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Bayes-xG: player and position
correction on expected goals (xG)
using Bayesian hierarchical
approach
Alexander Scholtes and Oktay Karakuş*

School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
This study employs Bayesian methodologies to explore the influence of player or
positional factors in predicting the probability of a shot resulting in a goal,
measured by the expected goals (xG) metric. Utilising publicly available data
from StatsBomb, Bayesian hierarchical logistic regressions are constructed,
analysing approximately 10,000 shots from the English Premier League (for
the years of 2003 and 2015) to ascertain whether positional or player-level
effects impact xG. The findings reveal positional effects in a basic model that
includes only distance to goal and shot angle as predictors, highlighting that
strikers and attacking midfielders exhibit a higher likelihood of scoring.
However, these effects diminish when more informative predictors are
introduced. Nevertheless, even with additional predictors, player-level effects
persist, indicating that certain players possess notable positive or negative xG
adjustments, influencing their likelihood of scoring a given chance. The study
extends its analysis to data from Spain’s La Liga (≈20 K shots from 1973 and
2004 to 2020) and Germany’s Bundesliga (≈7.5 K shots from 2015), yielding
comparable results. Additionally, the paper assesses the impact of prior
distribution choices on outcomes, concluding that the priors employed in the
models provide sound results but could be refined to enhance sampling
efficiency for constructing more complex and extensive models feasibly.
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1 Introduction

One of the most common advanced football analytics metrics is the idea of expected

goals (xG), which estimates the probability of a given shot resulting in a goal based on

several features about the shot such as distance from the shooter to the goal or the

body part used by the shooter. However, none of the mainstream xG models take into

account any player-specific features when estimating these values. To illustrate this,

imagine that you have two players taking the same shot from the same position, with

defenders in the same place and everything else being the same. Still, one player is

Lionel Messi and the other is a random player from the National League (English 5th

tier). Obviously, players who play in the National League are good, but it is not

unreasonable to assume that Lionel Messi would be more likely to score. However, xG

metrics would assign the same value for both of these changes.

The objective of this paper is to investigate if there are position or player effects on xG,

meaning that certain positions or players have higher or lower goal probabilities for a given

chance than others. This will be achieved using a Bayesian hierarchical model, where the
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hierarchies will be the position of the player or the player. The

results of this method will initially be compared to a more

traditional frequentist xG model to evaluate baseline results

without any group effects. Then the hierarchical models will be

compared to the non-hierarchical Bayesian models, to assess the

impact of having hierarchies in the data on the results. If the

rationale described above of the two players taking the same shot

is valid, then it is expected that the xG predictions of the

hierarchical models will differ significantly from the non-

hierarchical models, supporting the idea that there is a position

and/or player effect on the xG of a given shot.

This paper will begin with a review of the relevant literature

around this topic, looking at the development of football analytics

and xG, as well as any attempts to use Bayesian modelling in

football analytics. Thereafter, the methodology will be described by

going through the frequentist and Bayesian techniques used. Then,

the data will be introduced and described with any changes made

before the choice of Bayesian prior distributions for predictors is

discussed. Next, the results of the modelling will be presented

before validating the results of the Bayesian models on additional

data. The aforementioned choice of prior distributions will then be

evaluated. Finally, a discussion section will deliberate on the

significance of the results before concluding the paper.
2 Related works

The use of data in football is often not fully embraced, with many

decision-makers arguing the sport is too complex for data to be used

effectively to improve results and performance (1). However, with its

successful use in other sports, there was sufficient interest for some

clubs, companies, and individuals to pursue using data to derive

conclusions and make suggestions in football. With a growing

demand for data, companies that specialise in sports data collection

have grown too, along with their ability to track data. The result is

that there is now an enormous amount of football data to use for

several purposes, such as player/club performance, scouting, and

player fitness and injury risk, to name a few (2).

At the heart of the idea of using data in football was the potential

to gain a competitive advantage. As a result, clubs that use data tend

to be secretive about their operations and procedures (2). Despite

this, there is plenty of publicly available literature and sources

showing how data can be used in football. Moreover, sports

broadcasters have long used data when giving an overview of a

match, such as possession statistics. Still, these have only recently

moved away from simple counts and percentages to more complex

metrics. The Bundesliga, for example, provides a goal probability

value after each goal is scored, giving the chance of that given

opportunity resulting in a goal (3).

This goal probability, also commonly called expected goals

(xG), has been a central topic in the development of more

advanced statistics using football data (1). Crucially, it moves away

from the idea of things that did happen and focuses on things

that could have happened. With football being such a complex

and chaotic sport, outcomes often do not reflect expectations as

matches are often decided by fine margins or decisions out of the
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players’ and coaches’ control. Nevertheless, using expectations

gives decision-makers an idea of the underlying performance of

their team and allows them to see if their team is over or

underperforming according to expectations (4).

There have been many versions of xG models created since the

idea was founded, using a variety of machine-learning techniques

and data sources. Herold et al. (5) provide a summary of many

applications of machine learning in football, including xG

models. The most common methods of estimating xG in their

paper are logistic regressions, decision trees, ensemble methods

(e.g., random forest), and neural networks. Lucey et al. (6) use

player and ball tracking data from the 10 s leading up to a shot

to estimate goal probabilities across an entire season and found

that “defender proximity, interaction of surrounding players,

speed of play, coupled with shot location play an impact on

determining the likelihood of a team scoring a goal”.

Furthermore, Anzer and Bauer (7) evaluate several machine-

learning approaches with hand-crafted features from synchronised

positional and event data of 105,627 shots in the German Bundesliga

and conclude that their extreme gradient boosting-based xG model

reaches the best performance. Madrero Pardo (8) uses qualitative

data from the popular video game FIFA to account for player effects

on xG using a logistic regression and an XGBoost model. They

found that an adjusted model can better predict goals over a season

for individual players and teams than an overall xG model. Fairchild

et al. (9) built an xG model again using logistic regression and used

it to estimate MLS teams’ offensive efficiency in scoring. They also

discuss evaluation metrics for expected goals models and suggest the

use of the Brier score to compare predicted probability to ground-

truth binary outcomes. Cavus and Biecek (10) apply a variety of

ensemble and boosting methods to calculate xG values and find that

a random forest model performs best, even compared to models

from other papers using other techniques and data.

The closest study to this paper to date is that of Hewitt and

Karakuş (11), which investigates position and player-adjusted xG

models. They find evidence of positional adjustments with

forwards having a positive adjustment, midfielders having a

slightly negative adjustment, and defenders having a large

negative adjustment. Moreover, they also find evidence of player

effects on xG by fitting their model with only data from Lionel

Messi and find a large positive adjustment in this case.

One of the features a lot of these models have in common is

their frequentist approach, as opposed to using Bayesian

methods. Spearman (12) uses a Bayesian approach to estimate

the maximum a posteriori effects of parameters in a model for

predicting future scoring of teams in games. Joseph et al. (13)

used Bayesian networks to predict the results of matches played

by Tottenham Hotspur and compared the results to ML

techniques such as Naïve Bayes, K-nearest neighbour and

decision tree. They reiterate one of the benefits of Bayesian

modelling which is comparably accurate predictions in the

absence of a large amount of data. Zambom-Ferraresi et al. (14)

use Bayesian methods to analyse team performance in Europe’s

top leagues to determine which features tend to be most

significant in predicting team performance. They find that the

most important features include the number of assists, the
frontiersin.org
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number of shots conceded, saves made by the goalkeeper, passing

accuracy, and number of shots on target.

One area of Bayesian modelling which is also often not

considered in football analytics is using multi-level, or hierarchical,

models. Tureen and Olthof (15) construct a multi-level model for

player-adjusted expected goals but do not use a Bayesian approach

to do so. Still, they use their model to calculate estimated player

impact values on xG. On the other hand, Baio and Blangiardo

(16) construct a Bayesian hierarchical model but use it to predict

match results as opposed to xG directly and group their data by

the team as opposed to by the player. Blanco et al. (17) in their

study employ a Bayesian methodology to probabilistically estimate

Chilean Premier League team positions, revealing insights into

attack and defence strengths. While the model accurately predicts

the top five positions, it identifies weak defensive capabilities

across all teams, showcasing its competitiveness for soccer

championship prediction. Still, the use of Bayesian hierarchical

modelling in football is a relatively unexplored area.

By using Bayesian hierarchical modelling, group-level effects can

be reliably estimated even with small group sizes. Therefore, the effect

of a player’s position or even the player themselves on the chance of a

given shot resulting in a goal can be reliably measured. The result is

that certain players could be identified as being more likely to score

than others for given chances, which is a result that can be used

for player selection or scouting purposes. This idea is present in the

work of Hewitt and Karakuş (11), where Messi is found to be an

extremely efficient goal scorer. This conclusion may be obvious to

football fans, but the fact that the efficiency can be reliably

measured is extremely interesting for potentially comparing the

goalscoring efficiency of footballers. Tureen and Olthof (15)

construct a metric they refer to as “estimated player impact”, which

is another calculation of a player’s individual effect on the

probability of scoring. The estimation of a player’s impact on xG

can potentially be another tool in evaluating player performance for

team selection or scouting purposes.

After a general look at the literature on the xG metric and its

evaluation throughout the years, in the following section, we

explain the details of the methodology this paper is proposing to

study positional and player-related corrections to generic xG

approaches. We propose the utilisation of the Bayes formula by

taking player and position information into a conditional

probability formulation which is then evaluated under Bayesian

hierarchical modelling.
3 Methodology

3.1 Preliminaries on xG calculation

Before showing how Bayesian methods can be applied to xG

modelling, we now show how xG models are typically created.

This involves using a frequentist approach and, in this case, a

logistic regression appears as the natural choice to obtain goal

probabilities. This paper will first attempt to build a generic xG

model with comparable results to an xG model built by

StatsBomb, an industry leader in data collection and analysis. To
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do so, we gradually increase the number of predictors (both

given and engineered) used in the logistic regression that

generally follows the formulation given below

logit(pi) ¼ log
pi

1� pi

� �
¼ b0 þ

XN
j¼1

bj � Xji (1)

where pi is the probability of the shot i resulting in a goal, Xji is the

value of predictor j for the shot i. Moreover, bj for j ¼ 0, 1, . . . , N

is the logistic model coefficients, and N is the number of

parameters of the logistic regression. Traditional logistic

regression can be seen as a method used to model the

relationship between a binary dependent variable (in this context

Goal or No-Goal) and one or more independent variables (given

and engineered features). It uses the logistic function in

Equation (1) to transform a linear combination of features into a

probability of the dependent variable being one of the two classes.
3.2 On the Bayesian predictive modelling of
expected goals (xG) models

In predictive modelling of xG, accurate prediction of xG is

crucial for assessing team performance and predicting match

outcomes. The posterior predictive distribution plays a pivotal

role in this process as it provides a probabilistic framework for

estimating the likelihood of different goal-scoring scenarios given

observed data and model parameters.

The posterior predictive distribution, which can be denoted as

p(yxGjX, y), represents the distribution of expected goals yxG for

future events, conditioned on the observed features X and

corresponding outcomes y. Mathematically, it is expressed as in

Equation (2):

p(yxGjX, y) ¼
ð
p(yxGjb)p(bjX, y)db (2)

where p(bjX, y) is the target posterior distribution of model

parameters b given the observed data, and p(yxGjb) is the

likelihood function representing the probability of observing

expected goals yxG given the parameters b.

In simpler terms, approaching modelling from a Bayesian

perspective means we can incorporate prior knowledge about

model parameters, resulting in a posterior density of these

parameters (p(bjX, y)). This posterior is then used in the

inference process to predict future xG values by sampling from

the posterior predictive distribution of p(yxGjX, y). Essentially,
estimating this distribution helps us measure the uncertainty in

xG predictions by considering both uncertainty in parameters

and variability in observed data.
3.3 Bayesian logistic regression

Bayesian logistic regression extends logistic regression by

introducing a Bayesian framework for modelling. Instead of
frontiersin.org
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TABLE 1 Full dataset details including leagues and seasons where the total
number of shots taken is 63,309.

Leagues Season (# of samples) Total
Argentina - Liga Profesional 1981 (16), 1997 (32) 48

England - Premier League 2003 (832), 2015 (9,410) 10,242

Europe - Champions League 1970 (33), 1971 (30), 1972 (41), 2003
(13), 2004 (39), 2006 (18), 2008 (19),
2009 (28), 2010 (26), 2011 (45), 2012
(29), 2013 (27), 2014 (31), 2015 (41),
2016 (25), 2017 (28), 2018 (28)

501

Europe - UEFA Euro 2020 (1,187) 1,187

Europe - UEFA Europa
League

1988 (84) 84

France - Ligue 1 2015 (8,261) 8,261

Germany - 1. Bundesliga 2015 (7,360) 7,360

India - Indian Super League 2021 (2,877) 2,877

International - FIFA U20
World Cup

1979 (27) 27

International - FIFA World
Cup

1958 (82), 1962 (39), 1970 (252), 1974
(159), 1986 (75), 1990 (20), 2018 (1,554),
2022 (1,377)

3,558

Italy - Serie A 1986 (32), 2015 (9,395) 9,427

North and Central America -
North American League

1977 (48) 48

Spain - Copa del Rey 1977 (23), 1982 (20), 1983 (21) 64

Spain - La Liga 1973 (27), 2004 (139), 2005 (379), 2006
(601), 2007 (645), 2008 (693), 2009 (776),
2010 (688), 2011 (791), 2012 (656), 2013
(750), 2014 (861), 2015 (8,658), 2016
(805), 2017 (892), 2018 (813), 2019 (680),
2020 (771)

19,625
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estimating fixed model parameters as in traditional logistic

regression, Bayesian logistic regression defines these parameters

as unknowns and treats the uncertainty around these unknowns

as random variables with associated probability distributions.

This means that we get the single population value as the

estimate for the model parameters as well as full probability

distributions, allowing us to quantify uncertainty.

In Bayesian logistic regression, we specify prior distributions for

the model parameters, representing our beliefs about their values

before observing any data. The likelihood function represents the

probability of observing the data given the model parameters.

Using Bayes’ theorem, we update the prior distribution with the

likelihood distribution to obtain the posterior distribution, which

reflects our updated beliefs after considering the data. To compute

the posterior distribution in Bayesian logistic regression, various

techniques can be used, including Markov Chain Monte Carlo

(MCMC) methods and variational inference. These methods

sample from the posterior distribution of the parameters to

estimate their values and uncertainties.

Once we have the posterior distribution of the model

parameters, we can perform various tasks such as parameter

estimation, uncertainty quantification, and prediction. Bayesian

logistic regression provides a natural way to make probabilistic

predictions, as it generates a distribution of predicted

probabilities for each class, rather than just point estimates.

For this paper, the Bayesian methods used will involve fitting

Bayesian logistic regressions as both single-level models

(baseline) without group-level effects, and multi-level, or

hierarchical, models with group-level effects. The predictions

from both models will then be compared to determine if there is

evidence of group-level effects on xG. To formulate such

Bayesian models, this paper specifies expressions in Equations (3)

to (9) below:

Yi ¼ binary outcome of shot i (1 ¼ goal, 0 ¼ no goal), (3)

pi ¼ probability of shot i resulting in a goal, (4)

Xj,i ¼ the value of predictor j for shot i, (5)

bj ¼ model coefficient for predictor j, (6)

where the likelihood distribution is

Yi � Bernoulli(pi) (7)

Hence, the Baseline and Hierarchical models are like

Baseline Model logit(pi) ¼ b0 þ
XN
j¼1

bj � Xji, (8)

Hierarchical Model

logit(pik) ¼ b0,k þ
XN
j¼1

b j,k � Xj,i þ bNþ1,k � XNþ1,i,
(9)

where N þ 1 is the index of the grouping variable in the data, pik
refers to the probability of shot i for kth grouping effect resulting

in a goal, and b j,k is the model coefficient for predictor j and kth

grouping effect.
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3.4 Data

The data used for this project is all freely available event data

from StatsBomb, obtained using their Python package

StatsBombPy (please see the Statsbomb GitHub page via https://

github.com/statsbomb for details). From their database, only

men’s competitions were used because it could be that there is a

difference in given goal probabilities in men’s and women’s

football, and we have more data from men’s competitions. Then,

all open-play shots were extracted with all relevant information

for each shot. Set-pieces were excluded because again goal

probabilities could vary for set-pieces, and we are not interested

in modelling this effect.

The resulting data has 63,309 shots from a variety of

competitions and years, with 42 columns of information for each

shot. Table 1 gives a breakdown of leagues and seasons that the

full data consists of whilst Table 2 gives some summary statistics

for the most relevant variables in the data. As well as the

information given in the columns already in the data, there are

several features which were not included by StatsBomb which

could be useful for predicting goal probability. Many sources cite

distance to goal and shot angle to be two of the most important

predictors of goal probability (11, 18–20).

The data has the location of the shot, and the StatsBomb data

specification (21) provides information about the coordinates of

the goalposts. Distance to goal is therefore calculated as the

Euclidean distance from the shot to the centre of the goal.
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TABLE 2 Summary statistics for most relevant features for xG in the dataset.

Variable Description Summary
distance_to_goal Distance between the shooter and the middle of the goal line, normalised to StatsBomb pitch size

of 120� 80 due to varying pitch sizes.
N : 63,309, Min: 0.63
Mean: 18.96, Max: 88.83, SD: 8.58

shot_angle By creating a triangle between the shooter and the two goalposts, the shot angle is the angle that
is by the shooter.

N : 63,309, Min: 0.66
Mean: 25.39, Max: 168.61, SD: 15.60

gk_distance_to_goal Same as distance_to_goal but for the goalkeeper instead of the shooter. N : 63,309, Min: 0.00
Mean: 3.56, Max: 118.00, SD: 2.61

players_in_shot_triangle The number of players in the shot triangle, created by the shooter and the two goalposts. N(0): 1,786 , N(1): 30,262, N(2): 19,481
N(3): 6,802, N(4): 2,918, N(5): 1,217
N(6): 513, N(7): 211, N(8): 77
N(9): 29, N(10): 11, N(11): 2

opponents_in_radius The number of opposition players in a 1m radius of the shooter. N(0): 55,536, N(1): 7,030
N(2): 662, N(3): 71, N(4): 10

shot_body_part The body part used by the shooter to hit the ball. N(Preferred Foot): 30,738, N(Head): 10,647
N(Other Foot): 11,733, N(Other): 191

shot_first_time Whether the shot was a first-time shot, meaning the shooter took no additional touches of the
ball before shooting.

N(True): 20,946 N(False): 42,363

gk_in_shot_triangle Whether the goalkeeper was in the shot triangle created by the shooter and the two goalposts
when the shot was taken.

N(True): 60,570 N(False): 2,739

shot_one_on_one Whether the shooter was one-on-one with the goalkeeper when shooting. N(True): 3,546 N(False): 59,763

shot_open_goal Whether the shooter was shooting at an open goal. N(True): 736 N(False): 62,573

shot_technique The technique the shooter used. N(Normal): 47,854, N(Overhead Kick): 385
N(Half Volley): 9,371, N(Diving Header): 284
N(Volley): 4,483, N(Backheel): 244
N(Lob): 688

under_pressure Whether the shooter was under pressure when shooting. N(True): 16,149 N(False): 47,160

goal Whether the shot resulted in a goal. N(True): 6,559 N(False): 56,750

shot_statsbomb_xg StatsBomb’s own estimated xG value for each shot. N : 63,309, Min: 0.00
Mean: 0.10, Max: 1.00, SD: 0.13

general_position The general position of the shooter (striker, attacking midfielder, other midfielder, or defender). N(ST): 17,073
N(AM): 20,065

N(M): 15,858
N(D): 10,313

player The name of the shooter. N(Messi): 1,907
N(L. Suárez): 596
N(Iniesta): 374
N(Neymar): 352

N(T. Henry): 325
…

N(V. Migas): 1
N(R. Tricella): 1

N(x):y means that for y number of samples the variable has the value of x.
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For shot angle, the cosine rule is used to calculate the angle

from the shooter to the two goalposts. To calculate this reliably,

any shots that are taken from the same x-coordinate as the goal

line are excluded since this would create a straight line instead of

a triangle with no shot angle.

Statsbomb’s open-access datasets offer a valuable “freeze

frame” feature, providing detailed insights into specific moments

within a match. This freeze frame information captures crucial

events such as passes, shots, and tackles, along with the

positional coordinates of players involved, enabling thorough

analysis of on-field actions. By offering this level of granularity,

we are able to delve deeper into detailed analysis for the shot

taken and to engineer new useful features that can affect the xG

predictions. Thanks to this feature, the freeze-frame feature in

the data is utilised, we engineered several features: the

goalkeeper’s distance to the goal, whether the goalkeeper is

present in the shot triangle formed by the shot and two

goalposts, the number of players present in the shot triangle, and

the number of opponents within a 1m radius of the shooter.

Opponents are used for the 1m radius as opposed to all players

because the only time a non-opponent in the radius of a shooter

would impact goal probability is when they are in the shot
Frontiers in Sports and Active Living 05
triangle, which is already being accounted for. Otherwise, only

opponents will try to put pressure or tackle the shooter outside

of the shot triangle.

The initial dataset categorises each player into 25 distinct

positions, such as Left Centre Forward, Second Striker, Right

Wing, and Right Centre Back. Due to players’ flexibility across

positions and potential overlap in samples, clustering them into

positional groups poses a challenge. To address this issue, we

compute mode statistics for each player’s position, condensing

them into a single positional variable. However, given the

analytical focus of this study and the abundance of players in

certain positions, particularly those with low sample sizes, we

consolidate these positions into four main categories: strikers

(ST, encompassing L/R/C Centre Forward), attacking midfielders

(AM, including Secondary Striker, L/R Wing, and L/R/C

Attacking Midfield), non-attacking midfielders (M, comprising

L/R/C Centre Midfield, L/R Midfield, and L/R/C Defensive

Midfield), and defenders (D, covering L/R/C Centre Back, L/R

Back, L/R Wing Back, and Goalkeeper). This process results in

the engineering of the “general_position” feature, consisting of

these four positions, with an expected average decline in goal

probability for each respective group.
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Finally, we modify the body part used by changing “left foot”

and “right foot” to “preferred foot” and “other foot” according to

the player’s apparent preference. To assign these, we go back

through the open data and instead look at the passes for each

player, we then assign whichever foot the player made the most

passes with as their preferred foot because they often have more

time to choose which foot to pass with and will then tend to go

safely with their preferred foot, which is less feasible when taking

a shot as players tend to be under more pressure and have less time.
3.5 Reference models

As outlined in the preceding sections, the primary aims of this

paper are to support the adoption of the Bayesian hierarchical

modelling approach in investigating the xG metric, specifically

concerning player-specific attributes and position groups of

players. To fulfil these objectives, we commence by providing

definitions for the benchmark and baseline models in the

subsequent sections.
3.5.1 Statsbomb xG model
This model, employed for comparison in this study, relies on

Statsbombpy’s open data set to provide corresponding xG

calculations for each shot discussed in the dataset. The specifics

of Statsbomb’s xG model remain undisclosed, and it serves as the

benchmark model in this paper.
3.5.2 Baseline xG model
The initial frequentist model introduced is a fundamental

model primarily utilising the distance between the shooter and

the goal as a predictor, recognised as a key factor in goal

probability determination. Another crucial feature considered is

the angle of the shot, formed by the shooter and the two

goalposts. Recognising the inherent link between distance and

shot angle, an interaction term is incorporated to capture the

combined influence of both features. This foundational

parameterisation constitutes the formulation of the Baseline xG

model under a logistic regression model as in Equation (10)

logit(pi) ¼ b0 þ b1 � (distancetogoal)i þ b2 � (shotangle)i
þ b3 � (distancei � anglei) (10)

It is logical to infer that, under reasonable assumptions, the

likelihood of scoring decreases, on average, as the distance to the

goal increases. This implies that the coefficient b1 is likely to be

negative. Conversely, b2 is expected to be positive, reflecting

the observation that as the shot angle decreases, the shot’s

position is likely to be farther away or from a wider position,

both scenarios leading to a lower goal probability. Figure 1

illustrates the associations between shot angle, distance, and the

proportion of goals scored to shots, providing a clearer insight

into these relationships.
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3.5.3 Extended model
While the primary factors considered for calculating the goal

probability are typically assumed to be the distance and angle of

the shot utilised in the Baseline Model, it is important to

acknowledge that various other elements can influence the shot’s

outcome as shown clearly in the literature. Section 3.4 has

previously addressed each of these factors, and we now introduce

our frequentist Extended model, outlined below in Equation (11)

logit(pi) ¼ b0 þ b1 � distancetogoali þ b2 � shotanglei
þ b3 � (distancei � anglei)þ b4 � gkdistancetogoali
þ b5 � playersinshottrianglei þ b6 � bodyparti
þ b7 � firsttimeshoti þ b8 � gkinshottrianglei
þ b9 � oneononeshoti þ b10 � opengoali
þ b11 � techniquei þ b12 � underpressurei

(11)
3.6 Bayes-xG models

Bayesian logistic regression hierarchical modelling is a powerful

statistical approach used to analyse and model complex

relationships within data. In this context, an additional grouping

parameter is employed to incorporate the hierarchical structure

of the data, acknowledging potential dependencies or variations

across groups. Unlike frequentist logistic regression, Bayesian

hierarchical modelling allows for the inclusion of prior

information, facilitating a more robust estimation of parameters

and uncertainties. Below, we initiate by formulating our Bayes-xG

models to account for player and position grouping effects.

Subsequently, we provide a comprehensive explanation of the

rationale behind selecting specific prior distributions for the

model parameters.
3.6.1 Model definitions
The foundational Bayesian logistic regression model

extends the traditional logistic regression equation by adding a

grouping effect as in Equation (12)

logit(pik) ¼ b0,k þ
XN
j¼1

b j,k � Xj,i þ bNþ1,k � XNþ1,i|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Grouping effect

, (12)

where k ¼ 1, . . . , K with K is the number of elements in the

group. It is also clear that for this formulation, we extended

logistic regression model coefficients bj [ RN into a complex

form for grouping effect as b jk [ RK�(Nþ1). This leads to fitting

different logistic regression coefficients for each specific group

where the same shot predictors will result in different xG

calculations for each element in the group.

Specifically, b0,k is a group-specific intercept for kth element of

the group which accounts for variations in the baseline success

probability across different groups. On the other hand, b{1,...,N},k
frontiersin.org
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FIGURE 1

Bar plots showing the relationships between (left) distance to goal - binned in 10 s & (right) shot angle - binned in the 20 s and the proportion of goals
from shots.
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refer to the group-specific slopes which capture variations in the

effect of the covariate across groups.

Following the technical details above, for this paper, we

decided to define three versions of Bayes-xG models which can

be expressed as

• Bayes-xG1 ! uses the Baseline model with grouping parameter

of position,

• Bayes-xG2 ! uses the Extended model with grouping parameter

of position,

• Bayes-xG3 ! uses the Extended model with grouping parameter

of player.

3.6.2 Choice of priors
When using Bayesian modelling methods, one important

consideration is the choice of prior distributions for the

predictors in the model. Table 3 lists the predictors in each of

the models and the prior distributions used for them.

Variables lacking a clear rationale for a positive or negative

value are assigned a prior distribution modelled on the normal

distribution. In contrast, variables, where the direction of the

effect can be reasonably predicted, are assigned a prior

distribution skewed towards that direction. This choice is made

to favour values in the predicted direction while still allowing for

the possibility of values in the opposite direction, acknowledging

the potential for an incorrect prediction. The justifications for

prior distribution choices are given below:

• distance_to_goal (m ¼ �1 and a ¼ �1): Scoring becomes

progressively more challenging as the distance from the goal
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increases, primarily because the goalkeeper gains additional

time to react to the shot.

• shot_angle (m ¼ 1 and a ¼ 1): This is because an increase in the

shot angle implies either moving closer to the goal or

positioning oneself more centrally, both of which result in a

higher average scoring probability.

• players_in_shot_triangle (a ¼ {5, . . . , � 5}): The presence of

an increasing number of players within the shot triangle

makes it increasingly challenging for a player to execute a shot

in a manner that avoids hitting any of the players while still

managing to score a goal.

• opponents_in_radius (a ¼ {1, . . . , � 2}): In a manner akin to

the previously mentioned feature, an increase in the number

of opponents within the shooter’s proximity corresponds to an

increased challenge for the shooter. With more players in the

vicinity, there is an augmented effort from opponents to

disrupt and block the shot, consequently making it more

difficult for the shooter to successfully score.

• gk_in_shot_triangle (a ¼ �2): If the goalkeeper is positioned

within the shot triangle, their chances of successfully saving a

shot are higher compared to when they are located outside of

the shot triangle.

• shot_one_on_one (a ¼ 2): When a player finds themselves in a

one-on-one situation with the goalkeeper, their sole task is to

outplay the goalkeeper with their shot, without the need to

navigate or consider other players. This circumstance makes

scoring comparatively more straightforward.

• shot_open_goal (a ¼ 4): Similar to the previous feature, in this

case, there is no goalkeeper present. Consequently, the
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TABLE 3 Listing which predictors are used in each of the Bayesian models, and what prior distribution is given to the coefficient of the given predictor.

Predictor Bayes-xG Prior

1 2 3
Intercept ✓ ✓ ✓ N (m ¼ 0, s ¼ 5)

distance_to_goal ✓ ✓ ✓ SN (m ¼ �1, s ¼ 5, a ¼ �1)

shot_angle ✓ ✓ ✓ SN (m ¼ 1, s ¼ 5, a ¼ 1)

distance_angle_interaction ✓ ✓ ✓ N (m ¼ 0, s ¼ 5)

gk_distance_to_goal ✓ ✓ N (m ¼ 0, s ¼ 5)

players_in_shot_triangle ✓ ✓ SN (m ¼ �1, s ¼ 5, a ¼ {5, 4, . . . , � 5}) where a is determined by the value of this feature (0 players=5, 1 player=4, etc.)

opponents_in_radius ✓ ✓ SN (m ¼ �1, s ¼ 5, a ¼ {1, 0, . . . , � 2}) where a is determined by the value of this feature (0 players=1, 1 player=0, etc.)

shot_body_part ✓ ✓ N (m ¼ 0, s ¼ 5)

shot_first_time ✓ ✓ N (m ¼ 0, s ¼ 5)

gk_in_shot_triangle ✓ ✓ SN (m ¼ 0, s ¼ 5, a ¼ �2)

shot_one_on_one ✓ ✓ SN (m ¼ 0, s ¼ 5, a ¼ 2)

shot_open_goal ✓ ✓ SN (m ¼ 0, s ¼ 5, a ¼ 4)

shot_technique ✓ ✓ N (m ¼ 0, s ¼ 5)

under_pressure ✓ ✓ SN (m ¼ 0, s ¼ 5, a ¼ �2)

general_position ✓ ✓ SN (m ¼ 0, s, a ¼ {2, 1, 0, � 2}) where scale parameter s � HN (g ¼ 5) and a is {ST, AM, M, D}, respectively.

player ✓ SN (m ¼ 0, s, a ¼ {2, 0}) where scale parameter s � HN (g ¼ 5) and a is assigned depending on prior beliefs about a player
({2: good finisher, 0: not good finisher}).

N , normal distribution; SN , skew-normal distribution; HN , half-normal distribution.
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shooter’s sole objective is to direct the shot accurately towards

the target, making the likelihood of scoring very high.

• under_pressure (a ¼ �2): When a player is under pressure,

their ability to concentrate on accurate and well-targeted

shooting diminishes, resulting in a decreased likelihood of

scoring on average.

• general_position (a ¼ {ST : 2, AM : 1, M : 0, D : � 2}): The a

values signify the expectation that strikers will exhibit the

highest proficiency in finishing, followed by attacking

midfielders, other midfielders, and, finally, a decrease

for defenders.

• player (a ¼ {2, 0}): If a player is anticipated to excel in finishing

skills based on their name and reputation, they are given a value

of 2 for a; otherwise, a value of 0 is assigned.

• A standard value of s ¼ 5 was chosen for the priors to strike a

balance, ensuring sufficient variability. This choice aims to

prevent the priors from becoming overly narrow in case the

underlying prior knowledge is incorrect. Simultaneously, it

avoids excessive largeness that could prolong convergence and

necessitate numerous rounds of sampling.

3.7 Model development

Following the exposition of technical aspects related to the

models employed in this paper, we proceed to elucidate the

practical details of their implementation. The entire

computational implementation was carried out using the Python

programming language, specifically version 3.8 and above. In non-

Bayesian modelling phases, logistic regression was executed using

the Python sklearn module along with its associated methods.

Bayesian modelling stages were implemented by using the

bambi module which is an open-source Python package and
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purposefully crafted to simplify the fitting of generalised linear

multilevel models (GLMMs) using a Bayesian framework. This

encompasses a broad category of techniques widely employed in

various research domains, including linear regression, analysis of

variance (ANOVA), logistic and Poisson regression, as well as

multilevel and crossed-group-specific effects models. Bambi

facilitates the specification of intricate generalised linear

hierarchical models through a formula notation reminiscent of R,

providing a balance between user-friendly syntax for novices and

direct access to internal objects for advanced users. This design

allows beginners to swiftly articulate complex models with

default priors, akin to popular R packages while providing

seasoned users with the flexibility to directly manipulate internal

objects for a more advanced and nuanced modelling approach (22).

Specifically, we employed the Python module bambi to

construct Markov Chain Monte Carlo (MCMC) models,

generating posterior distributions. Monitoring instantaneous

parameter estimates from the chains confirmed their

convergence, leading us to select 1,500 draws, with the initial 250

draws designated as the burning period. In total, 4 Markov chain

sampling is developed resulting in 6,000 total samples for each

Bayes-xG model. We set a target acceptance ratio of 95% in the

model whilst using the prior distributions given in Table 3.

Considering the target feature in the models is a binary variable

of goal status, we decided to utilise a Bernoulli likelihood for all

Bayes-xG models.

Furthermore, in the context of this paper, Bayesian

implementation of the models was executed using data from a

specific league. This decision was driven by the fact that a

substantial portion of the entire dataset consisted primarily of

Barcelona matches, as this information was publicly provided by

StatsBomb. The concern was that including such a dominant

dataset might introduce bias and influence the results. By
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focusing on a single league, the analysis can encompass a diverse

range of players and team matchups, ensuring a more balanced

and comprehensive examination.
4 Experimental analysis

The experimental analysis of this paper was studied under

six cases:

(1) Frequentist model comparison to benchmark model for the

whole 60 Kþ shots data set,

(2) Bayes-xG model-based “positional” analysis and comparisons

for English Premier League data set (10 Kþ shots),

(3) Bayes-xG model-based “player-specific” analysis and

comparisons for English Premier League data set (10

Kþ shots),

(4) Extending the developed Bayes-xG model evaluations into

different countries, e.g., Spain (La Liga - 19 K shots) and

Germany (Bundesliga - 7.5 K shots),

(5) Investigating the choice of priors on Bayes-xG model

outputs, and

(6) Uncertainty quantification via discussing some posterior

predictive analysis on developed Bayesian xG models.
4.1 Frequentist/non-Bayesian models

In the initial series of experiments, we assessed the modelling

performance of frequentist models based on logistic regression,

namely the Baseline xG and Extended xG, utilising two distinct

sets of features. The analysis involved the complete data set

comprising 63,309 instances. The objective was to observe and
FIGURE 2

Distributions of predictions from frequentist xG models.
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compare how these models deviate from the predictions of the

benchmark Statsbomb xG model.

The distributions of the predicted xG values for each model are

shown in Figure 2, along with the StatsBomb xG values for

comparison. As expected, the Extended model performs better

than the Baseline model (with shot angle, distance to goal, and

the interaction between the two) by also predicting much more

extreme values and by decreasing the interquartile and whisker

ranges. Furthermore, the extended model has a distribution very

close to that of the StatsBomb model.

Concerning the evaluation criteria, Table 4 displays how each

model performs compared to the Statsbomb xG model regarding

R2, mean absolute error (MAE), and root mean square error

(RMSE). As expected, the extended model outperformed the

Baseline model due to its enriched data for predicting the goal

likelihood. Particularly noteworthy is that the extended model

achieved a Brier score significantly close to the StatsBomb

model’s Brier score of 0.075, suggesting a similar performance to

an industry-leading xG model. Please also note that the Brier

score is a version of the DeFinetti measure (23) which is used to

measure Euclidean distance between predictions and outcome

probabilities of the event (24).

In the final analysis of the initial set of experiments, we

explored the impact of incorporating engineered advanced

features on the performance of the frequentist logistic regression

model. Figure 3 illustrates the trends in performance evaluation

metrics—Brier score, R2, MAE, and RMSE—relative to the

number of features integrated into the model. We initiated

the analysis with a single-parameter model, utilizing only the

distance to the goal, and systematically added features one by

one. Typically, there are 16 model parameters (as detailed in

Table 3), but this count increases to a maximum of 33 after one-

hot encoding categorical features. Examining Figure 3 reveals a
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TABLE 4 Comparison of outcomes from non-Bayesian models, including
the Baseline xG model integrating distance to the goal, shot angle, and
their interaction, and the Extended xG model incorporating additional
features, with reference to the StatsBomb xG model.

Metric Expression Baseline xG Extended xG
RMSE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i (ySBi � ŷi)

2
q

0.095 0.055

MAE 1
N

PN
i jySBi � ŷij 0.058 0.029

R2 Score
1�

PN

i
(ySBi �ŷi)

2PN

i
(ySBi ��ySB)2

0.428 0.826

Brier Score 1
N

PN
i (ŷi � Y {0,1}

i )2 0.086 0.076

ySBi : Statsbomb xG for shot i.

ŷi : Model prediction xG for shot i.
�ySB : Sample mean of Statsbomb xG.

Y {0,1}
i : Binary correct outcomes (Goal, or No-Goal).

N: number of shots.
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substantial influence on model performance resulting from the

introduction of these created parameters. Notably, there are

certain plateaus in the trends, particularly associated with

one-hot encoded parameters representing categories with a

minimal number of samples in the dataset (e.g., 10 players in the

shot triangle).
4.2 Positional analysis via Bayesian models

For the second experimental case in this paper, we investigate

the effects of the general player positions on the pitch to the xG

values by performing a Bayesian hierarchical modelling approach.

Baseline xG and Extended xG models are redeveloped by using

the positional grouping effect and we obtained Bayes-xG1 and

Bayes-xG2 models, respectively.
FIGURE 3

Fitting performance plots for the extended xG model when increasing the
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We commence with a more straightforward model that

examines only a few features within the logistic regression

framework. As mentioned in the above sections, the baseline xG

model incorporates distance to the goal, shot angle, and their

interaction as predictors. To assess the influence of the grouping

variable, “general position” on xG, we calculate the differences in

xG predictions between the single-level frequentist model and its

hierarchical Bayesian counterpart, referred to as the Bayes-xG1

model, for each shot in the dataset.

Figure 4 illustrates the distributions of the xG adjustment,

considering the general position within the hierarchical model

for each position category. The observed distributions align well

with the prior beliefs regarding the impact of the general

position. Defenders exhibit a substantial number of negative xG

adjustments in comparison to the baseline model’s xG

predictions, with some adjustments reaching as low as 0.1. As

anticipated, non-attacking midfielders display smaller xG

adjustments, encompassing both positive and negative values.

Contrary to expectations, attacking midfielders exhibit larger

positive xG adjustments on average compared to strikers, who

also generally have positive adjustments. This unexpected finding

may stem from the fact that strikers, by shooting more frequently

from high xG scoring positions, often possess sufficiently high

xG values without requiring a significant positional adjustment.

On the other hand, attacking midfielders frequently take shots

from areas around the goal, where xG chances are lower, yet

they excel in scoring due to their above-average attacking and

scoring capabilities.

Figure 5 illustrates the shot locations categorised by general

playing positions, normalised for each position. It highlights the

notable concentration of chances for defenders positioned
number of features.
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FIGURE 4

Distributions of xG adjustments by position of Bayes-xG1.

FIGURE 5

Normalized heatmap of shot locations by general position.
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directly in front of the goal, providing a potential explanation for

the observed reversals in Figure 4. Contrary to the theorised

expectation from the analysis in Figure 4, attacking midfielders

are not inclined to take shots from distant or challenging angles.

In fact, on average, strikers exhibit a higher tendency for such

shots. This discovery, coupled with the observation that attacking

midfielders, on average, have larger positive xG adjustments than

strikers, suggests that attacking midfielders may have a superior

ability, on average, to convert high xG chances situated right in

front of the goal compared to their striking counterparts.

Before delving into the more intricate model analysis for Bayes-

xG2, we aim to showcase a validation step to demonstrate the

accuracy of the MCMC-based sampling technique employed in

developing Bayesian models in this paper. To achieve this, we
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replicated the Bayesian analysis, this time utilising Bayes’

Formula in Equation (13)

P(goaljpositioni) ¼
P( positionijgoal) � P(goal)

P( positioni)
: (13)

This allowed us to conduct an analysis where the results of the

baseline model could be adjusted using Bayes’ Theorem, and these

adjusted outcomes were then compared to the results of the

hierarchical model. The comparison aimed to assess the

proximity between theoretical adjustments and model

adjustments. The outcomes of this process are detailed in

Table 5. Notably, the mean model adjustments closely align with
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TABLE 5 Mean xG adjustment for each general position from Bayes-xG1
vs. theoretical adjustment of Baseline xG prediction using Bayes’
Theorem.

Position Mean model
adjustment

Mean theoretical
adjustment

ST 0.009 0.010

AM 0.019 0.020

M �0.006 �0.005

D �0.042 �0.044
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the theoretical adjustments for each position, affirming that the

model has effectively estimated the positional impact.

We proceed with our analysis by delving into the upgraded

iteration of the Baseline model, referred to as the Extended

model. Employing Bayes-xG2, this advanced model involves a

positional analysis akin to its predecessor, Bayes-xG1. However, it

incorporates numerous additional predictors, including factors

such as opponents_in_radius and gk_distance_to_goal, aiming to

enhance the baseline xG predictions. Upon inspecting the

distributions of xG adjustments by position in Figure 6, it is

evident that the values are notably smaller when compared to

those derived from Bayes-xG1. Few adjustments now exceed 0.01

away from the baseline xG values. This observation implies that

the supplementary predictors effectively contribute to position

prediction. This indicates that xG advantages stem less from the

player’s position and more from the specific play situation during

shooting. For instance, while attackers generally enjoy better

scoring chances on average, leading to positive xG adjustments

in the basic model, the Extended model, by accounting for

various features defining these improved scoring chances (e.g.,

one-on-ones), mitigates the impact of player position on

xG adjustments.
FIGURE 6

Distributions of xG adjustments for Bayes-xG2, where adjustment is hierar
general position.
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It is intriguing to examine the xG adjustments across the

predictor ranges of “distance_to_goal” and “shot_angle.” Figure 7

illustrates these xG adjustments grouped by the position for both

Bayes-xG models. In Figure 7A for Bayes-xG1, the convergence

of each position towards an adjustment of 0 signifies that, at a

certain distance, the xG value tends to be close to zero,

regardless of other shot-related factors. Notably, defenders exhibit

a slight dip in xG adjustments at the lowest distance before

increasing. This suggests scenarios where defenders find

themselves in goal-scoring positions, perhaps following set pieces

or during a team’s pursuit in a match. The order of adjustments

in Figure 4 aligns consistently across positions, with attacking

midfielders having the highest positive adjustments, followed by

strikers, and other midfielders showing minimal adjustment from

the baseline model. Examining the “shot_angle” for Bayes-xG1 in

Figure 7B, smaller values correspond to more challenging scoring

opportunities, either due to being far from the goal or from tight

angles. Defenders display gradually larger negative adjustments as

the shot angle increases, reversing after a certain point for very

high shot angles, likely corresponding to very close distances to

the goal. Similar patterns emerge for other positions, with

attacking midfielders having the largest positive xG adjustments,

followed by strikers and other midfielders. For Bayes-xG2 model

outputs in Figures 7C,D, the compensation of positional effects

through additional predictors is evident. Despite a clear

distinction in the effects of distance to the goal and shot angle

for each position in Bayes-xG1, no significant differences between

positions are observed in Bayes-xG2. The diminishing impact of

position on xG adjustment is attributed to the diverse player

abilities and roles within each position category. A distinct

observation evident in both Figures 7C,D is that defenders

exhibit consistent trends for all angles just below 0, whereas
chical model prediction minus baseline model prediction - grouped by
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FIGURE 7

Comparison of point estimates for xG adjustments against distance_to_goal (A and C) and shot_angle (B and D) between Bayes-xG1 (A and B) and
Bayes-xG2 (C and D), grouped by general position. Adjustments are hierarchical model prediction minus baseline model prediction.
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attacking midfielders mirror the same pattern but above the 0 line.

Adjustments made to strikers’ and midfielders’ xG values are barely

discernible, with values hovering around 0 across all shot angles.

To further explore the aforementioned phenomena, the next

experimental case involves a player-specific analysis with Bayes-

xG3, grouping data based on the player taking the shot rather

than their general position.
4.3 Player-specific analysis via Bayesian
models

In the context of the third experimental case explored in this

paper, we introduced Bayes-xG3, derived from the Extended

model, with players designated as the grouping variable in

Bayesian hierarchical modelling. The focus here is to assess

whether the models necessitate player-specific adjustments.

Unlike the previous experimental case that centred on positional

analysis, conducting a player-specific analysis poses increased

complexity due to the considerably larger pool of candidates

within the group, making the analysis more challenging and
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computationally intensive. Instead of individually representing

each player in our group, a selective approach is employed,

categorising the majority as “other” and opting for a few players

with expected positive or negative xG adjustments. Player

selection is based on the “conversion rate,” i.e., the percentage of

shots scored. To ensure relevance, only players with a minimum

of 50 shots are considered, and the chosen players, along with

their statistics, are detailed in Table 6. Players like R. Pirès,

S. Agüero, and J. Vardy, recognized for their prolific goal-

scoring, are expected to have positive xG adjustments. Pirès,

notably, exhibits an exceptional conversion rate in the data

subset. Conversely, players like P. Coutinho and R. Barkley, with

below-average conversion rates, might have slight negative xG

adjustments, while J. Shelvey, who failed to convert any of his 51

shots in the data, is likely to have a more substantial negative

xG adjustment.

As explained in the preceding methodology section, the impact

of each player will be characterised by a prior distribution,

specifically a skewed normal distribution. The choice of

distribution parameters is dependent upon the prior beliefs

regarding a player’s proficiency as a goal scorer, with the
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TABLE 6 Selected players for Bayes-xG3 and their goal-scoring statistics in
the data set.

Player Shots Goals Conversion rate
Robert Pirès 56 14 25.00%

Sergio Agüero 112 20 17.90%

Jamie Vardy 111 19 17.10%

Phillippe Coutinho 105 8 7.60%

Ross Barkley 82 6 7.30%

Jonjo Shelvey 51 0 0.00%
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parameter a taking values of either 2 or 0. This selection is guided

by qualitative beliefs about the players rather than direct utilisation

of the data for informing the priors. Players such as Pirès, Agüero,

Vardy, and Coutinho, acknowledged as talented attacking players,

are attributed a ¼ 2. In contrast, Barkley and Shelvey, who are

not commonly associated with being top-tier attackers but

possess other defining qualities in their game, are assigned a ¼ 0.

Figure 8 illustrates the distributions of xG adjustments for

individual players and the collective “other” players group. A

prominent observation is the substantial positive xG adjustments

for Robert Pirès, some reaching as high as 0.3 above the baseline

xG. Notably, these adjustments persist even after incorporating

additional predictors in Bayes-xG2 that were intended to

eliminate group effects in the previous experimental analysis.

Pirès also exhibits a wide spread of adjustments, ranging close

to 0, indicating a diverse array of shot types. Some were high xG

chances, requiring minimal adjustment, while others were more

challenging but consistently converted by Pirès, resulting in

significant positive adjustments. Agüero displays consistently

positive xG adjustments, albeit smaller on average and with a

narrower spread compared to Pirès. Intriguingly, Vardy and
FIGURE 8

Distributions of xG adjustments for Bayes-xG3, where adjustment is hierar
player. Mean xG for each player shown as “o” in boxplots.
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Coutinho exhibit minimal positive xG adjustments, not

significantly greater than those of Barkley. Shelvey aligns with

expectations, displaying substantial negative xG adjustments

based on his conversion rate in the data. Lastly, the “other”

group centres around 0 for xG adjustment, as anticipated, given

its diverse player composition with no discernible group effect

to capture.

Figure 9 displays the shot locations and outcomes for the

selected players, offering insights into the findings presented in

Figure 8. Beginning with Pirès, notable for his substantial

positive xG adjustments, the observation centres on his efficiency

in goal scoring despite a relatively low number of shots. His

ability to score from challenging positions, such as both corners

of the box and outside the area, contributes to the positive xG

adjustments, indicating his prowess as a goal scorer even in

demanding scenarios. Agüero and Vardy exhibit similar shot

patterns, but the model assigns significantly higher positive xG

adjustments to Agüero. This discrepancy may stem from the

nature of Vardy’s shots being inherently high xG chances, like

one-on-one opportunities, whereas Agüero manages to convert

more challenging shots, resulting in larger adjustments.

Comparing Vardy with Coutinho and Barkley, who exhibit

similar xG adjustments in Figure 8, suggests that their goal-

scoring patterns align with baseline xG values without substantial

player adjustments. Lastly, Shelvey’s shot map lacks goals from

various positions. While difficult-to-score shots receive minor

adjustments, centrally located missed chances likely contribute to

the notable negative adjustments, reflecting Shelvey’s poor

conversion rates in this dataset.

Figure 10 displays the cumulative data for goals scored,

baseline expected goals (xG) from the single-level model, and

adjusted xG from the player-corrected model for the selected
chical model prediction minus baseline model prediction - grouped by
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FIGURE 9

Selected player shot locations and goals.

FIGURE 10

Comparison of baseline, Bayes-xG3 hierarchical predictions, and actual goals scored for selected players.
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players in this analysis. The visual representation illustrates that,

in comparison to the single-level model, the player-corrected

model provides more accurate estimates of total goals scored by

each player. Notably, players like Pirès and Agüero, who

outperformed their baseline xG by scoring difficult chances,

exhibit adjusted xG totals much closer to their actual goals

scored. Conversely, Shelvey’s adjusted xG total is more aligned

with the zero goals he scored, although it is crucial to

emphasise that it is not precisely zero.
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4.4 Extension into other leagues

To ascertain the generalizability of the conclusions drawn in

this study beyond the Premier League dataset examined earlier

and their applicability to football on a broader scale, as our

fourth experimental case, a parallel analysis was conducted using

data from Spain’s La Liga and Germany’s Bundesliga. The

datasets for these leagues encompass approximately 19,000 and

7,500 shots, respectively. It is noteworthy that the La Liga dataset
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https://doi.org/10.3389/fspor.2024.1348983
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


FIGURE 11

Distributions of xG adjustments for Bayes-xG1 and Bayes-xG2 for Spanish La-Liga and the German Bundesliga.

TABLE 7 Selected players for Bayes-xG3 and their scoring statistics from
La Liga data set.

Player Shots Goals Conversion rate
Gareth Bale 89 20 22.50%

Lionel Messi 1,862 375 20.10%

Samuel Eto’o 295 62 21%

Bebé 74 2 2.70%

Rafael Márquez 53 2 3.80%

Andrés Iniesta 362 25 6.90%

TABLE 8 Selected players for Bayes-xG3 and their scoring statistics from
Bundesliga data set.

Player Shots Goals Conversion rate
Javier Hernández 63 16 25.40%

Pierre-Emerick Aubameyang 107 22 20.60%

Robert Lewandowski 147 28 19%

Pascal Groß 56 1 1.80%

Hakan Çalhanoğlu 51 1 2%

Timo Werner 64 6 9.40%
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is notably influenced by Barcelona, primarily due to the fact that

StatsBomb predominantly released data from games in which

Lionel Messi, a prominent Barcelona player, participated.

Figure 11 displays the distributions of xG adjustments for

the Bundesliga and La Liga, which serve as the data sets for the

Bayes-xG1 and Bayes-xG2 models. The outcomes for both

leagues closely resemble those of the Premier League in the

Bayes-xG1 model. The average adjustments follow a consistent

order across all leagues, with attacking midfielders exhibiting the

most positive adjustments, followed by strikers, other midfielders,

and then a substantial drop to defenders. Additionally, the

magnitudes of these adjustments exhibit similar patterns.

The Bayes-xG2 model reveals a noteworthy reduction in the

magnitude of xG adjustments, a trend observed consistently

across all leagues. Although the Bayes-xG2 model indicates

slightly larger adjustment magnitudes for the additional leagues,

the variation is not significant enough to alter the model results

significantly when compared to those of the Premier League.

To conduct a player-specific examination of Bayes-xG3, the

inclusion of new players from both leagues was necessary.

The selection process mirrored that of the Premier League, where

players were listed based on their conversion rates in the data

sets, encompassing both the best and worst performers. Tables 7

and 8 display the chosen players and their respective statistics for

La Liga and the Bundesliga, providing a comprehensive overview

of the selected players’ performance in each league.

Given these conversion rates, it is reasonable to infer that the

top three performers in each table would, on average, experience

positive adjustments in expected goals (xG), while the bottom

three would, on average, encounter negative or negligible xG

adjustments. The visual representation in Figure 12 illustrates

these adjustments for players in both the Spanish La Liga (A)
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and the German Bundesliga (B). As anticipated, players like Bale,

Messi, and Eto’o from La Liga predominantly exhibit positive xG

adjustments, aligning with expectations. Conversely, other

selected players either display minimal adjustments or

predominantly negative adjustments. In the Bundesliga context,

Figure 12B reaffirms many anticipated outcomes. An intriguing

finding is that Aubameyang, despite maintaining a high

conversion rate, exhibits predominantly negative xG adjustments.

This suggests that the goals he scores tend to be from chances

with already high expected goals, contrary to some expectations.

Figure 13 illustrates the shot locations of Bundesliga players,

validating that the majority of Aubameyang’s shots originate from
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FIGURE 12

Distributions of xG adjustments for Bayes-xG3 for Spanish La-Lida (A) and the German Bundesliga (B). Mean xG for each player is shown as “o” in
boxplots.

FIGURE 13

Selected player shot locations and goals for the German Bundesliga.
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within the penalty area. This observation implies that these shots

likely possess additional characteristics, such as one-on-one

opportunities, making them high expected goals (xG) chances. In

contrast, Timo Werner exhibits minimal goals despite a

comparable shot map, and the substantial negative xG adjustments

suggest that he should have scored more from these shot

positions. On a different note, Çalhanoğlu records relatively few

goals from shots that present higher difficulty due to their distance

from the goal, resulting in slightly fewer negative xG adjustments.

In conclusion, the findings from both La Liga and the

Bundesliga verify the results obtained in the Premier League

sections above. Notably, there is an indication of a positional
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impact on xG in a fundamental xG model (Bayes-xG1), but such

effects markedly diminish with the adoption of a more intricate

model (Bayes-xG2). Nevertheless, even with the extended model,

there remains evidence of player-specific effects on xG, providing

a quantitative measure of how certain players excel or lag behind

others in scoring.
4.5 Analysing the choice of priors

The impact of prior choices is particularly evident when

assessing the efficiency and accuracy of Bayesian models.
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TABLE 9 Choices of prior distributions for analysing the impact of prior choice on results.

Predictor 2-Wide 3-Tight 4-Wide 5-Tight 6-Ill-suited

Uniform Uniform Normal Normal Prior
Intercept U (�100, 100) U (�1, 1) N (0, 10) N (0, 0:25) SN (0, 0:25, 2)

distance_to_goal SN (0, 0:25, 2)

shot_angle N (0, 0:25)

distance*angle SN (0, 0:25, �2)

gk_distance_to_goal N (0, 0:25)

players_in_shot_triangle SN (0, 0:25, {� 5, . . . , 5})

opponents_in_radius SN (0, 0:25, {1, . . . , �2})

shot_body_part N (0, 0:25)

shot_first_time N (0, 0:25)

gk_in_shot_triangle SN (0, 0:25, 2)

shot_one_on_one SN (0, 0:25, �2)

shot_open_goal SN (0, 0:25, �4)

shot_technique N (0, 0:25)

under_pressure SN (0, 0:25, 2)
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Sensitivity to the choice of priors is crucial, and careful

consideration is needed to strike a balance between the

informativeness of priors and their impact on computational

efficiency. In Bayesian hierarchical modelling, this emphasizes the

need for a thoughtful approach to prior selection, ensuring that

the chosen priors align with the characteristics of the data and

contribute to the model’s robustness and reliability.

The selection of prior distributions holds significant importance

in Bayesian hierarchical modelling for several reasons. Firstly, the

choice of prior widths plays a pivotal role. Employing overly wide

priors, encompassing a large range of values, may necessitate an

extensive number of samples for the model to converge to the

true values of the variables, leading to prolonged computation

times. Conversely, if the prior distributions are excessively narrow

and the true values are unlikely to be sampled, the model’s

outcomes may be biased and inaccurate.

To evaluate the appropriateness of the chosen prior

distributions, a reassessment will be conducted by refitting the

extended baseline model (single-level) with different priors,

followed by a comparison of predictions. The sets of priors

under consideration include (1) the existing priors given in

Table 3, (2–3) a pair of wide-tight uniform priors, (4–5) a pair of

wide-tight normal priors, and (6) a deliberately ill-suited set of

priors. The choices of priors for the cases of (2–6) are presented

in Table 9. For the uniform priors, each variable has been given

a wide and tight uniform distribution pair. Similarly, for normal

priors, zero mean priors are chosen with two different s values

to represent a wise and tight value support. On the other hand,

the ill-suited priors have been given very narrow distributions by

using a small value for s. Moreover, some of the skews in the

distributions have been flipped such that the prior belief about

the effect is the reverse of what was actually used.

Furthermore, the predictions generated by these models will be

juxtaposed with those of the extended non-Bayesian model on the

same data, providing a baseline for assessing the efficacy of the

selected priors in yielding accurate predictions.

Figure 14 illustrates the distributions of predictions generated

by each of the prior models. The model utilising wide uniform
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prior distributions exhibits notably poor performance when

compared to both the non-Bayesian baseline model and the

Statsbomb benchmark, displaying a considerable spread of

predictions. On the other hand, employing tight uniform priors

leads to more restricted predictions, although the average

expected goals (xG) predictions tend to be relatively smaller. The

utilisation of a tight normal prior yields similar performance,

primarily underestimating xG values, particularly with the

highest xG values concentrated around 0.8. In contrast, adopting

wide normal priors results in enhanced performance compared

to the tight setting, with predictions following a similar trend to

the existing prior configuration. It is noteworthy that the mean

and interquartile ranges of both normal priors depicted in

Figure 14 exhibit a favourable correspondence with the baseline

and benchmark models.

On the other hand, as depicted in Figure 14, ill-suited priors

result in a notably narrow spread, with scarce xG predictions

exceeding 0.5. Despite this, the ill-suited priors exhibit improved

performance compared to uniform priors in terms of aligning

the average with the baseline and benchmark predictions and

maintaining a similar-sized interquartile range. This improved

performance is likely attributed to the greater number of samples

utilised for parameter estimation. In the case of the model with

uniform priors, the same number of samples, however, prevented

the model from converging to optimal parameter values,

resulting in poor predictions. While, given more samples, this

model could eventually yield accurate results, the computational

time required is uncertain and could be extensive. The model

with the existing prior distributions outperforms the others

significantly, closely resembling the distribution of baseline and

benchmark models’ predictions while also offering valuable

insights based on player positions.

In the 5th experimental case’s final analysis, we explore the

mean signed deviation (MSD) values between each prior case

and the predictions of the Non-Bayesian extended model. The

selection of MSD aims to emphasize instances of over or

underprediction based on the prior choice, using the mean

spread of MSD values as a performance metric. Figure 15
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FIGURE 14

Distributions of xG predictions for each of the extended single-level Bayesian model, with different choices of prior distributions.

FIGURE 15

Mean signed deviation distributions for each analysed prior choice.
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illustrates the distributions of MSD values for each prior group

through various box plots. Notably, Figure 15 highlights

the considerable performance of the Wide Normal prior

choice, exhibiting results akin to the current prior approaches.

Its interquartile range closely aligns with the current prior case,

albeit with a few more instances of over-predicted outliers.

It is crucial to observe that both uniform priors’ MSD values

are distributed around zero, despite with a broader spread.

In contrast, the Tight-Normal and Ill-suited prior cases

exhibit notably poor performance, marked by a higher frequency
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of overestimated xG values compared to the Non-Bayesian

extended model.
4.6 Uncertainty quantification

The final experimental case of this study involves examining

and reflecting on the uncertainty inherent in the models and

priors proposed and employed. While motivating for a Bayesian

approach in earlier sections, we highlighted how Bayesian models
frontiersin.org
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treat parameters as unknowns and assign random variables to

represent the uncertainty surrounding these parameters. Each of

these random variables is linked to a probability distribution,

ultimately yielding a posterior distribution of estimations as a

result of the inference process. In this subsection, unlike the
FIGURE 16

Uncertainty quantification visuals for positional Bayesian models (Bayes-xG1

models for the same shot with a Statsbomb xG of 0.15. Dashed vertical lin
predicted xG values. (E) shows 95% HDI box plots for each position/model
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previous experimental cases, we visualize and discuss the

posterior predictive densities of model outcomes to more

accurately quantify the uncertainty offered by Bayesian xG models.

We initiate by examining the positional Bayesian models of

Bayes-xG1 and Bayes-xG2 in this section. For each instance
and Bayes-xG2). Histograms in (A) to (D) refer to comparing two Bayesian
es refer to 2.5% and 97.5% HDI whilst solid vertical lines refer to mean
pair.
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specific to a position in the English Premiership dataset, we

selected a shot with a Statsbomb xG of approximately 0.15,

resulting in a goal. Subsequently, we illustrated the posterior

predictive densities of these two Bayesian positional models

alongside their corresponding 95% high-density intervals (HDI)

(2.5% from each tail). Figures 16A–D illustrate the outcomes of

this uncertainty analysis for the D, M, AM, and ST positions,

respectively. Additionally, Figure 16E presents a boxplot

distributional analysis of the 95% HDI for each position obtained

from both Bayesian models.

Analyzing Figures 16A–D, it becomes evident that the Bayes-

xG2 model consistently exhibits higher uncertainty in its xG
FIGURE 17

Uncertainty quantification visuals for player-specific Bayesian model (Bayes
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predictions across all positional models. This is indicated by its

broader shape and lower probability peak, as observed in the

analysis, where the 95% highest density interval (HDI) values

consistently surpass those of the baseline positional model,

Bayes-xG1. Conversely, Bayes-xG1 appears to consistently

underestimate xG values compared to Bayes-xG2, despite its

narrower HDI ranges. This discrepancy can be understood

from a probabilistic standpoint, where the enhanced positional

model of Bayes-xG2, incorporating more comprehensive

engineered features, challenges the inference process with a

more nuanced perspective. This is reflected in its wider 95%

HDI values, which effectively account for positional effects.
-xG3).
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This observation is further supported by Figure 16E, where all

Bayes-xG2 models demonstrate broader 95% HDI values across

all positional parameters. Additionally, it is noteworthy that

HDI intervals for defensive (D) and striker (ST) positions

exhibit greater width compared to midfield (M) and attacking

midfielder (AM) positions. This implies that the positional

corrections applied to xG predictions are more pronounced for

defensive and striker positions, encompassing both positive and

negative adjustments.

The higher uncertainty outcomes of Bayes-xG2 model may

initially seem concerning, but it actually signifies a more robust
FIGURE 18

Uncertainty quantification visuals for different prior choices associated w
(B) Posterior predictive estimate distribution plots and (C) rug plots for a ra
of approximately 0.5.
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and adaptable model that performs well in capturing the

intricacies of football dynamics. It reflects the model’s ability to

account for the complexity and variability inherent in shots in

football matches, where numerous factors can influence goal-

scoring opportunities. The richer set of engineered features in

Bayes-xG2 enables it to capture more nuanced patterns and

positional effects, thus providing a more comprehensive

assessment of xG probabilities with wider HDIs.

For the player-specific analysis in our study, we examined the

posterior predictive results derived from the extended player

model of the Bayes-xG3 model. Figure 17 illustrates a boxplot
ith the extended single-level Bayesian model. (A) 95% HDI box plots,
ndomly selected shot from the EPL data set with a Statsbomb xG value
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distributional analysis of the 95% HDIs for six players across three

leagues. Upon reviewing the obtained 95% HDI values for our

player set from the English Premier League (EPL), La Liga, and

Bundesliga using the Bayes-xG3 model, several observations

emerge. Notably, players with significant positive or negative xG

corrections, such as Hernandes (þ), Werner (�), Bale/Messi (þ),

Shelvey (�), and Pires (þ), exhibit higher HDI values.

Particularly, among the top positively corrected players from

each league (Hernandes, Bale, and Pires), we observe markedly

low median HDIs with numerous outliers. This suggests that

these players’ shooting abilities yield nuanced and detailed

posterior predictive estimates, indicating their scoring capabilities

differ significantly from the average player in the dataset.

Consequently, this heightened uncertainty in their model

outcomes serves as a meaningful indicator within the context of

our study.

Additionally, higher uncertainty in Bayes-xG3 model outcomes

provides more insightful perspectives for the performance analysis

of players. When a player’s predicted outcomes exhibit greater

variability, it implies that their performance is not easily

characterised by conventional metrics alone. Instead, it suggests a

more complex and multifaceted contribution to their team’s

performance. By acknowledging and delving into this

uncertainty, we believe one can uncover hidden strengths or

weaknesses that may not be apparent when considering only

deterministic and generalised predictions. Thus, embracing

uncertainty opens avenues for a deeper understanding of player

performance dynamics and facilitates more informed decision-

making in player evaluation and team strategy development.

The final experimental set of this paper addresses the

assessment of uncertainty arising from the selection of priors for

the Bayesian models proposed. Alongside the hierarchical

modelling of model parameters, the choice of priors represents a

crucial aspect in the application of Bayesian models. While we

previously examined the impact of various priors in the

preceding subsection, our focus now shifts to evaluating the

uncertainty inherent in the single-level extended Bayesian model

resulting from the selection of prior distributions. Figure 18

illustrates three subplots depicting this analysis. The first subplot

(A) showcases a boxplot distributional examination of the 95%

HDIs for each prior. Following this, a specific shot from the EPL

dataset with a Statsbomb xG value of approximately 0.5 is

utilized to generate posterior predictive estimates for each prior.

These estimations are displayed in the form of a distribution plot

(B) and a rug plot (C).

The issue of high uncertainty persists in the analysis of the

best-performing models. As depicted in Figure 18A, both the

proposed priors and Wide-Normal priors demonstrate

comparable performance, with their HDI values notably larger

than those of the less informative priors, Ill-posed and Tight

Uniform. Upon examining the xG predictions under different

prior selections in Figures 18B,C, it becomes evident that

although less informative priors yield lower uncertainty, their xG

predictions tend to be significantly underestimated,

approximately around 0.2 and 0.27 for Ill-posed and Tight-

Normal priors respectively. Conversely, the remaining three prior
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choices yield similar xG predictions, with the Tight-Normal

model exhibiting less uncertainty. Notably, the proposed and

Wide-Normal priors, with their posterior predictive outcomes

characterised by high uncertainty, offer a broader range of

variability in xG predictions.
5 Final remarks & conclusion

The objective of this study was to explore whether there exist

distinct effects based on player position on expected goal (xG)

values, suggesting that different positions or players may exhibit

specific xG adjustments for given scoring opportunities. The

hypothesis was that proficient attacking players, such as strikers,

attacking midfielders, or those recognised for their offensive

prowess, would demonstrate positive xG adjustments. In contrast,

players less renowned for their attacking contributions, such as

defenders or those with defensive roles, were expected to show

negative xG adjustments.

To reach the objective mentioned above, this study has

developed several Bayesian models to evaluate the influence of a

player’s position and individual player effects on xG predictions.

Initially, a basic xG model (Baseline xG), incorporating only

distance to the goal, shot angle, and their interaction, indicated

positional effects on xG (Bayes-xG1). Strikers and attacking

midfielders exhibited positive xG adjustments, midfielders

displayed minimal adjustments, while defenders had notably

negative xG adjustments on average. However, the introduction

of additional predictors in the models diminished the positional

effects to the extent that they became almost insignificant

(Extended xG), suggesting that player position had minimal

impact on xG when considering more shot-related factors

(Bayes-xG2). Subsequently, player effects were explored using the

extended model employed for the second positional-effects model

(Bayes-xG3), grouping the data based on the player’s shooting

rather than the shooter’s position. The model was illustrated

using six players from each dataset from three of the European

Top 5 leagues, revealing significant player effects on xG even

when controlling for various shot-related factors. These effects

were diverse in direction, notably positive for R. Pirés (as well as

for G. Bale and J. Hernandez) and negative for J. Shelvey (as well

as for A. Iniesta and T. Werner).

The indication that there exist player-specific effects in

determining goal probability could prove beneficial in football

scouting and player selection. By computing adjusted xG values

for various players and comparing these adjusted values to their

non-adjusted counterparts, as demonstrated in this analysis, it

becomes possible to distinguish players who excel at converting

challenging opportunities from those who consistently find

themselves in advantageous positions. Examining the results for

the English Premier League dataset, particularly for J. Vardy,

reveals that his total adjusted xG is not significantly different

from his baseline xG (see Figure 10). This suggests that, given

the quality of chances Vardy receives, he scores at a relatively

average rate. On the other hand, S. Agüero demonstrates a more

consistent ability to score from more challenging positions,
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evident in his larger adjusted xG. It is important to note that this

observation does not imply that Agüero is a superior player or

attacker compared to Vardy. Instead, it suggests that, on average,

Agüero is more adept at converting chances with lower xG

values than Vardy, indicating proficiency in scoring from less

favourable situations.

It is important to acknowledge that there might also be team-

related influences at play in this context. To further compare Vardy

and Agüero, Vardy is part of a Leicester team known for its high-

tempo and direct attacking style. This approach likely leads to

shooting scenarios where the ball is played behind the defence,

creating situations with fewer defenders to obstruct or impede a

shot. This dynamic often results in one-on-one opportunities

with the goalkeeper, contributing to Vardy consistently receiving

numerous high xG chances. Conversely, Agüero played for one

of the top teams in the league, causing opponents to adopt a

more conservative approach. Teams facing Manchester City tend

to minimise space, making chances more challenging with

multiple players in the shot triangle and other complicating

factors. We also recognise a potential limitation of the player-

specific analysis proposed in this study concerning average-

performing players. Our analysis emphasises players who either

exceed their expected goals (xG) significantly or fall short,

potentially overlooking consistent players who consistently score

high xG but also miss smaller xG opportunities. This does not

imply that these players are unworthy of analysis; rather, they

represent player profiles that are less complex and easier to

predict. However, effectively addressing the nuances of consistent

players of this nature falls outside the scope of our current paper

but remains an area for future research exploration.

Lastly, the examination of uncertainty analysis, particularly in

the context of position-specific and player-specific corrections on

xG, illuminates crucial insights into the intricacies of

performance assessment in sports analytics. Through

methodologies like Bayesian regression and posterior predictive

distributions, researchers can effectively quantify and interpret

the variability in xG predictions, taking into account factors such

as prior knowledge, model parameters, and observed data. The

observation of higher uncertainty in certain player positions or

individual player corrections underscores the complexity and

variability inherent in player performance dynamics. This

increased uncertainty, while concerning and challenging, presents

valuable opportunities for deeper insights and more precise

evaluations. By acknowledging and incorporating uncertainty into

the analytical framework, future studies can enhance the accuracy

and reliability of xG predictions, ultimately leading to more

informed decision-making processes and strategic interventions

in sports management, scouting and coaching.

The Bayesian modelling results were collocated with non-

Bayesian, or frequentist, modelling. Particularly in the case of

player correction, Bayesian modelling offers a significant

advantage by capturing uncertainty through posterior

distributions rather than relying solely on point estimates. This
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becomes particularly advantageous when dealing with younger

players with limited match experience, as Bayesian hierarchical

modelling effectively addresses data groups with few

observations. Regardless, Bayesian modelling is rarely used in the

literature of football analytics. Beyond its applications in scouting

and player selection, Bayesian hierarchical modelling holds

promise for various metrics in football. For instance, the

assessment of injury risk among players is a common practice in

large football clubs, where certain players may have a higher

overall susceptibility to injuries. Hierarchical modelling, in this

context, has the potential to provide more accurate assessments

of individual players’ injury risks by considering their specific

injury history.
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