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Abstract.  Magnetic resonance imaging (MRI) has become a crucial tool
in the diagnosis and staging of prostate cancer, owing to its superior tis-
sue contrast. However, it also creates large volumes of data that must
be assessed by trained experts, a time-consuming and laborioustask.
This has prompted the development of machine learning tools for the
automation of Prostate cancer (PCa) risk classi cation based on multi-
ple MRI modalities (T2W, ADC, and high-b-value DWI). Understa nding
and interpreting the predictions made by the models, however, rem ains
a challenge. We analyze Random Forests (RF) and Support Vector Ma-
chines (SVM), for two complementary datasets, the public Prost ate-X
dataset, and an in-house, mostly early-stage PCa dataset to ducidate
the contributions made by rst-order statistical features, Haral ick tex-
ture features, and local binary patterns to the classi cation. Us ing cor-
relation analysis and Shapley impact scores, we nd that many o f the
features typically used are strongly correlated, and that the majori ty of
features have negligible impact on the classi cation. We identify a small
set of features that determine the classi cation outcome, whic h may aid
the development of explainable Al approaches.

Keywords: Early-Stage Prostate Cancer - Magnetic Resonance Imag-
ing - Classi cation - Machine Learning - Explainable Al

1 Introduction

The early detection of prostate cancer (PCa) typically relies on bloodtests such
as the prostate-speci ¢ antigen (PSA) test and digital rectal examination (DRE),

followed by transrectal ultrasound (TRUS) biopsy [26]. However, TRUS biopsy
carries the risk of serious complications, including meningitis andsepsis 15].

? Supported by Azzaytuna University and the Ministry of Higher Ed ucation and Sci-
enti c Research, Libya and Supercomputing Wales.
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Furthermore, it can lead to the detection of clinically insigni cant or indolent
cancer, resulting in overdiagnosis and potentially unnecessary tagments [1].
To improve diagnosis and minimize unnecessary biopsies, multiparaetric MRI
(mpMRI) has become the standard of care in the diagnosis and staging of PCa.
The resulting high volume of imaging data generated has in turn stimulaed sig-
ni cant research e orts to develop e ective machine learning tools to assist radi-
ologists with the segmentation and classi cation of lesions, and both traditonal
and deep-learning methods have been applied successfully todlproblem of iden-
tifying clinically signi cant lesions (see, e.g., [2, 4, 7, 8, 11, 14, 20, 27, 29, 30).
Despite the increasing popularity of deep learning approaches, renework
evaluating the performance of convolutional neural networks (CNNs) and trars-
fer learning, as well as traditional machine learning classi ers based orand-
crafted features such as rst-order statistics, Haralick features 9] and local
binary patterns (LBP) [ 21], suggests that traditional machine learning meth-
ods such as Support Vector Machines (SVM) and especially Random Forest
(RF) classi ers can perform at least as well as deep learning classi ex or bet-
ter [3, 5, 8, 19, 13, 22, 23, 28]. Machine learning tools based on handcrafted
features are also well suited to feature analysis with the aim of explaiability.
Explainability remains a challenge for machine learning, but recent verk, for
example, has explored explanable Al to predict cancer based on gene exgr
sion [24], and survival rates predicted by synoptic reporting of pathology [L0].
In this work, we study explanability in the context of PCa classi cat ion based
on mpMRI data by exploring the features used by the best-performimg traditional
machine learning classi ers to understand which are most relevantand their
respective impact on the classi cation results. The best-perfornng classi ers
trained for classifying rectangular prostate patches into suspicious(positive)
and normal (negative) based on rst-order statistical features, Haralick texture
features and LBP using sequential backward oating feature selection $BSF)
are identi ed by clustering their performance according to multiple performance
metrics (AUC, Accuracy, F1-score, sensitivity and speci city). Al | classi ers are
trained on two complementary datasets, the public ProstateX database, ad
an in-house dataset of patients with suspected early-stage PCa, as well as
dataset combing these two. Feature correlation and utilization are studed using
correlation analysis and Shapley impact scores to reveal a small set of faaes
that consistently explain most of the classi cation results for both datasets.

2 Datasets

To assess the performance of various machine learning algorithms, two dadets
are utilized: the publicly available ProstateX dataset [12] and an in-house collec-
tion of anonymized mpMRI data, primarily representing early-stage PCa. The

ProstateX dataset comprises 194 negative and 71 positive samples. The irehise
dataset comprises 44 negative and 46 positive samples, selected from a odh
of patients who had undergone mpMRI scans at a local clinical imaging unit
Leveraging both datasets enhances the comprehensiveness of our evaloatipro-



Texture Feature Analysis for Classi cation of Early-Stage Prost ate Cancer 3

-7 Feature
allp extractor
handcraft feature
il fadikss) Standardise . Normai
Augmentation features
g 'Id > Feature ,v
- First-order " > selection > RForsvM <
crop TS Normalise + Suspicious.
> features )
Haralick
Normaiisation | (——— |l features

Fig. 1: Traditional machine learning classi cation pipeline.

vides valuable insights into the applicability of algorithms across diwerse patient
cohorts, and facilitates a deeper understanding of their robustnesand general-
izability in a broader clinical setting.

For both datasets, we incorporate (axial) T2-weighted (T2W) images, appar-
ent di usion coe cient (ADC) maps, and high-b-value di usion-weigh ted images
(DWI) generated by the imaging system, as illustrated in Fig. 1. All modalities
are registered using the patient coordinate system from the DICOM les, as
manual veri cation suggests that further automated registration is prone to in-
troducing larger errors. The 12-bit intensity values in each modalily are rescaled
to the range [G 1]. Given the limited size of the datasets, data augmentation
techniques are employed to generate additional samples for each patiem the
respective datasets, adding 39 samples per patient. Augmentation metds in-
clude rotation, ipping, scaling, elastic deformation, shearing, Gaussan noise,
blur, and adjustments to contrast and brightness. Subsequently, Za lesions are
extracted as 2D patches and resized to either 1616 or 32 32 based on segmen-
tation masks indicating negative and positive regions for PCa. For the in-fouse
early-stage PCa dataset, classi cation relies on a set of normal and suspaus
regions identi ed by the reporting radiologist. For the ProstateX dataset, lesion
classi cation is based on the methodology outlined in §].

3 Methods

In recent work, many con gurations for di erent classi er types were systemat-
ically investigated across various parameters for both datasets, includig tradi-
tional machine learning with handcrafted features and deep learning, pe-trained
or trained from scratch. Various con gurations for each classi er type were inves-
tigated across a range of parameters, and each classi er con guration evaluated
according to several standard metrics, including the area under tk curve (AUC)
of the receiver operating characteristic (ROC), accuracy, F1 scoresensitivity and
speci city. In this study we only consider traditional machine learning results
as they use explicit features suitable for explanability analysis. e code for the
classi ers and the complete training and analysis results are availald at [17, 19].
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First-order statistical features, Haralick texture features, and LBP were cal-
culated for all three MRI modalities used (T2W, ADC, high-b-value DWI ), and
fed into sequential backward oating feature selection (SBFS) to icentify well-
performing features and eliminate redundant features, focusing onwo of the
most frequently used machine learning classi ers, SVM and RF, as illstrated
in Fig. 1. This analysis explored di erent kernel functions and regularization
options for SVM, and various hyperparameters for RF, including the number
of individual decision trees composing the forest (50, 100, or 150), the maxi-
mum depth of each tree (0, 20), minimum samples per leaf (2 or 4) and split
(1, 20, or 40) de ning the prerequisites for further bifurcations of dedsion nodes
in the tree, as well as preprocessing steps, including intertgi standardization,
normalization, and combinations of both. Five-fold cross-validation is usd to
evaluate the e ectiveness of the machine learning models and traimg dataset
dependency, resulting in ve evaluation scores, reported by thei mean and std.
deviation across the folds. Based on the results the best traditional madne
learning models for each dataset are selected for our feature analysis.

In this work clustering, taking into account all performance metrics, is used
to identify the best-performing classi er con gurations for furth er analysis, to
understand which features are selected and their relative importaoe in the clas-
si cation process. Linear correlation coe cients between feature \ectors are cal-
culated to understand the degree of independence of di erent feattes. This is
especially important due to the large number of features involved and xpected
redundancy of certain features due strong statistical correlation betveen certain
rst-order statistical and texture features, for example.

To elucidate the impact of individual features on the classi cation results,
Shapley values 16], quantifying the average marginal contribution of each feature
value to the overall score across all possible combinations, are calculatdor all
features. This enables us to identify the set of features that contibute the most to
the classi cation, as well as those whose contribution is negligible. Iraddition to
facilitating understanding of how the classi ers make decisions, denti cation of
subsets of relevant features that are consistently used for di erendatasets by the
best-performing classi ers, could be leveraged to reduce the nubrer of features
that need to be calculated and develop more e cient algorithms. It may also
help to drive approaches towards explainable Al to refer to speci ¢ extures and
their relations between di erent modalities in regions of the prostate suspected
of being cancerous or not, in traditional as well as deep machine learning.

4 Results

4.1 Best-performing machine learning classi ers

Fig. 2 shows that the best-performing classi ers for both datasets are tradional
machine learning classi ers of RF-type when ranked according to AUCThe same
also holds for the combined dataset (not shown).
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(a) Prostate X dataset (b) In-house dataset

Fig. 2: AUC metrics of the best classi ers for di erent types of tradit ional (RF
and SVM with SBSF) and deep learning classi ers (CNNs trained on di erent
combinations of inputs: T2W, T2W+ADC, T2W+ADC+DWI, T2W+DWI) for
Prostate-X and in-house datasets show that traditional machine learningclassi-
ers of RF type consistently perform best.

(a) Prostate X (b) In-house data

Fig. 3: Accuracy, F1-score, sensitivity and speci city are strongly @rrelated with
AUC, supporting use of AUC as the primary metric for ranking classi ers.
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Fig. 4: RF classi ers fall into three distinct performance clusters when clustered
according to AUC values, accuracy, F1-score, sensitivity and speciity for both
datasets (sensitivity and speci city dimensions not shown). Theelements in the
cluster with the highest performance scores (indicated by blue sgpres) corre-
spond to identical con gurations for both datasets.
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Fig. 3 further shows that the performance metrics for the best-performing
classi ers for di erent datasets are strongly correlated with the AUC m etric,
justifying use of the former as a primary performance indicator for rankng
di erent classi ers. The gures include results from CNN deep learning classi ers
for reference and comparison, which are not further studied here as weish to
identify relevant explicit texture features.

Clustering of the best-performing classi ers by mean AUC, accuracy F1-
score, sensitivity, and speci city shows that, for both the Prostate-X and the
in-house dataset, three performance clusters are identi ed, as shen in Fig. 4.
The top-performing cluster for both datasets correspond to identicalcon gura-
tions for the classi ers comprising RF classi ers with 100 trees, nhomaximum
depth, two minimum samples per leaf and one split as prerequisitedf further bi-
furcation. Both patch sizes of 16 and 32 as well as combinations of hormalization,
standardization or both, are included. It should be noted that the classiers, al-
though having the same con gurations, were trained independently pe dataset.

4.2 Feature value ranges and correlations

We study the distributions of feature values for the positive and negaive classes.
Features are labelled by modality (t2-tra, adc, dwi_c-1400) followed by feature
type (mean, std, skewness, kurtosis, HaralickO1 to Haralick14, Ibp-01 tdbp-35)
thoughout. Fig. 5 shows the distribution of values for an illustrative example.
The feature value ranges for both classes overlap for all datasets, but theanges
are narrower for the positive class, and for this feature, the positiveclass values
are consistently on the lower side. A narrower range of values for the pds/e
class, yet considerable overlap with the negative class, is typicabf most features,
showing that no single feature is su cient for classi cation, as expected. For the
other features generally similar behaviour is observed.

Given the large number of features across three di erent modalitieswe ex-
pect many features to be correlated. To understand the degree of coriaion
between features, Fig.6 shows the feature correlation matrix for the Prostate-
X dataset. It can be observed that the rst-order statistical means are amost
perfectly correlated with the Haralick06 feature values, and there issigni cant
correlation between mean and standard deviation among the rst-order orde
statistical features for the T2W images, while skewness and kurtosis & gener-
ally uncorrelated with the other rst-order statistical features and most Haralick
features. Therefore, it is expected that not all features contribue equally to the
classi cation, and some may be entirely super uous. The aim of featureselection,
as applied via SBFS in training the classi ers, is to eliminate these correlations
by removing features that do not signi cantly change the performance.

4.3 Feature impact on model output: Shapley values

To gain a better understanding of the impact of individual features on the model
output, we calculate the distribution of Shapley values for the features selected
by SBFS for the best performing RF model for both datasets. SHAP (SHapley
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Fig. 5: Feature value ranges for positive and negative patches di er but geerally
overlap for all datasets, as illustrated here for the mean values of the T2W
patches. Left: Prostate-X, middle: in-house dataset, right: combineddataset.
Red color indicates strong correlation in terms of Pearsorr.

Addictive exPlanations) was chosen over LIME as it is generally more sudble
for complex machine learning models. A detailed description and diussion of
the methods can be found, e.g., in35]. The violin and decision tree plots (Fig. 7)
show the distribution of the Shapley values for each feature, with cadr coding
indicating the feature values. The plots show that in both cases the mdel output
is almost entirely determined by a small number of around 14 featuresFor the
ProstateX data, 8 of the 14 features that have a non-negligible impact on the
model output are rst-order statistical features; the remaining six are Haralick
texture features (12, 13, 06, 08, 06, 03); no LBP features were used. First-orde
statistical features clearly dominate, especially T2W mean, as well askewness
(used for all modalities), kurtosis (ADC, DWI) and std (ADC, DWI). It is also
noteworthy that features from all three modalities are used (6 T2W, 5 ADC,
and 3 DWI). Although fewer DWI features are used, their impact on the owerall
model output is signi cant.

For the in-house dataset comprised of mostly early-stage cancer patients
although the shape of the Shapley distributions and the impact of the indvidual
selected features di er, the overall picture in terms of the rebvant features is
broadly similar, with perhaps a slightly higher contribution of Haralick texture
features { about half the features used are rst-order statistical, and half are
Haralick texture (06, 13, 06, 12, 04, 05, 10) features. Again features from all
three modalities are used (6 T2W, 5 ADC, 4 DWI), with skewness and kutosis
playing signi cant roles in addition to mean and standard deviation (std). It
could be argued that one of the LBP features contributes marginally but again,
LBP feastures do not appear to play a signi cant role.

We also considered the performance of classi ers trained on the combéual
(Prosate-X + in-house) dataset. The Shapley values distributions forthe fea-
tures, shown in Fig. 8, again show that only a few features impact the nal
result, again dominated by rst-order statistical features (10 out of 18) and a
select number of Haralick texture features (11, 13, 08, 13, 06, 01, 03) with negli-
gible contributions from LBPs. Features from all three modalities are wsed, with
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Fig. 6: Feature value correlation matrix for the Prostate-X dataset. The strength
of correlation is indicated by the color, with yellow indicating high correlation
and blue e ectively none. The plot shows that many features are corredted but
there are groups of uncorrelated features. The white line corresponds a feature
(for high-b-value DWI) that could not be computed.

T2W mean as well as skewness and kurtosis featuring prominently, and dtalso
being used.

One interesting di erence between the Prostate-X (and combined dataset vs
the in-house dataset is that the decision paths are much clearer for than-house
dataset, although part of this could simply be that the dataset is smaller ard
thus lacks the full co-variance and range of feature values present.



Texture Feature Analysis for Classi cation of Early-Stage Prost ate Cancer 9

(a) Prostate-X (b) In-house dataset

(c) Prostate-X (d) In-house dataset

Fig. 7: Shapley value distributions and decision trees for the best RFclassi er
with SBSF feature selection for the respective datasets.

4.4 RF classiers trained without feature selection

In the previous section, we considered the impact of various featuresf the best-
performing RF classi er with SBFS feature selection. We also traired an RF
classi er of the same type using all features without SBFS. Fig.9 shows the
Shapley decision trees, including the most important features for he best RF
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@) (b)

Fig. 8: Violin plots of Shapley value distributions for the combined datase.

classi ers without feature selection for both datasets. Figs.10a and 10b show
the Shapley distributions for the top-50 features for the Prostate-X ard in-house
datasets, respectively. Features omitted due to space constraintsave negligible
impact. Although slightly more features contribute, most features still have neg-
ligible impact; this holds in particular for LBP features. Features derived from
all modalities contribute. First order statistical features still play a dominant
role but more Haralick features contribute as well. Most importantly, using all
features reduces performance of the algorithm compared to best RF algohin
with SBSF.

5 Conclusions

Shapley-value based feature analysis suggests that only a few featuregtdr-
mine the classi cation outcome in most cases, with a dominant role playd by
rst-order statistical features, and a limited number of Haralick tex ture features.
Local binary patterns play no signi cant role for the best-performing RF clas-
si ers for any of the datasets considered. However, the fact the best gbrithms
used features from all three modalities suggests that all are contribuhg valu-
able information. Also, there is no signi cant di erence for di erent patch sizes
(rescaled from the original size). The fact that the classi cation resuts are con-
sistently determined by a small subset of features suggests that magnfeatures
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(a) ProstateX dataset (b) In-house dataset

Fig. 9: Shapley value analysis showing the most signi cant features ugkby best
RF classi ers, trained using all features without feature selecton. The best clas-
si er for both datasets defaulted to an RF classi er with 100 decision trees, no
maximum depth, minimum of two samples per leaf.

are redundant, and could be used to design streamlined classi cation gbrithms

using fewer features. Despite the limited generalizability of tke results, the con-
sistency observed in terms of the relevant features as well as the bieclassi ers
types is encouraging. The much clearer decision trees for the in-hoesdataset
compared to the far more complex split for the Prostate-X dataset requie fur-
ther exploration. It could indicate that classi cation of early-stage PCa may
be clearer, but it may also indicate that larger datasets are needed to aver
the covariance. Important next steps are to extend results to largerdatasets
focused on early-state PCa identi cation. Despite the traditional machine learn-
ing classi ers performing better than their deep learning counteparts, it may

be interesting to see which features the deep learning methodsse and how they
compare to those identi ed in this analysis, especially as traditional machine
learning classi ers may not perform as well on more complex classi catin tasks
on larger datasets. The features identi ed may also form the basis for sgcifying
speci ¢ textures in the various modalities and their relations to identify cancer
and explain the decisions.
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(a) Prostate-X (b) In-house dataset

Fig. 10: Shapley impact value distributions for best RF Classi er trained using
all features without feature selection for both datasets. Only the 50 mossignif-
icant features are shown. The remaining features are negligible. Theolor scale
indicates feature values ranging from low (blue) to high (red).
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