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ORIGINAL ARTICLE

Forecasting interrupted time series

Rob J. Hyndmana and Bahman Rostami-Tabarb 

aMonash University, Clayton, Australia; ARC Training Centre in Optimisation Technologies, Integrated Methodologies, and 
Applications (OPTIMA); bData Lab for Social Good Group, Cardiff Business School, Cardiff University, Cardiff, UK 

ABSTRACT 
Forecasting interrupted time series data is a major challenge for forecasting teams, especially 
in light of events such as the COVID-19 pandemic. This paper investigates several strategies 
for dealing with interruptions in time series forecasting, including highly adaptable models, 
intervention models, marking interrupted periods as missing, forecasting what may have 
been, downweighting the interruption period, and ensemble models. Each approach offers 
specific advantages and disadvantages, such as adaptability, memory retention, data integ
rity, flexibility, and accuracy. We evaluate the effectiveness of these strategies using two 
actual datasets that were interrupted by COVID-19, and we provide recommendations for 
how to handle these interruptions. This work contributes to the literature on time series 
forecasting, offering insights for academics and practitioners dealing with interrupted data in 
numerous domains.
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1. Introduction

Time series forecasting models use historical data to 
estimate future values (Fildes et al., 2008) based on 
consistent patterns observed in the past. However, 
time series are sometimes disrupted by unusual 
events that jeopardise the regularity of the time ser
ies pattern. This can be defined as an interrupted 
time series. Time series data may be disrupted by a 
variety of reasons, ranging from temporary policy 
changes to natural disasters. Outbreaks, epidemics, 
and pandemics, for example, may have a consider
able impact on population behaviour, causing dis
crepancies and interruptions of data in a variety of 
industries such as healthcare, pharmaceuticals, 
transportation, retail, tourism, and traffic manage
ment. Similarly, transportation-related data may be 
interrupted due to equipment failures, such as mal
functions or breakdowns in vehicles, aircraft, or rail 
systems, resulting in missing or inaccurate data 
points. Furthermore, cybersecurity breaches data 
quality by possibly skewing readings in datasets 
relating to financial transactions, network traffic, 
and user activity, complicating time series analysis. 
Supply chain disruptions induced by factors such as 
strikes or shortages cause irregularities in sales, 
inventory levels, production, and delivery, often 
resulting in data gaps. For example, the war in 
Ukraine caused disruptions in sunflower oil and 
wheat supply chains, which were most likely driven 

by social media and people’s recent memories of the 
COVID-19 toilet paper shortage. A power outage in 
Eastern Germany halted production at a Tesla facil
ity and cut off electricity to a large retailer distribu
tion centre, disrupting supplies to around 500 stores 
in and around Berlin for several weeks. Recent 
strikes in various forms of transport, including air 
and rail in Germany, France, and the United 
Kingdom, have had an impact on passenger flow 
and retail sales at airports and train stations. These 
issues highlight the significance of robust forecasting 
systems in addressing such disruptions effectively.

The disruptions may result in relatively simple 
changes in the series; for example, a level shift at 
the start of the disruption and another at the end of 
the disruption. Or they may be more complex, with 
changes to the seasonal patterns and changes to the 
level, which evolve over time.

The presence of such disrupted events poses 
a significant challenge to time series forecasting 
approaches, restricting their ability to reliably capture 
systematic information and forecast future values. 
The implications of these temporal interruptions are 
far-reaching: time series forecasting techniques, which 
are a key component of the forecaster’s toolbox, may 
no longer be viable options since time series models 
usually assume that the data will evolve in the future 
in a similar way to how it has evolved in the past. 
But a big event (such as COVID-19) can result in a 
future that is different from the past, at least in the 
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short term. Therefore, practitioners face a critical 
question: how to effectively forecast time series data 
that are impacted by such disruptive events? Many 
forecasters have faced this issue recently with the 
COVID-19 pandemic, where historical patterns have 
been severely disrupted due to policy interventions, 
lockdowns, and other restrictions. The motivation for 
this study originates from numerous conversations 
with academics and practitioners, who have expressed 
widespread concern about dealing with data impacted 
by events like the COVID-19 pandemic. In this 
paper, we consider a range of models that can be 
used to forecast time series influenced by disrupted 
events and compare their performance on some real 
data sets.

Although several approaches to the problem exist, 
the literature lacks recommendations and compari
sons of alternative strategies for forecasting time ser
ies data influenced by interruptions such as the 
COVID-19 pandemic. This paper aims to close this 
gap by proposing several methodologies for forecast
ing time series influenced by such disruptions.

We consider the problem of forecasting inter
rupted time series both during and after the event. 
This is a separate problem from change point detec
tion (Aue & Horv�ath, 2013; Truong et al., 2020) 
and anomaly detection (Talagala et al., 2020). In the 
situations we investigate, we know that a change has 
occurred, which has caused some unusual observa
tions, and we want to forecast what will happen 
next. Change point detection refers to determining 
when a change occurred (Bl�azquez-Garc�ıa et al., 
2021), and anomaly detection aims to identify 
unusual observations with the intention of either 
minimising their value or paying particular attention 
to them and doing a root-cause investigation. Our 
study focus also differs from intervention modelling, 
sometimes referred to as interrupted time series ana
lysis and modelling (McDowall et al., 2019), which is 
used when we have data about an outcome over 
time and the aim is to assess the impact of an inter
vention, policy, or program implemented at a spe
cific time point. We are not trying to measure the 
impact of the interruption; rather, we are trying to 
produce sensible forecasts during and after the 
interruption.

To our knowledge, this is the first study to 
describe and compare general strategies for forecast
ing interrupted time series, such as COVID-19- 
affected data. The study proposes and evaluates 
multiple forecasting strategies designed to handle 
interruptions in time series forecasting caused by 
disruptive events. These approaches include a range 
of models capable of capturing different types of 
changes, from simple level shifts to more complex 
alterations in seasonal patterns and trends. By 

comparing the performance of these models on two 
real data sets affected by the COVID-19 pandemic, 
the paper offers valuable insights into the effective
ness and practical implications of each approach. By 
discussing the advantages and disadvantages of each 
strategy, and providing recommendations based on 
the findings, the paper equips practitioners with 
actionable insights for addressing the challenges 
associated with forecasting during and after disrup
tive events. Further, by adhering to reproducibility 
principles and providing both data and R code for 
the forecasting models, the research contributes to 
transparency and promotes the generalisability of 
the suggested strategies to a variety of domains. 
This openness allows for the replication of results, 
ensuring the reliability of findings, and enhancing 
the accessibility and utility of study outputs for the 
larger research community.

We introduce several strategies to handling inter
ruptions when forecasting in Section 2. We then 
apply these approaches to two real data sets in 
Section 3. Finally, in Section 4, we discuss some of 
the advantages and disadvantages of each approach 
and provide some recommendations for practitioners.

2. Handling interruptions when forecasting

In this section, we describe several possible strat
egies to handle interruptions when forecasting time 
series data. The handling of time series interruptions 
is a complex and multifaceted issue, and the choice 
of the most appropriate strategy depends on the 
specific characteristics of the data and the nature of 
the interruption. Therefore, in this paper, we pro
pose multiple strategies rather than a single 
approach to effectively address different situations 
and cases.

2.1. Use a highly adaptive model

Highly adaptive models offer flexibility in adjusting 
to changes in time series characteristics over time. 
These models can adjust to the interruption as it is 
happening and will therefore be able to approximate 
the data generating process relatively well.

Exponential Smoothing State Space models (ETS) 
represent an adaptive method that has demonstrated 
competitiveness in time series forecasting (Gardner, 
2006). These models allow for the adaptation of 
model parameters over time to accommodate shifts 
in time series characteristics (Hyndman et al., 2002). 
For example, an ETS model with large smoothing 
parameters will be able to adjust to the interruption 
relatively quickly. This has the advantage of being a 
very simple solution that is easy to implement and 
fast to compute. There is no need to explicitly 
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model the interruption, and so the model can be 
used for forecasting even if the timing or effect of 
the interruption is unknown.

Similarly, time-varying parameter models exhibit 
high adaptability (Harvey, 2006), enabling forecast
ing models to better accommodate interruptions in 
data over time. Time-varying parameters are fre
quently utilised in dynamic forecasting models, such 
as state-space models or Bayesian structural time 
series models (Talih & Hengartner, 2005). Some 
models employ approaches to reduce the influence 
of affected observations during model training by 
assigning different weights. The utilisation of 
weights extends beyond merely including or exclud
ing observations and can also balance the degree of 
influence each observation has on the forecasting 
model (Khoshgoftaar et al., 2007).

The prediction intervals from highly adaptive 
models tend to be wide because the model will have 
heavily discounted past data. In fact, the model will 
largely forget the past data other than the most 
recent observations, so there is no memory of the 
seasonal patterns and other dynamics that were pre
sent before the interruption. Consequently, the 
approach works best if there is no assumption that 
the post-interruption period will be similar to the 
pre-interruption period.

The disadvantage of smoothing and other highly 
adaptive techniques is that they need time to adapt 
after a disturbance and can eventually end up chasing 
noise. The latter is an intriguing issue since individu
als often prefer adaptability while failing to recognise 
that it does not necessarily improve forecasting.

2.2. Use an intervention model

One modelling approach that has gained popularity 
in handling disruptions is the intervention model, 
also known as interrupted time series (ITS) model
ling, introduced by Box and Tiao (1975). This 
approach focusses on understanding how and 
whether outcomes change following the implementa
tion of an intervention, policy, or programme at a 
specific time point. ITS models provide a robust tool 
for analysing policy and programme evaluation across 
diverse domains (Bernal et al., 2017; McDowall et al., 
2019). These models can forecast future values by 
developing models that incorporate a range of com
ponents, such as pre-intervention levels, trends, sea
sonality, covariates related to the intervention time, 
and other external factors that might affect the out
come variable. A related approach is the multiple 
regimes model, which is particularly useful in fore
casting due to its ability to capture structural changes 
and transitions observed in interrupted time series 
data (Koop & Potter, 2007).

A special case of the intervention models pro
posed by Box and Tiao (1975) is a dynamic regres
sion (or regression with ARIMA errors) model. This 
model includes covariates describing the interrup
tion explicitly, with an ARIMA process describing 
the remaining time series dynamics. For example, if 
the intervention involves a simple level shift with a 
reverse level shift at the end of the intervention, we 
can use a dummy variable to indicate the interrup
tion period and allow the model to adjust to the 
interruption. More complicated interventions can be 
handled by using more covariates.

This has the advantage of retaining the memory 
of the past, and so the seasonal patterns and other 
dynamics will be retained. This allows the change 
period to be effectively modelled, provided the inter
vention variables are chosen well. Intervention mod
els are useful because they enable the forecasting of 
similar future disruptions, but distinguishing 
between a disruption and a general driving factor, 
such as a promotion or a seasonal storm, may 
become subjective. However, the model will assume 
that the post-interruption period will be similar to 
the pre-interruption period, and so the prediction 
intervals may be too narrow, especially if there is a 
lasting effect beyond the end of the interruption.

2.3. Set to missing

Disruptive events may potentially alter time series 
by causing gaps. Alternatively, problematic observa
tions that occur during the period of disruption can 
be set to missing, and a model fitted to the remain
ing observations should continue to produce fore
casts as if the interruption had not occurred. Of 
course, the forecasts will not be accurate for the 
period of disruption, but they can be interpreted as 
“what might have been.” This solution requires a 
judgement to be made about when the disruption 
has begun and when normality resumes.

While many time series forecasting models strug
gle with missing data, several approaches can intern
ally handle missing data (Twala et al., 2008). Wu 
et al. (2015) suggested a forecasting approach based 
on a Least Squares Support Vector Machine 
(LSSVM) that was particularly designed to handle 
time series forecasting with missing data. A different 
study by Tang et al. (2020) focused on local and glo
bal temporal dynamics for multivariate time series 
forecasting with missing data. Their proposed frame
work uses a memory network to capture global tem
poral patterns with local data as key components.

In this approach, no information is retained dur
ing the disruption, so the prediction intervals will 
become large during the disruption, and after the 
disruption, they will remain large until the model 
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has enough data to estimate the forecast distribution 
more accurately.

2.4. Estimate what might have been

A fourth solution is to estimate what might have 
been during the period of disruption and then use 
the adjusted data to fit a model. The estimates could 
be made using any convenient method. One 
approach would be to set the estimates to equal the 
forecasts made using only pre-interruption data. This 
then becomes almost equal to the previous solution, 
except that the prediction intervals will be narrower 
because the estimation uncertainty has not been 
taken into account. On the other hand, it is more 
flexible than the previous approach because models 
that do not handle missing values can then be used.

An alternative would be to take the model esti
mated under the previous solution (setting the 
observations during the disruption to missing) and 
use it to estimate what might have been during the 
disruption. Then the model can be re-estimated 
using the adjusted data. Forecasts obtained in this 
way during the disruption will not be true forecasts 
because they will have used data from the future in 
computing the adjusted data during the disruption. 
But post-disruption forecasts will be true forecasts 
and should be almost the same as those obtained 
using the previous solution.

These approaches are sometimes called 
“counterfactual” methods, as they examine what would 
have happened to the forecast variable of interest if the 
disruptive event had not occurred. Athanasopoulos 
et al. (2023) proposed a variant of this approach for 
forecasting tourism recovery from COVID-19, combin
ing forecast reconciliation and forecast combinations 
applied to historical data to generate COVID-free 
counterfactual forecasts of what might have been if the 
pandemic never occurred. Then scenario-based judge
mental probabilistic forecasts were compared with the 
counterfactual forecasts to better understand the future 
recovery of the tourism sector from the pandemic.

Inventory stockouts are a common cause of data 
interruption in the supply chain. To deal with these 
interruptions, a counterfactual approach is popular, 
whereby the demand corresponding to the stock-out 
period is estimated as if there were no stock-outs, 
and then forecasts are obtained. Bell (2000) pre
sented an adjustment strategy for stock-out periods 
that involves smoothing demand volatility and cor
recting for stockouts using predicted variance condi
tioned on the observed stockout. Trapero et al. 
(2024) also used the Tobit Kalman filter (TKF) for 
models presented in a state space framework for 
forecasting purposes. This method can efficiently 
deal with trends, seasonality, and exogenous 

influences in censored data, as long as the forecast
ing model functions within a state space framework.

In the context of forecasting disruptions such as 
the COVID-19 pandemic, Bayesian approaches have 
also been proposed for detecting changing points in 
outbreaks and forecasting case numbers under 
counterfactual scenarios (Dehning et al., 2020).

2.5. Downweight the interruption period

Intuitively, we want the model to be more influ
enced by the patterns observed before the disruption 
period than those during the disruption, but we still 
want to take some account of the observations dur
ing the disruption period.

Using this weighting approach, we can leverage 
the insights from the pre-disruptive period while 
still accounting for the disruptive period’s influence. 
It allows the model to better capture the underlying 
dynamics of the time series in non-disrupted peri
ods, which may be essential for accurate forecasting 
in the post-disruption era.

If the weights during the disruption are set to 
zero and the weights at other times are set to 1, this 
becomes equivalent to the missing value solution 
above. Rather than ignoring the data during the dis
ruption, the weighting approach allows the model to 
not be completely blind to the disruption’s effects 
and adapt to changes or shifts in the time series 
caused by the event.

While conceptually simple to implement, in prac
tice, this approach may require more work than the 
other methods discussed here, as most forecasting 
software does not allow for the explicit use of weights.

2.6. Ensemble models

As with many forecasting problems, taking an 
ensemble approach often leads to more accurate 
forecasts (Wang et al., 2023). Here, we could com
bine some or all four of the approaches discussed 
above to obtain an ensemble forecast. In fact, if we 
were unable to implement the weighted approach, 
by using an ensemble of the other approaches, we 
are effectively downweighting the observations dur
ing the disruption period, as they are only explicitly 
used in the first two approaches (using a highly 
adaptive model or using an intervention model).

However, a disadvantage of this approach is that 
it is based on averaging forecasts that aim to achieve 
different objectives. For example, the highly adaptive 
model and the intervention model are trying to 
forecast what happened during the disruption, while 
the missing value and estimation approaches are try
ing to forecast what might have happened. So the 
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ensemble approach will lie somewhere between 
these two objectives.

3. Examples

In this section, we implement and evaluate the strat
egies described in Section 2 using two daily and 
monthly datasets collected over the last several 
years, where the impact of the COVID-19 pandemic 
has been particularly evident.

3.1. Australian tourism

The Australian tourism data set is a monthly time 
series showing the number of short-term overseas 
visitors to Australia. The data (Australian Bureau of 
Statistics, 2024) are available from January 2000 to 
May 2023 and are shown in Figure 1. As the bor
ders closed in March 2020, the number of visitors 
to Australia dropped to near zero and remained 
there until towards the end of 2021. The borders 
officially reopened on 21 February 2022, although it 
seems visitors began to arrive earlier than that.

We apply the first four solutions discussed in the 
previous section to these data, making 12 month 
forecasts at the end of each year from 2019 to 2022. 
We fit ETS, ARIMA, and dynamic ARIMA models 
to the data (Hyndman & Athanasopoulos, 2021), 
first applying a log transformation to ensure the 
resulting forecasts are positive. (A bias correction is 
also applied to ensure the back-transformed fore
casts are the means of the forecast distributions.) A 
log transformation is possible because the observa
tions never reach exactly zero, with the smallest 
number of visitors per month equal to 2250 in April 
2020. For all forecasts, we also show 90% prediction 
intervals.

In Figure 2, we show forecasts by applying ETS 
and ARIMA models to the data. ETS, in particular, 
is well-known to be relatively adaptive to changes in 
the series, and this is evident in these forecasts. The 
forecasts for 2020 were made using data before 
COVID-19 had any effect, and so they show similar 

patterns to the past. The forecasts for 2021 were 
made after 9 months of very low levels of arrivals, 
and both models show forecasts consistent with 
recent history. The use of logarithms is particularly 
important here as the variance is much smaller dur
ing 2020 than previously, but after taking loga
rithms, the variance is more stable over time. The 
forecasts made at the start of 2022 have struggled to 
detect the small increase in traffic at the end of 
2021, and both models have forecast relatively flat 
trajectories as a result, although the prediction inter
vals are wide, indicating model uncertainty. Finally, 
the forecasts made at the end of 2022 have captured 
the increasing trend, but ETS is much closer to real
ity, adapting more quickly to the changing patterns. 
Again, the wide prediction intervals indicate a high 
level of uncertainty. It is possible to make ETS more 
adaptive to changes in the data by increasing the 
value of the smoothing parameters. For example, a 
high value of b (the smoothing parameter for the 
slope) will result in changes in trend being incorpo
rated into the forecasts more quickly, at the risk of 
overreacting to noise in the data, and increasing the 
size of the prediction intervals even more.

Figure 3 shows forecasts obtained using a 
dynamic regression model (i.e., a regression with 
ARIMA errors) using two intervention variables: a 
level shift from March 2022 to November 2022, and 
a ramp from October 2021 to November 2022. It is 
evident that the level shift variable has worked well, 
giving relatively good forecasts for 2021. However, 
the forecasts for 2022 are particularly poor because 
the ramp slope has been greatly overestimated, as it 
was based on only three observations (Oct—Dec 
2021). The forecasts for 2023 are much better, and 
the relatively large prediction intervals are appropri
ate given the uncertainty in the industry at the end 
of 2022.

The third solution (Figure 4) involved setting the 
observations during the disruption period to missing 
and then fitting an ARIMA model to the series. 
Consequently, the first three years of forecasts show 
what might have been without the COVID-19 

Figure 1. Short-term visitor arrivals to Australia (monthly): Jan 2000 – May 2023. Source: Australian Bureau of Statistics (2024). 
The Australian international borders closed in March 2020 and officially reopened in February 2022.
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pandemic, based on the history to the end of 2019. 
The final forecasts for 2023 use the data to the end 
of 2019 and the two observations in November and 
December 2022. These are much better, but the pre
diction intervals are too narrow, as there hasn’t 
been sufficient recent data.

We show in Figure 5 the forecasts obtained using 
solution 4. Here we have replaced observations 
between March 2020 and October 2022 with esti
mates based on the average of the same month in 
the three years prior to March 2020. The resulting 
forecasts are similar to those from solution 3, but 
with narrower prediction intervals because the 
model is (falsely) assuming that the “observations” 
during the disruption are real.

Finally, in Figure 6, we show the ensemble fore
casts obtained by averaging the forecasts from the 
four solutions discussed above. The first and fourth 
solutions carry double weight because both the ETS 
and ARIMA forecasts were included in the 

ensemble. The prediction intervals are formed from 
the mixture distributions obtained by combining the 
four forecast distributions for each time horizon. 
The first set of forecasts has not taken any account 
of the disruption, and so they are almost identical 
to those obtained in the previous plots. The last set 
of forecasts is reasonably good, showing what is 
obtained by combining the forecasting methods 
used to handle the disruption period. However, the 
forecasts for 2021 and 2022 are particularly poor 
because they are averaging forecasts that aim to 
achieve different objectives and are affected by the 
poor forecasts obtained using the dynamic regres
sion model.

3.2. Example: Pedestrians

The pedestrian data set is a daily time series show
ing the number of pedestrians per day in 
Melbourne, Australia. The data were obtained from 

Figure 2. Highly adaptive models. Each panel shows one year of monthly forecasts from ETS and ARIMA models. Neither 
works particularly well for disruptions of this magnitude.
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the Pedestrian Counting System maintained by the 
City of Melbourne (City of Melbourne, 2024) and 
are based on automated hourly counts from sensors 
at 66 locations over the period from 2019-01-01 to 
2021-12-31. All sensors had some missing data, and 
we chose to use sensors with no more than 720 
missing hours, equivalent to 30 days of missing 
data. This resulted in 25 sensors being used in the 
analysis. The data were aggregated to daily counts 
for each sensor, and then the results were averaged 
across sensors to obtain a measure of pedestrian 
traffic per day. The resulting time series is shown in 
Figure 7.

We have also shown the periods of lockdown due to 
COVID-19. In Melbourne, there were six separate lock
downs ranging from 5 days to 111 days in length. The 
first official lockdown period was from March 31, 2020, 
to May 12, 2020, and the last lockdown was from August 
5, 2021, to October 21, 2021. However, the first period 
was preceded by over a week when most people elected 

to stay and work at home, so we have chosen to start the 
first period on March 23, 2020, to better reflect human 
behaviour. Otherwise, we have used the official lockdown 
dates (Wikipedia, 2024).

We evaluate the solutions discussed in Section 2
by using time series cross-validation, with the initial 
training set comprising the whole of 2019, and sub
sequent training sets growing by 1 week at a time, 
to the end of 2021. The test sets are always one 
week long. Thus, we have evaluated the forecasts for 
2020 and 2021, covering all lockdown periods and 
the start of the recovery period. No transformations 
of the data have been used. The results are shown 
in Figures 8–11. Prediction intervals have not been 
shown to avoid cluttering the plots.

We use ARIMA models in Figure 8, which have 
mostly been able to adapt to the changing level of 
the series, apart from during the first few weeks of 
the first lockdown, and the first day or two of sub
sequent lockdowns.

Figure 3. Intervention model. Each panel shows one year of monthly forecasts from an intervention model containing a level 
shift from March 2020 to October 2022, and a ramp from October 2021 to October 2022. After October 2022, all intervention 
variables are set to zero.
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In Figure 9, we have used an intervention model 
with a dummy variable indicating the lockdown peri
ods. This has worked a little better than the ARIMA 
model used in Figure 8, apart from around the first 
lockdown period. Many people were in self-imposed 
lockdown before the start of the first lockdown period 
and were reluctant to return to the city after it ended, 
resulting in poor forecasts on either side of the first 
lockdown.

Figure 10 shows the results obtained by setting the 
observations during the lockdown periods to missing 
and then fitting an ARIMA model to the remaining 
data. The forecasts during lockdowns show what 
might have been if that particular lockdown hadn’t 
occurred, based on previous non-lockdown data.

The forecasts shown in Figure 11 are obtained by 
replacing the observations during the lockdown peri
ods with estimates based on an ARIMA model 
applied to the remaining data. Then a new ARIMA 
model is fitted to the whole data set and used to 

produce forecasts. As a result, the “forecasts” appear 
to interpolate across the lockdown periods, reflecting 
neither the true lockdown pattern nor the pattern 
that might have occurred without the lockdowns.

Finally, in Figure 12, we show the ensemble fore
casts obtained by averaging the forecasts from the 
first two solutions discussed above. The results are 
relatively good, other than having some difficulty 
around the period of the first lockdown.

4. Discussion and conclusions

We have presented several approaches to forecasting in 
the presence of an interruption. Each has its advantages 
and disadvantages, and the choice of which to use will 
depend on the situation. In fact, we have used almost all 
of these approaches in our own consulting work. An 
intervention model is often a good solution, provided the 
intervention can be modelled relatively simply. However, 
if the intervention is complex, then a highly adaptive 

Figure 4. Set to missing. Each panel shows one year of monthly forecasts from an ARIMA model. The period from March 
2020 to October 2022 is set to missing. So the first three years of forecasts show what might have been. The fourth set of 
forecasts uses observations from November and December 2022, and so the forecasts have been adjusted downward.
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method is often better. The highly adaptive model is also 
useful when the timing of the interruption is unknown 
or when the post-interruption period is expected to be 
very different from the pre-interruption period. The 
missing value approach is particularly useful when only 
post-interruption forecasts are required and forecasts 
during the interruption period are not needed.

We have not previously used the weighted approach 
in practice, and open-source software to implement it is 
not currently available. However, it seems to be a good 
compromise between the highly adaptive model and the 
intervention model, and we expect it to be useful in 
many situations once software is available to implement 
it easily.

Finally, the ensemble approach is useful when there is 
uncertainty about which approach to use and will often 
result in greater accuracy due to the power of averaging.

When forecasting interrupted time series data, 
exogenous variables associated with specific events 
should be identified and incorporated where possible, 

regardless of which approach is employed, since they 
may improve forecasting model performance.

We have not discussed probabilistic forecasting in 
any detail in this paper, other than producing some 
prediction intervals for some of the examples. One 
would expect forecast uncertainty to increase during, 
and to some extent after, a major disruption. The 
highly adaptive model and innovation model should 
produce relatively good prediction intervals, although 
the variance is often underestimated. Because the miss
ing value approach is producing counterfactual (“what 
might have been”) forecasts, the prediction intervals 
will often not include the actual observations during 
the disruption period. Prediction intervals for ensemble 
forecasts can be obtained by averaging the end points 
of the component prediction intervals (Lichtendahl 
et al., 2013), for those models where the prediction 
intervals seem reasonable.

It is not uncommon for modellers to experience 
interruptions in time series data. Both those in 

Figure 5. Estimate what might have been. Each panel shows one year of monthly forecasts from ETS and ARIMA models. We 
have replaced the observations from March 2020 to October 2022 with the average of the same month in the three years 
prior to March 2020.
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charge of developing forecasting models and manag
ers relying on forecasts to inform decisions and pol
icies have recently faced the issue of effectively 

forecasting time series data influenced by the 
COVID-19 pandemic. While this can be a critical 
challenge for many forecasting teams, it is important 

Figure 6. Ensemble approach, combining the previous four approaches shown in Figures 2–5. The point forecasts are the 
average of the four approaches, while the prediction intervals are formed by combining the four forecast distributions at each 
horizon to form a mixture distribution.

Figure 7. Average pedestrian traffic in Melbourne, Australia, from 2018 to 2023, based on automated hourly counts from sen
sors around the city. The counts are averaged over 25 sensors, each of which had no more than 30 days of missing data. The 
grey-shaded regions indicate periods of lockdown due to COVID-19. Source: City of Melbourne (2024).
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to recognise that similar challenges could arise in 
circumstances other than COVID-19. Time series 
can be disrupted by various factors, such as natural 
disasters, policy changes, price fluctuations, defin
ition changes, sensor failures in the IoT (Internet of 
Things), maintenance, and breakdowns in factories, 
just to mention a few.

The aim of this study is not to compile a com
prehensive list of forecasting models applicable to 
interrupted time series data. Rather, we intend to 
propose overarching strategies to address such 

situations, with each strategy allowing for a variety 
of forecasting methodologies. As we provide publicly 
accessible R code, readers are encouraged to adapt 
the study by employing other forecasting methods 
tailored to their specific contexts.

The proposed strategies to forecast interrupted 
time series offer various advantages and disadvan
tages. Highly adaptive models offer swift adjust
ments to interruptions with ease of implementation 
and speedy computation. However, this simplicity 
comes at the expense of wider prediction intervals 

Figure 8. Highly adaptive model: Rolling 7-day forecasts of daily pedestrian data, made each week, using ARIMA models. The 
forecasts do not take into account the lockdown periods, but the ARIMA models are largely able to adjust to the changing 
level of the series.

Figure 9. Intervention model: Rolling 7-day forecasts of daily pedestrian data, made each week, using ARIMA models with a 
dummy variable indicating when the lockdown periods occurred. Many people were in self-imposed lockdown before the start 
of the first lockdown period, and were reluctant to return to the city after it ended, resulting in poor forecasts on either side 
of the first lockdown. The model was able to adjust to the changing level of the series during subsequent lockdowns.

Figure 10. Set to missing: Rolling 7-day forecasts of daily pedestrian data, made each week, using ARIMA models, where the 
lockdown periods are set to missing. The ARIMA models use the remaining data to produce forecasts. Thus, the forecasts are 
based on only previous non-lockdown data. Naturally, the forecasts during the lockdown periods do not reflect reality, but 
they can be interpreted as what might have been.
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and the loss of historical pattern memory, limiting 
their effectiveness in capturing pre-interruption 
dynamics. Intervention models explicitly account for 
disruptions, retaining past patterns, yet may yield 
overly narrow prediction intervals by assuming post- 
interruption similarity without proper calibration. 
Setting interrupted periods to missing values pre
serves data integrity but may result in inaccurate 
forecasts during interruptions. Estimating what might 
have been provides flexibility but may underestimate 
uncertainty. Downweighting the interruption period 
balances pre- and post-disruption data but may 
necessitate additional implementation complexity. 
Ensemble models combine various approaches for 
enhanced accuracy but may introduce challenges in 
interpretation.

When determining a suitable approach to fore
casting interrupted time series, several factors 
should be considered. To begin, the complexity of 
the interruption itself is critical to approach selec
tion. Intervention models are a suitable approach 
for interruptions with known features since they can 
represent the disruption explicitly. In contrast, 
highly adaptable models give a simpler option for 
fast adaptations to interruptions without explicit 
modelling, which is especially useful when the time 
or effect of the interruption is unknown. Balancing 
simplicity and flexibility is critical to ensuring that 

the selected technique is consistent with the features 
of the interruption and the required forecasting 
accuracy. Further, the width of prediction intervals 
should be carefully assessed to determine forecast 
uncertainty, particularly during and after interrup
tions. Finally, for greater robustness and accuracy, 
investigating ensemble models that integrate various 
forecasting methods might be beneficial.

Moreover, in determining which strategy to apply 
in each case, it is important to think through what 
is being assumed and what data are being used. 
This is a qualitative and subjective process and can
not simply be tackled with a quantitative compari
son of forecast accuracy. The strategies we discuss 
have different ways of handling the disrupted 
period, and many of them do not seek to provide 
accurate forecasts during the disruption. For 
example, the “set to missing” strategy ignores the 
disrupted period, while the “estimate what might 
have been” strategy replaces the observations during 
the disruption with interpolations. In both cases, it 
does not make sense to evaluate the performance of 
the method during the disruption. Instead, the ana
lyst needs to decide what approach makes the most 
sense for the application at hand.

This study proposes multiple viable strategies for 
forecasting time-series data interrupted by different 
types of events. Future research could focus on 

Figure 11. Estimate what might have been: Rolling 7-day forecasts of daily pedestrian data are made each week. The lock
down periods are replaced with estimated counts based on an ARIMA model applied to the remaining data. Then a new 
ARIMA model is fitted to each data set and used to produce forecasts. As a result, the forecasts during the lockdown periods 
are not true forecasts, as they use non-lockdown data from the future.

Figure 12. Ensemble forecasts combining the first two solutions shown in Figures 8 and 9. Other than having some difficulty 
around the period of the first lockdown, the results are relatively good.
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exploring new strategies for handling such disrupted 
time series or enhancing probabilistic forecasting 
methods that are designed specifically for such data. 
Large-scale empirical research on further exploring 
which strategy may work best in different scenarios 
also provides useful insights. Comparative studies 
that assess the accuracy, robustness, and computing 
efficiency of different techniques across several data
sets and disruption situations can help discover the 
most effective approaches for a range of practical 
applications.

5. Reproducibility

To enhance reproducibility and facilitate the adop
tion of proposed strategies, we provide the data and 
R code, as well as the entire paper written in R 
using Quarto and the targets package for R 
(Landau, 2021). All materials required to reproduce 
this paper is accessible via the GitHub repository.
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