state. It serves as a crucial element in comprehending the most significant 
risk location in the model. Based on the VE algorithm, the inference query to 
obtain the hidden data from the model is in the form of PðYjE ¼ eÞ where Y and 
E are disjoint variables in the model, and E is observed taking value e [36,38]. As an 
example in the data used in this research, PðSecuredSystemjSPE1 ¼ 0Þ is inter-
preted as: ‘What is the probability of the Secured System given that SPE1 fails or is 
not available?’  With causal inference, the current state of the system is already 

Figure 3. High-level depiction of the dependency model.
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known. We, therefore, choose counterfactual scenarios to perform a ‘what-if’ 
analysis.

4. Case study and analysis

The subject of this case study is a process-driven manufacturing enterprise 
operating on the IEC 62,443 framework for industrial automation and control 
systems security [39]. Within this framework, roles and processes are well- 
defined, and the responsibility for the overall cyber security program lies with 
the Board. Additionally, business and process owners are accountable for the 
security of their respective segments.

The network segmentation and control follows the ‘zones’ and ‘conduits’ 
concepts to isolate critical systems and control the flow of information, enhan-
cing security and reducing the potential impact of cyber threats. ‘zones’ repre-
sent logical or physical divisions within an ICS network that group together 
devices and systems with similar security requirements for the purpose of 
providing separation and control between different areas of the network to 
limit the impact of potential cyber threats.

The case study comprises three zones, namely: Enterprise Network Zone, 
Demilitarise Zone (DMZ) and OT Network zone, as shown in Figure 4. ‘Conduits’ 
serve as controlled entry and exit points for data flow between zones while 

Figure 4. Communication network segmentation showing zones and conduits.
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enforcing security policies and preventing unauthorised access. ‘Conduit’ 
ensure that only authorised communication is permitted and that traffic is 
inspected and filtered according to predetermined rules and policies [39,40]. 
The operational activities of the case study are segmented into independent 
zones and connected using conduits.

4.1. Data

The data utilised in this study was acquired from a risk assessment conducted on 
the operational technology (OT) security practices within the ICS enterprise. In 
accordance with the IEC 62,443 standard’s functional requirements (FR), there are 
eight secure, productive environments (SPE) criteria that offer guidance for 
achieving and maintaining a secure and productive environment. The risk assess-
ment measures maturity against the FR capabilities within the SPE, evaluating the 
cyber security profile of the environment and assigning scores based on a four- 
scale maturity level: 1 - Initial, 2 - Managed, 3 - Defined, and 4 - Improving. As shown 
in Table 2, the goal of the assessment is to measure the system’s overall security.

The goal was labelled Secured System (not shown in the table), whose 
dependencies are the eight SPEs. The Control column is the name of each FR. 
For example, there are three groups of FRs in SPE1 (in bold letters), each with 
dependent FRs. For each FR, there are two maturity values; ‘Desired’ and 
‘Actual’. The process or business owners have previously determined the 
‘Desired’ maturity state based on the overall goal of the enterprise. The desired 
maturity is the target they want to attain. The ‘Actual’ maturity value is assessed 
based on penetration testing, system logs, cyber security policies, vulnerability 
and threat analysis, observations, operator experience, and interviews. So the 
Background checks FR has a desired maturity of 3 and actual maturity of 2, while 
Physical access control has a value of 4 for both maturities. There are a total of 
114 components (variables) in the data.

To convert the risk assessment values to probability values, the ‘Actual’ 
Maturity value is normalised against the ‘Desired’ Maturity values, translating 
the scores into corresponding probability values between zero and one (0–1). 
For example, the actual value of Background checks translates to 67% 
(2=3 ¼ 0:67) and Physical access control to 100% (4=4 ¼ 1).

A dependency model that shows the interdependencies among the various 
components of the SPE criteria was built using a structured table format with 
the following attributes:

● Label: A numeric value used as an identifier to represent the node name. 
The full list of labels and corresponding node names is available in a CSV 
format at this https://git.cardiff.ac.uk./c1001323/RiskED/-/blob/main/mod 
ellist.csvlink

● Node: The components comprising the model.
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● Child Node: Child Nodes depend on other nodes.
● Dependants: The number of child nodes that depend on this node.
● Probability: The maturity values converted to probability values.

The full data is available in a CSV format at this https://git.cardiff.ac.uk./ 
c1001323/RiskED/-/blob/main/Converted_data.csvlink

Table 3 shows the analysed model. There are three types of nodes in this 
table, namely, the root node, leaf nodes, and child nodes. The root node is the 
goal of the model, Child nodes rely on other nodes, while leaf nodes are the 
nodes without dependants (zero values in the Dependants column). In addition, 
child nodes have values greater than zero in the Dependants column. It is worth 
noting that, given the hierarchical nature of the dependency model, a child 
node may also act as a parent to other nodes.

To normalise the values associated with leaf nodes, the posterior probability 
technique proposed by [41] was utilised, resulting in the Probability column 
within Table 3. The probability values in black letters are normalised values, and 
those in red letters are computed values using PGM techniques.

To interpret the entry for each node, it can be read as follows:

● The probability of Backup restoration (label 113) being in the desired state is 
76.7%, or

● The probability of SPE1 (Label 1) achieving the desired state is 53.6%.

4.2. Analysis

RiskED was used to apply the axioms of Bayesian networks to the data 
presented in Table 3. By employing this approach, we computed both con-
ditional probability and joint probability values for each node within the 
model. Our primary focus was on the marginal probability, which represents 
the present state of the overall model. Specifically, the probability of the 
Secured System attaining the desired state is 0.32956%. This value signifies 
the current condition of the system and serves as a crucial factor for all 
subsequent analyses conducted on the model. We subsequently performed 
causal inference counterfactual queries on the model to know how the 
overall goal (Secured System) is affected in different scenarios. Specifically, 
we want to understand the following:

● What is the impact on the model’s state if a single component fails or 
becomes unavailable versus when the same component is fully functional? 
In other words, what happens to the model if the actual maturity of 
a specific node is 0% or if the actual maturity equals the desired maturity 
(i.e. 100%)?
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● What is the impact on the model’s state if multiple stochastic components 
fail or become unavailable versus when the same components are fully 
functional? This query addresses the interactive complexity and tight cou-
pling phenomena.

Using VE to obtain causal inferences and counterfactuals for single and multi 
nodes combinations analysis, we present the results obtained for single-node 
analysis, as well as two- and three-nodal combinations, in the Tables 4, 5, and 6. 
Here, the top 10 most sensitive (negative) nodes are included. An explanation of 
each column in the tables is as follows:

● Node label: This label corresponds to each node name in the model.
● Marginal Probability: This represents the probability of the model as 

mentioned previously. It reflects the current true state of the system in 
the present time.

● P(G|E1 = 0) This denotes the causal inference of a new probability for the 
Secured System, given that the state or event (E) of a specific node is 0 
(unavailable). Here, we determine the probability of achieving the goal 
when a single node or a combination of nodes is turned off or failed. This 
value represents a probability.

● P(G|E1 = 1) This refers to the causal inference of a new probability for the 
Secured System, given that the state of a specific node is 1 (100% present). 
In this case, we compute the probability of achieving the goal when 

Table 3. Case study: dependency model.
Label Node Child Node Dependants Probability

0 Secured System 8 0.011
1 SPE1 Secured System 3 0.5366668
2 SPE2 Secured System 1 0.9942488
3 SPE3 Secured System 3 0.01
4 SPE4 Secured System 3 0.01
11 Security of Physical Access SPE1 1 0.9985591
12 Information Security Management 

System (ISMS)
Security Related Organisation 

and Policies
0 0.9333333

13 Background Checks Security Related Organisation 
and Policies

0 0.9333333

14 Security Roles and Responsibilities Security Related Organisation 
and Policies

0 0.9333333

28 System Segmentation SPE3 10 0.2426199
48 Malware Protection SPE4 3 0.0010323
103 Vulnerability handling Event and incident management 0 0.7667
104 System availability and intended 

functionality
SPE8 3 0.4506884

105 Backup/restore/archive SPE8 5 0.2649277
109 Backup Backup/restore/archive 0 0.7667
110 Backup non-interference Backup/restore/archive 0 0.7667
111 Backup verification Backup/restore/archive 0 0.7667
112 Backup media Backup/restore/archive 0 0.7667
113 Backup restoration Backup/restore/archive 0 0.7667

20 A. O. ROTIBI ET AL.



a single node or a combination of nodes is set to 100% availability. This 
value represents a probability.

● P1 This indicates the normalised difference between the marginal prob-
ability and the computed causal inference when the node is absent. It is 
computed as the marginal probability minus the value of P(G|E1 = 0).

● P2 This represents the normalised difference between the computed cau-
sal inference when the node is fully present and the marginal probability. It 
is computed as the value of P(G|E1 = 0) minus the marginal probability.

We conducted computations for two-nodal combinations, P(G|E1,E2 = 0) and P 
(G|E1,E2 = 1), by assigning probabilities of zero and one to nodes E1 and E2. 
Similarly, we also computed three-nodal combinations, P(G|E1,E2,E3 = 0) and P 
(G|E1,E2,E3 = 1), by assigning probabilities of zero and one to nodes E1, E2, and 
E3. The rationale behind these two-nodal and three-nodal analyses is to address 
the complexity of interactions and the phenomenon of tight coupling. These 
analyses provide insights into the outcomes when two or three components fail 
simultaneously or synchronously, even if they are not directly connected.

The columns P1 and P2 in our model represent sensitivity values that have 
been derived as normalised values to ensure their sum equals 1. These values 
were used to construct the three-point sensitivity analysis (3PS) for the model as 
shown in the tornado charts in Figures 5–7. The tornado chart enables the 
identification of events or variables that have the most influence on the overall 

Table 4. Causal inference with single node.

Node Label
Marginal 

Probability PðGj E1=0) PðGj E1=1) P1 P2

[24] 0.32957 0.00420 0.32989 0.98742 0.01258
[25] 0.32957 0.00420 0.32989 0.98742 0.01258
[26] 0.32957 0.00420 0.32989 0.98742 0.01258
[27] 0.32957 0.00420 0.32989 0.98742 0.01258
[66] 0.32957 0.02002 0.33050 0.94289 0.05711
[65] 0.32957 0.02002 0.33050 0.94289 0.05711
[63] 0.32957 0.02002 0.33050 0.94289 0.05711
[62] 0.32957 0.02002 0.33050 0.94289 0.05711
[61] 0.32957 0.02002 0.33050 0.94289 0.05711
[64] 0.32957 0.02002 0.33050 0.94289 0.05711

Table 5. Causal inference with two nodes.
Node Label Marginal Probability PðGj E1&E2=0) PðGj E1&E2=1) P1 P2

[26+66] 0.32957 0.00003 0.33082 0.99992 0.00008
[26+67] 0.32957 0.00003 0.33082 0.99992 0.00008
[24+60] 0.32957 0.00003 0.33082 0.99992 0.00008
[24+61] 0.32957 0.00003 0.33082 0.99992 0.00008
[24+62] 0.32957 0.00003 0.33082 0.99992 0.00008
[24+63] 0.32957 0.00003 0.33082 0.99992 0.00008
[24+64] 0.32957 0.00003 0.33082 0.99992 0.00008
[24+65] 0.32957 0.00003 0.33082 0.99992 0.00008
[24+67] 0.32957 0.00003 0.33082 0.99992 0.00008
[27+66] 0.32957 0.00003 0.33082 0.99992 0.00008
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outcome. The vertical axis of the tornado chart represents the different events 
being analysed. Each variable is listed on the axis in descending order of 
importance. The horizontal axis represents the impact of the events on the 
outcome. The axis is divided into positive and negative sections, with the zero 
point in the middle. The length of the bars represents the magnitude of the 
impact. Each event is represented by a bar in the chart. The length of the bar 
indicates the impact on the outcome. Longer bars indicate a higher impact, 
while shorter bars represent a lower impact. The colour of the bars, either red or 
green, indicates the direction of influence (negative or positive, respectively). 
The junction between the colour bars reveals the level of sensitivity in relation 
to the marginal probability (the goal). Furthermore, the sensitivity values offer 
valuable insights into the potential magnitude of the negative impact that 
a node can have on the model.

Analysing Figure 5, we observe that nodes 24, 25, 26, and 27 (Asset Inventory 
Baseline, Infrastructure Drawings/Documentation, Configuration Settings, and 
Change Control, respectively) are the most sensitive nodes within the model. 
Failure of any of these nodes would lead to a significant decrease in the 
probability of success, dropping from 0.32957% to 0.00420%. Conversely, 
investing in these nodes would slightly enhance the overall success rate to 
0.329895%, as demonstrated in Table 4.

Figure 6 illustrates the outcomes of the top 10 combinations of two nodes 
that have the greatest negative impact on the probability of achieving the goal. 
Interestingly, regardless of the specific combination chosen, the top 10 combi-
nations exhibit the same level of impact. For instance, the combination of nodes 
26 and 66 (Configuration Settings and Cryptographic Mechanisms) or nodes 24 
and 60 (Asset Inventory Baseline and Data Classification) both lead to 
a significant decrease in the probability of the goal, ‘Secured system’, from 
0.32957% to 0.00003%.

These results suggest that there is no tight coupling or direct connec-
tion between the chosen combinations of nodes. In other words, the 
probability of achieving the root node, ‘Secured system’, based on 
a particular combination of two nodes (e.g. nodes 24 and 60) is indepen-
dent of the values of other combinations (e.g. nodes 24 and 63). This 

Table 6. Causal inference with three nodes.
Node Label Marginal Probability PðGj E1,E2,E3=0) PðGj E1,E2,E3=1) P1 P2

[24+25+65] 0.32957 0.00023 0.33115 0.99930 0.00070
[25+26+68] 0.32957 0.00023 0.33115 0.99930 0.00070
[24+25+64] 0.32957 0.00023 0.33115 0.99930 0.00070
[25+26+67] 0.32957 0.00023 0.33115 0.99930 0.00070
[25+26+66] 0.32957 0.00023 0.33115 0.99930 0.00070
[25+26+65] 0.32957 0.00023 0.33115 0.99930 0.00070
[25+26+64] 0.32957 0.00023 0.33115 0.99930 0.00070
[25+26+63] 0.32957 0.00023 0.33115 0.99930 0.00070
[25+26+62] 0.32957 0.00023 0.33115 0.99930 0.00070
[25+27+61] 0.32957 0.00023 0.33115 0.99930 0.00070
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outcome was expected since the nodes being analysed are leaf nodes. In 
addition, a 100% improvement in these nodes increased the success rate 
to 0.33082%

Furthermore, it is worth noting that the sensitivity is higher (in a negative 
sense) in the two-nodal combinations (0.00003%) compared to the individual 
node scenario (0.00420%). This indicates that if cyber incidents were to target 
two nodes simultaneously or sequentially, the risk to the system would be 
greater.

Among the top 10 in a three-nodal combination, the combinational 
failure of nodes 24, 25, and 65 (Asset Inventory Baseline, Infrastructure 
Drawings/Documentation, and Data Purging) or nodes 25, 27, and 61 
(Infrastructure Drawings/Documentation, Change Control, and Data 
Protection) leads to a significant reduction in the probability of achieving 
the goal, dropping from 0.32957% to 0.00023%. On the other hand, a 100% 
improvement in these nodes can have a positive impact on the goal, 
increasing the success rate to 0.33115%, regardless of the specific combi-
nation of nodes.

In both Figures 6 and 7, the visibility of the green bars is limited due to 
the significant difference in the ratio between P1 and P2, as well as the scale 
of the graphs. Although there is an increase in the probability when the 

Figure 5. Single node 3-point sensitivity using causal inference.
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Figure 6. Two-nodal 3-point sensitivity analysis using causal inference.

Figure 7. Three-nodal 3-point sensitivity analysis using causal inference.
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nodes are fully available (100%), the negative impact is substantially higher 
in comparison.

Following the multi-nodal causal inference analysis, we conducted 
a frequency analysis to identify the most influential nodes based on their 
frequency of occurrence in multi-nodal combinations. As presented in 
Figure 8, node 24 (Asset Inventory Baseline) emerged as the most influential 
in a 2-nodal combination, occurring seven times, twice as frequently as the next 
most frequent (node 66), which occurs three times. The frequency results 
suggest that node 24 possesses higher interactive complexity in comparison 
to the other nodes.

In contrast, nodes 25 and 26 are the most influential nodes in a 3-nodal causal 
inference combination, occurring ten and seven times, respectively, as demon-
strated in Figure 9.

Figure 8. Two-nodal frequency analysis - negative impact.

Figure 9. Three-nodal frequency analysis - negative impact.
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The results of the frequency analysis, depicted in Figures 8 and 9 align 
with the findings of the single-nodal causal inference analysis presented in 
Figure 5, with nodes 24 and 25 being identified as highly important in both 
analyses. This emphasised their significance in contributing to the overall 
outcome of the goal and underscored the notion that the inclusion or 
exclusion of any of these nodes can notably impact the model’s perfor-
mance. Remarkably, the persistent occurrences of these critical nodes across 
the three graphs within Figures 5–7 suggest the potential confounding 
variables that may affect the model’s predictability in the absence or altera-
tion of these nodes.

In relation to our scenario, a detailed asset inventory (node 24) and 
infrastructure documentation (node 25) provide a foundation upon which 
all other cyber security activities are built. Along with node 26 
(Configuration settings), these three nodes form the basis for the second 
requirement of a secure, productive environment (SPE) under the IEC 
62,443 standard, which conveys the idea that it is difficult to safeguard or 
defend something if you are unaware of its existence or its value. 
Organisations must be aware of the components, data, and information 
they possess in order to protect them from unauthorised access or 
breaches, particularly in complex systems such as ICS, where there are 
numerous components, including remote locations.

5. Discussions and limitations

System owners gain direct insight into the underlying mechanisms driving 
a system by examining the relationships between different factors and identify-
ing those directly impacting others. This knowledge can aid in informed deci-
sion-making and interventions. One key benefit of our proposed technique is its 
ability to identify causal relationships between variables. In our study, we 
utilised this technique to identify crucial factors contributing to a specific out-
come and to reveal hidden inferences not directly observable with traditional 
dependency modelling. Within our scenario, our technique exposed the two 
characteristics of complex systems discussed in Section 1.

This paper focused on conducting causal inference queries and analysis 
exclusively on leaf nodes. However, the model structure, as described in 
Section 4.2, offers the flexibility to expand the scope of queries by incorporating 
other nodes. This is possible because each node in the Bayesian network is 
represented as a conditionally independent node, allowing for the inclusion of 
additional nodes in the analysis.

There are several noteworthy observations from this research that project 
limitations. One key issue is that BNs do not inherently provide a mechanism to 
select a prior. To address this, we employed a novel technique that allowed us to 
calculate the posterior probability for the nodes. Another issue is that causal 
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inference with DM is based on the assumption that relationships between 
variables remain stable over time. However, as can occur in complex systems, 
the relationships between variables may change over time, resulting in inaccu-
rate predictive models. To address this, we propose a risk identification process 
that can be triggered automatically in the event of changes to the component 
of the model. Furthermore, two- and three-combination queries were used as 
a proof of concept, and while effective in identifying significant factors, the 
computational complexity increased significantly. With a dataset of 114 nodes, 
including 89 leaf nodes, a two-combinational query produced over 3000 com-
bination results, while a three-combinational query resulted in over 100,000 
combinations. Clearly, extending this technique to more complex, larger models 
presents significant computational challenges.

This limitation became apparent in RiskED because automated causal infer-
ence requires a repeated operation that’s carried out on the full collection of leaf 
nodes in the model. The computational complexity of the RiskED’s algorithm 
involves iterations roughly proportional to the factorial of the number of leaf 
nodes, represented as O(X!). In this context, the Big O symbolises the maximum 
growth rate of the algorithm function. The computational challenge of O(X!), 
where X! represents the factorial of X, is that the factorial function grows 
extremely rapidly as X increases, making algorithms with a time complexity of 
O(X!) highly computationally intensive.

The factorial of a number X is the product of all the positive integers less than 
or equal to X. Mathematically, it is represented as: 

Where:

● x is the total number of leave nodes
● O(X!) is the factorial time complexity, which is incredibly inefficient

6. Conclusion and future work

Our research is aimed at improving the capacity of DM to effectively assess 
the impact of system risks and detect unpredictable phenomena. While DM is 
an established technique in the field of cyber risk assessment, it has limita-
tions when dealing with complex systems due to the difficulty of establishing 
explicit probability distributions across all branches of the model. To address 
this issue, we proposed RiskED as an approach that leverages the capabilities 
of Bayesian networks to enhance the capability of DM by incorporating 
inferences. The application of RiskED was tested and evaluated using 
a small sample of data from an ICS manufacturing environment. The results 
of this proof-of-concept demonstration highlighted the potential of the 
RiskED approach to scale up to more comprehensive models, providing 
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interpretable and repeatable results for cyber risk identification. This indi-
cates RiskED’s capacity to significantly improve upon existing risk identifica-
tion techniques used in ICS contexts.

Specifically, the approach enabled the successful identification and analysis 
of previously unknown risks associated with the interactive complexity and tight 
coupling phenomena prevalent in ICS environments. These types of risks can 
potentially lead to unpredictable system behaviours and out-of-control events. 
By incorporating a suite of enhanced techniques, RiskED was able to adapt and 
improve the capability of DM to address these complex cyber risk identification 
challenges.

Further research and development are needed to fully explore and optimise 
the capabilities of RiskED and to broaden its applications in the field of cyber risk 
identification. In future research, we intend to explore innovative computational 
approaches that can efficiently manage the resources in analysing large datasets. 
One such approach is the System-thinking approach that identifies negligible 
nodes and empowers asset owners to select a combination of nodes from the 
model’s complete list of nodes to minimise computation time spent in identify-
ing all possible combinations within the model, albeit at the cost of performing 
single sets of combinations at a time. While a promising step forward, further 
work is needed to determine its efficacy. In addition to further exploring efficient 
computational approaches, we seek to leverage RiskED to make predictions 
about future outcomes based on past data and develop predictive models to 
forecast future cyber risk trends. Doing so would enable organisations to better 
plan for potential threats and vulnerabilities and make more informed decisions.

Overall, we believe that the application of this approach can contribute 
meaningfully to the enhancement of cyber risk management in complex system 
environments.
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