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Abstract

Structural neuroimaging data have been used to compute an estimate of the biologi-

cal age of the brain (brain-age) which has been associated with other biologically and

behaviorally meaningful measures of brain development and aging. The ongoing

research interest in brain-age has highlighted the need for robust and publicly avail-

able brain-age models pre-trained on data from large samples of healthy individuals.

To address this need we have previously released a developmental brain-age model.

Here we expand this work to develop, empirically validate, and disseminate a pre-

trained brain-age model to cover most of the human lifespan. To achieve this, we

selected the best-performing model after systematically examining the impact of

seven site harmonization strategies, age range, and sample size on brain-age predic-

tion in a discovery sample of brain morphometric measures from 35,683 healthy indi-

viduals (age range: 5–90 years; 53.59% female). The pre-trained models were tested

for cross-dataset generalizability in an independent sample comprising 2101 healthy

individuals (age range: 8–80 years; 55.35% female) and for longitudinal consistency

in a further sample comprising 377 healthy individuals (age range: 9–25 years;

49.87% female). This empirical examination yielded the following findings: (1) the

accuracy of age prediction from morphometry data was higher when no site harmoni-

zation was applied; (2) dividing the discovery sample into two age-bins (5–40 and

40–90 years) provided a better balance between model accuracy and explained age

variance than other alternatives; (3) model accuracy for brain-age prediction pla-

teaued at a sample size exceeding 1600 participants. These findings have been incor-

porated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science,

web-based platform for individualized neuroimaging metrics.
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1 | INTRODUCTION

Prior literature has documented extensive age-related changes in

brain morphology as inferred from structural magnetic resonance

imaging (sMRI) studies (Bethlehem et al., 2022; Dima et al., 2022;

Frangou et al., 2022; Ge et al., 2024; Hogstrom et al., 2013; Jiang

et al., 2022). Machine learning algorithms can model these age-related

changes to generate an estimate of the biological age of the brain

(brain-age) (Baecker, Dafflon, et al., 2021; More et al., 2023; Schulz

et al., 2020). Brain-age estimates derived from healthy individuals can

be used to establish a normative reference pattern for typical devel-

opment and aging. In each individual, large deviations between brain-

age and chronological age indicate atypical development or aging (Ball

et al., 2021; Cole & Franke, 2017; Franke & Gaser, 2019;

Modabbernia et al., 2022).

Key parameters that influence accuracy of any brain-age predic-

tion workflow comprise the type of morphometric input features and

machine learning algorithms, the size and age range of the sample,

and the handling of site-effects, in the case of pooled samples. Input

features include voxel-wise data (Baecker, Dafflon, et al., 2021;
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Baecker, Garcia-Dias, et al., 2021; Cole, 2020), or data derived via

dimensionality reduction through atlas-based parcellation

(Modabbernia et al., 2022; Kim et al., 2023) or statistical methods

(e.g., principal component analysis) (Franke et al., 2013). Generally,

there is limited advantage to using voxel-wise data or highly granu-

lated parcels (Baecker, Dafflon, et al., 2021; Baecker, Garcia-Dias,

et al., 2021; Modabbernia et al., 2022; Valizadeh et al., 2017). There

are also multiple algorithms for computing brain-age that comprise

conventional methods, such as linear and Bayesian models, tree-based

and kernel-embedded models (Schölkopf & Smola, 2002), and artificial

neural networks commonly referred to as deep learning networks

(Baecker, Garcia-Dias, et al., 2021; Tanveer et al., 2023). Studies that

have undertaken a comparative evaluation of these algorithms on the

accuracy of sMRI-derived brain-age estimates collectively suggest that

conventional methods outperform deep learning networks in addition

to being computationally more efficient (Couvy-Duchesne

et al., 2020; de Lange et al., 2022; Grinsztajn et al., 2022; He

et al., 2020; Modabbernia et al., 2022; More et al., 2023).

We have previously shown that Support Vector Regression

(SVR) with Radial Basis Function (RBF) Kernel is preferable to para-

metric and nonparametric, Bayesian, linear and nonlinear, and other

kernel-based models particularly because of its resilience to extreme

outliers (Modabbernia et al., 2022). We adopted this algorithm to

build a developmental brain-age model based on morphometric data

from healthy youth aged 5–22 years (Modabbernia et al., 2022) and

made this freely available to the scientific community through a web

platform dedicated to providing models for individual-level neuroim-

aging measures (https://centilebrain.org/#/brainAGE). Here we

extend our previous work to construct brain-age prediction models

that are empirically validated and provide greater coverage of most

of the human lifespan. To achieve this, we pooled brain morphomet-

ric data from 35,683 healthy individuals (aged 5–90 years), as the

discovery sample, and data from an independent sample totaling

2102 healthy individuals (aged 27.74 years), as the replication sam-

ple. We evaluated the effect of age and sample composition on

model performance as there is no consensus regarding the optimal

method for integrating these parameters into brain-age models. It is

acknowledged that site harmonization strategies (Lombardi

et al., 2020) significantly affect the performance of brain-age models.

Moreover, brain-age studies have focused either on youth (Ball

et al., 2021; Brouwer et al., 2021; Luna et al., 2021) or on middle-

aged and elderly individuals (Cole & Franke, 2017; Elliott

et al., 2021). Thus, the workflow required for reliable brain-age esti-

mates in samples that cover most of the lifespan remains unclear. To

address these knowledge gaps, we empirically evaluated the perfor-

mance of the SVR-RBF algorithm in our discovery sample using

diverse site harmonization strategies and by resampling the discov-

ery model to produce subsets of different sizes and age ranges. The

resulting models were then tested on the replication sample for

cross-sample performance and longitudinal consistency. We outline

our method in detail while codes and the best-performing models

are freely available on our dedicated web platform (https://

centilebrain.org/#/brainAGE2).

Age prediction based on neuroimaging data is widely used for the

computation of individualized measures of the pace of development

or aging (Ball et al., 2021; Cole & Franke, 2017; Franke &

Gaser, 2019; Modabbernia et al., 2022). Adults with older brain-age

relative to chronological age are more likely to experience negative

health and cognitive outcomes (Bittner et al., 2021; Cole, 2020; Cole

et al., 2018; Sone et al., 2022) leading to the recommendation for the

adoption of brain age measures into clinical care (Wood et al., 2022).

In children and adolescents, the role of older or younger brain-age

remains a focus of interest and research activity (Ball et al., 2021;

Modabbernia et al., 2022).

In this context, the current study contributes to the field in two

distinct ways. First, the models developed are freely accessible freely

a web platform designed so that requires minimal computational skills

or infrastructure to generate brain age data from any sample. This

democratizing of the computational modeling for brain-age empowers

researchers from diverse backgrounds, fosters collaborations innova-

tion and accelerates discoveries. Second, the availability of robust and

generalizable models of brain age holds the promise of enhancing

reproducibility across different research studies and provide a stan-

dardized method for brain age computation.

2 | METHODS

2.1 | Samples

Different independent samples were used for discovery, replication,

and longitudinal consistency. These samples included pooled multisite

sMRI data from Australia, East Asia, Europe, and North America

(Data S1 and Figure S1, Supporting Information). The discovery sam-

ple comprised 35,683 healthy individuals (53.59% female, age range

5–90 years; Table S1). The replication sample comprised a total of

2101 healthy individuals (55.35% female, age range 8–80 years;

Table S2). The longitudinal consistency sample included data from

377 healthy individuals (age range: 9–25 years; 49.87% female;

Table S2) participating in the Southwest Longitudinal Imaging Multi-

modal Study (SLIM) and the Queensland Twin Adolescent Brain Study

(QTAB). Only high-quality morphometric measures (Data S2) were

included from participants who were free of psychiatric, medical, and

neurological morbidity and cognitive impairment at the time of

scanning.

2.2 | Brain morphometric input features

Morphometric feature extraction from whole-brain T1-weighted

images was implemented using the standard pipelines in the FreeSur-

fer image analysis suite (http://surfer.nmr.mgh.harvard.edu/) to yield

a total of 150 morphometric features that have been extensively uti-

lized in prior models for predicting brain age (de Lange et al., 2022;

Elliott et al., 2021; Han et al., 2021). These comprised Desikan-Killiany

atlas measures of cortical thickness (n = 68), cortical surface area
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(n = 68) (Desikan et al., 2006), and regional subcortical volumes

(n = 14) based on the Aseg atlas (Fischl et al., 2002).

2.3 | Evaluation of brain-age models

2.3.1 | Core elements

1. All brain-age models evaluated were sex-specific because of the

known sex differences in brain morphometry (Ge et al., 2021; Liu

et al., 2020). The method of evaluation was identical for both sexes.

2. All models used the same 150 input features described above.

3. All models used the SVR-RBF which we adopted as our algorithm

of choice as we have demonstrated its favorable performance in

terms of accuracy, computational efficiency, and robustness to

outliers when compared to other machine learning algorithms

(Modabbernia et al., 2022). This choice is supported by indepen-

dent studies that have undertaken a comparative evaluation of

multiple algorithms (Beheshti et al., 2022; More et al., 2023).

4. The primary performance measures for all models were the mean

absolute error (MAE), which represents the absolute difference

between brain-age and chronological age, and the correlation coef-

ficient (CORR) between brain-age and chronological age.

5. Brain-age is often overestimated in younger individuals and under-

estimated in older people (de Lange & Cole, 2020; Liang

et al., 2019). To counter this bias, we implemented a robust

approach to adjust this age-related bias following Beheshti and

colleagues (Beheshti et al., 2019). However, as age bias-corrected

metrics often reflect elevated accuracy, even for models with poor

performance (de Lange et al., 2022), we focus primarily on uncor-

rected model performance.

2.3.2 | Analysis workflow

The procedures used to generate optimized sex-specific models are

illustrated in Figure 1. For all models, hyperparameter tuning (C and

sigma) was performed in the discovery sample using a grid search

approach in a 10-fold cross-validation scheme across five repetitions.

In each cross-validation, 90% of the discovery sample was used to

train the model and 10% was used to test the model parameters; sub-

sequently, the model was retrained on the entire discovery sample

using the optimal hyperparameters identified from the cross-

validation process. As detailed in the subsequent sections, first, we

tested three different strategies for handling site effects. The site-

harmonization strategy used in the subsequent procedures was

selected based on its superior performance, as indicated by the lowest

within-sample cross-validation MAE (MAECV) and the highest CORR

(CORRCV) in the discovery sample. The model with the lowest replica-

tion MAE and highest replication CORR in the replication sample

(referred to MAER and CORRR) and in the longitudinal consistency

samples was chosen as the preferred model.

2.3.3 | Evaluation of site effects and age range in
the discovery sample

We evaluated seven site handling strategies after partitioning the dis-

covery sample into different age bins as follows: (i) a single bin with the

full sample age range (5–90 years); (ii) nine bins each covering sequen-

tial 10-year intervals, that is, age ≤ 10 years, 10 < age ≤ 20 years,

20 < age ≤ 30 years, 30 < age ≤ 40 years, 40 < age ≤ 50 years,

50 < age ≤ 60 years, 60 < age ≤ 70 years, 70 < age ≤ 80 years, and

80 < age ≤ 90 years; (iii) four bins each covering sequential 20-year

F IGURE 1 Flowchart of brain
age model optimization: after
conducting the analysis with
FreeSurfer and stratifying the
samples by sex, the study
proceeded as follows. (1) The
discovery sample was utilized to
evaluate the impact of site-
harmonization strategies and age
range. This analysis yielded the
optimal site-harmonization strategy.
(2) The independent replication
sample was employed to further
investigate the influence of age
range. The outcome of this analysis
led to the determination of the
optimal age bins and final models.
(3) The independent longitudinal
consistency sample was utilized to
assess the longitudinal consistency
of the pre-trained optimal models.
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intervals, that is, age ≤ 20 years, 20 < age ≤ 40 years,

40 < age ≤ 60 years, and 60 < age ≤ 80 years; (iv) three bins each cov-

ering sequential 30-year intervals, that is, age ≤ 30 years,

30 < age ≤ 60 years, and 60 < age ≤ 90 years; (v) two age bins each

covering sequential 40-year intervals, that is, age ≤ 40 years and

40 < age ≤ 90 years. Seven site handling strategies were separately

applied to each bin to perform data residualization with respect to site

using: (i) Combat-GAM (Pomponio et al., 2020); (ii) CovBat without age

variability preservation (Chen et al., 2021); (iii) CovBat with age variabil-

ity preservation (Chen et al., 2021); (iv) Subsampling Maximum-

mean-distance Algorithm (SMA) (Wang et al., 2023; Zhou et al., 2018);

(v) Invariant Conditional Variational Auto-Encoder (ICVAE) (Moyer

et al., 2020; Wang et al., 2023); (vi) generalized linear model (de Lange

et al., 2022); and (vii) no site harmonization. In the case of Combat-

GAM, age was specified as the smooth term in the model while the

empirical Bayes estimates were used for site effects, without custom

boundaries for the smoothing terms. ComBat-GAM was implemented

using Python (version 3.8.10) scripts. The CovBat approach

was implemented using R scripts (version 3.6.0). The SMA method was

implemented using Matlab (version R2021a) with the largest sample as

the target site, in accordance with recommendations of Wang

et al. (2023) The ICVAE was implemented using Python (version

3.8.10). To prevent data leakage, the harmonization process was

applied separately to the training and test datasets during cross-

validation. The approach and age partition with the best-performing

MAECV and CORRCV values were considered for further evaluation.

2.3.4 | Evaluation of site effects and age range in
the replication sample

The replication sample was partitioned in age bins similarly to the dis-

covery sample and the pre-trained models were applied. The age bin

partition that yielded the highest performing MAER and CORRR values

was identified as the preferred age bins.

2.3.5 | Estimation of the minimum sample size

The discovery sample was randomly partitioned into 30 sex-specific

subsets, ranging from 200 to 6000 participants in increments of

200, without replacement. The robustness of the optimized sex-

specific models to sample size in terms of CORRCV and MAECV was

assessed in each partition using 10-fold cross-validation with five rep-

etitions. This analysis was performed individually for each of the pre-

ferred age bins according to section 2.3.4.

2.3.6 | Longitudinal consistency

The sample used to test longitudinal consistency included T1-weighted

scans from a total of 377 participants scanned twice with an average

interval of 1.89 (0.56) years. This sample was also divided into the pre-

ferred age bins as in the discovery and replication samples in

section 2.3.4. The percentage change in MAE and CORR between the

second scan and the first scan was evaluated in each age bin.

3 | RESULTS

3.1 | Site and sample age range

Figure 2 illustrates cross-validated model performance for the differ-

ent site harmonization approaches. For simplicity, we display the

results for the 40-year age-bins averaged across sexes (Figures S2 and

S3 provide sex-specific results). For both sexes, omitting site correc-

tion demonstrated superior performance in terms of attaining the low-

est MAECV values and highest CORRCV values compared to the other

six site harmonization approaches. Consequently, the models that did

not employ site harmonization were used in all subsequent analyses.

The CORR and MAE were generally higher for models from age

bins with a wider age range (Figures S4 and S5). In other words, such

models accounted for more of the variance in age but were less accu-

rate. Therefore, to achieve a balance between CORR and MAE, we

selected the two-bin partition with sequential 40-year intervals

(i.e., 5–40 and 40–90 years). Figure 3 illustrates these results across

both sexes. By adopting this approach, we managed to combine a rel-

atively low MAE with a relatively high CORR across sexes in the two

age bins. Specifically, the average MAECV and CORRCV were 3.55

(1.17) years and 0.79 (0.10) and the average MAER and CORRR were

5.28 years and 0.68 in the two-bin partition (i.e., 40-year intervals).

Age-bias adjustment generally improved the CORRCV and MAECV

by 79.67% and 35.56%, respectively, in the discovery sample

(Tables S3 and S4) and improved the CORRR and MAER by 287.06%

and 41.79% in the replication sample (Tables S5 and S6).

3.2 | Effect of sample size

Figure 4 illustrates the effect of sample size in the discovery and repli-

cation samples using pre-trained models that were tested in 30 sex-

specific subsets, ranging from 200 to 6000 participants in increments

of 200, without replacement. In the discovery sample, the CORRCV

improved in line with sample increase up to a size of 1600 participants

and it plateaued thereafter; the MAECV on the other hand exhibited

smaller variation as a function of sample size and plateaued around

1000 participants (Figure S6 for sex-specific results). Similarly, in the

replication sample, the CORRR increased, and MAER decreased as a

function of the sample size until it reached 1600 participants and pla-

teaued thereafter.

3.3 | Longitudinal consistency

Figure 5 illustrates the stability of the pre-trained models in each age

bin using the longitudinal consistency sample. The results indicated

that models utilizing the two-bin partition (i.e., 5–40 and 40–90 years)

achieved optimal consistency on the longitudinal data. Sex-specific
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results are shown in Tables S7 and S8. On average, age-bias adjust-

ment improved the CORR and MAE by 63.50% and 30.54%, respec-

tively, in the first scan of the longitudinal consistency sample; and

age-bias adjustment improved the CORR and MAE by 73.39%

and 20.87%, respectively, in the second scan of the longitudinal con-

sistency sample (Tables S7 and S8).

3.4 | Data and model availability

Information about data availability is provided in Tables S1 and S2.

Our dedicated web portal freely provides the optimal model parame-

ters to be applied to any user-specified dataset in the context of open

science. In addition to the pre-trained sex-specific models, the web-

site provides tutorials and codes (https://centilebrain.org/#/tutorial4).

4 | DISCUSSION

There is increased emphasis on the potential translational value of

individualized neuroimaging measures such as brain-age that can be

used to track deviation from typical brain development and aging (Ball

et al., 2021; Cole & Franke, 2017; Franke & Gaser, 2019;

Modabbernia et al., 2022). The literature on morphometry-derived

F IGURE 2 Effect of site harmonization approach on the performance of models derived from repeated cross-validation in different age bins
of the discovery sample. Each bar represents one of the seven site handling methods. CORR, correlation coefficient between brain-age and
chronological age; MAE, mean absolute error between brain-age and chronological age. Sex-specific results in Figures S2 and S3.

F IGURE 3 Performance metrics derived from the application of
the models pre-trained on different age bins of the discovery sample
to the corresponding age bins of the replication sample. CORR values

averaged across sexes were 0.68 for 40-year interval bins; and 0.86
for the full age range of the sample. MAE values averaged across
sexes were 5.28 years for 40-year interval bins; and 8.52 years for the
full age range of the sample. Sex-specific results are presented in
Figure S4. CORR, correlation coefficient between brain-age and
chronological age; MAE, mean absolute error between brain-age and
chronological age.
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brain-age models from healthy individuals shows performance

heterogeneity that is predicated on methodological differences in the

specific features used, the algorithm employed, the handling of site-

effects, the sample size, and age distribution. The aim of the current

investigation was to provide a benchmarked resource to be used as a

normative reference for brain-age by the scientific community. Having

such a resource accomplishes at least four important objectives. First,

it enables harmonization of the methods and models available for

brain-age computation across studies. Second, it empowers

researchers who do not have access to large normative datasets to

generate reliable brain-age estimates in their own datasets. Third, it

supports rigor and reproducibility in brain-age research. Fourth,

together with our developmental brain-age model (Modabbernia

et al., 2022), also available through our web platform, it provides

models that cover most of the human lifespan (5–90 years) thus meet-

ing the needs of researchers working in development or aging.

Following a systematic empirical evaluation, we selected SVR-

RBF as the key algorithm (Modabbernia et al., 2022), and in this study,

we determined the optimal site handling method for our model as well

as the optimal age distribution for brain-age computation across most

of the lifespan. This detailed evaluation was necessary as multiple

prior studies have shown that site harmonization strategies as well as

sample age distribution and size can influence model performance

(de Lange et al., 2022). As in previous reports, we found an inverse

association between the age range of a sample, the MAE of the

model, and the coefficient of correlation between brain-age and chro-

nological age (de Lange et al., 2022). MAE is generally lower in sam-

ples with a narrower age range which is attributable to the

minimization of errors when the predicted brain-age approximates

the mean chronological age of a sample. Concomitantly, the correla-

tion between brain-age and chronological age becomes lower the nar-

rower the age range of a sample (de Lange et al., 2022). Previous

F IGURE 4 Model performance as a function of the sample size in the two age bins (5–40 and 40–90 years) of the discovery sample. Model
parameters for each bin were obtained by randomly resampling the discovery sample without replacement generating subsets of 200–6000
participants. The results are shown here as averages across sexes and the sex-specific findings are presented in Figure S6. CORR, correlation
coefficient between brain-age and chronological age; MAE, mean absolute error between brain-age and chronological age.
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reports have also shown that model accuracy for brain-age is generally

better with larger sample sizes (de Lange et al., 2022). Here we con-

firm this observation, and we also show that this relationship plateaus

in samples with over 1600 participants. This finding is particularly use-

ful for evaluating the robustness of other existing models and for

planning future studies.

The model proposed here suggests that an optimal balance

between MAE and CORR is achieved when the lifespan sample is par-

titioned into two sequential age bins, 5–40 and 40–90 years. The age-

bias corrected MAE and CORR values for females in the 5–40 years

age bin were 3.53 and 0.83, respectively, and in the 40–90 years age

bin they were 4.45 and 0.86, respectively (also Table S5). In males, the

age-bias corrected MAE and CORR values for females in the 5–

40 years age bin were 3.60 and 0.84, respectively, and in the 40–

90 years age-bin, they were 4.09 and 0.87, respectively (also

Table S6). These values are well within the range reported in other

studies that have evaluated different computational approaches to

brain-age in healthy individuals. For example, More and colleagues

(More et al., 2023) reported a range of MAE values between 4 and

8 years.

We appreciate that brain morphometric features are not the only

type of neuroimaging measures that can be used to derive brain-age

estimates. Other studies have used other neuroimaging modalities

(Beck et al., 2021; Goyal et al., 2019; Lund et al., 2022; Zhou

et al., 2023) or combinations of modalities (Cole, 2020; Niu

et al., 2020; Rokicki et al., 2021). Although it is important for the field

to have a range of options for computing brain-age that can accom-

modate a variety of scientific questions, the wide availability and rela-

tive ease of acquiring and extracting brain morphometric data

contribute to the popularity and preponderance of brain-age studies

that use such data.

In conclusion, we present empirically validated models for brain-

age that can accommodate studies using data across most of the life-

span. We have outlined the methodological choices that have led to

these models as well as their performance within and across samples

as well as longitudinally.
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