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Abstract. Corrosion is one of the primary factors leading to structural deterioration, necessitating 
regular inspections to maintain. Existing instrument-based inspections are prohibitively expensive, 
while computer vision-based models face obstacles in generality and adaptability across different 
scenes. This study introduces a novel framework that incorporates a Parametric Efficient Fine-
Tuning (PEFT) strategy into the vision foundation model, the Segmentation Anything Model 
(SAM), to improve the task of structural corrosion inspection. Our approach bridges the gap between 
the SAM pre-trained model and the downstream task by transferring knowledge from the natural 
image domain to the structural corrosion domain. The PEFT strategy significantly reduces the 
consumption of computational resources and shortens the model's training time while maintaining 
high performance on new tasks. The effectiveness and superiority of the proposed approach have 
been verified through a series of comparative experiments conducted on two structural corrosion 
datasets, as well as the potential of the foundation model. 

1. Introduction 

Corrosion is one of the common structural defects and a significant cause of failure. Therefore, 
it is advisable to conduct regular inspections to maintain the infrastructure structure. Recently, 
there have been three main types of corrosion inspection methods. The first method is to 
complete the inspection with the help of physical testing instruments such as ultrasonic 
detectors, x-ray equipment, and electrochemical testing equipment (Vasagar et al., 2024). 
Although these devices can get very accurate inspection results, they often have the limitations 
of the high cost of instruments and the time-consuming and labour-intensive inspection process. 
The second category is using traditional image processing techniques (Ahuja and Shukla, 
2018). It can effectively extract regional features in the image and thus identify the specifics of 
corrosion. This type of method has the advantages of low cost and simple processing. However, 
manual feature extraction will have time-consuming problems when facing complex 
environments. Additionally, this method exhibits poor sensitivity to texture and colour features, 
which can be a significant limitation in detecting corrosion types. In contrast, the third type of 
deep learning-based corrosion detection models can automatically learn high-dimensional 
abstract semantic features (Zhang et al., 2021), which can segment the corroded region at the 
pixel level. However, current defect detection models are insufficiently generalised and 
adaptable when crossing scenarios (Tulbure et al., 2022). When adapting to new tasks in 
different scenarios, a large amount of data is often required to complete the fine-tuning of the 
model. Such a process typically consumes extensive computational resources. Therefore, it is 
necessary to investigate more advanced deep learning models to perform the task of structural 
corrosion detection better. 

Foundation models, also known as pre-trained large models, are considered the next generation 
of general paradigms in Artificial Intelligence (AI). Specifically, the family of Large Language 
Models (LLM), such as Bidirectional Encoder Representations from Transformers (BERT) 
(Devlin et al., 2018) and Generative Pre-trained Transformers (GPT) (Radford et al., 2019), 
along with others, have achieved great success in the field of Natural Language Processing 
(NLP). These models learn patterns and associations from vast amounts of data through deep 
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learning frameworks established by pre-training on extensive datasets. When generalised to 
various downstream tasks using techniques such as fine-tuning, they can capture rich a prior 
knowledge through powerful generic feature representation capabilities and have demonstrated 
superior comprehension in language-related tasks. Similarly, the foundation model is being 
extended to the field of vision. Segmentation Anything Model (SAM) was developed and 
trained on a dataset of 11 million images and 1.1 billion masks, and it demonstrated impressive 
visual perceptual segmentation performance (Kirillov et al., 2023). This pioneering research in 
image segmentation provides a valuable opportunity for the downstream task. However, since 
the pre-training dataset for the visual foundation model is primarily natural images, it does not 
perform well in several specific downstream tasks (Chen et al., 2023) (Ji et al., 2023). 
Therefore, it is worth exploring further how to utilise the segmentation capabilities of the visual 
foundation model in downstream tasks. This study will focus on the structural corrosion 
inspection task. 

Given this, this paper proposes a novel framework that incorporates the Parameter Efficient 
Fine-Tuning (PEFT) strategy into the foundation model SAM for better application to structural 
corrosion inspection tasks. Our approach aims to bridge the gap between the SAM pre-trained 
model and the downstream task so that complex corrosion environments can be accurately 
identified and segmented. In addition, the PEFT strategy allows knowledge migration from the 
natural image domain to the structural corrosion domain by adjusting only a tiny portion of the 
model parameters. This strategy not only drastically reduces the consumption of computational 
resources but also shortens the model training time while maintaining the model's high 
performance on new tasks. We validate the effectiveness and superiority of the proposed 
approach through extensive experiments on two structural corrosion datasets. This research 
advances the application of SAM to specific downstream tasks and provides a new perspective 
and methodology for solving field-specific problems using foundation models. 

The subsequent sections of this paper are organised as follows: Section 2 reviews related work 
on structural corrosion detection and the foundation model SAM. Section 3 details the 
architectural design of the Corrosion SAM we developed. Section 4 outlines the experimental 
design and implementation steps, presenting the results of ablation studies and comparative 
experiments. Finally, Section 5 summarises the research and main findings in this paper while 
providing an outlook on potential directions for future research. 

2. Related work 

2.1 Structural corrosion inspection 

In recent years, computer vision-based corrosion detection methods have become mainstream, 
especially in the industrial and infrastructure fields. These methods mainly utilise advanced 
deep learning models, such as Convolutional Neural Network (CNN) and Transformer models, 
which have shown great potential in corrosion detection. Cha et al. (2018) developed a 
structural damage detection method based on the Faster R-CNN model for detecting damages, 
including steel corrosion and bolt corrosion. He demonstrated promising results and accuracy 
on a database containing 2366 images. Atha and Jahanshahi (2018) applied two CNN-based 
networks, ZF Net and VGG, to a database of contrasting images of 33,039 corroded and 34,148 
uncorroded regions. A fine-tuning approach was used to demonstrate the CNN network's state-
of-the-art. Forkan et al. (2022) proposed an integrated framework for identifying and detecting 
corrosion called CorrDetector based on CNN models. Excellent and effective results were 
obtained when evaluated on complex structural images collected in infrastructure 
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environments. Wang and  Su (2023) proposed two deep learning models, BearDet and BearCla, 
using the Transformer architecture as a feature extraction network. The ability to detect and 
classify the corrosion level of bridge bearings, a critical structural component, was 
demonstrated in experiments. 

Most previous work has used traditional CNN models or the Transformer architecture. 
However, CNN models have significant limitations in global modelling in handling 
dependencies due to small receptive fields and spatial invariance, which is likely to result in a 
limited model performance. Furthermore, the Transformer architecture relies on the self-
attention mechanism to automatically capture global dependencies, providing a more robust 
framework to understand long-distance image interactions. Nevertheless, the Transformer 
architecture also faces new challenges, as fine-tuning requires the use of large-scale datasets to 
learn complex patterns. It also means that when the amount of data is not large enough, there is 
a risk of overfitting the model when fine-tuning the parameters, which poses a challenge to the 
generalisation and adaptability of the model. On the other hand, the full-param fine-tuning of 
the model requires sufficient computational resources to provide support. Therefore, it is 
necessary to use more efficient fine-tuning strategies to investigate more advanced deep-
learning models. 

2.2 Foundation model SAM 

The SAM marks an essential innovation in foundation models in vision. With its unique 
composition of image encoder, prompt encoder, and mask decoder, pre-training on large-scale 
datasets enables it to recognise various visual elements ranging from simple textures to complex 
scenes. In medical image segmentation, the MedSAM model developed by Ma et al. (2024) 
demonstrated its generalised segmentation capability on different medical image datasets by 
fully fine-tuning the SAM. However, its reliance on high-end computational resources (20 
GPUs of NVIDIA A100 80GB) limited its general application. To address this issue, Gong et 
al. (2023) proposed a new adaptive technique that significantly improves the performance of 
medical image segmentation tasks through the fusion of lightweight adapters and domain-
specific knowledge. In remote sensing image segmentation, Pu et al. (2024) also demonstrated 
that by fine-tuning some parameters, the SAM model can accomplish efficient land cover 
segmentation with low computational resource requirements. 

Although the SAM model has performed well within several fields, such as medicine and 
remote sensing, it outperforms many traditional supervised learning models. However, it still 
faces considerable challenges in specific application scenarios, such as structural corrosion 
detection. Structural corrosion is characterised by its tiny, irregular damage regions that are not 
only difficult to distinguish from the background but also have a high degree of uncertainty in 
the morphology and distribution of the damage. These features require models that are not only 
highly sensitive but also can adapt to complex and changing backgrounds and corrosion types. 
Therefore, how to better accomplish the task of structural corrosion inspection with the help of 
foundation models has become an issue worth exploring. 

3. Methodology 

3.1 Overall framework 

As mentioned, the foundation model SAM should be optimised when migrating to new 
downstream tasks. The standard architecture of SAM is shown in the upper part of Fig. 1. After 
inputting an image into the image encoder, the model encodes the image through a patch 
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embedding process and several Transformer layers and finally outputs it to a mask decoder that 
generates the corresponding output mask. However, when faced with a scenario in an unseen 
domain, such as structural corrosion, the standard structure of SAM cannot adequately capture 
the specific features of the corrosion image. This is because its pre-training weights are mainly 
aimed at the natural image domain rather than the structural corrosion image domain. As a 
result, even if an output mask can be generated through the Transformer layer and mask decoder, 
the accuracy and effectiveness of the mask will be significantly reduced. As shown in the output 
of the upper part of Fig. 1, corrosion regions cannot be correctly extracted. 

 

Figure 1: The proposed overall framework (Upper: Original SAM, Lower: Corrosion SAM) 

Given this, a model architecture with an adapter called the corrosion SAM is proposed. Its 
overall framework is shown in the lower part of Fig. 1. In this architecture, most Transformer 
layers are frozen and no longer updated during the fine-tuning process. Instead, only the adapter 
and mask decoder parameters are updated. The adapters work in each Transformer layer and 
are responsible for fine-tuning the model to a specific downstream task based on the feature 
representation of the Transformer layer. 

3.2 SAM Transformer architecture 

The standard backbone network of SAM uses Vision Transformer (ViT) architecture, as shown 
in the left part of Fig. 2. This architecture captures the long-range dependencies of the input 
image through its multi-head attention mechanism to efficiently encode complex local areas. 
Each Transformer layer contains a multi-head attention unit that extracts information from 
multiple patch levels in parallel and ensures numerical stability during training by layer 
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normalisation. The next multilayer perceptron (MLP) further processes the features to enhance 
the nonlinear representation of the model. Crucially, the residual connectivity between layers 
allows some inputs to be passed directly to deeper layers. This approach facilitates deeper 
feature learning, prevents the gradient vanishing problem, and ensures efficient training of 
deeper networks. Together, the above designs form an efficient Transformer module. 

 

Figure 2: The Transformer layer architecture (Left: Original ViT, Right: Improved ViT) 

Taking the standard ViT architecture as a basis, we strategically embedded adapter modules 
into the Transformer layer, as shown in the right part of Figure 2. These modules are placed 
after the multi-head attention module and parallel to the MLP block. We are introducing an 
adapter after the multi-head attention module, which allows efficient task fine-tuning with only 
a few trainable parameters on top of the original pre-trained model weights. At the same time, 
placing the adapter parallel to the MLP block achieves another level of adaptation in the feature 
extraction process. Such a setup allows feature transformations in different representation 
spaces, improving the model's sensitivity to specific tasks and maintaining enough flexibility 
to learn new feature representations. 

3.3 Adapter module 

The internal structure of the adapter is shown in the orange area on the right side of Fig. 2. It 
consists of a set of lightweight layers that project activations into a low-dimensional space, 
process them through a nonlinear activation function, and then project the activations back to 
the original dimension. This "compression-activation-expansion" model allows the Adapter 
module to learn task-relevant feature transformations at a much lower parameter cost. It does 
not interfere with the rich representations captured by the pre-trained network. This process is 
more cost-effective and faster regarding computational resources than full-param fine-tuning. 

4. Experiment validation 

4.1 Dataset preparation 

We conducted validation experiments on the proposed method using two open-source structural 
corrosion datasets, the VDOT dataset (Bianchi and Hebdon, 2023) and the KRDB dataset 
(Fujishima et al., 2023), to demonstrate the method's effectiveness. 

a. VDOT dataset 

The VDOT dataset is derived from bridge inspection reports managed by the Virginia 
Department of Transportation (VDOT). This dataset was annotated strictly following the 
corrosion condition guidelines of the Bridge Inspector's Reference Manual (BIRM) and the 
American Association of State Highway and Transportation Officials (AASHTO). The original 
dataset consisted of 440 finely annotated images in four corrosion condition classes (good, fair, 
poor, and severe). Considering that the dataset has a significant category imbalance, i.e., there 
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are far fewer annotations in the poor and severe classes than in the fair classes. We chose to 
merge the annotations in the poor and severe classes with the annotations in the fair classes so 
that the merged dataset will be segmented only for corrosion regions in the structural image. 
This merge will reduce the disturbance caused by category imbalance to the model on the one 
hand and reduce the computational complexity of the model on the other hand. 

b. KRDB dataset 

The KRDB dataset is derived from bridge inspection reports managed by the Kanto Regional 
Development Bureau (KRDB). This dataset contains five categories of damage: corrosion, 
cracking, free lime, water leakage, and spalling, each finely annotated. We selected only the 
structural corrosion images from it, totalling 955 images. 

For each dataset, 80%, 10%, and 10% are selected as training, validation, and test sets, 
respectively. To further improve the model performance, we uniformly adopted the 
normalisation process of binarization for the image pixel values of the dataset and the operation 
of resizing the image to 512 × 512. 

4.2 Model evaluation metrics 

The model's performance is evaluated using Intersection over Union (IoU) and Dice coefficient, 
commonly used evaluation metrics in segmentation tasks (Wang et al., 2022). These metrics 
are intended to measure the degree of overlap and approximation between the masks segmented 
by the model and the ground truth. 

a. IOU 

IoU is a metric used to evaluate the performance of image segmentation algorithms. It 
represents the ratio of intersection and concatenation between the predicted segmentation result 
and the actual region. The formula is calculated as follows, and the value of IoU ranges from 0 
to 1. The closer its value is to 1, the higher the overlap between the predicted result, and the 
ground truth and the higher the similarity. 

𝐼𝑜𝑈(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
(1) 

b. Dice coefficient 

The Dice coefficient is a pixel-level metric for assessing the similarity of two samples. It is 
usually used to compare the similarity between segmentation results and ground truth. It is 
calculated as follows: twice the intersection part divided by the sum of the respective sizes of 
the two samples. The values range from 0 to 1, where 0 indicates no overlap and 1 indicates 
complete overlap. 

𝐷𝑖𝑐𝑒(𝐴, 𝐵) =
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
(2) 

4.3 Implementation details 

All experiments were executed in Python 3.8 and Pytorch 1.13.0 environments with an Intel(R) 
Core (TM) i9-12900 CPU@ 2.40 GHz processor and 128 GB of RAM. It also has an NVIDIA 
RTX A6000 to ensure high computational efficiency and robustness. Considering that we are 
comparing the method developed in this paper with other existing segmentation algorithms, the 
implementation parameters of all the algorithms were kept as consistent as possible when 
conducting the experiments. 
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The training process is configured for a maximum of 100 epochs. The image size accepted by 
the model is 512×512, and the input batch size is 8. Considering the large number of irregular 
shapes and significant differences in image quality in the structural corrosion segmentation task, 
it may pose a challenge to the training and generalisation ability of the model. Therefore, on 
the one hand, the loss function selects the strategy of Cross entropy loss and Dice loss. Cross 
entropy loss is adept at dealing with pixel-level classification issues and can effectively drive 
the model to learn to differentiate between corroded and non-corroded regions. Dice loss 
strengthens the model's ability to capture irregular shapes by quantifying the degree of overlap 
between predicted and actual regions.  

On the other hand, these neural networks use the 'Adam optimiser' and 'Step decay' learning 
rate schedule strategy. This is because this combined strategy can flexibly adapt to different 
training stages. Initially, the 'Adam optimiser' adaptive ability quickly adapts to the data's 
irregular shape and quality changes, ensuring that the model can converge quickly in complex 
environments. As the training progresses, the 'step decay' learning rate adjustment strategy 
reduces the overfitting risk of the model in the later stages of training by gradually decreasing 
the learning rate. Simultaneously, it refines the model's ability to capture details and enhances 
its generalisation. The initial learning rate is then set to 1e-4. Specific implementation details 
are shown in the following Table 1. 

Table 1: Fine-tuning implementation parameter 

Parameter Corrosion SAM (Ours) Existing segmentation method 

Epochs 100 100 

Image size 512×512 512×512 

Batch size 8 8 

Loss function Cross entropy loss & Dice loss Cross entropy loss & Dice loss 

Optimizer type Adam Adam 

Learning rate schedule Step decay Step decay 

Initial learning rate 1e-4 1e-4 

4.4 Experimental results 

To validate the model, we conducted ablation studies and comparison experiments on the 
VDOT and KRDB datasets. In the ablation study section, we obtained the best model 
performance by comparing different model sizes of the backbone. In the comparison 
experiments section, we select a variety of existing methods that perform well and compare 
them to the Corrosion SAM to assess the overall performance of our method. Finally, we then 
show the effect of model segmentation through visualisation. 

a. Ablation study 

The backbone of the ViT, which is pivotal to our model's enhancement, is available in three 
distinct sizes: ViT-H, ViT-L, and ViT-B. Experiments conducted on the VDOT dataset indicate 
that adjusting the backbone from ViT-B to ViT-H results in a marked performance 
improvement. Specifically, the IoU metric increased from 64.01% to 69.72%, and the Dice 
score increased from 76.33% to 81.04%. The KRDB dataset shows a similar pattern of change. 
This increasing trend suggests that larger model sizes can lead to better performance, likely due 
to their increased capacity for capturing more complex patterns within the data. Therefore, we 
chose the better-performing ViT-H as the backbone of our model. 
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Table 2: Ablation study 

Backbone 
VDOT dataset KRDB dataset 

IoU (%) Dice (%) IoU (%) Dice (%) 

ViT-B 64.01 76.33 55.93 68.53 

ViT-L 67.12 78.85 57.17 70.08 

ViT-H 69.72 81.04 60.78 72.97 

b. Comparison experiment 

The existing algorithms compared in this section involve DeepLabV3+ (Chen et al., 2018), U-
Net (Ronneberger et al., 2015), and SegFormer (Xie et al., 2021). Each method has a well-
designed structure. DeepLabV3+ combines a null convolution and an encoder-decoder structure 
for capturing multi-scale features and improving the accuracy of segmented edges. U-Net uses 
a symmetric encoder-decoder structure featuring jump connections between the encoder and 
decoder to improve the segmentation of small targets. SegFormer is a lightweight and efficient 
Transformer-based semantic segmentation model that improves performance by combining 
multi-scale features with a self-attention mechanism. When conducting the comparison 
experiments, we set the same implementation parameters for the above method as Corrosion 
SAM, as detailed in Table 1. The comparison results are shown in Table 3. 

Table 3: Comparison of with other methods 

Method Backbone 
VDOT dataset KRDB dataset 

IoU (%) Dice (%) IoU (%) Dice (%) 

DeepLabV3+ MobileNet-V2 62.23 67.15 57.85 64.25 

U-Net VGG-16 64.98 71.26 51.62 63.35 

SegFormer MiT-B0 68.71 72.33 57.93 67.16 

Corrosion SAM ViT-H 69.72 81.04 60.78 72.97 

As seen from the table, on both dataset, VDOT and KRDB, the Corrosion SAM achieves the 
best IoU and Dice coefficient evaluation metrics, which are superior to the other methods. 
Analysing the reasons, while CNN-based methods like DeepLabV3+ and U-Net have shown 
commendable performance in many image segmentation tasks, they may be limited by their 
local receptive fields when dealing with specific tasks that require an understanding of a broader 
context and capturing finer texture details. Meanwhile, SegFormer, although better able to 
capture global information through the Transformer architecture, may be deficient in feature 
recognition and context understanding capabilities as it has not been pre-trained on large-scale 
datasets. In contrast, the Corrosion SAM, which uses ViT-H as the backbone network, takes 
advantage of the robust learning capabilities during the pre-training phase of the foundation 
model, resulting in a more pronounced advantage in the integration of global information, 
complexity recognition of features, and task-specific context sensitivity. Additionally, its 
adapter module effectively narrows the domain gap between the foundational model trained on 
natural images and the specific demands of structural corrosion imagery, thereby enhancing its 
precision in identifying crucial features. These factors enable our model to achieve better results 
in structural corrosion detection tasks. 
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c. Visualisation results 

Fig. 4 presents the visualisation results of the Corrosion SAM compared with other methods. 
Corrosion SAM can extract features of corroded regions more accurately and comprehensively, 
especially details such as edges and boundaries. When dealing with corroded edges and 
complex textures, other methods are more prone to over-segment and incorrectly classify non-
corroded regions as corroded areas, affecting the evaluation's accuracy. In addition, they also 
often miss detecting corrosion features, especially if the corrosion is mild or the features are not 
significant enough in the image, and this under-segmentation may lead to misjudgement of 
structural safety. Corrosion SAM somewhat remedies these shortcomings by adapting 
foundation models to the structural corrosion domain using an adapter strategy. However, its 
segmentation results in certain fine-grained regions also suffering from ambiguous noise. This 
may be because the model still has limitations in dealing with highly similar textures or colour 
gradients and does not have enough capabilities to resolve such subtle differences. The next 
research phase could consider introducing more advanced multi-scale analysis and contextual 
enhancement strategies to improve the model's feature extraction capabilities in these 
challenging regions. 

Image Ground Truth Corrosion SAM DeepLabV3+ U-Net SegFormer 

      

      

      

      

Figure 4: Visualisation results of different methods 

5. Conclusions 

This study presents a Corrosion SAM approach for inspecting structural corrosion. It 
incorporates PEFT strategies into the foundation model SAM, which can bridge the domain gap 
between natural and corrosion scenarios. Our proposed method demonstrates superior 
performance compared to existing approaches through comparative experiments on the VDOT 
and KRDB datasets, coupled with visualisation results. These findings affirm the effectiveness 
of our method and illuminate the potential application of visual foundation models in structure 
inspection.  

In summary, this study offers a valuable contribution to structural corrosion inspection within 
the infrastructure, exploring the feasibility of applying foundation models to more actual 
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engineering fields. Future research can further improve the model's robustness and 
generalisation capabilities and explore more types of structural defects, paving the way for AI-
driven structural inspection. 
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