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Abstract: Mathematical models explaining production effects assume that production leads to the encoding of additional features, such as
phonological ones. This improves memory with a combination of encoding strength and feature distinctiveness, implementing aspects of
propositional theories. However, it is not clear why production differs from other manipulations such as study time and spaced repetition, which
are also thought to influence strength. Here we extend attentional subsetting theory and propose an explanation based on the dimensionality of
feature spaces. Specifically, we suggest phonological features are drawn from a compact feature space. Deeper features are sparsely
subselected from a larger subspace. Algebraic and numerical solutions shed light on several findings, including the dependency of production
effects on how other list items are encoded (differing from other strength factors) and the production advantage even for homophones. This
places production within a continuum of strength-like manipulations that differ in terms of the feature subspaces they operate upon and leads
to novel predictions based on direct manipulations of feature-space properties.
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The prototypical production effect, where words read aloud
are remembered better than words read silently (MacLeod
et al., 2010), has been obtained with a healthy range of
memory tests, including item recognition, free recall, cued
recall, associative recognition, and serial recall (Bodner &
MacLeod, 2016; Saint-Aubin et al., 2021). Theoretical ac-
counts have mostly focused on two classes of mechanism
(MacLeod et al., 2010): (1) Strength Theory assumes pro-
duced items are encoded more in memory and thus have a
competitive advantage. (2) Inspired by Dodson and
Schacter (2001), the Distinctiveness Heuristic holds that
production during the study phase leads to participants
sometimes remembering the act of production. They use
this as the evidence they studied the word (“old”).

Mathematical modelers have begun to test how these
principles might be concretely instantiated. To our knowl-
edge, apart from the model we describe here, which was
begun byCaplan (2023) andCaplan andGuitard (n.d.), there
are only two published mathematical models of the pro-
duction effect in recognition memory, an adaptation of
MINERVA 2 (Hintzman, 1984) by Jamieson et al. (2016) and
an adaptation of REM (Shiffrin & Steyvers, 1997) by Kelly

et al. (2022, 2024) and just one for serial recall, an adaptation
of the Feature Model (Nairne, 1990) by Saint-Aubin et al.
(2021). These models all explain production advantages
by assuming production results in more encoded
features — namely features in a separate feature subspace
that are encoded in produced conditions only. This improves
memory by increasing effective strengths because the added
features produce an effect similar to a scalar multiple of an
encoded vector, a conventional way of modelling strength.
But it also increases distinctiveness of encoded items be-
cause the additional features will differ in their values across
items. Thus, mathematical models speak to both Strength
Theory and the Distinctiveness Heuristic via a single
mechanism and have been able to explain a large range of
empirical findings related to the production effect.

Our model inherits these design principles from those
models, which we elaborate as we introduce the mathe-
matical formulation of our vector representation and at-
tentionally subsetted adaptation (Caplan, 2023; Caplan &
Guitard, n.d.; Caplan et al., 2022) of thematched-filtermodel
(Anderson, 1970). More detailed derivations can be found in
Caplan (2023) and Caplan and Guitard (n.d.). For exposition
purposes, unless otherwise noted, we assume production is
via vocalization, so phonological features are modulated by
production. The model can easily be generalized to other
forms of production by swapping out the functions of the
feature subspaces, for example, production by typing would
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presumably influence orthographic features and not somuch
phonological features. This makes our account appropriate
across the impressive continuum of “production” (MacLeod
& Bodner, 2017) that has found similar findings with typing,
writing, and even whispering (albeit with smaller effects).
As we fully unpack in the Discussion, Strength Theory was

challenged because production did not seem to function like
other manipulations of strength, particularly in old/new rec-
ognition, where participants judge whether each probe word
was on the list (target) or not (lure). In recognition, standard
ways of “strengthening” items, such as spaced repetitions and
lengthening study duration, show a so-called null list-strength
effect. A list-strength effect describes a large effect of strength
on memory success when they are mixed within a single list
but which becomes quite small when lists are composed only
of one strength. Because strength leads to a relative com-
petitive advantage, competing against other strong items
cancels outmost of the benefit of increased strength of a given
item, so pure nonproduced lists are, overall, nearly as accurate
as pure-produced lists (Caplan, 2023 showed this in model
version6, as did Jamieson et al., 2016). Thus, the strength of the
list (strengths of other items within the list) matters to rec-
ognition of a given item. This result is found for production
(Bodner et al., 2016; Hopkins & Edwards, 1972; MacLeod
et al., 2010) but not (or minimally) for traditional manipu-
lations of strength (Ratcliff et al., 1990). If repetition, stimulus
duration and production all influence memory in the same
way, one would expect these manipulations all to produce
similar effects. Our main proposal here is that wemay be able
to explain why production differs from other strength ma-
nipulations not by assuming different processes, but by closely
examining the characteristics of the feature-spaces likely
influenced by these experimental factors. The characteristics
of the affected feature subspaces may explain the ways in
which production differs from stimulus duration and repeti-
tion. The consequences of production in a given experiment
will depend specifically on how many features are stored, the
size and properties of the production feature-space, and how
this relates to other relevant feature subspaces.
We focus on recognition because of the need to explain the

diversity of list-strength effects, which is less controversial for
other tasks (Ratcliff et al., 1990). Also, the simplicity of
recognition distills memory down to the pattern of similarity
(and confusability) between items in memory. Developing
our ideas with recognition lets us more easily trace the
consequences of our assumptions through the mathematical
derivations. However, the insights will carry through to other
memory tasks because they depend on these same principles
of similarity of vector representations of items.

Next we describe our model, how it derives from pre-
vious model and what it adds. We then apply the model to
several empirical phenomena that have otherwise not
been addressed by models. We show how attentional
subsetting theory can explain large list-strength effects
with production in contrast to other strength manipula-
tions, whether there should be a speed–accuracy tradeoff
with production, and whether production effects can be
influenced by semantic aspects of words without needing
to assume production acts directly on semantic features.

Conceptual Walk-Through and Summary of
the Model

In plain terms, we consider each item to consist of a set of
features (Figure 1). As reasoned by Caplan (2023), the
number of features representing full knowledge of a word
must be quite large (tens of thousands to avoid linear de-
pendence). It seems implausible that in an episodic memory
task, we process and encode all such features (and indeed,
typical vector models of memory function within a low-
dimensional working space, with tens or hundreds of fea-
tures). Rather, we assume that when studying an item, one
attends to a small subset of all known features of an item.1

Only attended features can be encoded. Those features will
be particular to the item and differ across items. But in
addition, task conditions can bring attention toward or away
fromparticular kinds of features, whichwe refer to as feature
subspaces. When reading aloud, more phonological features
are attended than when reading silently. These subsetted
feature vectors get added up in a memory structure.
Then recognition is done by comparing the probe item to

memory. The more features of the probe match features
stored in memory, the greater thematching strength will be.
This already explains some of the production effect, com-
mon to the previous mathematical models. Produced items
will tend to have more features stored in memory and thus
available to match, like strength, but the additional features
will also be somewhat item-specific, adding distinctiveness.
But we also assume people process the probes similarly to
how they studied the list. The probe thus also consists of a
subset of features. In a pure list (all silent or all aloud), the
subsets will be consistent with the subsets during the study
phase, but when tested on amixed list, the participant needs
to decide whether to process a probe item as though it were
aloud or silent or some combination of both.
Finally, the added features offered by production are

thought to be accessed early in processing an item. Production
thus enhances memory by acting on early-accessed features.

1 We do not make strong claims about whether such attention is automatic or conscious, but rather, stick to the mathematical formulation of the
model.
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In contrast, other manipulations of strength may enhance
memory through additional encoding of features that take
longer to access, such as semantic or imagery-related features.
This may explain why production increases accuracy without
a cost to response time whereas other strength manipulation
produces a speed-accuracy tradeoff.

Assumption 1: Features of Different Types
Should Be Distinguished

All three priormodels explicitly separate item features into
subclasses, and in particular, those related to production

and those unrelated to production (Figure 1a). Let each
word be an n-dimensional vector, fi, where boldface de-
notes (column) vectors and the subscript indexes unique
word. Each feature of word i is indexed by k in paren-
theses, fi(k). One can think of very concrete properties of
words, such as TURTLE—feature “animacy” = true, fea-
ture “color” = green, feature “appearance” = cute, etc. In
general, features are not specified; they are treated as
mathematical entities, and thus, in our derivations and
simulations, we generally assume features are indepen-
dent, identically distributed (i.i.d.), in other words, each
drawn at random from a normal distribution2 with M = 0

Figure 1. Schematic depiction of item representations and how they differ across production conditions. (a) The full vector representation of five
items (i.e., “lexicon” or “knowledge”). Each circle represents a feature and the color of the circle denotes its numerical value (arbitrary scale). We
depict two (but there could be more) subsets of “shallow” features, phonological and orthographic. We depict one larger-dimensional feature
subspace to stand in for deeper features such as those related to semantics/meaning, imagery, etc. (b) Silent condition (words are not “produced”).
Grey unfilled circles denote features that are not attended (and thus not encoded). We assume that the shallow features are dense, not sparsely
subsetted, whereas the deep features are sparsely subsetted. In the silent condition, we assume that typically, some deep features, some
orthographic and some phonological features are attended (those that are colored in) and thus encoded in the memory. The example list here
consists of items A through D, where the memory is their sum, A + B + C + D. E is an example of a lure probe. (c) Vocalized condition (words are
“produced,” by reading aloud, in this example). Because production is an additional process the participant is instructed to do, we assume that this
results in more features overall attended and encoded (more colored circles in panel c than in panel b). Most of the extra features are phonological.
We also allow for a tradeoff (but we do not implement it in this manuscript); production might partly displace attention and encoding of both
orthographic and deeper features, so for some items, fewer orthographic and/or fewer semantic features are colored in. Note that for pure lists (all
silent or all vocalized), we assume that the probe item is attended in the sameway as if it had been a studied item; the participants’meta-knowledge
leads them to seek more phonological evidence following vocalized lists and less phonological evidence following silent lists. For mixed lists, there
mask might be a one or the other or a union or mixture of the two.

2 This variance ensures that on average, the vector length will be 1, so vectors are approximately (but not strictly) normalized, especially when n is
very large.
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and variance = 1/n. We implement Assumption 1 by
partitioning the n features into a number of feature sub-
spaces. Let n denote the full set of features that are
considered in the model (i.e., the maximum set of features
that might be relevant for the task) and n with a subscript
denote the number of features within a given subspace.
We define:

nπ ¼ Number of phonological features

nω ¼ Number of orthographic features

nσ ¼ Number of semantic features;

depicted in Figure 1a. To keep things organized, we fix n = nπ +
nω + nσ so that no features are unassigned to a subspace, and
we number the features consecutively; phonological features:
k = 1. . .nπ, orthographic features: k = (nπ + 1). . .(nπ + nω);
semantic features: k = (nπ + nω + 1). . .n. This idea is not new;
models have long drawn distinctions specifically among
phonological, orthographic, and semantic features (e.g.,
Burgess & Hitch, 1999; Seidenberg & McClelland, 1989).3

We build from the very simple matched filter model intro-
duced by Anderson (1970), where the memory is a vector, m
that is simply a sum of the L (list length) vectors representing
list-items,

m ¼
XL
i¼1

f i: (1)

Normally a scalar value would multiply each term to add
variability in encoding strength. We omit these so that the
derivations remain clear and easy to follow. Recognition is
done by computing the dot product between a probe-item
vector, fx and the memory vector to obtain a matching
strength, for the probe item, sx,

sx ¼ fx �m (2)

The model compares this strength to a threshold, θ, also call a
criterion, and responds

(
“Old” sx >θ
“New” sx ≤θ

(3)

One can compute the mean matching strength of lures and
targets (Anderson, 1970),

μlure ¼ E½slure� ¼ 0 (4)

μtarget ¼ E
�
starget

� ¼ 1; (5)

where E½ � denotes the expectation (M) and variances are de-
noted var½ �. Strength variances can be calculated in two steps.
First wewriteVxx, the variance for the case of i = x, the encoded
term that matches the probe item. There will be only one of
those for target probes and none for lure probes. We also write
Vxy, x ≠ y, the cross-term between the probe item and all terms
associated with encoding of nonmatching items. The lure has
only such terms, L of them. The target has L � 1 of them.

Vxy ¼ var½slure� ¼ 1
�
n (6)

Vxx ¼ var
�
starget

� ¼ 2
�
n; (7)

as derived elsewhere (Caplan, 2023; Weber, 1988). Adding up
the variance contributed by each encoded item’s term,

σ2lure ¼ LVxy ¼ L
�
n (8)

σ2target ¼ Vxx þ ðL� 1ÞVxy ¼ 2=nþ ðL� 1Þ=n ¼ ðLþ 1Þ=n;
(9)

and the feature subspaces are handled easily because themeans
and variances summate, so μtarget = (nπ/n + nω/n + nσ/n) and
Vxy = (nπ/n + nω/n + nσ/n) (1/n), etc.

Assumption 2: Production Influences
Encoding of Production Features in
Particular

The previousmodels also assumed that production increases
encoding of production-related features—phonological fea-
tures in the case of vocal production (depicted in Figure 1b, c)
or orthographic features in the case of typed production (or
motor codes, which we consider in the Discussion). For this
to make sense, it comes with the assumption that not all

3 We will use the words “deep” and “semantic” interchangeably, but there is more nuance. “Deep” refers to features that take longer to access
than “shallow” features, and from a larger feature space. Deep features could include features related to meaning, but also related to things like
imagery or even associations between studied items. Conversely, some semantic features might be accessed as quickly as orthographic and
phonological features, and perhaps from a small, compact semantic subspace. We use these terms simplistically to keep the exposition clear but
this nuance will need to be tackled in the future.
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known features of each item are stored, which departs from
the original matched-filter model but was introduced by
Murdock (1982). An unencoded feature is multiplied by zero,
which in attentional subsetting theory, we think of as an
attentional mask (Caplan, 2023; Caplan & Guitard, n.d.;
Caplan et al., 2022).

Whereas nπ, nω and nσ denote the full feature subspaces,
respectively, νπ,c, νω,c, and νσ,c will denote the number of
features attended within each subspace: the corresponding
attentional subset. We also index the ν variables by c,
standing in for the task condition. So in this notation, we
denote the idea that production condition results in more
phonological features attended (and encoded) than the
nonproduction condition like this: νπ,aloud > νπ,silent, illus-
trated in Figure 1, comparing panel c to panel b.

Considering, for amoment, the full vector, let Fi,c denote
the set of attended features of item i under conditions c.
The attentional mask, wi,c is an n-dimensional vector with
at each dimension included in Fi,c and 0 elsewhere:

wi;cðkÞ ¼
(

1 k 2 Fi;c

0 k Ï Fi;c
(10)

and this mask vector then simply multiplies elementwise
(denoted Ä) the corresponding item vector before encoding,
so Equation 1 becomes

m ¼
XL
i¼1

wi;c Ä f i: (11)

The same elementwise multiplication is applied at test, either
with the same wi,c or in some circumstances with a different
mask. Because the means and variances for each feature
subspace simply add, we can partition the model by subspace
(π, ω and σ) and then add the results at the end.

A scalar multiple of a vector increases the vector’s
strength by increasing its length. But if unencoded features
multiply by zero, then if more features are encoded, that
also increases its length. If a production condition increases
the number of features stored, one effect is thus to increase
the length and thus the effective strength of the encoded
memory (Caplan, 2023). At the same time, encoding more
features will tend to increase the distinctiveness of one
studied item from another and in the case of differentiation
models (Criss, 2006; Shiffrin & Steyvers, 1997), even of the
studied items from the lures. The additional features thus
capture both strength and distinctiveness.

Where previous modelers have already found value
in segregating out production-related features, we add a
few additional concrete assumptions about the nature
of production-feature spaces versus feature spaces comprised

of different types of information. The other models of pro-
duction effects are all local-trace models. Here we formulate
our ideas and demonstrate them in an attentionally masked
matched-filter model (a simple vector sum of studied
items—after applying an item-specific attentional mask). We
do this not to argue against other models (nor local-trace or
differentiation assumptions) but because the matched-filter
model is mathematically extremely simple—so simple that its
limitations are easy to identify and well known. It distills
recognition memory down to the effective similarity rela-
tionships between items. This makes it easy to understand
how it works through both analytic derivations and simula-
tions. And because anymodel that starts with representations
of items as sets of features is really a vectormodel,most of the
insights gained will propagate when attentional subsetting is
implemented in those more complete, fleshed-out models.
The frameworkweworkwithin, attentional subsetting theory,
aside from the production effect, has been shown to explain
why near-null list-strength effects are so common in recog-
nition, why small positive list-strength effects are expected,
and how even inverted list-strength effects (larger effect of
strength in pure than in mixed lists) can arise (Caplan, 2023;
Caplan & Guitard, n.d.). Caplan and Guitard (n.d.) also
showed how a response threshold (criterion) could be tuned
based on immediate processing of the current probe, with the
potential to produce symmetric strength-based mirror effects
(but also asymmetric ones in some conditions), without re-
quiring local traces, differentiation, or unrealistic knowledge
of expected strength distributions. Those were continuum
accounts of list-strength effects and strength-based mirror
effects. Likewise, our account of production effects in rec-
ognition will be a continuum account, with guideposts as to
which factors could relatively enhance or reduce production-
based advantages.

Assumption 3: Sparseness of the Attentional
Subset Matters

New to models of the production effect, attentional sub-
setting theory assumes production features have different
properties than other features such as semantic, imagery-
based, etc (Caplan, 2023; Caplan & Guitard, n.d.). Here we
investigate the idea that a few formal assumptions about the
characteristics of produced features, and how they differ
from other features, can explain why a production effect
occurs and why it produces a list-strength effect and amirror
effect, but also why certain factors attenuate it, such as long
study time. Jamieson et al. (2016) viewed production effects
as belonging to a family of phenomena including the gen-
eration effect (when participants are indirectly cued to think
of the item) and the enactment effect (acting out items) and

Experimental Psychology (2024), 71(1), 64–82 © 2024 The Author(s). Distributed as a Hogrefe OpenMind article
under the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0)

68 J. B. Caplan & D. Guitard, Feature-Space Theory of the Production Effect in Recognition

 h
ttp

s:
//e

co
nt

en
t.h

og
re

fe
.c

om
/d

oi
/p

df
/1

0.
10

27
/1

61
8-

31
69

/a
00

06
11

 -
 T

hu
rs

da
y,

 A
ug

us
t 2

2,
 2

02
4 

7:
23

:4
6 

A
M

 -
 I

P 
A

dd
re

ss
:8

2.
16

.1
66

.2
49

 

https://creativecommons.org/licenses/by/4.0


we align with this. In line with Jamieson and colleagues, we
do not view production effects as categorically different or
special cases compared to other phenomena, but as partic-
ular conditions. The peculiarities of the production effect are
not due to the peculiarity of production but to the particu-
larities of the feature-subspace that production emphasizes.
In our formulation, we assume the attentional subsets

within the different feature spaces, whichwe denote νπ,c, νω,c
and νσ,c, respectively, may not be identical in number but are
roughly of the same order of magnitude. That is, people tend
to attend to a handful of phonological features, a handful of
orthographic features, and a handful of semantic features of
a given item. To explainwhy list-strength effects are large for
the production effect but small for other manipulations of
strength (Caplan, 2023), we assume that nσ� nωx nπ. This
means that a subset of features attended on a given item, i, in
condition c, will be a sparse subset for semantic features,
which we write Fσ,c,i. The σ features are masked by multi-
plying every feature by zero if it is not contained in Fσ,c,i.
Because νσ,c,i � nσ, the chance of there being semantic
features common to two items, i and j, is extremely small and
nearly zero. Sparseness causes the Vxy terms to be mostly
zeroes as well. Vxx remains unaffected by sparseness; it is
only influenced by the number of attended features, νσ,c,i.
Essentially, sparseness reduces noise due to “cross-talk”
from other studied items, and leads to very minimal influ-
ence of other list items on recognition of a probe.
What makes sparse subsetting work is that we also

assume that the subset of features attended during study
will tend to be quite similar to those attended when the
same word later appears as a probe (a target), itself. The
idea is that if seeing the wordHUMMINGBIRD causes you
to think of the hovering, fast wings, iridescent coloring and
sharp beak when you first see the word, then when you
later encounter HUMMINGBIRD again, you will very
likely attend to those same features. It is a principle of
(approximate) tautology; features that come to mind
readily at one time are likely to come to mind readily at
another time. This tendency needs to be explained in a full
model of semantic memory or knowledge, but here we
only presume its existence. Some support for the consis-
tency of attended features across participants on the one
hand, and their modulation by task demands on the other,
can be found in explicit feature-listing experiments (Wu &
Barsalou, 2009) and similarity and prototypicality
judgements (Medin & Shoben, 1988).
For shallow features, including phonological and ortho-

graphic features, we assume that the feature space is far
smaller and as a consequence, subsetting a handful of fea-
tures will not be sparse. Thismeans there is a large amount of
chance-overlap between the attended feature subsets of one

item and another; Fσ,c,i \ Fσ,c,j is non-negligible when j ≠ i.
Each of those common features increases Vxy, adding to
noise contributed by the cross-terms (other studied items).
Hit and false-alarm rates. Next, by adding the criterion

heuristic suggested by Caplan and Guitard (n.d.), we can
apply a threshold, θi,c (recall that c stands for an experi-
mental condition) and solve for the hit rate and false-alarm
rate separately. The theory already assumes participants
process the probe verymuch as theywould have if the probe
item had been presented during the study phase, including
application of an attentional mask, wi,c, before computing
similarity by dotting the masked vector with the memory
vector, m. As Caplan and Guitard (n.d.) reasoned, it is
plausible that the participant has access to the (approxi-
mate) number of features they attended on the probe item,
itself, νi,c, given that this feature-extraction is happening in
real-time. This could be as overt as a rough count of the
number of features that come to mind in response to the
current probe, or it might be more of a vague feeling about
how much matching there might be (this could be tested in
future experiments), but seems to demand less of the
participant than expecting participants to have accurate
access to characteristics of thememory, itself, or cumulative
knowledge about what happened on other test trials. Given
this, the participant can then straight-forwardly compute an
optimal value halfway between the expected mean strength
for targets (μtarget) and lures (μlure):

θi;c ¼ ð1=2Þνi;c
�
n: (12)

For pure silent and aloud lists, these will be:

θi;pure silent ¼ ð1=2Þðνω þ νσÞ=n (13)

θi;pure aloud ¼ ð1=2Þðνω þ νσ þ νπÞ=n: (14)

Formixed lists, the thresholdmight be based on the smaller or
the larger of the two conditions or an average of the two. For
duration, we have assumed the threshold is based on the
larger of the two (Caplan & Guitard, n.d.), but as we shall see
in the first fit of the model to production-effect data, the
model fit substantially better when the average threshold was
used. Since we have already solved for the variances that
target and lure items are subject to, we can then compute the
hit rate and false-alarm rate by integrating the respective
normal distribution from the corresponding threshold upward
to infinity (Caplan & Guitard, n.d.).
Outline. Having introduced the model and the core as-

sumptions, next we solve for the hit rate (proportion of target
items responded “old”) and false-alarm rate (proportion of
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lure items responded “old”) as well as d9 (the measure of
sensitivity derived from signal detection, z-transformed hit
rate minus z-transformed false-alarm rate). We see how the
assumptions lead to a list-strength effect and a strength-based
mirror effect. We compare this to a model-manipulation of
stimulus-duration. This incorporates the assumption that
shallow features are processed and attended earlier than
deeper features (e.g., Caplan, 2023; Caplan & Guitard, n.d.;
Gardiner et al., 1999; Mulligan & Hirshman, 1995). We then
look at the effects of extending stimulus duration on a pro-
duction manipulation, itself. We briefly address data from
Fawcett et al. (2022) that was used to argue that production
influences encoding ofmore than production-related features.
Thenwewrap upwith a re-evaluation of Strength Theory and
the Distinctiveness Heuristic in light of our account.

Attentional Subsetting Model of the
Production Effect: Production
Increases the Number of Encoded
Shallow Stimulus Features

Caplan and Guitard (n.d.) modelled an experimental ma-
nipulation of stimulus duration, by assuming that words
presented for longer (e.g., 2 s) resulted in more deep features
attended and encoded than words presented for shorter
durations (e.g., 1 s). They assumed the number of shallow
featureswas equivalent between long and short conditions. To
model the production effect, we turn this around. We assume
no difference in the number of deep (semantic) features
encoded and no difference in the number of orthographic
features. In the core model we explore here, the only thing
that will differ during the study phase is that words read aloud
will have more phonological features encoded than words
read silently; as we already wrote above, νπ,aloud > νπ,silent.

Fit to the List-Composition Experiment of
Bodner et al. (2014)

We start by examining what happens in list-composition
experiments. In the Discussion, we fully unravel the recent
history of so-called “list-strength effects” and the role played
by research on the production effect. Briefly, in a list-
composition experiment, two item-conditions are either
segregated to pure lists or mixed (usually half of each con-
dition) in one list. If the experimental manipulation affects
the encoded strength of an item (an assumption that is often
presumed but not directly tested), this is called a list-strength
manipulation. If there is any competition amongst studied list
items during recognition tests, then the advantage of strong

over weak items is expected to be greater in mixed lists than
in pure lists. Ratcliff et al. (1990) were surprised when the
expected list-strength effect was not found. However, Caplan
(2023) argued that the list-strength effect was not absent, but
rather, quite small. Sparse subsetting could explain the small
magnitude of list-strength effects, as well as why they might
sometimes invert (greater effect of strength in pure than in
mixed lists, elaborated by Caplan & Guitard, n.d.) and al-
luded to the production effect as being a possible counter-
example, where positive and quite large-magnitude list-
strength effects are in fact observed (Bodner et al., 2014,
2016;Hopkins&Edwards, 1972;MacLeod et al., 2010). Here
we test that suggestion in an implementation of the pro-
duction effect in the attentional subsetting model.

First we fit data from a list-composition production effect
study reported by Bodner et al. (2014) who had participants
study lists of 50 words, presented for 2.5 s each (including a
0.5 s blank inter-stimulus interval). Each word was either
read aloud or read silently. Their experiment had more
conditions than we were interested in; we fit the mean hit
rate and mean false alarm rate for pure-aloud lists, pure-
silent lists and mixed lists, separated by whether the word
was aloud or silent. Naturally, false-alarms for mixed lists
were not broken down by aloud/silent. This produced seven
independent data points that we fit the model to.

The model potentially has a very large number of pa-
rameters one could treat as free parameters in a parameter
optimization. And yet, as stated earlier, it is not meant to be
a complete model of recognition. The goal here was not to
fit the data perfectly, but to check whether the model could
approach real empirically observed values and capture the
qualitative features seen in the data. Thus, we somewhat
arbitrarily (and with some continuity with previous explo-
rations of themodel) fixed the number of semantic features,
nσ = 512, the number of shallow features, ns = 128 such that
half of those were devoted to orthographic features and half
to phonological, nω = nπ = 64. The total vector length was
thus n = 640. We conducted a direct search (comparing all
combinations of integer parameter values) of a three free-
parameter space, varying the number of subsetted features
as follows. For semantic features, νσ varied from 1 to 32
features and this applied to both aloud and silent words. For
orthographic features, νω varied from 1 to 64 (nω) and
applied to both aloud and silent words. νπ also varied from 1
to 64 (nπ) but we assumed phonological features were only
stored while studying a word aloud. This is not to claim that
the silent condition results in zero encoding of phonological
features, it is just a simplification to keep the number of free
parameters low. We also assumed that in the pure-silent
condition, participants would disregard the phonological
features. This reduces the criterion used in pure-silent lists,
which offsets some of the reduction in hit rate due to fewer
features being encoded. The complete three-dimensional
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parameter space was solved for hit and false alarm rates,
then root-mean-squared deviationwas computed relative to
the data and the maximum log-likelihood parameter-set
was identified. As proposed by Caplan and Guitard (n.d.),
response criterion, θ, was determined by dividing the
number of attended features (νσ + νω + νπ for a given
condition) in half, multiplying 1/n for scale (approximate
normalization).
The best-fitting parameter set, with log-likelihood = 52.69,

had νσ = 2, νω = 3 and νπ,aloud = 3. This was assuming that for
mixed lists, θ was the average of that used for the pure-silent
condition and that used for the pure-aloud condition. When
the search was re-run using the criterion for pure-silent lists,
log-likelihood was considerably lower (46.44), indicating a
quantitatively worse fit. The fit was also worse (log-likeli-
hood = 47.36) if we used the criterion for pure-aloud lists.
Figure 2a plots the model and data hit rate and false alarm
rate in each condition. The hit rates are fit well, and even
within the confidence intervals, and importantly, they re-
produce the list-strength effect, where the advantage due to
production is greater withinmixed thanwithin pure lists. The
false alarms are fit well, although the rate for pure-aloud is
overestimated. Still, if one looks closely, the rank-order of the
three false-alarm rates is reproduced by the model. Without
any refitting, when we plot d9 computed from the hit and
false-alarm rates, the qualitative pattern is reproduced by the
model (Figure 2b), especially the list-strength effect, where
the advantage due to production is greater inmixed lists than
in pure lists.
Curiously, the model produced good fits using very few

subsetted features within each subspace. It is possible that
this is a reasonable estimate of the effective number of

features that participants actually attend under these con-
ditions (e.g., total study time availablewas 3 s/word). Recall,
however, that this model includes no variability and no
noise; in a more complete model, more features would
presumably be needed to overcome noise to match realistic
performance levels. Also, consider that if three were the
mean number of features attended, that implies that some
words have fewer, even sometimes no features attended
within a given feature subspace, and occasional item may
have a lot of features attended, averaging out to 3, which
strikes us as plausible considering the swift presentation
rate. In any case, these fits can be seen as proof of principle
that the idea that only a handful of features are encoded for
each item is sufficient both to produce performance (d9, hit
rate and false-alarm rate) in the observed ranges but also
the capture some key qualitative features of the data.

Sensitivity to Parameters and Experimental
Factors

With this best-fit to the Bodner et al. (2014) data as a
reference model, we next vary parameters to explore the
sensitivity of hit rate, false-alarm rate and d9 to hypo-
thetical experimental manipulations.
The criterion used for mixed lists was again the average

of that for pure-silent and that for pure-aloud lists. The
feature spaces were fixed at nω = nπ = 64 and nσ = 512.
Results of the simulation of the list-composition ma-

nipulation that is done in list-strength effect studies are
plotted in Figure 3a–c for a hypothetical manipulation of
production (for a visualization of the means, variances and

Figure 2. (A) Fit of the model (denoted with x) to data (denoted with o, with error bars denoting the 95% confidence interval based on standard error
of the mean) to the hit rate (green) and false alarm rate (red) in each of the four experimental conditions. (B) d9 computed from the model (denoted
with x) and the data (denoted with o). Note that the d9 values were not fit to. Data d9 were computed from the authors’ reported hit and false alarm
rates, which themodel was fit to, rather than the authors’ reported d9 values, which showed the same qualitative pattern but were larger. For model
parameter values, see main text.
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thresholds that were used to compute these, see Figure 4).
As more phonological features are attended in the aloud
condition,moving from left to right in panel a, the bigger the
production effect (difference between the red plots) be-
comes within mixed lists. Recall that we are assuming
participants match probes on phonological features when
tested on mixed lists. For this reason, the presence of

phonological features in mixed lists, combined with the fact
that the model cannot disregard those, puts silent items at
an increasingly bigger disadvantage. Aloud items benefit
more frombeing inmixed lists as wemove from left to right,
but d9 values saturate when just a few percent of the
phonological features are attended per word (this number
may seem low, but recall that 50 words are encoded). For

Figure 3. Sensitivity of themodel to amount of production, stimulus duration and the interaction of the two. Top row: the effect of increasingly more
production (more phonological features attended and encoded), while holding constant the silent condition. L = 50, νω = 3, νσ = 2 and νπ,aloud ranges
from 1 to 16 (out of 64), plotted in proportion of nπ (64) in the x axis. Note that for encoding of the silent items and recognition of pure-silent lists,
νπ,silent = 0 and the x axis does not apply. Middle row: the effect of increasing stimulus duration of the longer-duration condition (more deep, or
semantic features encoded), while holding constant the short-duration condition. For all words, shallow features (combining orthographic and
phonological) had νs = 6 out of ns = 128 features stored, and for the long duration only, an additional nσ features were stored, ranging (on the x axis)
from 1 to 32. Bottom row: the effect of increasing stimulus duration on a putative production-effect manipulation, comparing silent to aloud
conditions. νπ,aloud = 3 and νπ,silent = 0. νσwas varied from 1 to 16 and νω = νσ but capped at 8. The left column of panels plots d9 and shows list-strength
effects nearly throughout. These list-strength effects are reflected in positive ratio-of-ratios, plotted in the middle column. The right column of
panels separates the model’s calculations of hit rate and false alarm rate, showing mirror effects whose magnitude and (a)symmetry are
parameter-dependent.
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pure lists, the picture is different. For very few attended
phonological features, more phonological features leads to
more of a production advantage. Once a few percent of the
available phonological features are encoded for each item,
performance on aloud words starts to decrease. This can be
understood as an accumulation of cross-talk due to massive
similarity of the phonological features with other items. In
pure-aloud lists, more phonological features (twice asmany,
because there are twice as many aloud items) are stored
than in pure-silent or in mixed lists, allowing this disad-
vantage due to cross-talk to emerge. The ratio-of-ratios
(panel b) was defined by Ratcliff et al. (1990) as the ratio
of the “strength” (here, production) effect in mixed lists
divided by that in pure lists, thus:

RoR ¼ d9ðMixed StrongÞ=d9ðMixedWeakÞ
d9ðPure StrongÞ=d9ðPureWeakÞ (15)

so that a null list-strength effect would have RoR = 1, and the
expected (positive) list-strength effect would have RoR > 1.
Across the explored parameter range here, RoR > 1
throughout, but when the production manipulation is weaker,
it converges toward an approximate null effect, RoR x 1 (left
portion of the plot).

For pure lists, we can also check for amirror effect; that is,
do hits increase and false alarms decrease together as more
phonological features are attended? Figure 3c (blue plot
lines) shows that for low amounts of production (left portion
of the graph), hits are greater and false alarms are reduced
by a comparable amount, an approximately symmetric
mirror effect. At higher levels of production (rightward on
the graph), false alarms cross over so that the aloud

condition produces more false alarms than the silent con-
dition, despite the aloud condition producing greater d9

overall (see panel a). With even more production features
stored, the hit rate and false alarm rate both move toward
the center, producing a kind of reverse mirror effect which,
with these parameter values, also neutralizes the production
effect altogether (see the blue plots in the right portion of
panel a).
This simulation illustrates that although this account of

the production effect is quite simple (only the number of
encoded phonological features differs between silent and
aloud processing), slight variations in parameter values
can change features of the results that would be deemed to
be theoretically informative qualitative features. Specifi-
cally, we have shown that the list-strength effect can be
positive or near-null and there can be an approximately
symmetric mirror effect, or production can primarily in-
fluence the hit rate or even produce a reversemirror effect.
One intuitive lesson we can draw from this is that due to
the assumed compactness of the phonological feature-
space, the advantage due to production can often be
offset or cancelled out, or possibly even reversed, due to
increases in false alarms that occur because the phono-
logical features are maxed out and produce a large amount
of cross-talk interference. This sometimes self-sabotaging
characteristic of production in pure lists may also explain
why pure-list production effects have often not been
confirmed and why meta-analysis was needed to establish
their at least occasional (very) robustness (Bodner et al.,
2014; Fawcett, 2013).
For comparison, Figure 3d–f plots a simulation of a ma-

nipulation of stimulus duration. This was adapted from the

Figure 4. Visualization of distributions of matching strength, which is the match of a probe (attentionally subsetted) to memory. It is from these
distributions that performance is computed (hit rate, false-alarm rate and d9). Corresponding to the production effect sensitivity check plotted in
Figure 3a–c, these graphs plot meanmatching strength and standard deviation (i.e., √variance, depicted in the error bars), for targets and lures, for
pure-list (A) and mixed-list (B) conditions, respectively. θ for silent and aloud probes are plotted in dashed lines in the same color as the matching
strengths, themselves, but note that for mixed lists, only one threshold line is visible because the threshold does not vary between conditions. Also
note that the x values have been shifted slightly to avoid error bars obstructing each other.
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simulation in Caplan and Guitard (n.d.) but with parameters
closer to our fit of the Bodner et al. (2014) data. In this
simplified simulation, it was assumed that longer duration
leads simply to more deep (such as semantic) features en-
coded. Thus, νσ was varied from 1 to 32 (out of nσ = 512 total
features) for the long duration condition and the shallow
condition had zero semantic features stored. Both long and
short duration items were assumed to have νs = 6 ( = νω +
νπ = 3 + 3 from the fit to the Bodner et al., 2014 data) out of
ns = 128 total features (combining the 64 each of ortho-
graphic and phonological feature-spaces). As in Caplan and
Guitard (n.d.), in ourmodel of duration, we assume that after
studying a pure-long list, participants can largely disregard
the shallow (orthographic and phonological) features. Unlike
production, increasing duration does not saturate and in-
troduce cross-talk because the additional features are
sparsely subsetted. Thus, after a nonmonotonicity at very
small numbers of semantic features stored (left of the
graph), the list-strength effect (RoR) increases swiftly above 1
and themirror effect becomes increasingly pronounced. And
unlike production, disregarding shallow features here helps
the already-superior condition even more, but because
disregarding only occurs on pure-long lists, this offsets some
of the list-strength effect by further advantaging pure-long
lists over long items in mixed lists.

Graded Production

Forrin et al. (2012) found a rank-order of production: Vo-
calization > Whispering > Silence. Kelly et al. (2024) found
that typing just two or three letters of a word resulted in mid-
level recognition-memory between silence and typing the
whole word. Our attentional subsetting account of produc-
tion is compatible with these results. For d9 and both hits and
false alarms (Figure 3a, c, red plots of mixed lists), more
production leads to a monotonic improvement in all three
performance measures as one moves from left to right (in-
creasing νπ,aloud) over a range of attended features that is
relatively small (but not sparse) compared to the production
feature-space. When more than a few phonological features
are stored per item, as already noted, the aloud condition
levels off but the silent condition continues to be increasingly
hurt by being present in a list mixed with aloud (or produced)
items. When production is manipulated between lists, the
production effect, itself, is more fragile, so a strict monotonic
effect of graded production would not necessarily be pre-
dicted (blue plots). It is interesting to note that this is different
for our model of duration, which predicts that more sepa-
ration in duration will continue to separate performance of
long and short items, both in mixed lists and in pure lists.

Our account of productionmay explain some of the finer
details of the results of the two experiments reported by

Kelly et al. (2024). In their Experiment 1, participants
either typed all the letters of a word (one quarter of the
words) or 3 letters of the word (half the words) or no letters
(one quarter of the words. In Experiment 2, the middle
condition demanded just 2 letters. Production (with these
three levels) was manipulated in mixed lists. The hit rate
was greater for the 3-letters-typed words in Experiment 1
than for the two letters-typed words in Experiment 2.
However, in addition, the hit rate for the all-letters words
and silent words were lower. The authors did not comment
on these features (and they were not apparently produced
by their simulatedmodel). But this is what we expect; more
production leads to greater effective strength of an item,
but introduces more crosstalk via confusability in the
production domain, increasing competition within a list. If
the 3-letters items have more production-related features
stored than the 2-letters items, they also compete more
against the all-typed and nontyped items, reducing the hit
rates of those two item-conditions. That said, this is an
explanation of a between-experiment effect, which would
need to be confirmed within a single experiment.

Interaction Between Study Time and
Production

Next we consider the effect of extending study time on the
size of the production effect. In our formulation of stimulus
duration, we assumed that earlier processed features are
superficial, subsetted from a compact feature subspace, and
later processed features are deeper, sparsely subsetted from
a larger feature subspace. The implication is that the longer
the participant studies an item, to a degree, themore sparsely
subsetted, deep (e.g., semantic) features will be available to
rely on. Immediately we shall see that the additional sparse
features will increase performance but also will eventually
outnumber the shallow features. It is the shallow features we
assume are responsible for the production advantage. So for
long durations, as performance increases, the relative ad-
vantage due to production will also reduce.

To visualize how all these effects interact, we simulated
a simplified version of stimulus duration, with and without
production. Although it is probably the case that phono-
logical features are attended in the silent condition, for
simplicity we fix νπ,silent = 0 and νπ,aloud = 3 as in our
previous model of production that we fit to the Bodner
et al. (2014) data. That is the entire implementation of
production in this model version. Meanwhile, as delay
increases, we assume both the number of processed or-
thographic features and the number of processed semantic
features increases (linearly, for simplicity) and also for
simplicity, we fix those rates to be identical. Thus, νω(t) =
νσ(t) = rt, where t is time in ms and r is the rate of
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processing of features per ms. The orthographic features
will, however, be truncated at νω = 8. They would have to
be truncated at nω anyway, but it would seem more re-
alistic if the orthographic features were never fully at-
tended. The semantic features need no upper limit
because they dwell within a much larger feature space and
will never extend beyond the sparse regime anyway. As
before, we assume that participants studying pure-silent
lists largely disregard phonological features, and when
tested on mixed lists, participants tune their response
criterion to be the average of that used for aloud and silent
items.
Figure 3g–i shows that if very few features are produced, a

production effect is predicted for both pure and mixed lists,
but with a substantial list-strength effect, a larger effect in
mixed than in pure lists (RoR > 1). Asmore deep features are
attended, performance increases and in fact takes drives
increasingly more of correct performance. This eventually
reduces theRoR to a value very close to 1; because semantic
features are sparsely subsetted, they are rather immune
from cross-talk due to other studied items (Caplan, 2023), so
list composition exerts less effect on recognition. The corner
in the plot is at the maximum value of νω we set (8).
Thereafter, only the attended semantic features, νσ, increase
in number. As they do so, the production effect persists and
attenuates only very slightly. Panel i also shows that the
nearly equivalent d9 values in pure lists are due to slightly
different tradeoffs between hits and false alarms (compare
the blue plots). The pure-aloud condition has fewer false
alarms andmore hits (a mirror effect) at nearly all simulated
durations, similar to what Bodner et al. (2016) found.
In immediate serial recall, the effect of study time on the

production effect reduces but does not eliminate the
production advantage (Murray, 1965) but this remains to
be tested in recognition. Although not direct, aligning with
the prediction, Bodner et al. (2016) manipulated study
time only of silent items and found that that narrowed the
difference between produced and nonproduced items.

Effect of Restricted Test Time

Kelly et al. (2022) manipulated the time available to par-
ticipants to process and judge each test probe. They gave
participants a long (5,000 ms) response deadline or a short
(800 ms or 750 ms) deadline, manipulated within subjects
but between lists (blocks). Production was manipulated
within lists (mixed lists). The hit rate was reduced (and false-
alarm rate increased) in the shorter deadline lists, but the
advantage of aloud over silent items was comparable (Δhit
rate = 0.20 and 0.17 for long and short deadline, respectively
in their first experiment and 0.17 and 0.11 for Experiment 2).
Without modification, our model makes the same prediction

for test time as it does for study time, because masked-out
features are set to zero. This multiplies through as zeroes
whether themasked-out feature is part of thememory or part
of the attended probe. Figure 3g–i thus could be reinterpreted
as a prediction about the amount of test time—as long as the
study time were at least as long as the test-phase response
deadline. Consistent with the data, a sizeable effect of
production onhit rate inmixed lists is produced at all study or
test times. Our model does not explain the interaction, es-
pecially in their second experiment, where the advantage of
production is greater at the longer deadline than the shorter
deadline. Note that the persistence of the production ad-
vantage at short response deadlines is inconsistent with the
assumption that production-related features are iteratively
retrieved (Jamieson et al., 2016). Still, the wrong prediction
about the interaction between production and response
deadline shows us oneway inwhich our very simplemodel of
response deadlines is incomplete.

Semantic Processing

Themodel thus far predicts an additional kind of finding. If
participants were instructed to attend to deep or semantic
features, for example by instructions to form visual im-
agery or with a deep level of processing as an orienting task
(or even drawing; Fernandes et al., 2018), that may ef-
fectively shift the model rightward in Figure 3g–i. In other
words, if participants explicitly attend deeper features, a
production effect would still be present, but could be at-
tenuated compared to a control condition.
Suggestive of this, MacLeod et al. (2010) found a robust

production effect when participants were given animacy
judgements as an orienting task (their eighth experiment),
but without a direct comparison to a different orienting
task or no orienting task, we cannot know if the production
advantage was relatively attenuated. Taikh and Bodner
(2016) came closer. In a between-subjects manipulation of
production, participants had to imagine what the word
meant or imagine the word, itself, in capital letters. The
imagery manipulation was done within lists. Compared to
their other experiments that manipulated font size and
generation, the production effect was far smaller when
participants used imagery-based strategies (their third and
fourth experiments).

Proceduralism Through the Lens of Feature
Spaces

The Distinctiveness Heuristic was proposed by MacLeod
et al. (2010), following Dodson and Schacter (2001), to
function not at the feature level but via conscious
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recollection. The idea is that the act of production, itself, is
stored inmemory. Then, the participant can use a heuristic
whereby, if that act of production comes to mind, asso-
ciated with the probe item, that can be used as evidence
that the word was studied. MacLeod and colleagues,
starting with MacLeod et al. (2010), have noted that this
captures the spirit of Kolers’ proceduralist theory (Kolers
et al., 1973). The idea that participants draw upon memory
of the actions used while studying a stimulus was in Kolers’
theory but Kolers thought of this not all-or-none, but
proposed that participants encoded specific action-related
features. This was proposed for the production effect by
Forrin et al. (2012). Subsequently, Jamieson et al. (2016)
implemented this kind of adaptation of the distinctiveness
heuristic mathematically, in a somewhat less explicit way.
Their assumption was that evidence of action/production
dwells within the item representation, but needs to be
recovered through an iterative retrieval process. However,
a problem for this account is that the lengthened response
times anticipated by this mechanism are not observed, and
a fast response deadline does not come close to elimi-
nating the production advantage (Kelly et al., 2022).
MacLeod et al. (2010) also differed from proceduralist
theory, along with Dodson and Schacter (2001), by pro-
posing the heuristic is applied consciously. but Kolers
repeatedly asserted his view that recovery and comparison
of action features was not conscious.

We retain the concept of distinctiveness and
production-related action features, but stick closer to
Kolers’ feature-level view and not assuming conscious
application of a rule is required. We suggest that the act of
production draws attention to (and encoding of) features
related to actions involved in production. Thus, in ad-
dition to the nπ phonological features, we assume there is
a separate subset of nα features (where α stands for
“action” features). For typing, the production space will
undoubtedly be highly driven by the spatial positions of
the keys on the keyboard, hand and finger used, etc.
(MacNeilage, 1964). For the more classic, vocal pro-
duction, the features consist of the movements and
sensations of the mouth and vocal system. The similarity
structure of the α subspace will have some commonality
with the similarity of the π subspace (orω subspace, in the
case of typing) but it will not be identical (just as for the
relationship between the orthographic and phonological
subspaces). In this way, production can be seen to add
some feature-level distinctiveness and similarity that is
redundant with the stimulus-feature space (phonological,
in this example) but it will also add some distinctiveness
and similarity contributed by the action-space features
that is not echoed in the stimulus features.

One implication of this implementation of procedural-
ism is that it still could lead to sizeable production effects

in pure lists or between subjects, contradicting the intui-
tion Taikh and Bodner (2016) had with respect to the
Distinctiveness Heuristic. It also implies that the advantage
due to production should decrease with increasing list
length, as the production feature space becomesmore fully
occupied, and as duration increases and semantic or other
deeper processing takes over.

Homophone Lures

Next we address a recent finding that would seem to
challenge the core idea we inherited from other models of
the production effect. Fawcett et al. (2022) conducted a
very clever experiment aimed at testing the idea that
production only influences encoding of features that are
directly related to production. Participants made two-
alternative forced choice judgements (2AFC) between a
target and a lure based on mixed-production lists. One
group of participants always had randomly selected words
as lures (“standard lures”). The other group received only
homophones as lures (such as towed vs. toad). Because
homophones cause participants to make the identical
sounds (phonological features) as each other, they rea-
soned that if vocal production only influences the encoding
of phonological features, there should be zero production
advantage for homophone comparisons. Because those
additional phonological features would be identical for the
homophone lure and the target, they should offer no net
advantage for production. Contradicting this, a large
production effect was observed for participants in the
homophone-lure condition. This effect was close to the
same magnitude as for participants in the standard lure
condition. The authors viewed these findings as chal-
lenging the idea that production only influences the en-
coding of production-related (superficial) features. They
argued that production must therefore not (or not only)
increase encoding of production-related features like
phonological information, but also enhance semantic
encoding of produced items.

A central assumption of attentional subsetting theorymay
provide a third account of the homophone experiment that
still does assume that production increases the number of
production-related feature encoded (such as phonological
features), but does not require any difference in encoding of
semantic features. That is, we assume that not all phono-
logical features are stored, and the subset of features stored
(in any feature subspace, but including phonological fea-
tures) is item-specific. The idea here is that despite the
participant producing the same phonemes, they will store a
different subset of those phonemes while pronouncing toad
than towed (illustrated in Figure 5a). In other words,
the orthographic features and semantic features that
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differentiate towed from toad will also draw attention to
different subsets of the phonemes. Even if there is con-
siderable overlap between those subsets, and despite the
fact that those overlapping features will also have the exact
same values, the nonoverlapping portions of the
phonological-space masks may be sufficient to add diag-
nosticity to the recognition judgement. In sum, the addi-
tional phonological features, where they overlap, will
increase the amount of similarity-based cross-talk across list
items, reducing accuracy, but the addition of the non-
overlapping, item-specific features will offset this reduction
by improving the discriminability of the two homophones.
One additional observation may help to explain the

homophone findings. From visual inspection of the ho-
mophone stimuli used by Fawcett et al. (2022), it is clear
that they possess quite a lot of orthographic similarity,
albeit less than phonological (the example, towed and
toad, have three identical letters, also in the same relative
order). The reason silent items are duped by homophone
lures, therefore, could be because of that orthographic
similarity, or it could be due to subvocalization, the par-
ticipant imagining saying the word. Subvocalization is

quite plausible given that the lists were mixed and there
was no experimentally induced articulatory suppression.
We implemented the homophone paradigm in a simu-

lation adapted from the one we used to fit the Bodner et al.
(2014) data. The feature space sizes were retained. L = 80
words per list. All phonological features were assumed to
be identical for the homophone probes. Again, νπ,silent = 0.
We searched four free parameters. νπ,aloud was varied from
1 to 16. νσ was varied from 1 to 16. The number of identical
orthographic parameters for homophones was varied from
1 to 32.4 Finally, νω was varied from 1 to 8. The best-fitting
model, plotted in Figure 5b, had a log-likelihood = 17.88,
νσ = 4, νω = 7, #identical orthographic features for ho-
mophones = 32 and νπ,aloud = 4. These are close, but slightly
greater in terms of numbers of features fit to the Bodner
et al. (2014) data. Especially the greater number of se-
mantic features is consistent with the longer study time per
word here (4 s compared to 2.5 s). Even with four free
parameters, the fit is not perfect. However, the surprising
result, a large (comparable-sized) production effect for the
homophone group, was easily captured by the model. The
main qualitative feature missed by the model is that it

Figure 5. (A) Schematic illustration of how item-specific attentional subsetting can disambiguate homophones. Depicted are hypothetical vector
representations of TOAD and TOWED (left) and attentionally subsetted versions of those vectors (right). We assume a pair of homophones have
identical values of all the phonological features as each other (phonological features, top). We also assume that the spelling will be similar, so many
orthographic features will also match (middle feature space). The semantic features will tend to be quite different. Because attentional subsetting
is item-specific, by chance some of the same phonological features will be attended on the two words, resulting in encoded features that are not
diagnostic on a forced choice between the two. But other features will be attended for one but not for the other, and the pattern of zero-valued
features does afford some diagnosticity. (B) Best-fitting model plotted alongside the data from the homophone study reported by Fawcett et al.
(2022). Silent-X and Aloud-X are the data for participants who judged targets against standard lures. Silent-Hom and Aloud-Hom are the data for
participants who judged targets against homophones.

4 It fit at 32. We considered raising the search range but felt that too much orthographic similarity would deviate from the spirit of this account so
we left the cap at 32, one half of the total number of orthographic feature space.
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underestimates the lower d9 for the homophone group.
However, that effect is present, although quite small.
Although this is a quantitative deficiency, it is unclear if
this is a major miss by the model, because the comparison,
standard versus homophone, is between-subjects, and the
two groups of participants may have approached the task
differently. Still, the model fit stands as proof of principle
that a large production advantage can be expected for
target–homophone comparisons even if one assumes that
production only affects encoding of phonological features
and does not have any effect on semantic features. To be
fair, we have implied not that semantic processing is ir-
relevant, but that it is the same for both aloud and silent
words, and semantic processing modulates encoding of
phonological features.

Discussion

We have built on other mathematical models of produc-
tion that assume that production results in more phono-
logical (or orthographic, in the case of typing or writing)
features being stored in memory (Jamieson et al., 2016;
Kelly et al., 2022; Saint-Aubin et al., 2021). We extended
this view by integrating additional assumptions from at-
tentional subsetting theory (Caplan, 2023; Caplan &
Guitard, n.d.; Caplan et al., 2022), that only a small sub-
set of features are attended and thus encoded within any
given feature subspace, that those subsets are item-
specific and often will reiterate quite well, especially at
test, and that phonological and orthographic features are
attended earlier than semantic features and are excerpted
from low-dimensional subspaces as opposed to high-
dimensional semantic and imagery subspaces.

This reconciles the large list-strength effects in recogni-
tion, that are found with production, with the very small or
null list-strength effects found with other manipulations of
strength, especially stimulus duration and spaced repetitions.
Other findings that are compatible with the theory included
graded effects of amount of production on the production
effect, the effects of both study time/presentation rate
(suggestive in Bodner et al., 2016; Murray, 1965) and test
time/response deadline (Kelly et al., 2022), the effect of
deep encoding instructions (MacLeod et al., 2010; Taikh &
Bodner, 2016) and the finding of a large production effect
even for homophone lures (Fawcett et al., 2022).

Our theory of production shares some characteristics
with each of the two major propositionally formulated
theories: Strength Theory and the Distinctiveness Heu-
ristic. Next we relate our theory with each of those in turn,
and then discuss broader implications and predictions that
follow from the theory.

Strength Theory

In their landmark paper, MacLeod et al. (2010) reference
the so-called null list-strength effect in recognition as a
major argument against Strength Theory of production:

We are convinced of their difference because of a
striking dissociation: The list-strength effect does not
occur in recognition, yet the production effect has
been observed primarily in recognition, where it is
large and easily obtained. This is important because
the fact that relative strength does not affect recog-
nition despite the production effect being solid in
recognition indirectly suggests that the production
effect is not due to relative strength. (p. 681)

From our perspective, this is rather backwards. Caplan
(2023) noted that list-strength effects that were described
as null were generally slightly positive (RoR > 1, often
around 1.1), albeit nonsignificant. So the first point is that
those findings are more accurately described as near-null
list-strength effects. The challenge to theory is really to
explain why the list-strength effect is so small, not why it is
strictly absent.

With the attentional subsetting framework, Caplan
(2023) reformulated list-strength effects as continuum
phenomena. The small magnitude of those effects was seen
as resulting from the stronger condition (e.g., repeated
presentation of items) adding features that were subsetted
from a high-dimensional space, leading to sparse functional
representations encoded inmemory, which introduced very
little additional cross-talk interference compared to the
weaker condition (see our model of duration here; Figure 3,
top and bottom panels). This explanation also presumed
that there is cross-talk due to shallower features such as
orthographic or phonological features, but that those fea-
tures were comparably present in the strong and the weak
conditions; “strength” manipulations do not increase or
decrease that source of interference from other list items.

In this account, the production effect is different because
it improves memory by encoding more superficial features,
that cannot be sparsely subsetted and thereby introduce
more cross-talk interference in the better (produced) con-
dition. In other words, the production effect functions the
way that previous researchers such as Ratcliff et al. (1990)
thought strength should function. So MacLeod et al. (2010)
should have argued not that production is not strength, but
that previous strength manipulations were not functioning
like strength manipulations. Rather, production does
function as one would expect of a manipulation of strength,
namely, producing a substantial positive list-strength effect.
Later, Jamieson et al. (2016) were duly confused about the
strength logic, writing
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Received wisdom is that the distinctiveness account
predicts a much stronger mixed-list than pure-list
production effect whereas a strength account pre-
dicts equally probable and equally sized mixed-list
and a pure-list production effects (see MacLeod et al.,
2010, p. 160).

They then go on to implement an “OG” strength model and
naturally, it produces a list-strength effect (see also the
demonstration by Caplan, 2023). They conclude, in fact, that
both Strength Theory and distinctiveness lead one to predict a
list-strength effect with production—which matches the data.
Therefore, they warn that this demonstrates that strength and
distinctiveness are challenging to select between experi-
mentally. They missed the way in which the null list-strength
effect story had bent over backwards, but from a different
angle thanMacLeod et al. (2010). Jamieson et al. (2016) came
closer to our view, that production manipulates strength and
with the implication that classic “strength” manipulations
were weird. But in fact, their implementation of production,
additional encoded production-related features, captures both
strength (through functional vector-length) and distinctive-
ness (the additional functional dimensionality afforded by
those longer functional vectors) with one mechanism. We
viewed this as an elegant theoretical proposal, and adopted it.
Although we added assumptions, this concept remains at the
center of our account of the production effect.
Finally, the framing of near-null list-strength effects as

strict-null effects, starting with Ratcliff et al. (1990), led
modelers to develop models that would automatically
produce null list-strength effects. The most influential of
these is REM (Shiffrin & Steyvers, 1997). REM assumes that
each memory is stored in a separate, “local”memory trace.
A recognition probe is matched to each local trace, com-
puting a likelihood ratio based on both the matching and
mismatching features, and then these are averaged across
all traces to produce the evidence used to decide on the
response (old vs. new). They also assumed that strength-
ening results in more (correct) features stored in the item’s
trace. This produces a differentiation effect, where a
stronger trace bothmatches itselfmore when presented as a
target, and matches other (lure) items less because of the
presence of additional features that could mismatch those
lure stimuli. Among other things, this produces the effect
they desired: negligible influence of the strength of one item
on recognition of another, hence a null list-strength effect.
However, in accommodating null list-strength effects, one
must be careful that the model has not to lost the ability to
predict substantial list-strength effects when they are ob-
served. Interestingly, Kelly et al. (2024) fit their data with
REM, and although they were rightly pleased that it could
explain increased hit rates for items that were produced
more (a graded effect, discussed earlier), their simulated

model produced nearly nowithin-list competition effects. In
their data, when the middle condition was produced more
(3 letters typed rather than 2), hit rates of both the all-typed
and nontyped reduced, differing from their REM-based
model. As noted by Caplan (2023) and Caplan and
Guitard (n.d.), a continuum account, such as ours, has
the chance to explain a diverse range of magnitudes, and
even directions, of list-strength effects. REM does have
ways of producing list-strength effects, such as by storing
multiple traces of an item rather than strengthening a single
trace (Ensor et al., 2021; Shiffrin & Steyvers, 1997). But
another approach might be to incorporate our assumptions
about feature subspace characteristics into the represen-
tations used in REM, which might produce large production
list-strength effects due to cross-talk because production-
features increase similarity across traces.

The Distinctiveness Heuristic

As authors like Jamieson et al. (2016) have already noted,
storing more features does generally increase distinctive-
ness. This speaks to the general concept of distinctiveness.
But the heuristic referred to something quite different: a
process more akin to recollection in dual-process theories of
recognition (Yonelinas, 1999).MacLeod et al. (2010) drew a
connection to Kolers’ proceduralism, but Kolers explicitly
assumed proceduralist effects were not deliberate or con-
scious. Both recollection/re-experiencing and procedural-
ism have an air of mystique around them. But attentional
subsetting theory provides a very nonmystical, uncompli-
cated and concrete way these proceduralist-like effects
might come about. Namely, production draws attention to
features that dwell within a production action feature space
(or possibly a combination of action-features, phonological,
orthographic and mappings amongst them, which could be
adjudicated in future experiments). That feature space
usually bears some similarity to its corresponding stimulus-
feature space, but they are not strictly equivalent. For this
reason, production-space features may afford additional
distinctiveness beyond the distinctiveness present in the
stimulus feature-space. This idea could be tested in future
experiments. For example, similarity-based errors due to
keyboard position of letters (MacNeilage, 1964) should be
more frequent in typed than nontyped conditions. The
prediction is not so clear-cut, though, because at the same
time, typed words achieve higher accuracy.
Jamieson et al. (2016) had an equally nonmystical im-

plementation of proceduralism, where production-related
features were retrieved iteratively while processing a
probe. This leads one to expect longer response times for
pure-aloud lists than for pure-silent lists, but such effects are
not found and fast response-deadlines do not seem to
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eliminate the production advantage (Kelly et al., 2022).
Interestingly, when we manipulated stimulus duration,
participants often produced longer response times for the
longer condition (Caplan & Guitard, n.d.). This was con-
sistent with our assumption that longer study time leads
participants to process more deep features that are sparsely
subsetted. Thus, takingmore time at test will pay off in terms
of a speed-accuracy tradeoff; taking longer to process those
additional deeper features will be likely to support better
recognition accuracy. When items are studied for less time,
processing the probe longer has diminishing returns. From
the same perspective, if production enhances memory ac-
curacy by encoding additional phonological or orthographic
features, those are features that are processed early, so there
is little reason to predict longer response times to recognize
produced items.

Limitations and Future Directions

Tradeoffs Across Feature Spaces
Saint-Aubin et al. (2021) explained production effects in
serial recall partly as a modality effect, supplementing
visual processing with auditory processing of words. But
the second major element of their model account was the
assumption that production displaces rehearsal, itself
known to improve memory. Conceivably, production may
displace other processes, as well, that would otherwise
have benefitted memory, such as deep levels of processing
like visual imagery and semantic elaboration. This notion
could be incorporated into the attentional subsetting
framework as applied to recognition memory. It could lead
to more nuanced predictions. Offsetting some of the
benefits to recognition memory of production due to in-
creasing the number of encoded stimulus-features, pro-
duction may reduce the number of orthographic or even
semantic features attended, as illustrated in Figure 1. The
predictionmight be similar to those we presented here, but
the production advantage may be further reduced as se-
mantic or imagery processing, or even multi-item re-
hearsal or associative processing, become more feasible
for participants, such as when study time increases.

Compatibility With Other Models
Our continuum view is quite flexible and anticipates (as
well as postdicting) a few dependencies of the production
effect on other variables such as study time, list length, and
study strategy. Although we implemented the ideas in a
distributed, global-matching model, the same principles
could be implemented in any model with a vector repre-
sentation of items, including local-trace models (note that
MINERVA 2 and the Feature Model, which have been
applied to the production effect, do not normally produce

null list-strength effects, different than REM). That said,
the distributed model also has a lot of flexibility. With the
sparse-subsetting assumption, it can produce several of the
phenomena that local traces were invoked in part to solve,
such as the apparent null list-strength effect and (com-
bined with differentiation), pronounced strength-based
mirror effects. Sparseness achieves what the local
traces, along with differentiation, achieve, that matching is
carried out with little cross-talk across studied items.

Conclusion

We view production effects not as a set of phenomena
that need customized theoretical accounts, but as a
special case of attentional subsetting theory, where the
pecularities of production-related memory are assumed
to be driven by the peculiarities of the feature space that
production acts upon. This led us to reconsider produc-
tion as a form of memory strengthening. As a particular
case of “strength,” our account unifies production with
other strength manipulations like stimulus duration and
repetition, explaining how they differ. As such, our theory
both addresses the production effect in recognition and
provides a framework for understanding a broad range of
experimental manipulations through the lens of attended
feature subsets and their respective dimensionality. Our
specific application of the theory to the production effect
in recognition memory assumes little more than that
production results in additional, production-related fea-
tures stored in memory, borrowing from other models of
production effects (Jamieson et al., 2016; Kelly et al.,
2022; Saint-Aubin et al., 2021). The assumptions of at-
tentional subsetting theory add to this: (1) that small
subsets of features are encoded, (2) that the subset at-
tended during test will tend to be similar to the subset
attended during the study phase, (3) that production
increases encoding of shallow, nonsparsely subsetted
features, whereas otherwise, additional study time in-
creases encoding of deeper, sparsely subsetted features.
Numerous empirically observed phenomena are pro-
duced with just these assumptions, even when im-
plemented in an overly simplified vector-summation
model, but could easily by incorporated into virtually any
model that assumes some kind of vector representation of
items. This account is quite different from the dominant
propositional theories of production effects, Strength
Theory and the Distinctiveness Heuristic, but embodies
some desirable attributes of each. This simple view of
production avoids the need for more complex or strategic
accounts, including suggestions that production en-
hances encoding of features beyond superficial features
related to production. Finally, by providing some
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contrasting empirical phenomena, the production effect
has extended the generality of attentional subsetting as a
theoretical framework for understanding memory.
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