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Abstract. Magnetic resonance imaging (MRI) has become a crucial tool
in the diagnosis and staging of prostate cancer, owing to its superior tis-
sue contrast. However, it also creates large volumes of data that must
be assessed by trained experts, a time-consuming and laborioustask.
This has prompted the development of machine learning tools for the
automation of Prostate cancer (PCa) risk classi�cation based on multi-
ple MRI modalities (T2W, ADC, and high-b-value DWI). Understa nding
and interpreting the predictions made by the models, however, rem ains
a challenge. We analyze Random Forests (RF) and Support Vector Ma-
chines (SVM), for two complementary datasets, the public Prost ate-X
dataset, and an in-house, mostly early-stage PCa dataset to elucidate
the contributions made by �rst-order statistical features, Haral ick tex-
ture features, and local binary patterns to the classi�cation. Us ing cor-
relation analysis and Shapley impact scores, we �nd that many o f the
features typically used are strongly correlated, and that the majori ty of
features have negligible impact on the classi�cation. We iden tify a small
set of features that determine the classi�cation outcome, whic h may aid
the development of explainable AI approaches.

Keywords: Early-Stage Prostate Cancer · Magnetic Resonance Imag-
ing · Classi�cation · Machine Learning · Explainable AI

1 Introduction

The early detection of prostate cancer (PCa) typically relies on bloodtests such
as the prostate-speci�c antigen (PSA) test and digital rectal examination (DRE),
followed by transrectal ultrasound (TRUS) biopsy [26]. However, TRUS biopsy
carries the risk of serious complications, including meningitis andsepsis [15].

? Supported by Azzaytuna University and the Ministry of Higher Ed ucation and Sci-
enti�c Research, Libya and Supercomputing Wales.



2 A. Muftah et al.

Furthermore, it can lead to the detection of clinically insigni�cant or indolent
cancer, resulting in overdiagnosis and potentially unnecessary treatments [1].
To improve diagnosis and minimize unnecessary biopsies, multiparametric MRI
(mpMRI) has become the standard of care in the diagnosis and staging of PCa.
The resulting high volume of imaging data generated has in turn stimulated sig-
ni�cant research e�orts to develop e�ective machine learning tools to assist radi-
ologists with the segmentation and classi�cation of lesions, and both traditional
and deep-learning methods have been applied successfully to the problem of iden-
tifying clinically signi�cant lesions (see, e.g., [2, 4, 7, 8, 11, 14, 20, 27, 29, 30]).

Despite the increasing popularity of deep learning approaches, recent work
evaluating the performance of convolutional neural networks (CNNs) and trans-
fer learning, as well as traditional machine learning classi�ers based onhand-
crafted features such as �rst-order statistics, Haralick features [9] and local
binary patterns (LBP) [ 21], suggests that traditional machine learning meth-
ods such as Support Vector Machines (SVM) and especially Random Forest
(RF) classi�ers can perform at least as well as deep learning classi�ers or bet-
ter [3, 5, 8, 19, 13, 22, 23, 28]. Machine learning tools based on handcrafted
features are also well suited to feature analysis with the aim of explainability.
Explainability remains a challenge for machine learning, but recent work, for
example, has explored explanable AI to predict cancer based on gene expres-
sion [24], and survival rates predicted by synoptic reporting of pathology [10].

In this work, we study explanability in the context of PCa classi�cat ion based
on mpMRI data by exploring the features used by the best-performing traditional
machine learning classi�ers to understand which are most relevant,and their
respective impact on the classi�cation results. The best-performing classi�ers
trained for classifying rectangular prostate patches into suspicious(positive)
and normal (negative) based on �rst-order statistical features, Haralick texture
features and LBP using sequential backward 
oating feature selection (SBSF)
are identi�ed by clustering their performance according to multiple performance
metrics (AUC, Accuracy, F1-score, sensitivity and speci�city). Al l classi�ers are
trained on two complementary datasets, the public ProstateX database, and
an in-house dataset of patients with suspected early-stage PCa, as well asa
dataset combing these two. Feature correlation and utilization are studied using
correlation analysis and Shapley impact scores to reveal a small set of features
that consistently explain most of the classi�cation results for both datasets.

2 Datasets

To assess the performance of various machine learning algorithms, two datasets
are utilized: the publicly available ProstateX dataset [12] and an in-house collec-
tion of anonymized mpMRI data, primarily representing early-stage PCa. The
ProstateX dataset comprises 194 negative and 71 positive samples. The in-house
dataset comprises 44 negative and 46 positive samples, selected from a cohort
of patients who had undergone mpMRI scans at a local clinical imaging unit.
Leveraging both datasets enhances the comprehensiveness of our evaluation, pro-
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Fig. 1: Traditional machine learning classi�cation pipeline.

vides valuable insights into the applicability of algorithms across diverse patient
cohorts, and facilitates a deeper understanding of their robustnessand general-
izability in a broader clinical setting.

For both datasets, we incorporate (axial) T2-weighted (T2W) images, appar-
ent di�usion coe�cient (ADC) maps, and high-b-value di�usion-weigh ted images
(DWI) generated by the imaging system, as illustrated in Fig. 1. All modalities
are registered using the patient coordinate system from the DICOM �les, as
manual veri�cation suggests that further automated registration is prone to in-
troducing larger errors. The 12-bit intensity values in each modality are rescaled
to the range [0; 1]. Given the limited size of the datasets, data augmentation
techniques are employed to generate additional samples for each patient in the
respective datasets, adding 39 samples per patient. Augmentation methods in-
clude rotation, 
ipping, scaling, elastic deformation, shearing, Gaussian noise,
blur, and adjustments to contrast and brightness. Subsequently, PCa lesions are
extracted as 2D patches and resized to either 16� 16 or 32� 32 based on segmen-
tation masks indicating negative and positive regions for PCa. For the in-house
early-stage PCa dataset, classi�cation relies on a set of normal and suspicious
regions identi�ed by the reporting radiologist. For the ProstateX dataset, lesion
classi�cation is based on the methodology outlined in [6].

3 Methods

In recent work, many con�gurations for di�erent classi�er types were systemat-
ically investigated across various parameters for both datasets, including tradi-
tional machine learning with handcrafted features and deep learning, pre-trained
or trained from scratch. Various con�gurations for each classi�er type were inves-
tigated across a range of parameters, and each classi�er con�guration evaluated
according to several standard metrics, including the area under the curve (AUC)
of the receiver operating characteristic (ROC), accuracy, F1 score,sensitivity and
speci�city. In this study we only consider traditional machine learning results
as they use explicit features suitable for explanability analysis. The code for the
classi�ers and the complete training and analysis results are available at [17, 18].
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First-order statistical features, Haralick texture features, and LBP were cal-
culated for all three MRI modalities used (T2W, ADC, high-b-value DWI ), and
fed into sequential backward 
oating feature selection (SBFS) to identify well-
performing features and eliminate redundant features, focusing ontwo of the
most frequently used machine learning classi�ers, SVM and RF, as illustrated
in Fig. 1. This analysis explored di�erent kernel functions and regularization
options for SVM, and various hyperparameters for RF, including the number
of individual decision trees composing the forest (50, 100, or 150), the maxi-
mum depth of each tree (0, 20), minimum samples per leaf (2 or 4) and split
(1, 20, or 40) de�ning the prerequisites for further bifurcations of decision nodes
in the tree, as well as preprocessing steps, including intensity standardization,
normalization, and combinations of both. Five-fold cross-validation is used to
evaluate the e�ectiveness of the machine learning models and training dataset
dependency, resulting in �ve evaluation scores, reported by their mean and std.
deviation across the folds. Based on the results the best traditional machine
learning models for each dataset are selected for our feature analysis.

In this work clustering, taking into account all performance metrics, is used
to identify the best-performing classi�er con�gurations for furth er analysis, to
understand which features are selected and their relative importance in the clas-
si�cation process. Linear correlation coe�cients between feature vectors are cal-
culated to understand the degree of independence of di�erent features. This is
especially important due to the large number of features involved and expected
redundancy of certain features due strong statistical correlation between certain
�rst-order statistical and texture features, for example.

To elucidate the impact of individual features on the classi�cation results,
Shapley values [16], quantifying the average marginal contribution of each feature
value to the overall score across all possible combinations, are calculated for all
features. This enables us to identify the set of features that contribute the most to
the classi�cation, as well as those whose contribution is negligible. Inaddition to
facilitating understanding of how the classi�ers make decisions, identi�cation of
subsets of relevant features that are consistently used for di�erent datasets by the
best-performing classi�ers, could be leveraged to reduce the number of features
that need to be calculated and develop more e�cient algorithms. It may also
help to drive approaches towards explainable AI to refer to speci�c textures and
their relations between di�erent modalities in regions of the prostate suspected
of being cancerous or not, in traditional as well as deep machine learning.

4 Results

4.1 Best-performing machine learning classi�ers

Fig. 2 shows that the best-performing classi�ers for both datasets are traditional
machine learning classi�ers of RF-type when ranked according to AUC.The same
also holds for the combined dataset (not shown).
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(a) Prostate X dataset (b) In-house dataset

Fig. 2: AUC metrics of the best classi�ers for di�erent types of tradit ional (RF
and SVM with SBSF) and deep learning classi�ers (CNNs trained on di�erent
combinations of inputs: T2W, T2W+ADC, T2W+ADC+DWI, T2W+DWI) for
Prostate-X and in-house datasets show that traditional machine learningclassi-
�ers of RF type consistently perform best.

(a) Prostate X (b) In-house data

Fig. 3: Accuracy, F1-score, sensitivity and speci�city are strongly correlated with
AUC, supporting use of AUC as the primary metric for ranking classi�ers.

(a) Prostate X (b) In-house data

Fig. 4: RF classi�ers fall into three distinct performance clusters when clustered
according to AUC values, accuracy, F1-score, sensitivity and speci�city for both
datasets (sensitivity and speci�city dimensions not shown). Theelements in the
cluster with the highest performance scores (indicated by blue squares) corre-
spond to identical con�gurations for both datasets.
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Fig. 3 further shows that the performance metrics for the best-performing
classi�ers for di�erent datasets are strongly correlated with the AUC m etric,
justifying use of the former as a primary performance indicator for ranking
di�erent classi�ers. The �gures include results from CNN deep learning classi�ers
for reference and comparison, which are not further studied here as wewish to
identify relevant explicit texture features.

Clustering of the best-performing classi�ers by mean AUC, accuracy, F1-
score, sensitivity, and speci�city shows that, for both the Prostate-X and the
in-house dataset, three performance clusters are identi�ed, as shown in Fig. 4.
The top-performing cluster for both datasets correspond to identicalcon�gura-
tions for the classi�ers comprising RF classi�ers with 100 trees, nomaximum
depth, two minimum samples per leaf and one split as prerequisite for further bi-
furcation. Both patch sizes of 16 and 32 as well as combinations of normalization,
standardization or both, are included. It should be noted that the classi�ers, al-
though having the same con�gurations, were trained independently per dataset.

4.2 Feature value ranges and correlations

We study the distributions of feature values for the positive and negative classes.
Features are labelled by modality (t2-tra, adc, dwi c-1400) followed by feature
type (mean, std, skewness, kurtosis, Haralick01 to Haralick14, lbp-01 tolbp-35)
thoughout. Fig. 5 shows the distribution of values for an illustrative example.
The feature value ranges for both classes overlap for all datasets, but theranges
are narrower for the positive class, and for this feature, the positiveclass values
are consistently on the lower side. A narrower range of values for the positive
class, yet considerable overlap with the negative class, is typical for most features,
showing that no single feature is su�cient for classi�cation, as expected. For the
other features generally similar behaviour is observed.

Given the large number of features across three di�erent modalities, we ex-
pect many features to be correlated. To understand the degree of correlation
between features, Fig.6 shows the feature correlation matrix for the Prostate-
X dataset. It can be observed that the �rst-order statistical means are almost
perfectly correlated with the Haralick06 feature values, and there issigni�cant
correlation between mean and standard deviation among the �rst-order order
statistical features for the T2W images, while skewness and kurtosis are gener-
ally uncorrelated with the other �rst-order statistical features and most Haralick
features. Therefore, it is expected that not all features contribute equally to the
classi�cation, and some may be entirely super
uous. The aim of featureselection,
as applied via SBFS in training the classi�ers, is to eliminate these correlations
by removing features that do not signi�cantly change the performance.

4.3 Feature impact on model output: Shapley values

To gain a better understanding of the impact of individual features on the model
output, we calculate the distribution of Shapley values for the features selected
by SBFS for the best performing RF model for both datasets. SHAP (SHapley
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Fig. 5: Feature value ranges for positive and negative patches di�er but generally
overlap for all datasets, as illustrated here for the mean values of the T2W
patches. Left: Prostate-X, middle: in-house dataset, right: combineddataset.
Red color indicates strong correlation in terms of Pearsonr .

Addictive exPlanations) was chosen over LIME as it is generally more suitable
for complex machine learning models. A detailed description and discussion of
the methods can be found, e.g., in [25]. The violin and decision tree plots (Fig. 7)
show the distribution of the Shapley values for each feature, with color coding
indicating the feature values. The plots show that in both cases the model output
is almost entirely determined by a small number of around 14 features.For the
ProstateX data, 8 of the 14 features that have a non-negligible impact on the
model output are �rst-order statistical features; the remaining six are Haralick
texture features (12, 13, 06, 08, 06, 03); no LBP features were used. First-order
statistical features clearly dominate, especially T2W mean, as well as skewness
(used for all modalities), kurtosis (ADC, DWI) and std (ADC, DWI). It is also
noteworthy that features from all three modalities are used (6 T2W, 5 ADC,
and 3 DWI). Although fewer DWI features are used, their impact on the overall
model output is signi�cant.

For the in-house dataset comprised of mostly early-stage cancer patients,
although the shape of the Shapley distributions and the impact of the individual
selected features di�er, the overall picture in terms of the relevant features is
broadly similar, with perhaps a slightly higher contribution of Haralick texture
features { about half the features used are �rst-order statistical, and half are
Haralick texture (06, 13, 06, 12, 04, 05, 10) features. Again features from all
three modalities are used (6 T2W, 5 ADC, 4 DWI), with skewness and kurtosis
playing signi�cant roles in addition to mean and standard deviation (std ). It
could be argued that one of the LBP features contributes marginally but again,
LBP feastures do not appear to play a signi�cant role.

We also considered the performance of classi�ers trained on the combined
(Prosate-X + in-house) dataset. The Shapley values distributions for the fea-
tures, shown in Fig. 8, again show that only a few features impact the �nal
result, again dominated by �rst-order statistical features (10 out of 18) and a
select number of Haralick texture features (11, 13, 08, 13, 06, 01, 03) with negli-
gible contributions from LBPs. Features from all three modalities are used, with
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Fig. 6: Feature value correlation matrix for the Prostate-X dataset. The strength
of correlation is indicated by the color, with yellow indicating high correlation
and blue e�ectively none. The plot shows that many features are correlated but
there are groups of uncorrelated features. The white line correspondsto a feature
(for high-b-value DWI) that could not be computed.

T2W mean as well as skewness and kurtosis featuring prominently, and std also
being used.

One interesting di�erence between the Prostate-X (and combined) dataset vs
the in-house dataset is that the decision paths are much clearer for thein-house
dataset, although part of this could simply be that the dataset is smaller and
thus lacks the full co-variance and range of feature values present.
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(a) Prostate-X (b) In-house dataset

(c) Prostate-X (d) In-house dataset

Fig. 7: Shapley value distributions and decision trees for the best RFclassi�er
with SBSF feature selection for the respective datasets.

4.4 RF classi�ers trained without feature selection

In the previous section, we considered the impact of various featuresof the best-
performing RF classi�er with SBFS feature selection. We also trained an RF
classi�er of the same type using all features without SBFS. Fig.9 shows the
Shapley decision trees, including the most important features for the best RF
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(a) (b)

Fig. 8: Violin plots of Shapley value distributions for the combined dataset.

classi�ers without feature selection for both datasets. Figs.10a and 10b show
the Shapley distributions for the top-50 features for the Prostate-X and in-house
datasets, respectively. Features omitted due to space constraintshave negligible
impact. Although slightly more features contribute, most features still have neg-
ligible impact; this holds in particular for LBP features. Features derived from
all modalities contribute. First order statistical features still play a dominant
role but more Haralick features contribute as well. Most importantly, using all
features reduces performance of the algorithm compared to best RF algorithm
with SBSF.

5 Conclusions

Shapley-value based feature analysis suggests that only a few features deter-
mine the classi�cation outcome in most cases, with a dominant role played by
�rst-order statistical features, and a limited number of Haralick tex ture features.
Local binary patterns play no signi�cant role for the best-performing RF clas-
si�ers for any of the datasets considered. However, the fact the best algorithms
used features from all three modalities suggests that all are contributing valu-
able information. Also, there is no signi�cant di�erence for di�erent patch sizes
(rescaled from the original size). The fact that the classi�cation results are con-
sistently determined by a small subset of features suggests that many features
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(a) ProstateX dataset (b) In-house dataset

Fig. 9: Shapley value analysis showing the most signi�cant features used by best
RF classi�ers, trained using all features without feature selection. The best clas-
si�er for both datasets defaulted to an RF classi�er with 100 decision trees, no
maximum depth, minimum of two samples per leaf.

are redundant, and could be used to design streamlined classi�cation algorithms
using fewer features. Despite the limited generalizability of the results, the con-
sistency observed in terms of the relevant features as well as the best classi�ers
types is encouraging. The much clearer decision trees for the in-house dataset
compared to the far more complex split for the Prostate-X dataset require fur-
ther exploration. It could indicate that classi�cation of early-stage PCa may
be clearer, but it may also indicate that larger datasets are needed to cover
the covariance. Important next steps are to extend results to largerdatasets
focused on early-state PCa identi�cation. Despite the traditional machine learn-
ing classi�ers performing better than their deep learning counterparts, it may
be interesting to see which features the deep learning methodsuse and how they
compare to those identi�ed in this analysis, especially as traditional machine
learning classi�ers may not perform as well on more complex classi�cation tasks
on larger datasets. The features identi�ed may also form the basis for specifying
speci�c textures in the various modalities and their relations to identify cancer
and explain the decisions.
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(a) Prostate-X (b) In-house dataset

Fig. 10: Shapley impact value distributions for best RF Classi�er trained using
all features without feature selection for both datasets. Only the 50 most signif-
icant features are shown. The remaining features are negligible. Thecolor scale
indicates feature values ranging from low (blue) to high (red).
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