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Vision-Language Consistency Guided Multi-modal

Prompt Learning for Blind AI Generated Image

Quality Assessment
Jun Fu, Wei Zhou, Qiuping Jiang, Hantao Liu, Guangtao Zhai

Abstract—Recently, textual prompt tuning has shown inspi-
rational performance in adapting Contrastive Language-Image
Pre-training (CLIP) models to natural image quality assessment.
However, such uni-modal prompt learning method only tunes the
language branch of CLIP models. This is not enough for adapting
CLIP models to AI generated image quality assessment (AGIQA)
since AGIs visually differ from natural images. In addition, the
consistency between AGIs and user input text prompts, which
correlates with the perceptual quality of AGIs, is not investigated
to guide AGIQA. In this letter, we propose vision-language
consistency guided multi-modal prompt learning for blind AG-
IQA, dubbed CLIP-AGIQA. Specifically, we introduce learnable
textual and visual prompts in language and vision branches of
CLIP models, respectively. Moreover, we design a text-to-image
alignment quality prediction task, whose learned vision-language
consistency knowledge is used to guide the optimization of the
above multi-modal prompts. Experimental results on two public
AGIQA datasets demonstrate that the proposed method outper-
forms state-of-the-art quality assessment models. The source code
is available at https://github.com/JunFu1995/CLIP-AGIQA.

Index Terms—Multi-modal prompt learning, Vision-language
consistency, AGIQA

I. INTRODUCTION

W ITH the rapid development of deep generation technol-

ogy, we have entered the era of artificial intelligence

(AI) generated content, where users can obtain images they

want by feeding multiple text prompts into deep generative

models. However, the quality of AI generated images (AGIs)

is highly varied [1]. Therefore, it is necessary to develop an

objective image quality assessment (OIQA) metric to automat-

ically filter out unqualified AGIs.

In general, OIQA metrics encompass full-reference (FR)

metrics, reduced-reference (RR) metrics, and blind metrics.

FR metrics and RR metrics require referencing the original

image, whereas blind metrics are reference-free. In real-world

scenarios, the original AGI corresponding to user input text
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Fig. 1. (a) Comparison between natural images and AI generated images
on the AGIQA-1K dataset [16]; (b) Spearman Rank Correlation Coefficient
(SRCC) of the text-to-image alignment quality and perceptual quality on the
AIGCIQA-2023 dataset [17].

prompts is absent. Therefore, it is essential to develop blind

IQA metrics in order to evaluate AGIs effectively.

In the early stage, blind IQA metrics are designed based on

handcrafted features, e.g., mean subtracted contrast normalized

coefficients [2], [3], [4], visual neuron matrix [5], and edge

gradient features [6]. Since manually designing features is a

time-consuming and error-prone process, researchers resort to

convolutional neural networks [7] or transformers [8], and de-

sign more sophisticated IQA models [9], [10], [11]. Recently,

Contrastive Language-Image Pre-training (CLIP) models are

used to blindly assess the quality of natural images [12],

[13], [14], and shows inspirational zero-shot performance and

potential to achieve competitive performance through textual

prompt tuning [15]. Motivated by the success of CLIP models

in natural image quality assessment, we explore using CLIP

models to assess the visual quality of AGIs in this letter.

The marriage of CLIP models and AGIQA faces its unique

challenges. First, besides textual prompt tuning, it needs to

mitigate the domain gap between natural images and AGIs.

As shown in Fig. 1. (a), AGIs largely differ from natural

images in terms of appearance and style. Second, it needs to

explore using vision-language consistency to guide AGIQA.

As shown in Fig. 1. (b), the alignment quality of the AGI

and the user input text prompt is correlated with the perceived

quality of the AGI. The reason for this phenomenon may be

that users consider not only image fidelity when evaluating

AGI, but also the consistency between the AGI and user

input text prompts. Therefore, we believe that vision-language

consistency is informative to the quality prediction of AGIs.

To tackle the aforementioned challenges, we propose a
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vision-language consistency guided multi-modal prompt learn-

ing approach. Specifically, we add learnable prompts to both

language and vision branches of CLIP models. In addition,

we introduce a text-to-image alignment quality prediction task,

whose learned vision-language consistency knowledge is used

to guide the optimization of multi-modal prompts. In summary,

our contribution encompasses two distinct aspects:

• As far as we know, we are the first one to explore CLIP

models for blind AGIQA.

• We study the use of text-to-image alignment information

to assist the visual quality prediction of AGIs.

The remainder of this paper is organized as follows. Section

II introduces the proposed method in detail. Section III pro-

vides experimental results and corresponding analysis. Finally,

the paper is concluded in Section IV.

II. METHOD

Our approach, dubbed as CLIP-AGIQA, aims to exploit

multi-modal prompt learning to fine-tune CLIP models. Un-

like previous methods [18], [19] that optimize multi-modal

prompts with only the target task, we introduce an auxiliary

task to guide the multi-modal prompt learning. Fig. 2 shows

the overall architecture of our proposed framework. As we can

see, our approach comprises a perceptual quality prediction

task and a text-to-image alignment quality prediction task.

Both tasks adopt multi-modal prompt learning to finetune

CLIP models. Moreover, there are interactions between the

learnable prompts of two tasks. During fine-tuning, the CLIP

model is frozen while the rest of the proposed framework is

optimized. Below, we first recap the CLIP architecture and

then detail the proposed framework.

A. Recap of CLIP Models

Referring to previous prompting methods [15], [20], [18],

here we adopt transformer-based CLIP models. In the CLIP

model, vision and text encoders are used to generate image and

text representations, respectively. The details are introduced

below.

For the vision encoder V , the input image I is divided

into M fixed-size patches, and each patch is projected into

dv-dimensional latent space. The resulting patch embeddings

G0 ∈ R
M×dv and a learnable class token c0 ∈ R

dv are fed

into the transformer block V0, which later is repeated k − 1
times. The whole process can be formulated as,

[ci, Gi] = Vi([ci−1, Gi−1]) i = 1, · · · , k. (1)

The image representation x ∈ R
dvl is obtained by projecting

the class token ck into dvl-dimensional latent space.

For the text encoder L, the input text description is to-

kenized into words, and each word is projected into dl-

dimensional latent space. The resulting word representations

R0 = [r10, · · · , r
N
0 ] ∈ R

N×dl are sequentially processed by k

transformer layers, formulated as,

[Ri] = Li(Ri−1) i = 1, · · · , k. (2)

The text representation z ∈ R
dvl is obtained by projecting the

last token rNk into the same space as the image representation.

B. Text-to-Image Alignment Quality Prediction

In the AGIQA dataset, the human-annotated text-to-image

alignment scores, which reflect the consistency between AGIs

and corresponding user input text prompts, are typically avail-

able. Since alignment scores are correlated with the perceptual

quality of AGIs, we aim to learn the vision-language consis-

tency knowledge to help AGI quality assessment.

A straightforward approach is to add learnable prompts

into the vision encoder of the CLIP model and optimize

them towards making the similariy between the AGI and user

input text prompts close to the alignment score. However,

the user input text prompts sometimes only contain several

keywords (e.g., the AGIQA-1k dataset [16]), which are not

informative. In addition, the user input text prompt is absent in

some AGIQA datasets, e.g., the AIGCIQA-2023 dataset [17].

Therefore, we explore a blind setting, where we predict the

alignment score without the user input text prompts.

Specifically, we use a prompt pairing strategy to estimate

the alignment score of the AGI. Let us denote t
align
1 and t

align
2

as a pair of antonym prompts, i.e., “Aligned photo.”

and “Misaligned photo.”. We first compute the cosine

similarity between manually designed antonym prompts and

the AGI as follows,

s
align
i =

V(I)⊙ L(taligni )

‖V(I)‖ · ‖L(taligni )‖
, i ∈ {1, 2}, (3)

where ‖·‖ denotes l2 norm and ⊙ represents the vector dot-

product. Then, we estimate the alignment score as follows,

qalign =
es

align
1

es
align
1 + es

align
2

. (4)

Since hand-crafted antonym prompts are often not optimal,

we introduce b learnable prompts P
align
i−1

∈ R
b×dl into each

transformer layer of the text encoder, formulated as,

[ , Ri] = Li([P
align
i−1

, Ri−1]) i = 1, · · · , k. (5)

In addition, since CLIP models, pretrained on natural images,

are limited to capture distinguishable image representations for

AGIs, we also introduce b learnable prompts Q
align
i−1

∈ R
b×dl

into each transformer layer of the vision encoder, formulated

as,

[ci, Gi, ] = Vi([ci−1, Gi−1, Q
align
i−1

]) i = 1, · · · , k. (6)

C. Perceptual Quality Prediction

Like the text-to-image alignment quality prediction task, we

also use the prompt pairing strategy to estimate the percep-

tual quality of the AGI. Let us denote t
percept
1 and t

percept
2

as “Good photo.” and “Bad photo.”, respectively. The

predicted perceptual quality is computed as follows,

qpercept =
es

percept
1

es
percept
1 + es

percept
2

. (7)

In addition, we also adopt multi-modal prompt learning to

fine-tune the CLIP model. Specifically, the formulation of the

text encoder is defined as,

[ , Ri] = Li([P
percept
i−1

, Ri−1]) i = 1, · · · , k, (8)
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Auxiliary Task: Text-to-Image Alignment Quality Prediction

Main Task: Perceptual Quality Prediction
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Fig. 2. Framework of our proposed method. It includes an auxiliary task and a main task. Both tasks are based on CLIP models and involve multi-modal
prompt learning. Moreover, learnable visual prompts of the main task are conditioned on those of the auxiliary task.

where P
percept
i−1

∈ R
b×dl is learnable textual prompts. The

vision encoder can expressed as,

[ci, Gi, ] = Vi([ci−1, Gi−1, Q̃
percept
i−1 ]) i = 1, · · · , k,

Q̃
percept
i−1 = Fi−1([Q

align
i−1 , Q

percept
i−1 ]) i = 1, · · · , k,

(9)

where Fi−1 denotes the fully-connected layer, Q
percept
i−1

rep-

resents learnable visual prompts in the perceptual quality pre-

diction task. As shown in Equation 9, we explicitly condition

Q
percept
i−1

on the learnable visual prompts Q
align
i−1

in the text-to-

image alignment score prediction task. The motivation behind

this is that Q
align
i−1

contains the vision-language consistency

knowledge which is informative to the perceptual quality

prediction. Notably, we empirically find that adding such

conditions to textual learnable prompts brings limited gains.

D. Loss Function

The loss function for the alignment score prediction is

defined as,

Lalign =
1

N

N∑

i=1

‖qialign − gialign‖
2
2, (10)

where N is the batch size and gialign is the ground-truth align-

ment score of i-th AGI. The loss function for the perceptual

quality prediction is defined as,

Lpercept =
1

N

N∑

i=1

‖qipercept − gipercept‖
2
2, (11)

where gipercept is the ground-truth perceptual quality of i-th

AGI. The final loss function is defined as,

L = Lpercept + λLalign, (12)

where λ is a hyperparameter.

III. EXPERIMENTS

A. Database and Evaluation Criteria

We conduct extensive experiments on two public AGIQA

datasets, i.e., AGIQA-3K [21] and AIGCIQA-2023 [17]. The

AGIQA-3K database contains 2982 AGIs which are gener-

ated by Glide [22], Stable Diffusion [23], Stable Diffusion

XL [24], Midjourney [25], AttnGAN[26], and DALLE2 [27].

The AIGCIQA-2023 dataset uses Glide [22], Lafite [28],

DALLE2 [27], Stable Diffusion [23], Unidiffuser [29], and

Controlnet [30] to generate 2400 AGIs. In both datasets, each

AGI is accompanied with a perceptual quality and alignment

score, which are annotated by subjects. Notably, the user input

text prompts are not available in the AIGCIQA-2023 dataset.

We use Spearman Rank Correlation Coefficient (SRCC),

Pearson Linear Correlation Coefficient (PLCC), and Kendall’s

Rank Correlation Coefficient (KRCC) to compare IQA met-

rics. Good IQA methods generally achieve high scores in all

three evaluation metrics. Since the AIGCIQA dataset is limited

in scale, we evaluate each IQA model 10 times, and report the

average performance.

B. Implement Details

We use a ViT-B/32 based CLIP model, where the length of

the learnable multi-modal prompt is set to 8. The hyperparam-

eter λ is empirically set to 0.1. The dataset is partitioned into

training and testing sets at an 8:2 ratio, ensuring that images

with the same user prompts are grouped together. During the

training process, 64 patches with a size of 224 × 224 are

fed into the CLIP model at each iteration. We employ Adam

algorithm [31] to optimize the learnable parameters of the

model. The learning rate and training epoch are configured as
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TABLE I
PERFORMANCE COMPARISONS OF OBJECTIVE QUALITY METRICS ON

AGIQA-3K AND AIGCIQA-2023 DATABASES.

Type Method
AGIQA-3k Database AIGCIQA-2023 Database

SRCC PLCC KRCC SRCC PLCC KRCC

Handcrafted
feature
based

BRISQUE [2] 0.4932 0.5399 0.3348 0.6309 0.5977 0.4348
NIQE [3] 0.5151 0.5241 0.3499 0.4870 0.4576 0.3270
ILNIQE [4] 0.5935 0.6240 0.4183 0.5576 0.4933 0.3762

Deep
learning-
based

CNNIQA [9] 0.7437 0.8332 0.5516 0.6974 0.7011 0.4873
ResNet50 [7] 0.8445 0.9033 0.6631 0.8113 0.8416 0.5956
HyperIQA [10] 0.8433 0.9013 0.6612 0.8174 0.8459 0.6032

CLIP
based

CLIPIQA [12] 0.6846 0.6987 0.4915 0.4171 0.3970 0.2823

CLIPIQA+ [12] 0.8428 0.8879 0.6556 0.8072 0.8280 0.5905
CLIP-AGIQA 0.8747 0.9190 0.6976 0.8324 0.8604 0.6220

1e-4 and 50, respectively. During the testing, we calculate the

quality score of the input AGI using a patch-based evaluation

fashion [32], [33], [34]. We implement our method based on

PyTorch [35], and run all experiments on a NVIDIA RTX

4090 GPU platform with an Intel Core i9-13900KF CPU.

C. Performance Comparisons

To validate the efficacy of the proposed approach, we

conduct a comparative analysis with three hand-crafted fea-

ture based methods [2], [3], [4], three deep-learning based

approaches [7], [9], [10], and two CLIP based metrics [12].

The results are reported in Table I. Based on the data provided

in Table I, we can draw the following conclusions. First,

handcrafted feature based methods achieve poor performance

on both AGIQA datasets. This is because AGIs largely dif-

fer from natural images for which handcrafted features are

designed. Second, the deep learning-based methods achieve

relatively higher accuracy. This verifies the superiority of

learned features over handcrafted ones. Third, CLIPIQA shows

impressive zero-shot performance, and CLIPIQA+ further

improves the performance through textual prompt learning.

This shows the promising potential of exploring CLIP models

for AGIQA. Lastly, the proposed method called CLIP-AGIQA

shows a clear advantage over CLIPIQA+ on both datasets.

This confirms the effectiveness of the proposed method.

TABLE II
ABLATION STUDY ON EACH COMPONENT OF THE PROPOSED METHOD.
THE TRAINING TIME AND TESTING TIME ARE CALCULATED ON IMAGES

OF SPATIAL SIZE 224 × 224.

Components
Method

CLIPIQA A1 A2 CLIP-AGIQA

Handcrafted Text Prompts X

Textual Prompt Learning X X X

Visual Prompt Learning X X

Vision-Language Consistency X

SRCC 0.6846 0.8473 0.8696 0.8747

PLCC 0.6987 0.8929 0.9186 0.9190
KRCC 0.4915 0.6611 0.6919 0.6976

Training time per epoch (s) 0 5.560 6.823 8.062
Testing time per epoch (s) 5.531 5.567 5.617 5.772

D. Ablation Study

We first evaluate the efficacy of each component in the

proposed method. The findings are presented in Table II, from

which we can infer the following conclusions. First, the variant

method A1, which only uses textual prompt learning, achieves

better performance than CLIPIQA which uses handcrafted

text prompts. This confirms the necessity of using textual

prompt learning. Second, the variant method A2, which uses

textual and visual prompt learning, is superior to A1. This

confirms the advantage of multi-modal prompt learning over

textual prompt learning. Third, the proposed method slightly

outperforms A2. This shows that the vision-language con-

sistency knowledge is informative to AGIQA. Fourth, while

the proposed method has much higher training cost than

CLIPIQA which does not require training, its inference cost is

comparable to CLIPIQA’s. This is mainly because the auxiliary

task can be discarded in the testing phase.

TABLE III
THE IMPACT OF VISION-LANGUAGE CONSISTENCY ON THE

PERFORMANCE.

Method
Metrics

SRCC PLCC KRCC

B1 0.8741 0.9182 0.6965
CLIP-AGIQA 0.8747 0.9190 0.6976

Subsequently, we conduct an investigation into the vision-

language consistency. The results are shown in Table III. B1

adopts the same framework as the proposed method, while

learning the vision-language consistency knowledge with user

input text prompts. More specifically, in the text-to-image

quality prediction task, it feeds user input text descriptions into

the text encoder without learnable textual prompts. According

to Table III, we find that the proposed method exhibits

a slight superiority over B1. The possible reason for this

phenomenon is as follows. For the text-to-image alignment

quality prediction, the blind setting (i.e., without user input

text prompts) is usually more challenging than the non-blind

setting (i.e., with user input text prompts), which helps us learn

non-trivial vision-language consistency knowledge.

TABLE IV
COMPARISON WITH COMPETITIVE PROMPT LEARNING METHODS.

Metrics
Method

CoCoOP [20] MaPLe [18] CLIP-AGIQA

SRCC 0.8582 0.8713 0.8747

PLCC 0.9079 0.9176 0.9190

KRCC 0.6759 0.6939 0.6976

Finally, we compare the proposed method with two com-

petitive prompt learning methods, i.e., CoCoOP [20] and

MaPLe [18]. For fair comparison, these two methods share

the same training and testing settings as our proposed method.

The results are presented in Table IV. As shown, the proposed

method exceeds CoCoOP by a clear margin. Moreover, the

proposed method slightly outperforms the multi-modal prompt

learning approach known as MaPLe. This can be attributed to

the learned vision-language consistency knowledge.

IV. CONCLUSION

In this letter, we propose vision-language consistency

guided multi-modal prompt learning to adapt CLIP models

to blindly assess the visual quality of AI generated images.

Experiments evince that our approach achieves more accurate

predictions than existing IQA metrics, and each technical com-

ponent in our method plays a crucial role. However, since the

auxiliary task is designed as text-to-image alignment quality

prediction, our method cannot be applied to the scenario where

alignment quality scores are unavailable. Therefore, we will

explore better auxiliary tasks in the future.
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