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ABSTRACT

A guitar tuning is the allocation of pitches to the open strings of

the guitar. A wide variety of guitar tunings are featured in genres

such as blues, classical, folk, and rock. Standard tuning provides

a convenient placing of intervals and a manageable selection of

fingerings. However, numerous other tunings are frequently used

as they offer different harmonic possibilities and playing methods.

A robust method for the acoustic classification of guitar tunings

would provide the following benefits for digital libraries for musi-

cology: (i) guitar tuning tags could be assigned to music recordings;

these tags could be used to better organise, retrieve, and analyse mu-

sic in digital libraries, (ii) tuning classification could be integrated

into an automatic music transcription system, thus facilitating the

production of more accurate and fine-grained symbolic represen-

tations of guitar recordings, (iii) insights acquired through guitar

tunings research, would be helpful when designing systems for

indexing, analysing, and transcribing other string instruments.

Neural networks offer a promising approach for the automated

identification of guitar tunings as they can learn useful features for

complex discriminative tasks. Furthermore, they can learn directly

from unstructured data, thereby reducing the need for elaborate

feature extraction techniques.

Thus, we evaluate the potential of neural networks for the acous-

tic classification of guitar tunings. A dataset of authentic song

recordings, which featured polyphonic acoustic guitar performances

in various tunings, was compiled and annotated. Additionally, a

dataset of synthetic polyphonic guitar audio in 5 different tunings

was generated with sample-based audio software and tablatures.

Using audio converted into log mel spectrograms and chromagrams

as input, convolutional neural networks were trained to classify

guitar tunings. The resulting models were tested using unseen data

from disparate recording conditions. The best performing systems

attained a classification accuracy of 97.5% (2 tuning classes) and

73.9% (5 tuning classes).

This research provides evidence that neural networks can classify

guitar tunings from music audio recordings; produces novel anno-

tated datasets that contain authentic and synthetic guitar audio,

which can serve as a benchmark for future guitar tuning research;

proposes new methods for the collection, annotation, processing,

and synthetic generation of guitar data.
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1 INTRODUCTION

Standard tuning1 for the six-string guitar was firmly established

by the 1800s and today it is the most frequently used tuning [18].

However, altered tunings are also used frequentlyÐthey have a

bearing on which notes can be produced using open strings,2 and

hence on the timbre and harmony of the guitar. They can provide

convenient fingerings and open chords that facilitate special guitar

techniques, enable distinctive sonorities that are integral to certain

guitar styles, inspire new compositions, and force one out of tradi-

tional performance habits. In this work, when the interval pattern

between the open strings of a guitar deviates from standard tuning,

the guitar is considered to be in an altered tuning [18].

Altered guitar tunings feature in genres such as blues, classical,

folk, and rock. For instance, in the maskanda music of South Africa,

the tuning used by guitarists “varies from standard tuning in that

the high string is tuned to d’ instead of e’ ž, and other tunings

exist, “some pertaining to specific styles and others ‘invented’ by

musicians to suit their individual characteristic stylesž [10, p. 122].

Furthermore, altered tunings are present in the music of many

of the world’s most inventive guitarists such as Ali Farka Touré,

Elizabeth Cotten, João Pernambuco, Joni Mitchell, and Robert Fripp.

Many styles of guitar music are rooted in oral/aural traditions,

so reliable performance informationÐsuch as the guitar tuning

and capo positionÐand accurate transcriptions are not available for

most guitar recordings. Consequently, knowledge about the tunings

that are associated with certain guitar styles could be lost if methods

for identifying guitar tunings are not developed. Additionally, if

the tuning used on a guitar recording is unknown, transcriptions

are likely to be inaccurate.

It is also important to note that many guitarists learn music

by listening carefully to recordings; this approach allows them to

extract nuances from the music that notation fails to encapsulate.

1In standard tuning, the guitar is tuned to the following notes from low to high (6th to
1st string): 𝐸2 ,𝐴2 , 𝐷3 ,𝐺3 , 𝐵3 , 𝐸4 .
2Open string refers to the unobstructed full string, located between the bridge and nut.
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Thus, when a musician or musicologist is learning or analysing

a guitar recording, an accurate and succinct piece of information

about the tuning, may reveal more than a detailed transcription

(that wrongly presumes the guitar is in standard tuning).

Research related to the automatic identification of guitar tun-

ings is underdeveloped. To the best knowledge of the authors, no

publication has dealt with the classification of guitar tunings from

guitar audio recordings. Nevertheless, there is a wide body of re-

search devoted to tasks that are closely related to guitar tuning

classification, such as guitar string detection, chord estimation, and

automatic music transcription (AMT). Traditionally, approaches to

these tasks have involved the extraction of various acoustic features

(e.g., 𝑓0, inharmonicity coefficient) [2] to describe the tonal con-

tent of the signal, classical machine learning models (e.g., HMMs,

SVMs) [24] and/or constraint-based algorithms (e.g., heuristic cost

functions, plausibility filters) [3] to estimate string/chord/note can-

didates [11, 13, 21]. More recently, approaches to these tasks have

utilised neural networks (e.g., CNNs, RNNs, transformers) [22, 35]

with time-frequency representations of audio data (e.g., spectro-

grams, constant-Q transforms) [50] to learn a mapping directly

from audio to symbolic music [7, 9, 40]. It should be noted that the

research discussed above only considers guitars in standard tuning.

Nevertheless, the proposed methods could be adapted for altered

guitar tunings.

The identification of guitar tunings from symbolic music has

been investigated by Khatri & Dillingham [25]. The authors pro-

posed deep learning (DL) and rule-based methods to predict the tun-

ing of a guitar piece from its MIDI transcription. The first method

employed supervised learning with a recurrent neural network

(RNN). The RNN model could successfully identify standard and

open C tunings, but had difficulty identifying open D and open G

tunings. The second method employed a dynamic programming al-

gorithm to determine the optimal note locations a song could have

in a given tuning. The dynamic programming algorithm performed

well on songs in open C and open D, but struggled with songs

in standard and open G. Khatri & Dillingham’s research provides

some evidence that both DL and rule-based methods can be used

to classify guitar tunings from symbolic music.

The primary aim of the work reported in the present paper is to

investigate the appropriateness of neural networks (NNs) for the

acoustic classification of guitar tunings. We define guitar tuning

classification (GTC) as the identification of a particular guitar tuning

from a recording that contains a guitar performance.

The work is driven by recent developments in deep learning. NNs

can learn useful features for discriminative tasks, when trained on

large amounts of data. They can learn directly from unstructured

data, thus reducing the need for more elaborate feature extraction

techniques. An overview of NNs is beyond the scope of this workÐ

for more information, see [15, 39]. DL methods are now frequently

used for music information retrieval tasks [4] and NNs are an in-

tegral part of current state-of-the-art AMT systems [19]. As NNs

have a proven track record for music information retrieval tasks, we

hypothesise that a neural network has the capacity to learn discrimi-

native musical features (e.g., harmony, key, pitch) and fine-grained

features (e.g., harmonic spectrum, inharmonicities) relevant to GTC

from labelled time-frequency representations of music recordings;

these features pertain to the tuning of the guitar, enabling the network

to distinguish between different guitar tunings.

The acoustic classification of guitar tunings is a nascent topic,

but research in this area is essential for the development of robust

systems for music audio tagging and AMT. Further information

regarding this work is available online.3

2 BACKGROUND

2.1 The Classification Task

The aim is to create a system that, when given a guitar audio clip,

returns a decision regarding the type of guitar tuning that is present

in the recording. A supervised learning approach is employed. A con-

volutional neural network (CNN) is trained on a corpus of labelled

guitar audio samples; the audio is converted into a log mel spectro-

gram or chromagram representation and inputted into the CNN.

The samples are correctly marked with guitar tuning labels. After

training, the model is given new samples, and it predicts which

categories the samples belong to. Authentic and synthetic guitar

tuning datasets have been created specifically for this task.

This work derives methods and adapts CNNs from the fields of

bird audio detection [47] and speech recognition [51]. In these tasks

an NN must learn to recognise and classify many different sound

event characteristics [26]Ðthis is also true of GTC, so there are clear

parallels between the tasks. Furthermore, CNNs were chosen for

the task as evidence indicates they perform well on guitar-related

MIR tasks, and an established baseline model for guitar tablature

transcription (GTT) is CNN-based [50].

There are two methods for representing the tuning of a gui-

tar: (i) specifying the absolute pitch of each string, (ii) specifying

the intervals between strings. We investigate both methods for

determining the tuning. The first method identifies the tuning by

absolute pitch; this provides exactitude, but without certain con-

straints (e.g., the exclusion of recordings in which a capo is used

on the guitar) the number of tuning classes yielded could quickly

become unmanageable. The second method identifies the tuning

by interval profile; interval profile refers to the distance of the open

strings from each other as measured in semitones [43]. With this

method, the strings of two guitars could be tuned to different abso-

lute pitches, but if they shared the same interval profile, they would

also share the same tuning class. An advantage of this method

is that it provides flexibility and a manageable number of tuning

classes, when guitars are transposed via downtuning or the use of

a capo.

2.2 Notation

A robust GTC system could provide fine-grained and accurate tran-

scriptions for various types of notation (see Fig. 1), particularly for

tablatures. Tablature is a notational system that places numbers

on horizontal linesÐthe numbers represent the frets and the lines

represent the strings of the instrument. Tablature is highly intuitive

for guitarists as it resolves “the ambiguity between note pitch and

fretboard positionž [37, page 26]. However, when the tuning of a

guitar is altered, the relationship between note pitch and fretboard

3https://github.com/edhulme/guitar-tuning-classification
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Figure 1: Staff, tab, and chord chart notations combined. Gui-

tar tuned to open G.

position changes. Therefore, it is necessary to know the tuning of

the guitar, if the tablature transcription is to be encoded correctly.

Regarding performance information, if someone wishes to learn

or analyse a guitar recording ‘by ear’, then information about the

tuning and/or capo position would facilitate these activities.

2.3 Guitar Characteristics

Inharmonicity. A simple analysis of the relationship between the

harmonic partials and the fundamental frequency of a vibrating

stringÐwhere 𝑓𝑛 is the frequency of the nth harmonic, 𝑓1 is the

frequency of the 1st harmonic, and 𝑛 is the harmonic numberÐcan

be written as 𝑓𝑛 = 𝑛𝑓1;𝑛 ≥ 1. However, the harmonics in an actual

string are higher in frequency than predicted here. This phenome-

non is known as inharmonicity. The occurrence of inharmonicity

in strings, due to their internal stiffness, was first recognised by

Lord Rayleigh [42].

The inharmonicity coefficient 𝐵 is expressed from the radius of

the string 𝑟 , the string’s tension𝑇 , its lengh 𝐿, and Young’s modulus

𝑌 as: 𝐵 =
𝜋
3
𝑌𝑟

4

4𝑇𝐿2
. An adjustment to 𝑓𝑛 = 𝑛𝑓1 produces the following

equation 𝑓𝑛 = 𝑛𝑓0
√
1+𝐵𝑛2, where 𝑓0 is the fundamental frequency in

the absence of inharmonicity i.e., when 𝐵 = 0. In reality 𝐵 > 0 as

there is always some internal stiffness in physical strings. Thus, the

new harmonic partials will be higher in frequency compared to the

corresponding partials in a string with no stiffness [38].

We can define the inharmonicity of a string as “the deviation

of the partials from integer multiples of the string’s fundamental

vibration frequencyž [38]. Inharmonicities are inherent in vibrating

strings, and the inharmonicity of a guitar string is determined by its

radius, tension, length, and Young’s modulus. A hypothesis can be

derived from this information. The string tension and string length

required to produce a particular note on a guitar string change de-

pending on the open note the string is tuned to. The inharmonicity

of a string also changes depending on its length and tension. Thus,

a neural network may be able to learn distinct inharmonicity features

exhibited by different guitar tunings; the network could then use these

features to differentiate between guitar tunings.

Chord Voicing. “A chord voicing refers to the placement of notes

in a chord structurež [27, page 1]. When the order that the notes of a

chord appear in changes, or when the octaves that the notes appear

in change, different voicings of the chord tones are produced. The

Table 1: Open D chord in standard tuning and open D tuning.

Tuning String Number (x = no note)

6th 5th 4th 3rd 2nd 1st

Standard x x 𝐷3 𝐴3 𝐷4 𝐹#4
Open D 𝐷2 𝐴2 𝐷3 𝐹#3 𝐴3 𝐷4

voicings used in guitar music often vary as a result of the guitar

tuning. To illustrate this, we can compare an open D chord4 played

in standard and open D tuning (see Table 1). Although both voicings

contain the same three notes the voicings are clearly different:

6 notes are played in open D, whereas only 4 are played in standard;

the order the notes appear in varies; the octaves the notes appear

in are sometimes distinct (e.g., F#); the strings notes are played

on differ (except 𝐷3). This example highlights how altering the

tuning significantly changes the voicing of chords, even when the

chords are very simple. Guitar music generally features multiple

chords, and these chords can be much more complex than the D

chord presented aboveÐthis creates the potential for many distinct

voicings. Thus,we hypothesise that each guitar tuning has a collection

of signature voicings associated with it; a neural network can learn

these voicings as features and use them to identify guitar tunings

from audio.

Pitch Range. The lowest pitch that is playable on the guitar can

vary depending on the tuning.5 For instance, in open D the lowest

pitch is a tone lower than in standard tuning. In this type of scenario

it should be relatively easy to train an NNÐor configure a pitch

estimation algorithmÐto exclude certain tunings when pitches

below a given threshold occur. However, in real-world scenarios

certain attributes of the guitar make the task more complicated:

(i) a capo raises the lowest pitch that is playable, (ii) guitar tun-

ings do not always conform with the A440 pitch standard, and

(iii) a tuning maintains its interval profile when every string is

tuned up or down by an equal number of semitones. Abundant

evidence of guitarists utilising these attributes was found when

collecting acoustic guitar recordings and transcriptions for this

study. Dataset 1 (see Section 3.1.2)Ðwhich is comprised of song

recordings by Joni MitchellÐprovides evidence regarding each of

the respective attributes: (i) a capo is used on 25 of the 49 songs,

(ii) the tuning deviates from A440 on various live recordings, (iii)

certain common tunings are downtuned e.g., on the ‘The Gallery’

from the album Clouds, the guitar has the interval profile of open

G, but the strings are downtuned by a semitone. Moreover, similar

evidence regarding these attributes was found when we analysed

official GuitarPro tablatures [41] by various artists, and amateur

acoustic guitar performances from the AudioSet dataset [14]. Thus,

since these attributes are frequently used by guitarists, it is impor-

tant to consider them if robust guitar transcription systems are to

be developed.

Harmonic Spectrum. A guitar produces notes when the strings

vibrate between the bridge and nut or bridge and frets. A recent

study [23] indicates that roughly 20% of the notes used by guitarists,

4An open chord is a chord that contains strings that are not fretted.
5The tuning can also vary the highest playable pitch, but guitarists use the upper
register of the guitar less frequently [23].
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playing in standard tuning without the use of a capo, are played on

the open strings (i.e., 20% of vibrations occur between the bridge and

nut). The harmonic spectrum differs between open and fretted notes.

These differences are perceived by humans as subtle variations in

timbre; experienced musicians can differentiate between open and

fretted notes by listening attentively. Thus, we hypothesise that

variations in the harmonic spectrum between open and fretted notes

can be learned as features by a neural network, and used to determine

the pitch of open strings. However, it is important to note that if a

capo is used on a guitar these, differences in the harmonic spectrum

would not occur as the strings could only vibrate between the

bridge and fretsÐalthough the capo might produce other distinct

variations in the harmonic spectrum in this scenario.

Pitch Classes, Scales, and Keys. Evidence suggests that there are

tuning-specific preferred pitch classes, scales, and keys. In [23], a

diverse corpus of 1022 professionally transcribed guitar tablatures

was analysed to determine the most common string, fret, and hand

positions used by guitarists playing in standard tuning, without the

use of a capo. The pitch classes that occurred most frequently in the

corpus were E, G, A, B, C, and D. These notes are used in the keys

of C major, G major, A minor, and E minor, and also feature in their

corresponding heptatonic and pentatonic scales; this indicates that

these keys and scales are likely to occur frequently in standard tun-

ing. When an open tuning is used, the chord produced by the open

strings may be an indicator of the keyÐan analysis of 40 songs in 5

different tunings supports this theory,3 but a larger sample needs

to be analysed to provide more conclusive evidence.We hypothe-

sise that a neural network can learn tuning-specific preferred pitch

classes, scales, and keys as features for guitar tuning classification.

Key changes, consonance/dissonance, and chromaticism may also

be more common in certain tunings.

3 METHODS

3.1 Data

3.1.1 Labels. A label, indicating the guitar tuning used on a song,

was assigned to every audio file. The main references used to de-

termine the guitar tuning featured on a particular recording were

The Joni Mitchell CompleteÐGuitar Songbook Edition [5] and offi-

cial GuitarPro transcriptions [41]Ðthese were reliable sources as

the transcriptions were made by professional musicians (if multi-

ple tunings were featured the file was discarded). In many of the

recordings/transcriptions, a capo is used on the guitar. Therefore,

we devised a flexible labelling system that enables the tuning classes

to be determined by absolute pitch or interval profile. The dataset

labelling method is described below:

Example: x75435_EBEG#BE_C2_Cactus_Tree_StaS_12

• x75435: Denotes the interval profile. The x represents the

6th string, and the numbers represent the intervals between

strings in semitones e.g., x7 indicates that the 5th string is

7 semitones above the 6th string in pitch, 75 indicates that

the 4th string is 5 semitones above the 5th string etc.

• EBEG#BE: Shows the note each string is tuned to (6th to 1st

string)

• C2: This indicates the capo position. The number after C

denotes the fret position of the capo. 𝑁𝑜 𝑐𝑎𝑝𝑜 = C0

• Cactus_Tree: The name of the song (sometimes abbreviated

in all caps)

• StaS: Indicates the album (when abbreviated uppercase and

lowercase letters are used)

• 12: Clip number (only relevant to files in the training set)

3.1.2 Dataset 1: Joni Mitchell Song Recordings. Dataset 1 consists

of 49 WAV files (44.1 kHz, 16 bit, stereo). The files contain audio of

variable length (≈ 3 min). The guitars in the audio are in various

different tunings and are labelled accordingly.3 The audio con-

tent of the dataset was derived from Joni Mitchell song recordings.

Mitchell’s songs feature steel string acoustic guitar performances

in altered tunings, making them suitable for GTC tasks. Moreover,

using Mitchell’s songs seems apt as her music marks a compelling

moment in the history of guitar tunings. Altered tunings were

an integral part of her sound. Mitchell’s popularity in the sixties

and seventies introduced listeners to an array of unfamiliar chord

voicings, and her guitar playing inspired guitarists to experiment

with altered tunings [43]. The songs were recorded between 1968

and 1972. They were taken from 5 studio albums [30ś34] and 2

live albums [28, 29]. The guitar performances on the recordings

consist predominantly of chord progressions that are fingerpicked

or strummed; 14 different tunings are used by Mitchell. All the

recordings featured vocals, and sometimes instruments other than

the guitar were also present. Thus, the source separation algorithm

Spleeter 2.4.0 [20] was applied to isolate the guitar signal. In pre-

liminary tests, models were trained independently on unprocessed

audio and source separated audio. When these models were eval-

uated, the results indicated that source separation was beneficial

to classification performance (see Section 4.1). Therefore, source

separation was applied in all the subsequent tests. Spleeter is a

powerful tool, but it does produce artifacts (e.g., extraneous filter-

ing, distortion). Furthermore, the Spleeter model had no explicit

‘guitar’ stem, so the ‘other’ stem from the model output was con-

sidered to contain the guitar parts. Thus, while the model removed

vocals, speech, piano, bass, and drums from the audio, any other

instrumentation remained in the audio along with the guitar. How-

ever, the use of other instruments was relatively infrequent, so the

detrimental effect this could have on model performance is thought

to be low; when the instrumentation of a song was considered to

be problematic for the Spleeter model, it was discarded from the

dataset. On some of the studio recordings, two guitars in different

tunings were present simultaneously. These recordings could not be

labelled accurately, so they were removed from the dataset. To the

best knowledge of the authors, an algorithm that can disentangle

multiple guitar parts from recordings is not available at the time of

writing. Mitchell’s live recordings contained sections in which she

was tuning her guitar. The audio could not be correctly labelled for

these sections, so they were removed with an audio editor. The live

recordings also contained sections in which Mitchell was talking

to the audience. However, after the guitar had been isolated, these

sections contained silence; these sections were also removed.

3.1.3 Dataset 2: Multi-artist Song Recordings. Dataset 2 consists of

54WAV files (44.1 kHz, 16 bit, stereo). The files contain audio of vari-

able length (≈ 3 min). There are 5 tuning classes in the dataset: stan-

dard, drop D, DADGAD, open D, open G. The recordings are mainly

by singer-songwriters. All recordings feature steel string acoustic
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guitar. When labelling the audio, official GuitarPro tablatures were

used to determine the tuning and capo position [41]. Most songs

are studio recordings, but live recordings are also present. Dataset

2 was created after Dataset 1, when a more advanced source sep-

aration algorithmÐDemucs 4.1.0a1 [44]Ðwas available. Demucs

featured an experimental model with an explicit ‘guitar’ stem. Two

expert listeners compared the Demucs ‘guitar’ and Spleeter ‘other’

outputs. The Demucs output was judged to provide superior audio

quality. It also removed a wider variety of instruments from record-

ings (although it could be temperamental in this respect); this made

Demucs more flexible and helped to streamline the audio editing

process. Additionally, Dataset 2 was created so trained models could

be tested using data from disparate conditions. Thus, applying a

different source separation algorithm had the desirable effect of

increasing the disparity between datasets.

3.1.4 Dataset 3: Multi-artist Synthetic Audio. Dataset 3 consists

of 245 WAV files (44.1 kHz, 16 bit, mono). The files contain high-

quality sample-based guitar audio renderings of song tablature

transcriptions. The audio is of variable length (≈ 3 min). There

are five tuning classesÐstandard (90 songs), drop D (86), open D

(39), DADGAD (18), open G (12). The audio in Dataset 3 was cre-

ated by rendering tablatures as audio with Ample Sound AGT [45],

a sample-based acoustic guitar Virtual Studio Technology (VST)

instrument. AGT includes a ‘tuner’, which allows the user to down-

tune each string by 1 or 2 semitones. This functionality makes it

possible to tune the guitar to various common tuningsÐanalysis

of the downtuned audio produced by the VST indicated that the

guitar samples were recorded at the pitches they corresponded

to (i.e., resampling or sample rate pitch shifting was not applied).

The tablatures used were professionally transcribed, so the tun-

ing information and note/string combinations in the transcriptions

were accurate. The synthetic data was generated by loading the

tablatures in the VST and exporting them as audio renderings; this

process was automated with Dawdreamer (a Python-based audio

framework that emulates a DAW) [6]. Regarding the settings in

the VST: the data was rendered in mono; a ‘neutral’ guitar timbre

was employed (i.e., no audio effects were applied) using a single

VST steel string acoustic guitar model; the playing style was set to

‘fingerstyle’. In this work, the experiments conducted using Dataset

3 investigated an NNs capacity to learn useful features related to

pitch, scale, and key for the acoustic classifcation of guitar tunings.

Thus, a diverse range of timbres was not a priority. However, us-

ing the framework developed in this study, a large synthetic audio

dataset, with a diverse range of timbres and VST guitar models, will

be createdÐthis will be used to study guitar tuning characteristics

such as inharmonicity and the harmonic spectrum.

Dataset 3 was used to investigate the ability of a CNN to classify

tunings by absolute pitch; to simplify the problem the use of a capo

was not permitted. However, many of the transcriptions featured a

capo. Therefore, we transposed the tablatures by setting the capo

parameter to 0 (i.e., no capo) before rendering. Furthermore some

tablatures featured ‘downtuning’ or ‘uptuning’; these transcriptions

had to be assigned to an appropriate pitch range. Both of these

procedures were automated with PyGuitarPro [1].

While a synthetic guitar dataset already exists [52], to the best

knowledge of the authors, Dataset 3 is the first sample-based guitar

dataset that features a variety of altered tunings. Furthermore, a

different method was used to render the symbolic music as au-

dio. In [52], string level MIDI is rendered individually and the

string-level audio signals are then mixed by averaging. Instead, we

loaded each tablature via Dawdreamer in the VST and rendered the

string-level MIDI data jointly using the VST’s specialised TabPlayer

functionality. With this highly efficient approach the GuitarPro

tablature format preserves the note/string combinations, and the

joint string-level rendering produces synthetic guitar audio that

sounds cohesive and dynamic.

3.2 Experiments

The use of a capo on the guitar in various recordings is likely to

make the classification task considerably more challenging. There-

fore, interval profile data partitions were made that featured a capo

(3.2.1ś3.2.2), they were used in 2 class experiments (4.1, 4.2, and 4.3). In

these partitions and experiments the terms open D and open G refer

to the tuning type (e.g., 𝑜𝑝𝑒𝑛 𝐷 = 𝑥75435) and not the absolute pitch.

Additionally, an absolute pitch data partition was made that featured

no capo (3.2.3), it was used in 5 class experiments (4.4)Ðhere, the

class names refer to the absolute pitch (e.g., 𝑜𝑝𝑒𝑛 𝐷 = 𝐷𝐴𝐷𝐹#𝐴𝐷).

3.2.1 Data Partition 1: Open D/Other. This partition only features

data from Dataset 1. It was used to (i) evaluate how well CNN 1

(3.2.6) could differentiate between the open D type tuning and vari-

ous other tunings, (ii) determine a suitable sample length for CNN 1,

(iii) evaluate how audio processing techniques affected performance.

Regarding the final point, only in preliminary experiments (4.1) was

a subset of Data Partition 1 used that did not have audio processing ap-

plied (e.g., source separation, removal of extraneous material). Isolated

guitar audio was used in all subsequent experiments. The labelled

and edited song files were divided into a training set (≈ 80%) and

a test set (≈ 20%). In each set there were 2 classes: (i) the positive

class x75435 (open D type), and (ii) the negative class other (tun-

ings not matching x75435). The song files were randomly selected

for each set. The selection process was random, aside from the

following conditions: different recordings of the same song could

not appear in both the training set and test set; studio recordings

and live recordings should appear in both the training set and test

set. These conditions were enforced to prevent the model from

overfitting on characteristics that were not related to the guitar

tuning. Although Dataset 1 is relatively small, and only features one

artist, the audio recordings that it is comprised of were recorded

with a variety of different tools in various different locations, so a

catalogue of varied data is spread across the partitions. This should

help to constrain a model, so it disregards extraneous features such

as recording conditions, and focuses instead on features related

to the guitar tuning. GTC is a novel and complex task, so limiting

some early experiments to the work of a single artist and 2 tun-

ing classes, helps to provide some consistency and simplify the

problem. The training set contained 15 song files from the x75435

class, and 14 song files from the other class. The test set contained

the 4 song files from the x75435 class, and 4 song files from the

other class.3 Songs were sliced into 1s/3s/9s clips prior to input

into CNN 1. The clips from the training set were randomly split into

2 subsetsÐ𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 80%, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 = 20% (this also occurred in

the subsequent partitions/experiments).
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3.2.2 Data Partition 2: Open D/Open G. This partition features 23

recordings from Dataset 1 and 8 recordings from Dataset 2. It was

used to evaluate the ability of a CNN to classify guitar tunings as

x75435 (open D type) or x57543 (open G type). Furthermore, it was

used to compare model performance on authentic test data from

similar conditions with a Joni Mitchell (JM) test set, and disparate

conditions with a multi-artist (MA) test set. The files in Dataset 1

were divided into a training set (≈ 80%) and a JM test set (≈ 20%).

A sample of 8 suitable songs was taken from Dataset 2, for the MA

test set. In each set there were two classes: (i) x75435 (open D type),

and (ii) x57543 (open G). The training set contained 11 song files

from the x75435 class, and 8 song files from the x57543 class. The

JM test set contained 2 song files from each class. The MA test set

contained 4 songs from each class.3 Songs were sliced into 9s clips

prior to input into CNN 1.

3.2.3 Data Partition 3:Multiclass. This partition features 245 record-

ings from Dataset 3 and 46 recordings from Dataset 2. It was used

to evaluate how well a CNN could differentiate between 5 tun-

ing classes (3.1.4), when trained on synthetic data and tested on

synthetic data from similar conditions and authentic data from dis-

parate conditions. It is the only data partition in which a capo is not

present in any of the guitar audio; this was done so that we could

more easily investigate the ability of an NN to learn features related

to pitch class for tuning classification. The files in Dataset 3 were

divided into a training set (≈ 80%) and a test set (≈ 20%). A sample

of 46 suitable songs was taken from Dataset 2, so the trained model

could be evaluated using authentic data from disparate conditions.

Songs were sliced into 30s clips (preliminary tests indicated this

was an effective length) prior to input into CNN 2.

3.2.4 Audio Pre-processing. To preserve the high frequency con-

tent and the dynamic range, the sample rate was set at 44.1 kHz and

the bit depth at 16-bit, with the log mel spectrogram input. These

features were deemed to be less vital for the chromagram input,

so the audio was downsampled to 22.5 kHz. Normalisation was ap-

plied to ensure the amplitude was consistent. To retain the dynamic

range of the music, song files were normalised in their entirety. The

alignment level was set at -18 dBFS as the EBU recommends this as

the maximum alignment level in digital systems [48]. Models may

learn different features depending on the sample length; to provide

insights into the effect sample length has on model performance,

the CNN was trained and tested independently on samples of 1s, 3s,

9s, 30s in length. Song files were sliced into samples of the desired

length; zero padding was automatically applied to samples that

were too short, and samples that were too long were automatically

cropped. If clips were multichannel, the first audio channel was

used as input and any additional channels were ignored.

3.2.5 Input Representations. The input representations used in the

experiments were spectrograms (4.1), log mel spectrograms (4.2ś4.3),

and chromagrams (4.4) (see Fig. 2ś3). Perceptually relevant repre-

sentations of audio data can improve the performance of DL models

designed for MIR tasks [4]. The log mel spectrogram was chosen as

an input representation as it models human perception of loudness

and pitch, and it is “efficient in its size while preserving the most

perceptually important informationž [8]. Log mel spectrograms are

also used effectively in DL frameworks for tasks such as generative

Figure 2: Log mel spectrogram sample from Dataset 1.

Figure 3: Chromagram sample from Dataset 2.

audio modelling [12] and AMT [19]. To produce the log mel spec-

trogram: the audio was transformed to the frequency domain by

STFT. The STFT was converted into a mel-frequency STFT with 128

mel-filterbanks. Window size for the FFT was set to 512 samples.

The Hann window function was applied to the FFT windows. The

hop length between STFT windows was set to 256 samples. The

decibel scale was applied to the mel spectrogram tensor with the

minimum negative cutoff set to -80 dB.

The second input representation was a chromagram. Pitch can

be divided into two elements, tone height and chroma. “The tone

height refers to the octave number and the chroma to the respec-

tive pitch spelling attribute contained in the set {𝐶,𝐶#, 𝐷, . . . , 𝐵}...
A pitch class is defined as the set of all pitches that share the same

chromaž [36, p. 123]. Chroma features aggregate all spectral in-

formation that pertain to a given pitch class into one coefficient.

A chromagram can be derived from a pitch-based log-frequency

spectrogram by summing all pitch coefficients that are part of the

same chroma [36]. While a large amount of information is lost in a

chroma representation, for certain tasks, “this loss in information is

desired since it introduces a high degree of robustness to variations

in timbrež [36, p. 124]. Additionally, it is more compact than many

other input representations, and it allows us to discard tone height

as a feature; this is useful when studying the ability of an NN to use

key and scale as features, while ignoring other pertinent features

that can be easily detected by less complex algorithms (e.g., a basic

pitch estimation algorithm could be used to determine the lowest

pitch that is playable in a given tuning).

3.2.6 CNNs. Two relatively small CNNs were chosen to ensure

the systems were economical and to reduce overfitting. CNN 1

was adapted from an architecture designed for bird audio detec-

tion [17, 26]; in preliminary tests it performed well when trained

on spectrograms, outperforming a much larger CNN, and an NN

comprised only of dense layers. It was used in the 2 class experi-

ments with spectrograms (4.1) and log mel spectrograms (4.2ś4.3).

CNN 2 was adapted from an architecture designed for keyword
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spotting [49, 51]. It was used in the 5 class experiment (4.4). In

preliminary tests it performed well when trained on synthetic data.

The model was originally designed to take MFCCs as input, but var-

ious inputs were tried in our preliminary testsÐa chromagram was

chosen as input, since the performance of models trained on chro-

magrams was comparable with models trained on more complex

and memory intensive representations (e.g., CQTs, spectrograms).

Additionally, most information related to the harmonic spectrum,

pitch range, and inharmonicity is not present in the chromagram,

which enabled us to make inferences about how the CNNmay learn

features such as pitch classes, scales, and key.

CNN 13 was comprised of 4 convolutional layers, followed by

3 dense layers. A sequence of 4 combinations of convolution and

pooling condensed the input into 16 feature maps. The condensed

features were classified by 3 dense layers with 256, 32 and 1 unit(s).

A Leaky ReLU activation function was used for hidden layers and

a sigmoid function for the output layer. Batch normalisation was

applied after every layer, and dropout was applied after every dense

layer [46]. The total number of trainable network parameters was

679,889 with 9s samples as input. Training was carried out over 25ś

50 epochs; learning curves were used to select a suitable number of

training epochs. The batch size was 16. Data was shuffled to ensure

the network was unaffected by the order in which samples were

presented to it. A binary-crossentropy loss function calculated the

difference between the network output and the expected output.

The learning rate was set to 0.001 and the Adam optimisation algo-

rithm updated the network weights. Most models could be trained

within minutes using an NVIDIA GeForce RTX 3060 Ti GPU, due to

the relatively small size of the datasets/networks. Trained models

were tested using independent test sets. Inputted test samples re-

turned probability outputs between 0 and 1 in a continuous range.

This output data was used to plot ROC curves and determine AUC

scores. The probability outputs were also used to make nominal

predictions (e.g., “open Dž, “otherž) on samples and songs.

CNN 23 was comprised of 3 convolutional layers, followed by

2 dense layers. A sequence of 3 combinations of convolution and

pooling condensed the input into 64 feature maps. The condensed

features were classified by 2 dense layers with 64 and 5 units. A ReLu

activation function was used for the hidden layers and a softmax

function for the output layer. Batch normalisation was applied to

the convolutional layers and dropout was applied after the first

dense layer. The total number of trainable network parameters was

353,605 with 30s samples as input. Training and testing was the

same as with CNN 1, except the batch size was 32 and the sparse

categorical crossentropy loss function was used.

4 RESULTS AND DISCUSSION

Models were trained and tested 5 times with different random seeds

(e.g., random weight initialisation, random training/validation split

etc.). Receiver operating characteristic (ROC) curve and area under

the curve (AUC) were used to evaluate performance in the 2 class

studies (see Sections 4.1, 4.2, and 4.3). The ROC curve shows the true

positive rate against the false positive rate at all classification thresh-

olds. AUC gives an aggregate measure of the 2D area under the

ROC curve; an advantage of AUC is its classification-threshold in-

variance [16]. F-score was used in the 5 class study (see Section 4.4).

Table 2: AUC for CNN 1 models with audio processing.

Model AUC

Mean SD

Source sep + edit 0.771 (0.06)

Source sep 0.749 (0.04)

No processing 0.698 (0.03)

The F-scores were calculated for each label and their weighted av-

erage was foundÐthis approach was appropriate for the multiclass

targets and accounted for label imbalance. Accuracy was also used

(Sample Classification = ACC 1, Song Classification = ACC 2). In

preliminary tests (see Section 4.1) a spectrogram was used as input;

the best performing model in these tests attained an AUC of 0.771.

In Sections 4.2 and 4.3 a log mel spectrogram was used as input.

This improved performanceÐthe best performing model attained

an AUC of 0.893. Section 4.4 was the only experiment that used

CNN 2, chromagrams, synthetic data, and 5 tuning classes; the best

performing model achieved a classification accuracy of 73.9% on

the synthetic test set and 67.4% on the authentic test set.

4.1 Open D/Other: Data Processing Study

Table 2 indicates how differently processed versions of Data Parti-

tion 1 affected performance. CNN 1 performance increased notice-

ably when source separation was applied. Model performance also

increased as a result of audio editing (see Section 3.1.2).

4.2 Open D/Other: Sample Length Study

Figure 4 and Table 3 show that the model trained on 9s samples was

most effective, and performance deteriorated with shorter samples.

We could infer from this that, for GTC, fine-grained features (e.g.,

inharmonicity, harmonic spectrum) are less useful than longer term

temporal features (e.g., chord voicings, transitions between chords).

However, it is also possible that the model was unable to learn these

fine-grained features due to other factors such as the small size of

the dataset and extensive capo usage. Additionally, the CNNwas not

originally designed to receive samples of less than 3s, so it is possible

that an NN that is specially designed to extract fine-grained features

could derive information that is equally useful from shorter samples,

and the improved performance with longer samples is simply an

attribute of this particular architecture. Table 3 shows that models

trained on 9s and 3s clips achieved high AUC and accuracy scores.

The 9s models achieved an average song classification accuracy of

97.5%. This result is very promising, especially as the model had to

make classification decisions irrespective of the position of the capo

on the guitar. The results suggests that CNNs can be used effectively

for GTC. However there are a number of caveats that should be

considered when assessing this result: (i) there were only 8 songs

in the test set, (ii) the task of multiclass tunings classification is

likely to be considerably harder, (iii) the data in the train and test

sets was derived from a single artist.

4.3 Open D/Open G Study

Table 4 shows that the model performs well on test data from

similar conditions, achieving a song classification accuracy of 95.0%.
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Figure 4: ROC plots (selected) for Open D/Other models.

Table 3: AUC and ACC for CNN 1/Data Partition 1.

Model AUC ACC 1 ACC 2

Mean SD Mean SD Mean SD

9s 0.893 (0.03) 81.8% (2.30) 97.5% (5.00)

3s 0.823 (0.06) 74.2% (5.37) 87.5% (13.69)

1s 0.627 (0.12) 57.4% (10.15) 52.5% (14.58)

Table 4: AUC and ACC scores for CNN1/Data Partition 2.

Model AUC ACC 1 ACC 2

Mean SD Mean SD Mean SD

JM 0.867 (0.05) 80.0% (4.58) 95.0% (10.0)

MA 0.577 (0.05) 57.3% (4.30) 65.0% (5.0)

This result, which is comparable with the results in Section 4.2, is

encouraging; it provides further evidence that NNs can be used

effectively for GTC. However, while the model exhibited skill when

tested with data from disparate conditions, accuracy decreased

markedly (-30%).

4.4 Multiclass Study

Table 5 and Table 6 show that the model performed reasonably well

on the synthetic test set, attaining an average F-score of 0.67 across

the 5 classes. The model did not perform as well on the authentic

test set, with an average F-score of 0.52. Nevertheless, this is a

reasonable result if we consider the following factors: the model

had to differentiate between five tuning classes; the chromagram

input does not include lowest pitch range information which is

likely to have made the identification of standard tuning much

easier; the model was trained on an imbalanced synthetic dataset;

the authentic test set featured noisy real-world data from disparate

conditions. Figure 5 shows tuning predictions from a selected model

that was tested on real songs from Dataset 2.

Figure 5: Predictions on an independent test set of real songs.

Table 5: Average F-score for five tuning class models.

Test Set 𝐹1 Clips 𝐹1 Songs

Mean SD Mean SD

Synthetic 0.649 (0.03) 0.666 (0.05)

Authentic 0.474 (0.06) 0.516 (0.10)

Table 6: Average accuracy for five tuning class models.

Test Set ACC Clips ACC Songs

Mean SD Mean SD

Synthetic 65.4% (0.03) 67.8% (0.05)

Authentic 43.4% (0.07) 48.3% (0.11)

5 CONCLUSION AND FUTUREWORK

This research provides evidence that neural networks can classify

guitar tunings from audio. Future work will investigate capo and

open string detection with spectrograms/CQTs. The modelling and

generalisation proficiency of DL models improves significantly

with more data. Therefore, a priority in future work will be the

creation of a large synthetic GTC dataset with a diverse range of

timbres and time alignment between audio and tablature; this can

be easily achieved with the approach proposed in Section 3.1.4.

An algorithm that outputs a separate tuning prediction for each

string would provide greater flexibility for GTC. It could enable the

identification of tunings not present in the training data. However,

the creation of such an algorithm is likely to be challenging, so the

feasibility of this approach requires investigation. Traditional DSP

and ML methods may be more appropriate for certain GTC tasks,

so they require investigation. Audio segmentation in this work

did not account for the onset of notes/chords/bars. Future work,

will investigate onset detection techniques for GTC, so individual

chords, notes, and bars can be isolated, before input into a model.
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