Herschel Gould Belt Survey in Taurus. II: A census of dense cores and filaments in the TMC1 region

J. M. Kirk1*, D. Ward-Thompson1, J. Di Francesco2, Ph. André3, D. W. Bresnahan1, V. Könyves1, K. Marsh4,5, M. J. Griffin4, N. Schneider6, A. Men'shchikov3, P. Palmeirim7, S. Bontemps8, D. Arzoumanian9, M. Benedettini10, S. Pezzuto10,

1Jeremiah Horrocks Institute, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK.
2National Research Council of Canada, Herzberg, Astronomy & Astrophysics Research Centre, 5071 West Saunich Road, Victoria (BC), V9E 2E7, Canada.
3Laboratoire d’Astrophysique (AIM), Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, 91191 Gif-sur-Yvette, France
4School of Physics and Astronomy, Cardiff University, Queen’s Buildings, The Parade, Cardiff, Wales, CF24 3AA, UK.
5IPAC, Caltech, 1200 E California Boulevard, Pasadena, CA 91125, USA.
6Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany.
7Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, P-4150-762 Porto, Portugal.
8Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France.
9National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
10INAF – Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, 00133 Roma, Italy.

Accepted XXX. Received YYY; in original form ZZZ.

ABSTRACT

We present a catalogue of dense cores and filaments in a 3.8' × 2.4' field around the TMC1 region of the Taurus Molecular Cloud. The catalogue was created using photometric data from the Herschel SPIRE and PACS instruments in the 70 µm, 160 µm, 250 µm, 350 µm, and 500 µm continuum bands. Extended structure in the region was reconstructed from a Herschel column density map. Power spectra and PDFs of this structure are presented. The PDF splits into log-normal and power-law forms, with the high-density power-law component associated primarily with the central part of TMC1. The total mass in the mapped region is 2000 M☉, of which 34% is above an extinction of A_v ~ 3 mag – a level that appears as a break in the PDF and as the minimum column density at which dense cores are found. A total of 35 dense filaments were extracted from the column density map. These have a characteristic FWHM width of 0.07 pc, but the TMC1 filament itself has a mean FWHM of ~ 0.13 pc. The thermally supercritical filaments in the region are aligned orthogonal to the prevailing magnetic field direction. Derived properties for the supercritical TMC1 filament support the scenario of it being relatively young. A catalogue of 44 robust and candidate prestellar cores is created and is assessed to be complete down to 0.1 M⊙. The combined prestellar CMF for the TMC1 and L1495 regions is well fit by a single log-normal distribution and is comparable to the standard IMF.

Key words: ISM: individual objects: TMC1 molecular cloud, – stars: formation – ISM: clouds – ISM structure – submillimeter: ISM – catalogues

1 INTRODUCTION

Stars form within the dense cores of giant molecular clouds. Observations with the Herschel Space Observatory (Pilbratt et al. 2010) have reinforced the paradigm that these cores form preferentially as condensations on filaments within the clouds (e.g., André et al. 2014). The success of Herschel in this regard is due to its unparalleled ability to map simultaneously in five submillimetre wavelengths large contiguous areas of sky with unprecedented dynamic range and sensitivity. The Herschel Gould Belt Survey (HGBS; André et al. 2010) has used this ability to map systematically star formation regions in the Gould Belt (a ~ 1 kpc loop of molecular clouds that encircle the local bubble, see Herschel 1847; Gould 1879). Catalogues and analysis of dense cores in Aquila (Könyves et al. 2015), Corona Australis (Bresnahan et al. 2018), and Lupus (Benedettini et al. 2018) have already been published.

Taurus forms broadly two large parallel structures which have been mapped with Herschel (Kirk et al. 2013). The overall mapping approach is described in Kirk et al. (2013). The first part of the Taurus catalogue was published in Marsh et al. (2016, hereafter Paper

* E-mail: JMKirk@uclan.ac.uk

© The Author(s) 2024. Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Table 1. Filter-dependent observation details. Columns 1 and 2 list the filter name and wavelength. Column 2 lists the assumed calibration uncertainty. Column 3 lists the effective HPBW of the telescope at this wavelength. The HPBW was determined using the naive map maker and were produced on pixel grids of 6 arcsec by 6 arcsec. The filter-dependent observation details are as follows: Column 1 lists the filter name, Column 2 lists the wavelength in microns, and Column 3 lists the assumed calibration uncertainty in percent. Column 4 lists the HPBW in arcsec. Column 5 lists the median Planck DC level across the map (see Section 4).

<table>
<thead>
<tr>
<th>Filter</th>
<th>(\lambda) ((\mu m))</th>
<th>(\sigma_{\text{cal}}) [%]</th>
<th>HPBW [&quot;]</th>
<th>(S_{\text{Planck}}) (Mjy/str)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PACS blue</td>
<td>70</td>
<td>10</td>
<td>8.4</td>
<td>4.62</td>
</tr>
<tr>
<td>PACS red</td>
<td>160</td>
<td>10</td>
<td>14</td>
<td>77.4</td>
</tr>
<tr>
<td>SPIRE PSW</td>
<td>250</td>
<td>12</td>
<td>18.2</td>
<td>59.4</td>
</tr>
<tr>
<td>SPIRE FMM</td>
<td>350</td>
<td>12</td>
<td>25</td>
<td>36.9</td>
</tr>
<tr>
<td>SPIRE PLW</td>
<td>500</td>
<td>12</td>
<td>42</td>
<td>17.1</td>
</tr>
</tbody>
</table>

I. Paper I found a total of 52 prestellar cores out of a large population of 525 unbound starless cores across an area of \(~4^\circ \times 2^\circ\). They showed that the completeness-corrected mass function for the unbound starless cores was consistent with a power-law form below a mass of 0.3 M\(_\odot\). This correspondence was unlike the mass function for bound prestellar cores which followed the classical log-normal form, in agreement with previous studies.

The area mapped in Paper I was the L1495 region. Its dominant feature is the B211/213 filament which stretches across \(\sim 2\) degrees (\(\sim 5\) pc at 140 pc). Palmeirim et al. (2013) showed that the B211/213 was an archetypical case of material being funnelled along low-density striations onto the central filament. For example, the striations and filament were respectively oriented parallel and perpendicular to the local magnetic field direction. The next HGBS tile across from the L1495 region, along the northern structure, is the one presented in this paper. It is markedly different from the B211/213 and L1495 region as it lacks any dominant singular filament and is instead composed of a network of distributed filaments and structures (see Figure 2 and Section 4). For ease of reference, we refer to this entire region, i.e., the area mapped in this paper, as the \("TMC1\) region."

This paper is laid out as follows. Section 2 describes the Herschel observations of the TMC1 region and the data reduction process. Section 3 characterises the distance to the TMC1 region. Section 4 describes the creation of a column density map from the Herschel observations and includes an analysis of its power spectrum and hierarchical structure. In Section 5, we characterise the filamentary structure within the TMC1 region and compare it to the bulk magnetic field and the location of the cores in our catalogue. In Section 6 we describe our source extraction methodology, the resulting catalogue of cores, and the catalogue’s general properties, and the properties of the prestellar core mass function in Taurus.

2 OBSERVATIONS

The Herschel Space Observatory was a 3.5 m-diameter passively-cooled Cassegrain space telescope launched on the 14th of May, 2009 (Pilbratt et al. 2010). It operated two photometric instruments in the far-infrared and submillimetre regimes—the Photodetector Array Camera and Spectrometer (PACS, Poglitsch et al. 2010) and the Spectral and Photometric Imaging Receiver, (SPIRE, Griffin et al. 2010; Swinyard et al. 2010)—to provide sufficient wavelength coverage to bracket the peak of the 10 K cold dust SED. Table 1 lists the instrument and filter names, the wavelengths of the filters, and our assumed calibration errors.

The HGBS\(^1\) (Andrè et al. 2010) mapped the Taurus Molecular Cloud (TMC) using its SPIRE/PACS parallel-scanning mode. The mapping scheme is described in Kirk et al. (2013), this paper presents data from Tile N2 of that scheme. The observation details for this tile are listed in Table 2. The parallel mode observes simultaneously with all three SPIRE filters and two of the three PACS filters, and the scanning speed was 60 arcsec/s. The tile was observed twice, in perpendicular mapping directions, to aid in the removal of 1/f noise. The TMC1 observations used the 70/160 \(\mu m\) PACS filter set. In parallel-mode, the effective PACS HPBW at 160 \(\mu m\) was degraded due to the elongation of the PSF in the scan direction caused by sampling limitations imposed by the SPIRE/PACS Parallel Mode. The resulting telescope HPBWs are also listed in Table 1.

The SPIRE data were reduced to level 1 status (flux calibrated timelines) using HIPE version 10 (Ott 2010). The SPIRE thermometer timelines were visually inspected for discontinuities caused by instrumental factors. These were corrected before the timelines were processed. The data were de-glitched using the concurrent and wavelet deglitcher tasks. Residual glitches were identified in restored maps and manually flagged as bad in the timeline data. Flux calibration, temperature drift correction, and bolometer time response corrections were done with the standard SPIRE pipeline tasks using version 10.1 of the SPIRE calibration product. The level 1 timelines for each contiguous region were merged into a single level 1 product. The differences in relative bolometer-to-bolometer gain were corrected using SPIRE calibration product version 10.1. Residual 1/f noise in the observation baselines was removed by using the destriper task in HIPE. The final SPIRE maps were made using the native map maker and were produced on pixel grids of 6", 10", and 14" pixels for the 250-, 350-, and 500-\(\mu m\) maps, respectively.

The PACS data were reduced to level 1 status using HIPE version 10.0 (build 2843) with the standard PACS pipeline. Bad and saturated pixels were masked during the reduction process, glitches were removed following the procedure described in Könyves et al. (2015), and version PACS_CAL_09_0 of the PACS calibration product was applied. For map making, the level 1 timelines were exported to the IDL Scanamorphos map maker (version 20.0; Roussel 2013) which was used to remove thermal and non-thermal brightness drifts and any residual glitches. The resulting PACS maps were produced on a 3"/pixel grid.

3 TMC1 DISTANCE

The Taurus Molecular Cloud is one of the nearest star formation regions to the Sun. Tomographic analysis of the GAIA distances and tracers of molecular material has shown that the full Taurus molecular cloud is a U-shaped structure that points away from us and the local bubble (Ivanova et al. 2021; Dharmawardena et al. 2022). The depth of the material may be 20 pc or more; the TMC1 region is on the leading edge of that structure (Ivanova et al. 2021).

The traditional distance to the Taurus region is usually taken as 140 pc (Straizys & Meistas 1980; Kenyon et al. 1994; Loinard et al. 2008). However, the launch of the GAIA parallax mission has allowed newer studies to probe the distance and three-dimensional structure of the cloud (Luhman 2018; Fleming et al. 2019; Galli et al. 2019).

\(^1\) http://gouldbelt-herschel.cea.fr
There is an extended YSO population across Taurus (e.g. Esplin & Luhman 2019). Distances are attributed to parts of the TMC by grouping GAIA sources into clusters/groups and then associating the mean distance of that cluster to part of the cloud. If a single cluster is associated with the entire region, the mean distance assigned is 141-142 pc (Luhman 2018; Esplin & Luhman 2019; Krolickowski et al. 2021). Splitting those stars into two cluster groups gives distances 138 ± 1.9 and 142 ± 2 (Galli et al. 2019). These studies use catalogues of YSOs with a range of ages, some of which may be more evolved and thus dissociated from the material from which they formed. We double-check the distance attribution by selecting only those GAIA sources with a Spitzer detection from Rebull et al. (2010). Infrared-detected sources should be the younger subset of young stars in the region and, thus, those most likely to be still associated with their natal cloud. Figure 1a shows the location of YSOs and YSO candidates reported by Rebull et al. (2010). Two groups of YSOs towards TMC1 and L1521 are indicated. Figure 1b shows that the distance trend for all GAIA sources in this field is to peak at 140 pc and drop away at higher distances, the assumption being that sources behind the Taurus cloud are extinguished by it. The YSOs towards this part of Taurus also peak at 140 pc, albeit with a short tail at higher distances. Figure 1c to e show that the TMC1 and L1521 sources are well separated in proper motion. However, the L1521 YSOs appear to occupy a spread of distances with a mean of 159 ± 2 pc. Sources towards TMC1 are more tightly clustered with a mean distance of 140.0 ± 0.6.

Therefore despite different clustering techniques, sample preferences, and methods - the underlying distance for the TMC1 region remains resolutely stuck at its historical value of 140 pc. It is a value that may no longer be as useful for the wider region but has been shown to repeatedly hold as the preferred distance to TMC1/HCL2/L1521. Therefore, we adopt 140 pc as the distance to structures studied in this paper. The caveat is that 140 pc is the mean distance to the young stellar sources associated with the cloud; their projected scatter (Galli et al. 2019; Esplin & Luhman 2019; Krolickowski et al. 2021) and the width of the cloud Figure 1 is on the order of a degree. At 140 pc this equates to a plane-of-the-sky distance of 2.4 pc.

4 EXTENDED STRUCTURE

Figures A1–A5 show the five Herschel flux density maps towards the TMC1 region. There is a change in the morphology of the emission with wavelength. The 70-µm map only shows compact thermal emission from young protostars. The 160-µm map shows more extended structure, with the 160- and 250-µm maps showing significant levels of cirrus-like clouds. At 350 and 500 µm, the maps show thick, colder filaments and dense cores begin to stand out. To analyse star formation within the TMC1 region, we need to be able to extract the most appropriate structures from this assemblage. We assume a single isothermal dust temperature along the line of sight.

Table 2. Taurus Molecular Cloud observation details. Column 1 lists the tile name. Columns 2 and 3 list the Right Ascension and Declination (J2000) of the field centre. Column 4 lists the observations’ AOR identification number. Column 5 lists the OD, the day of the observation numbered from the launch of the spacecraft, and column 6 lists the UT date of the observation. Column 7 lists the scan direction of the field – N for nominal, O for an orthogonal cross-scan.

<table>
<thead>
<tr>
<th>Field</th>
<th>R.A.</th>
<th>Dec.</th>
<th>AOR</th>
<th>Duration</th>
<th>OD</th>
<th>UT Date</th>
<th>Scan Dir</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2</td>
<td>04°37′31.1″</td>
<td>+26°00′22″</td>
<td>134220252</td>
<td>10086</td>
<td>451</td>
<td>2010-08-07</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>04°37′31.1″</td>
<td>+26°00′22″</td>
<td>134220255</td>
<td>14453</td>
<td>451</td>
<td>2010-08-07</td>
<td>O</td>
</tr>
</tbody>
</table>

Figure 1. The distribution of Spitzer detected YSOs with GAIA DR3 distances towards the TMC1 region. (a) The positions of Spitzer detected YSO candidates (yellow markers; Rebull et al. 2010) with a GAIA distance in our field. The grayscale is the N(H2) column density map as per Figure 2. The blue box denotes those YSOs associated with TMC1 while the red box shows those associated with L1521. Sources within those boxes are colour-coded blue (TMC1) and red (L1521) in the other plots in this Figure. (b) The number volume density of GAIA sources across the field studied in this paper. The solid black line shows all GAIA sources, the dash black line shows all Spitzer YSOs, the blue curve show YSOs associated with TMC1, and the red curve shows YSOs associated with L1521. (c), (d), and (e) show the distribution of the TMC1 (blue) and L1521 (red) YSOs in parameter space. The dashed lines show the weighted average distances to TMC1 (blue) of 140.0 ± 0.6 pc and L1521 (red) of 159 ± 2 pc.
In this Section, we use a $N(H_2)$ column density map to examine the extended structures associated with the colder dust, and in the following Section, we look at the properties of cores extracted from these five maps.

4.1 Column Density Maps

An $N(H_2)$ column density map was created on the 250-$\mu$m pixel grid and at the 500-$\mu$m resolution using the method described in Kirk et al. (2013). In summary, the median DC level at each wavelength was bootstrapped to the median flux estimated from Planck & IRAS (cf. Bernard et al. 2010, see Table 1 for the estimated levels) and the data were convolved to the SPIRE 500-$\mu$m beam psf using the convolution kernels of Aniano et al. (2011). The function $F_\nu = MB_\nu (T_\kappa)/D^2$ was then fit to the SED of each pixel from 160-$\mu$m to 500-$\mu$m where $F_\nu$ is the monochromatic intensity, $M$ is the dust mass, $B_\nu(T)$ is the Planck function at temperature $T$, and $D$ is the average assumed distance to the TMC1 region (140 pc). The dust mass opacity $\kappa_\nu$ was parameterized as $\kappa_\nu \propto \nu^2$ (i.e., assuming $\beta = 2$) and was referenced against a value of $0.1 \, \text{cm}^{-2} \, \text{g}^{-1}$ at 300 $\mu$m (Hildebrand 1983). In converting dust mass to molecular gas mass we assumed a dust-to-molecular hydrogen mass ratio of 100. The minimisation package MPFIT (Markwardt 2009) was used for the fitting and the per-pixel flux errors included contributions from the map rms, DC level estimation, and calibration uncertainty (for details, see Kirk et al. 2013).

Figure 2 (top panel) shows the $N(H_2)$ map at 36" resolution. The field comprises a contiguous region (in the plane of the sky) of high column density material in the north-eastern (left) part of the field. This feature is Heiles Cloud 2 (HCL2; Heiles 1968). HCL2 was one of the dark clouds where normal OH emission was first detected (Heiles 1968). The hole at approximately 4:40:45, +25:45:00 has led to the features surrounding it being dubbed the “Taurus Molecular Ring,” albeit one that breaks up into individual dense cores when viewed in more detail (Tóth et al. 2004).

The most prominent part of this ring is Taurus Molecular Cloud No. 1 (TMC1), a ~0.5" long linear feature on its north-east side. The western feature (right) is the original position of the original L1521 dark nebula (Lynds 1962).

Figure 2 also shows the temperature map also derived from the modified blackbody SED fitting. Comparing the Molecular Ring column density structure to the dust temperature map (lower panel) shows that the parts with the highest column densities are associated with cold dust. In those parts, the temperatures drop to 11–12 K, down from the general ~14 K found over most of the region. The Herschel emission is a product of different temperature elements along the line of sight, so the dust temperature produced from it will be a characteristic average.

TMC1 was studied in IRAS and SCUBA dust emission by Nutter et al. (2008) who dubbed it the “Bull’s Tail.” After background subtraction, they found that the filament was consistent with a narrow, cold (~8 K) core and a broader, warmer (~12 K) jacket. The Bull’s Tail is visible as a cool feature (the red strip in the bottom panel of Figure 2). Indeed, this filament was sufficiently dense to show in absorption in a Spitzer 70-$\mu$m map (Nutter et al. 2008). Following Pezzuto et al. (2021), the SED fit used to produce the column density map was used to create an expected map of 70-$\mu$m intensity. The expected map showed absorption in places of high column density, something not seen in the original PACS 70-$\mu$m intensity map. Pezzuto et al. (2021) found the same pattern in Perseus and ruled out errors in the fitting of the dust temperature as a cause of the discrepency of the actual and expected 70-$\mu$m intensity. That this extinction is seen with Spitzer, but not Herschel could imply a methodological cause (i.e., the way the data was processed in either study).

As mentioned previously, the structure visible in Figure 2 is markedly different than that seen in the neighbouring L1495 region (cf. fig. 3 of Palmeirim et al. 2013 or fig. 1 of Marsh et al. 2016) which is dominated by a single strong trunk filament. By contrast, the TMC1 region is more complex and nest-like, albeit with some fainter but strongly linear features of its own (see Section 5). This is similar to the ridge-nest structures observed in the Vela C region (Hill et al. 2011), albeit on a smaller physical scale.

4.1.1 Comparison with previous maps

We check the absolute calibration of the $N(H_2)$ map by using the Planck 353 GHz (850 $\mu$m) dust optical-depth map of the region (Planck Collaboration 2014). The Herschel $N(H_2)$ map was smoothed to the same resolution as the Planck map (5', HPBW). A Planck column density map was then extrapolated from their published optical depth and temperature maps using the same reference properties used for the Herschel map. Both column density maps were then regridded to a common pixel grid. Figure 3 (left) shows a pixel-by-pixel comparison of the column densities from the two maps. The horizontal axis shows the Herschel $N(H_2)$ column density at 5' while the vertical axis shows the extrapolated Planck column density. The solid red line shows a 1:1 correlation and the two dashed lines show a 10% variance from that in either property.

Figure 3 (left) shows a small dip away from equivalence below ~1.5 x 10^19 cm^{-2}. This deviation could be attributed to warmer, low-density material to which Herschel is more sensitive than Planck (due to its coverage at shorter wavelengths). A linear fit to the data above this point gives an excellent correlation to the data (shown by the green line). The two results show that the offset-correction method from Bernard et al. (2010) has well reproduced the absolute level of emission in the map.

The Herschel column densities can be converted into an equivalent visual extinction using standard assumptions (Bohlin et al. 1978). The central panel of Figure 3 shows a comparison between these values and the visual extinction values towards HCL2 calculated from the POSS plates by Cernicharo & Bachiller (1984). The values show good agreement over the range of 1–5 mag. A similar comparison was made to the $A_K$ extinctions calculated from 2MASS sources (Schneider et al. 2011) and is shown in Figure 3 (right). A regression over the data binned in logarithmic bins shows a linear relation of $A_K \propto A_N^{0.99 \pm 0.06}$ for the TMC1 region. This equivalence differs from that seen in Orion A where a non-linear relationship was found and interpreted as evidence for grain growth (Roy et al. 2013). Likewise, Uehara et al. (2021) interpreted a larger average dust grain size in Orion A, compared to Taurus, as evidence of grain growth. Therefore, the linearity of the data in this work would be consistent with the reported differences between Taurus and Orion A.

4.1.2 High Resolution Column Density Map

A second “High Resolution” column density map was created following the method described in Appendix A of Palmeirim et al. (2013). This method works by combining the unique features from each of three column density maps with 36", 24", and 18" resolution (equivalent to 500-$\mu$m, 350-$\mu$m, and 250-$\mu$m HPBW respectively). The 36" map is the same as the map described above. The
Figure 2. Maps of $N$(H$_2$) column density (top) and dust temperature (bottom) towards the TMC1 region derived from Herschel 160-$\mu$m to 500-$\mu$m data. The colour bars show the range of the displayed quantities. The effective resolution of the maps is 36″. The horizontal yardstick shows 1 pc at the assumed distance to Taurus (140 pc). The dotted-box in the upper figure shows the region used to determine the PDFs in Section 4.4 and Figure 6.
4.2 Total Mass In The Region

Figure 4 is a cumulative mass histogram showing the total mass in the region above a given column density threshold. The total mass sampled in the map is 2000 M☉. It can be seen that there is a break in the slope of the histogram below A_v = 3 mag (shown by the vertical dashed-red line). Above this break, the trend can be best-fit with a power-law of \( \log M(N(H_2)) \propto (-1.82 \pm 0.02) \log H_2 \). Its index of -1.82 is comparable to that of -1.9 found in Aquila (Könyves et al. 2015). The mass above A_v = 3 mag is 690 M☉ (34 per cent of the region total). For comparison, the mass above A_v = 7 mag, a value sometimes taken as a threshold for star formation (Lada et al. 2010), is 160 M☉ (∼8 per cent of region total).

4.3 Power Spectrum

Figure 5 shows the power spectrum of the 500-μm resolution Herschel/N(H_2) column density map (solid black line). This power spectrum has been corrected for the level of the noise power spectrum (by subtraction) and the Herschel beam (see Miville-Deschênes et al. 2010, for more details). Brunt (2010) identified a break at ∼1 pc in the power spectrum towards Taurus, which they associated with the anisotropy of Taurus on large scales. Given this break, we fit the power spectrum shown in Figure 5 on scales below it with a power-law of the form \( P(k) \propto k^\gamma \) where the best fit value of \( \gamma \) is -2.97 ± 0.02. This value broadly agrees with the value of -3.1 found by Brunt (2010) over similar scales.

Also shown in Figure 5 is a power spectrum of the Planck N(H_2) column density (blue curve) over the same area as the Herschel data. The spectrum has been corrected for the noise-level on...
the map and the instrumental beam (assumed to be a 5' HPBW Gaussian). This power spectrum closely matches that from Herschel, including the dip away from the best-fit power-law on scales below k ~ 0.01 arc.min^-1 (above 1 pc). The fact that this dip is seen in both spectra indicates that the cause is something common to both of them.

Analysis of Herschel observations shows that filaments in star formation regions have a narrow range of widths, centred on a characteristic mean width of 0.1 pc (Arzoumanian et al. 2011, 2019; André et al. 2022). We detect no break in the Herschel power spectrum on scales comparable to with scale. The lack of break agrees with the work of Roy et al. (2019) who showed that even if it is present the amplitude of these filaments is too low to be detected.

4.4 Column Density PDF

The Probability Density Function (PDF) of column density in the TMC1 region studied in this paper is plotted in Figure 6 as the solid black line. This effectively shows the number of sight-lines (pixels) through the TMC1 cloud with specific column densities (parameterised as the log of the mean column density). The area under the PDF is normalised to one. The plot shows the characteristic log-normal distribution with a power-law tail at higher column densities (Schneider et al. 2013, 2015; Lombardi et al. 2015). To characterise this shape, we fit the log-normal distribution below η ≤ 0.2 with the form

$$PDF(\eta) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left(-\frac{(\eta - \eta_0)^2}{2\sigma^2}\right)$$

where $\eta = \ln(N(H_2)/ < N(H_2) >)$, $\sigma$ is the width of the PDF, and $\eta_0$ is its central position. The best fit, shown by the solid red curve on Figure 6, returns a value of $\sigma = 0.34$.

The higher η part of the PDF can be fit with a power-law of the form $PDF \propto N(H_2)^s$ with a best-fit index of $s = -2.48 \pm 0.06$ shown by the dashed red-line. If a region can be considered a single structure, then the power-law index $s$ is related to the form of a radial density profile $\rho \propto \eta^{-\alpha}$ by the relation $\alpha = 1 - 2/s$ for a spherical distribution (Federrath & Klessen 2013). The fitted $s$ thus implies a radial profile with an index of $\alpha = 1.8$. Alternatively, for a cylindrical distribution, the relation is $\alpha = 1 - 1/s$, which gives a profile index of $\alpha = 1.4$.

To examine the physical origins of the different parts of the PDF, we split the column density map into the region associated with HCL2 (the region contained with the dashed-box in Figure 2) and the material outside of that region (the area outside of the dashed-box). The HCL2 PDF is shown in Figure 6 as the blue curve while the green curve shows the PDF of material excluding HCL2. The former follows the previously fit power-law. Meanwhile, the latter closely follows the previously fitted log-normal curve with only minimal deviation at the higher densities.

4.5 Cloud Structure

In Section 6, we investigate the population of dense prestellar cores in the TMC1 region. These should appear in the maps as compact sources. Figure 7 shows a tree (a dendrogram) of structure in the...
The TMC1 region created from the $N(H_2)$ column density map using the CSAR source extraction algorithm (Kirk et al. 2013). The dendrogram is a symbolic representation of the structure in the region. The horizontal lines are closed contours around resolved features with a minimum density contrast (3σ), vertical lines show the contrast between contours and their substructure. Upward lines without a capping horizontal are sources which have no resolved substructure.

5 FILAMENTARY STRUCTURE

5.1 Extracting Filaments

One of the major features of the Herschel era has been interest in filamentary modes of star formation (e.g., André et al. 2014; Arzoumanian et al. 2019; Schisano et al. 2020). There are several topological methods for tracing filamentary structures in maps. We have used here the DsPraSE software package to trace filamentary structures in the $N(H_2)$ map of the TMC1 region.

The DsPraSE package traces persistent structures by connecting critical points, e.g., maxima, saddle-points, and minima in a 2D map, with integral lines, e.g., tangential paths to the local gradient (Sousbie 2011). Key to this concept is persistence, i.e., the minimum allowed contrast between two connected critical points. Arzoumanian et al. (2019) examined the input parameters with respect to Herschel maps and recommended a persistence value on the order of the background rms on the map.

Figure 8 shows the results for running DsPraSE on the low-resolution $N(H_2)$ map. We adopt a conservative persistence threshold of $0.09 \times 10^{21} \text{ cm}^{-2}$, equal to the rms used for the CSAR decomposition in Section 4.5. We follow Arzoumanian et al. (2019) in using an assembly angle of 50°, a smoothing kernel of twice the map resolution and a minimum background contrast of $2 \times 10^{21} \text{ cm}^{-2}$, i.e., $1.5 \times$ the mean background where the rms was measured. Features shorter than 10 times the map resolution ($360\'\', \sim 0.25 \text{ pc} @ 140 \text{ pc}$) were removed from the network, leaving a total of 53 filaments.

Filaments were identified in the lower resolution (36\'\') column density map, but features were then measured from the higher-resolution (18\'\') map. For example, median radial profiles were constructed for each filament using the skeleton data from DsPraSE's run. The orientation of the filament at each critical point was calculated by averaging the angle of the skeleton segments before and after it. A profile of the pixels orthogonal to this angle was extracted for each side the filament at the node. The median profile on each side of the filament was then taken, the dispersion at each point being the median deviation from the median profile.

Integrating across the filament profile gives $M_{\text{line}}$, the mass per unit length of the filament. The critical $M_{\text{line}}$ for an isothermal cylinder to be thermally stable against axisymmetric perturbations is

$$M_{\text{line, crit}} = \frac{2c_s^2}{G} = 2\hbar T/c g m_{\text{H}}$$

where $c_s$ is the sound speed, $G$ is the Gravitational constant, $T$ is the gas temperature, $\mu$ is the mean mass per particle, and $m_{\text{H}}$ is the mass of a hydrogen nucleus (Inutsuka & Miyama 1997). For typical molecular weights ($\mu = 2.37$, e.g., Kaufmann et al. 2008) and temperatures ($T = 10 \text{ K}$) in molecular star formation regions, the critical line mass is $16.2 M_\odot/\text{pc}$. We check the mean mass per unit length of each filament against this value to test each filament’s stability.

The 53 filaments were then filtered via the robustness criterion listed in Arzoumanian et al. (2019), namely that the filaments have an axis ratio (length divided by Gaussian FWHM) greater than 3 and a background-to-filament amplitude contrast greater than 0.3. This final cut left 35 robust filaments out of 53. The robust filaments are shown in Figure 8. These are colour coded to match the Arzoumanian et al. (2019) descriptions of thermally supercritical, transcritical, and thermally sub-critical against the critical mass to unit length. The single longest supercritical filament shown in Figure 8 is the TMC1 filament (it is annotated). This filament corresponds...
to an $\sim 11$ K linear feature in Figure 2, demonstrating that it is one of the coldest and densest features in the TMC1 region. Figure 8 also illustrates that most of the other filaments in the TMC1 region are sub-critical filaments that generally appear at lower background column densities.

### 5.2 Filament Widths

The filament profiles exhibit a range of morphologies. The centres are broadly Gaussian, but a number of them depart from that shape in their outer parts and are better fit with a Plummer-like profile. To gauge the FWHM of the inner part of the filament, we follow Arzoumanian et al. (2019) by fitting a Gaussian to the profile within $1.5 \times \text{HPHW}$ of the centre, where the HPHW is the point where the filament profile has dropped to half the peak amplitude measured above the background. The effective beam FWHM of the map is subtracted in quadrature from the fitted Gaussian to give a deconvolved filament width, $FWHM_{\text{dec}}$.

The histogram of measured $FWHM_{\text{dec}}$ is shown in Figure 9. The width of each filament is determined twice using each side of the median profile of the filament independently. The distribution of the “left-hand” and “right-hand” fits is shown in Figure 9. The distribution of averaged $FWHM_{\text{dec}}$ for all robust filaments is also shown. This latter histogram shows a peak at $\sim 0.07$ pc, identical to the the peak in the filament width distribution found in the neighbouring B211/213 region (Palmeirim et al. 2013). As discussed in André et al. (2022), width estimates based on Gaussian fits are typically underestimated in the presence of significant power-law wings, and the deconvolution of widths at larger distances can make it hard to interpret filament FWHMs. However, the effective FWHM used for deconvolution (vertical line in Fig 9) is sufficiently small for these observations not to make an appreciable difference. Based on a Plummer-fit analysis, the TMC1 filament itself has a mean half-power width of $\sim 0.13$ pc (see Section 5.4 below).

### 5.3 Filament Orientation

We compare the orientation of the TMC1 regions filaments with the larger-scale magnetic field direction inferred from the Planck 353 GHz polarisation products (Planck Collaboration 2020). The purple vectors in Figure 8 show the directions of the larger-scale magnetic field so determined. The field is broadly uniform across the TMC1 region but does bend slightly. The majority of supercritical filaments appear to be orthogonal to the field direction.

We define the orientation of a filament as the median posi-
As noted earlier, Nutter et al. (2008) found that the TMC1 filament (the “Bull’s Tail”) was consistent with a narrow, cold (~ 8 K) core and a broader, warmer (~ 12 K) jacket. The Herschel emission is a product of dust at different temperatures along the line of sight so the single temperature estimated from it will be a characteristic average. Nevertheless, the Bull’s Tail is prominently shown as a cold feature (the red strip in Figure 2). The filament is sufficiently dense to have been seen in absorption in a Spitzer 70 µm map (Nutter et al. 2008), as discussed in Section 4.1.

The median profiles for the North and South filaments are shown in Figure 11. The profiles have been reconstructed and analysed independently on each side of each filament, following the approach and conventions of Arzoumanian et al. (2019). Both filaments run in a broadly SE to NW orientation. Therefore, the left hand profiles in Figure 11 correspond to the NE side of the filaments, whereas the right hand profiles correspond to the SW side. For simplicity, we refer to these as the “left” and “right” profiles.

Figure 11 shows the median profile along the filament and the median dispersion around the median profile. In addition, the best fit Gaussian profile to the inner part of the profile is shown (see Section 5.2). The South filament (both sides) and the left North filament have FWHM$_{\text{left}}$ approximately equal to the peak of 0.07 pc shown in Figure 9, but the right North filament has a larger FWHM$_{\text{right}}$ of 0.12 pc. The North filament is relatively well fit by a Gaussian profile out to large radii, albeit at a cost of poor constraint on peak. By contrast, the South filament is well fit on peak, but its greater peak-to-background contrast more readily shows a departure from the Gaussian profile.

An estimate of the outer width of each profile can be made as the place where the gradient of the smoothed profile goes to zero (see Arzoumanian et al. 2019 for details). This point is shown in each case also in Figure 11. The level of the profile at this point it taken as the profile background. The North filament appears broadly symmetric with similar background levels and widths on either side. The South filament, however, appears more asymmetric with a high background on the left and a low background on the right as it tapers away into the noise. The mean background level of the first three is ~ 3 x 10$^{21}$ cm$^{-2}$, but is only half that for the last one. This difference can be seen in Figure 8 by the empty space between the filament and the edge of the figure. The North filament and the left profile of the South filament have widths of ~ 0.3 pc. The right profile of the North filament, however, has a width of twice this at 0.7 pc, again, most likely due to the lack of other features surrounding it.

The North filament has a mean column density of 6.5 x 10$^{21}$ cm$^{-2}$ whereas the South one has a mean of 13 x 10$^{21}$ cm$^{-2}$. This difference is consistent with maps of molecular line emission that...
A census of dense cores in TMC1

Figure 11. Median left (NE) and right (SW) column density profiles of the North and South parts of the TMC1 filament as measured from the high-resolution (18") column density map. Properties and fits are done independently for each side of each filament. The black curve is the median column density profile itself and the yellow bars are the median dispersion along the length of the profile at that radius. The red-dashed curve is a Gaussian fit to the inner profile. The horizontal solid red line is the background column density level (where the smoothed gradient of the profile is approximately zero) and the vertical dotted-line is the filament width at this background level. The dashed blue line is a best fit Plummer-like profile. The thin blue line is the resolution of the column density map. See text for full details.

show stronger integrated emission from the South filament (e.g., Fehér et al. 2016; Dobashi et al. 2018).

A Plummer-like profile of the form:

\[ N(H_2)(r) = N(H_2)(0) \left(1 + \frac{r}{R_{flat}}\right)^{-p} \]

was fitted to the background-subtracted profiles where \(N(H_2)(0)\) is the peak of the profile, \(R_{flat}\) is the approximate radius of the central region of constant column density, and \(p\) is the power-law exponent of the column density profile at large values of \(r\). Figure 11 shows the best Plummer-like profile fit to each profile. The power-law exponents for all four profiles are in the range 1.6–2.6. Notably, the most "featureless" profile (lower right) has an exponent closest to 2 (\(p = 1.9\)). The North and South part of the TMC1 filament have mean half-power widths from the Plummer fits (\(2 \sqrt{3} R_{flat}\)) of 0.20 and 0.06 pc respectively, the mean of these is \(\sim 0.13\ pc\). This does agree with the visual inspection of Figures 8 and 11 as there does appear to be more material around the Northern filament.

The North filament has a mean \(M_{\text{line}}\) of 38 \(M_\odot/pc\) and the South filament a mean \(M_{\text{line}}\) of 69 \(M_\odot/pc\). These values make them respectively 3 and 5 times thermally supercritical. These values are slightly higher than, but still consistent with, those found by Fehér et al. (2016). Figure 12 shows the location of dense cores in TMC1 (see next section). Interestingly, the North filament is associated with 6-7 dense cores, whereas the more thermally supercritical South filament is only associated with 1-2 dense cores. In both cases, only one core in each set is prestellar in nature (see the following Section for methodology). Zeeman measurements towards the South filament suggest that it is magnetically marginally supercritical as well, with a mass-to-flux ratio of 2.2 (Nakamura et al. 2019).

Different velocity components have been detected within the
entire TMC1 filament (Fehér et al. 2016; Dobashi et al. 2018). These components have been interpreted as sub-filaments whose mass-per-unit length still exceeds thermal supercriticality (Fehér et al. 2016; Dobashi et al. 2018). The TMC1 filament therefore appears to be poised for collapse, with the North filament already having formed several dense condensations but the South filament still relatively undifferentiated with only a couple of dense condensations. This behaviour is consistent with the idea of TMC1 being a chemically young star-formation site (McGuire et al. 2018; Soma et al. 2018; Fuente et al. 2019, e.g.).

6 DENSE CORE CATALOGUE

6.1 Catalogue Creation

The dendrogram in Figure 7 and the filament maps in Figure 8 show that the dense cores in the TMC1 region are part of a complex tree of emission from which they need to be separated. For the creation of a dense core catalogue, we use the getsources source extraction package which can separate blended sources and work simultaneously across multiple wavebands (Men’shchikov et al. 2012).

In brief, getsources spatially decomposes the emission in a map into a series of strongly filtered “single-scale” images. A source is then identified on the smallest spatial scale and tracked through larger spatial scales until it reaches some maximum specified size, or its surface brightness becomes too low to be detected (Men’shchikov et al. 2012). The software is run in two passes – the first for detection, the second for measurement. Decomposing a set of observations in this manner allows equivalent spatial scales from multiple wavebands to be correlated together during the actual extraction process and thus eliminates the need to cross-match independent monochromatic catalogues after the fact (Men’shchikov et al. 2012).

The Herschel Gould Belt Survey was primarily designed to take a census of cold starless cores which primarily emit at longer wavelengths (160 – 500 µm) and embedded YSOs and protostellar cores which also emit at shorter wavelengths (e.g., 70 µm). It was therefore necessary to create two source extraction forks optimised for these two classes of object. Version v1.140127 of getsources was used. The Herschel Gould Belt Survey catalogue creation procedure is described in full in Könyves et al. (2013).

A common extraction was performed up to the detection stage on flattened backgrounds. The first extraction fork created an extended source catalogue by using the 160-500-µm maps for source selection. The second extraction fork created a 70-µm-identified compact source catalogue using only the 70-µm map for selection. For both catalogues, photometry was performed at 70-500 µm. The extractions’ focus on the dense material was enhanced by using the high-resolution column density map as a pseudo-wavelength, and a temperature-corrected 160-µm map. These weighted the extraction towards sources of high column density rather than just high surface brightness.

Fifty-five sources were extracted in the compact source pass, and 510 were extracted in the extended source pass. Of those, 45 and 288 were defined as acceptable, respectively, based on their global detection significance (GOOD=1, see Men’shchikov et al. 2012, for details). getsources separates the detection significance of extraction from the photometric significance of the resulting measurements. These are respectively SIG_MONO (the best signal-to-noise on a single spatial scale) and SNR_MONO (the traditional photometric signal-to-noise).

A set of selection rules was applied to each of the photometric catalogues to create science catalogues. A catalogue of dense core candidates was created by filtering the extended source catalogue for sources that:

(i) were detected (SIG_MONO > 5) in at least two wavelengths and the \( N(H_2) \) map,
(ii) had reliable flux measurements (SNR_MONO > 1) in at least one wavelength and the \( N(H_2) \) map,
(iii) and a detection significance summed over all wavelengths of at least 10.

These filters produced a catalogue of 201 objects. These sources were visually inspected, and 23 entries (11%) were rejected, leaving a final catalogue of 178 dense core candidates.

The robustness of these dense core candidates was assessed by comparing the getsources extraction to the results of a CSAR extraction performed on the high-resolution column density map. We find that 48% of sources in the extended source catalogue matched a CSAR position within their \( N(H_2) \) FWHM contour, and a further 33% of starless core candidates matched a CSAR core. These percentages are typical of those found in other clouds.

Starless cores are pockets of molecular gas that do not have embedded protostellar sources. The dense core catalogue was filtered for these by comparing it against the compact 70-µm source catalogue from the compact extraction, the Spitzer Taurus YSO catalogues of Rebull et al. (2010), and the NED Extragalactic database (Helou et al. 1991). In all cases, a match was found if external catalogue coordinates were found to lie within the half-power ellipse of a dense core in the high-resolution \( N(H_2) \) map. A total of eleven sources, ten YSO candidates, and one galaxy, were rejected by this process, leaving a final catalogue of 167 starless core candidates.

6.2 Core Properties

The properties of TMC1 region starless cores are listed in Table B1 and their locations are shown in Figure 12.

We define two radii for the cores. The raw radius of the core is the geometrical average of the major and minor FWHMs of the core in the high-resolution column density map, \( FWHM \). The deconvolved radius is then calculated as

\[
R_{\text{decon}} = \sqrt{FWHM^2 - HPBW^2}
\]

where \( HPBW \) is the resolution of the high-resolution column density map (18.2″).

The temperatures and masses of the starless cores were estimated by fitting their integrated flux SEDs between 160 and 500 µm in the same manner used for the creation of the column density map (see Section 4.1 for details). Following Könyves et al. (2015), the quality of the fit was checked by fitting a second permutation of the SED using the wavelengths 70 µm to 500 µm and by weighting via the detection significance rather than the measurement errors. SED results were accepted if the two mass estimates were within a factor of two of each other, at least three bands were used to fit the SED, and the integrated flux at 350 µm was higher than that at 500 µm. This process left 59% of the cores with a valid SED, i.e., 96 cores. A temperature equal to the median temperature of cores with valid SEDs is assumed for cores without a valid SED (see Section 6.4).

6.3 Prestellar Cores

Starless cores which are likely to be taking part in the star formation process are termed prestellar (i.e., they have some signs of
Figure 12. The location of starless and prestellar cores overplotted on the \(N(\text{H}_2)\) map. The red, blue, and green markers show the respective locations of robust prestellar, candidate prestellar, and starless cores. Two contour levels, \(A_V = 3\) and 7, are shown for comparison. The network of filaments from Section 5 is also shown for comparison.

Figure 13. Core mass versus size for the population of starless cores towards the TMC1 region. The green symbols show unbound starless cores, the blue symbols candidate prestellar cores, and the red symbols show robust prestellar cores. The size is taken as the deconvolved radius from the high-resolution column density map while the mass is the mass from grey-body fit to the integrated fluxes of the cores. The yellow band and the dotted line shows the expected mass-size relationship for diffuse CO clumps (Elmegreen & Falgarone 1996). The solid lines show the expected mass-size relationship for 7-K and 20-K BE spheres.

being gravitationally bound). An estimate of the stabilities of the cores can be made by comparing their masses to that of a critical Bonner-Ebert (BE) sphere (Ebert 1955; Bonnor 1956). A BE sphere is a pressure-confined isothermal sphere of gas that will be unstable against collapse if its mass is above a critical value given by,

\[M_{\text{crit}} = \frac{2.4}{G} R^2 \frac{c_s^2}{k_B T m_H \mu} \]

when the sound speed is given by

\[c_s^2 = \frac{k_B T}{m_H \mu} \]

and \(R\) is the sphere’s radius, and the other values are as defined earlier. We estimate \(M_{\text{crit}}\) for each core using its deconvolved radius for \(R\) and its catalogue temperature for \(T\).

Following Könyves et al. (2015) and with analogy to the virial ratio, we classify a starless dense core as a robust prestellar core if the ratio \(\alpha = \frac{M_{\text{crit}}}{M_{\text{core}}} \leq 2\). In practice, marginally resolved cores will have a significant error in \(R\). Therefore, following Könyves et al. (2015) and Marsh et al. (2016), we adopt a size-dependent threshold given by \(\alpha \leq 5 \times (\text{HPBW}/\text{FWHM})^{0.4}\) where \(\text{HPBW}\) is the map resolution and \(\text{FWHM}\) is the mean deconvolved source radius (see above) measured in the high-resolution \(N(\text{H}_2)\) map. Cores that meet this second criterion but not the first are classified as candidate prestellar cores.
Out of the catalogue of 167 starless cores, 27 were classified as robust prestellar cores, and a further 17 were classified as candidate prestellar cores. Figure 12 shows the location of the starless, candidate prestellar, and robust prestellar cores. As shown by the extinction contours, most of the robust and candidate prestellar cores appear at locations with a column density higher than \( A_V = 5 \sim 7 \) and close to the location of filaments.

Figure 13 shows a plot of deconvolved core radius versus mass for all cores towards the TMC1 region. The unbound starless cores cluster towards the lower part of the diagram and are coincident with the yellow band which shows the mass-size correlation observed for diffuse CO clumps (Elmegreen & Falgarone 1996). The robust prestellar cores and candidate prestellar cores, however, have relatively higher masses.

### 6.4 Temperature and Density of Cores

The left-hand side of Figure 14 shows the distribution of temperatures from (valid) core SEDs for starless cores and prestellar cores. The median value of their combined distribution is 11.4 \( \pm 1.4 \) K. This temperature is virtually identical to that found by Könyves et al. (2015) for Aquila cores when they first used this technique. For cores without a valid SED fit, we estimate a mass from their longest significant wavelength assuming a dust temperature equal to this median. Figure 14 also shows the distribution of pixel-by-pixel temperatures in the map of SED dust temperatures (i.e., Figure 2). The median value of this distribution is 15.0 \( \pm 0.8 \) K. These temperatures are generally higher than those for individual cores as the warmer inter-core medium dominates the latter distribution. The background flux around each core, including the contribution from the warmer dust, is subtracted from the cores by getsources before SED fitting.

For each core, we also fit its background-subtracted peak intensity at a common HPBW (equivalent to that at 500 \( \mu \)m) to estimate the peak column density in the core. These peak column density estimates are plotted on the right-hand panel of Figure 14. Shown here are the pixel values from the 500 \( \mu \)m resolution column density map and the fitted peak values from the cores. This panel shows that prestellar and unbound starless cores have distinctly different peak densities with a break at approximately \( 3 \times 10^{17} \) cm\(^{-2} \) \( (A_V \approx 3 \) mag). This column density is approximately the same as the break seen in the cumulative core mass function and the transition between the log-normal and power-law components of the PDF towards the TMC1 region.

The differential core formation efficiency (CFE) can be used to examine the density at which a core actually forms. The CFE is the ratio of the mass of cores forming at a specific background column density to the total mass in the cloud at that column density. In the regions of Aquila, Ophiuchus, and Cepheus, the CFE peaks at around 10–15\% between \( A_V \approx 10 \sim 20 \) and levels off at higher extinctions (Könyves et al. 2015; Di Francesco et al. 2020; Ladjelate et al. 2020). The dependence of the CFE on background column density is very similar in all those regions. What separates them is the low\( A_V \) edge at which they first hit 10–15\%. In Cepheus (Di Francesco et al. 2020), Ophiuchus (Ladjelate et al. 2020), and Aquila (Könyves et al. 2015), this is \( A_V \approx 7, 10, \) and 20, respectively. Figure 15 displays the CFE plot for the Taurus region, showing an initial jump at \( A_V \approx 5 \) before reaching the 15\% level around \( A_V \approx 14 \). Thus, the TMC1 region follows the same basic trend as the other regions, but there is not enough high column density material in Taurus/TMC1 to give reasonable statistics at higher extinctions. Figure 14 also reinforces the lack of high column density gas, and therefore the lack of cores at higher extinctions in TMC1, where the maximum column density in the region is \( 2 \times 10^{22} \) cm\(^{-2} \) \( (A_V \approx 22) \).

In the TMC1 region, star formation happens like in other parts of Taurus, such as L1495, but at somewhat lower extinctions compared to other clouds such as Aquila or Ophiuchus. There is only one thermally supercritical filament and only a few transcritical filaments in the region (as seen in Figure 8). Only 10\% of all filaments have an average equivalent \( A_V \) above 7–8 mag, which is considered a density threshold for star formation. Di Francesco et al. (2020) discuss the issue of core formation at low \( A_V \) with respect to the Cepheus region and note that the relative unavailability of transcritical and supercritical filaments at lower column densities is the simplest explanation for the low number of cores. It is possible that the same bottleneck applies in the TMC1 region, given its range of column densities. Even though there are fewer supercritical/transcritical filaments, a comparison of Figure 8 and Figure 12 does suggest that most robust/candidate prestellar cores of TMC1 lie along those filaments, in agreement with the filament paradigm of star formation (cf. Andrè et al. 2014).

### 6.5 Completeness for Prestellar Cores

We estimate the completeness of our prestellar core extraction by performing Monte Carlo simulations following Könyves et al. (2015). The details and simulated core population are the same as used in Paper I. In brief, our detected sources were removed from the Herschel flux maps and a population of 267 simulated critical BE spheres were injected into that map towards regions of high column density. A full getsources extraction was then performed on the simulated maps. The completeness tests were focused on the range of masses where the completeness limit was expected to reside based on other Herschel studies (Könyves et al. 2015; Marsh et al. 2016; Bresnahan et al. 2018).

Figure 16 shows a plot of simulated core mass versus estimated completeness. A simulated prestellar core is considered detected if its detected position matches the input position within 9" and if it is classified as a prestellar core via the process described earlier in this Section. A total of 181 out of the 267 simulated cores were recovered and correctly classified as prestellar by this procedure. The horizontal dashed line in Figure 16 shows the same 85\% completeness threshold as used in Paper I. The estimated completeness drops below this threshold consistently for simulated cores with masses \( < 0.06 \) M\(_\odot\). The dotted-line in Figure 16 shows the same model for completeness as used in Paper I based on the procedure described in Könyves et al. (2015) and Appendix B.2 of Könyves et al. (2015).

Comparing the simulated to derived masses shows that the cores’ masses are underestimated by approximately 10–20\% above this completeness level, albeit with considerable scatter. The standard deviation in the ratio of recovered to simulated masses settles down to 25–30\% for detected masses above 0.15 M\(_\odot\). The value of 0.06 M\(_\odot\) from the previous paragraph could show that our extraction went marginally deeper than that in Paper I which arrived at a completeness estimate of \( M > 0.1 \) M\(_\odot\) for detection. The difference could be ascribed to the slightly different dynamic range of the two tiles as that is an important factor in the sensitivity of a getsources extraction. Nevertheless, we adopt a conservative completeness threshold for detection of \( M > 0.1 \) M\(_\odot\) for consistency with Paper I and a threshold for reliable mass determination above \( M > 0.15 \) M\(_\odot\).
A census of dense cores in TMC1

Figure 14. Histograms of (left) fitted SED temperatures and (right) core background-subtracted peak $N(H_2)$ column densities at the 500 µm resolution. The right-hand axis and the black curve on each plot show the histogram for unbound starless cores (solid line) and prestellar cores (dashed line). The left-hand axis and the red curve on each plot show the histogram of all valid pixel values in the map from Figure 2.

Figure 15. Core formation efficiency versus extinction. The horizontal dashed line is an efficiency of 15%.

Figure 16. The fraction of recovered simulated prestellar cores versus simulated core mass. The error bars assume a Poisson distribution. The horizontal dashed-line shows 85% completeness. The dotted-line shows the completeness model from Paper I and Appendix B.2 of Könyves et al. (2015).

Figure 17. Histogram of starless core masses in the TMC1 region. The coloured lines denote different populations: dashed-green shows all starless cores, blue-dotted shows candidate and robust prestellar cores, while solid-red robust prestellar cores alone. The solid and dashed purple curves respectively show the robust and candidate cores from Paper I. Error bars are shown based on uncertainties. The vertical dashed-black line shows our 0.1 $M_\odot$ completeness limit.

6.6 Prestellar Core Mass Function

Figure 17 shows the core mass function (CMF) for our 44 prestellar cores (robust and candidate) and just the 27 robust prestellar cores. The median mass of the prestellar cores is 0.33 $M_\odot$. Figure 17 also shows the CMF for all 167 starless cores in the TMC1 region. The median mass of the starless cores is 0.07 $M_\odot$, a mass just a little lower than the 0.1 $M_\odot$ completeness limit. For comparison, we also shown in Figure 17 the CMF for cores from the neighbouring L1495 region, as extracted in Paper I. Note that L1495 contains more prestellar cores overall, largely due to the B211/213 filament and the cores associated with it.

Figure 18 shows a combined CMF for Taurus including robust and candidate prestellar cores from both TMC1 (this paper) and L1495 (Paper I). The error bars show uncertainties. This curve is best fit by a lognormal curve that peaks at 0.28 ± 0.08 $M_\odot$. The curve has standard deviation of 0.42 ± 0.06, close to the value of 0.45 found for dense cores in Aquila (Könyves et al. 2015). Also shown is the CMF for purely robust cores and an equivalent best fit.
Figure 18. The combined mass function for the L1495 and TMC1 regions. The solid black line shows all prestellar cores, the dashed black line shows robust prestellar cores. The red curve shows a log-normal fit to the prestellar core distribution above the completeness limit of this paper (0.1 M⊙, shown by the vertical dotted-black line). The blue curve shows a scaled IMF from Chabrier (2003) and the green curve shows the Taurus IMF derived by Luhman et al. (2009).

lognormal curve. That fit peaks at 0.36±0.08 M⊙ and has a standard deviation of 0.40 ± 0.06.

Figure 18 also shows a scaled version of the standard initial mass function from Chabrier (2003). Note that the IMF for young stars in Taurus has been reported to differ from that seen in other regions, with an excess of stars between 0.7 – 1.0 M⊙ and a deficiency of stars above that mass (Luhman et al. 2009; Kraus et al. 2017). We therefore also show in Figure 18 the Taurus IMF from Luhman et al. (2009). This IMF has been scaled to match the number of cores at the high mass end. The Robust CMF most closely matches shape of the Luhman et al. (2009) IMF as it peaks at a higher mass than the Chabrier (2003) IMF. Note, however, that neither the Chabrier (2003) nor the Luhman et al. (2009) mass functions have been shifted horizontally.

Scaled in this manner, there is an approximate 1-to-1 correlation between the Taurus CMF and IMF above a mass of ~0.3 M⊙, but a deficit in the CMF compared to the IMF below this. Although, given an uncertainty of ~ 2 in core masses, assuming standard dust mass opacity uncertainties, a horizontal shift of the same magnitude between the CMF and IMF cannot be ruled out (c.f., sec 6. of Paper I).

7 SUMMARY AND CONCLUSIONS

In this paper, we have used SPIRE and PACS parallel-mode maps to map and characterize the dense cores and filaments towards the TMC1 region in Taurus. Our principal conclusions can be summarized as follows:

(i) The region mapped by this paper includes approximately 2000 M⊙ of material of which 34% is above an extinction of A_v ~ 3 mag. This approximate threshold appears as breaks in the cumulative histogram of column density and the column density PDF, and is the minimum background column density at which prestellar cores are found. Above this value, cores are shown to form more efficiently with increasing background density, reaching a peak around A_v ~ 14.

(ii) A total of 35 robust filaments are identified following the methodology described in Arzoumanian et al. (2019). The inner FWHM widths of these filaments are consistent with earlier studies. The supercritical TMC1 filaments are aligned orthogonal to the bulk magnetic field direction. However, there are relatively few of these overall and only ~ 10% of filaments have peak column densities in excess of an equivalent of A_v ~ 7 – 8.

(iii) The chemical young TMC1 filament is shown to be thermally supercritical. The South filament is largely undifferentiated.

(iv) A catalogue of 44 robust and candidate prestellar cores is tabulated from across the TMC1 region that is 85 per cent complete above a core mass of 0.1 M⊙. The identified prestellar cores have a median temperature of 11.4 K and a median mass of 0.33 M⊙.

(v) Star formation in the TMC1 region appears to be occurring at lower extinctions than other regions, with only 10% of all filaments having an average extinction above 7–8 mag.

(vi) The prestellar CMF for Taurus (L1495 and TMC1 regions combined) is well fit by a single log-normal distribution and is comparable with the standard IMF (e.g., Chabrier 2003). The prestellar CMF, however, does differ from the specific IMF derived for Taurus derived by Luhman et al. (2009).

ACKNOWLEDGEMENTS

SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA). PACS has been developed by a consortium of institutes led by MPIE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); IASF–IFSI/UA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMBF (Austria), ESA–PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain).

SPIRE and PACS are in the public domain and can be downloaded from http://www.esa.int/Planck (Planck Collaboration). The SPIRE/SPIRE Collaboration has been supported by the French ANR and the german DFG through the project "GENESIS" (ANR-16-CE92-0035-01/DFG1591/2-1).

DATA AVAILABILITY

The data used in this paper, the full catalogue, and other HGBS data products, which include Herschel images and the column density and dust temperature maps are available from the HGBS website at http://gouldbelt-herschel.cea.fr/archives.

REFERENCES

A census of dense cores in TMC1


Rousell H., 2013, PASP, 125, 1126


Schneider N. et al., 2011, A&A, 529, A21


APPENDIX A: INDIVIDUAL WAVELENGTH IMAGES

Figures A1 to A5 show the individual Herschel flux maps for the TMC1 region. Details are listed in the caption to Figure A1. The data reduction process is described in Section 2.

APPENDIX B: DENSE CORE CATALOGUE

Table B1 shows the first three lines of the catalogue, the rest being available online. Each column of the table is numbered. Catalogue entries are as follows:

(1) Core number;
(2) Core name = HGBS J prefix directly followed by a tag created from the J2000 sexagesimal coordinates; (3) and (4): Right ascension and declination of core center; (5), (15), (25), (35), and (45): Detection significance from monochromatic single scales, in the 70-, 160-, 250-, 350-, and 500-μm maps, respectively.

(6)±(7), (16)±(17) (26)±(27) (36)±(37) (46)±(47): Peak flux density and its error in Jy/beam as estimated by getsources:

(8), (18), (28), (38), (48): Contrast over the local background, defined as the ratio of the background-subtracted peak intensity to...
Figure A1. *Herschel* map of submillimetre dust emission at 70 μm towards the TMC1 region, as detected by *Herschel*'s PACS instrument. The maps have been corrected for the IRAS/Planck DC offset (see Section 4). The horizontal scale bar shows 1 pc at the assumed distance to Taurus (140 pc).

Figure A2. *Herschel* map of submillimetre dust emission at 160 μm towards the TMC1 region, as detected by *Herschel*'s PACS instrument. Details as Figure A1.

Figure A3. *Herschel* map of submillimetre dust emission at 250 μm towards the TMC1 region, as detected by *Herschel*'s SPIRE instrument. Details as Figure A1.

Figure A4. *Herschel* map of submillimetre dust emission at 350 μm towards the TMC1 region, as detected by *Herschel*'s SPIRE instrument. Details as Figure A1.

the local background intensity (S\text{peak}/S\text{bg});
(9), (19), (29), (39): Peak flux density measured after smoothing to a 36.3′′ beam;
(10)±(11), (20)±(21), (30)±(31), (40)±(41), (49)±(50): Integrated flux density and its error in Jy as estimated by getsources;
(12)–(13), (22)–(23), (32)–(33), (42)–(43), (51)–(52): Major & minor FWHM diameters of the core (in arcsec), respectively, as estimated by getsources.
(14)–(24), (34), (44), (53): Position angle of the core major axis, measured east of north, in degrees;
(54) Detection significance in the high-resolution column density image;
(55) Peak H\textsubscript{2} column density in units of 10\textsuperscript{21} cm\textsuperscript{-2} as estimated by getsources in the high-resolution column density image;
(56) Column density contrast over the local background, as estimated by getsources in the high-resolution column density image;
(57) Peak column density measured in a 36.3′′ beam;
(58) Local background H\textsubscript{2} column density as estimated by getsources in the high-resolution column density image;
(59)–(60)–(61): Major & minor FWHM diameters of the core, and position angle of the major axis, respectively, as measured in the high-resolution column density image;
(62) CSAR Counterpart: whether the getsources core has a counterpart detected by the CSAR source-finding algorithm: 1 and 2 denote when the CSAR counterpart is within an ellipse that is respectively equivalent to the half-width or full-width of the getsources core as measured on the high-resolution column density map. 3 denotes if the getsources core is coincident with extended...
A census of dense cores in TMC1

Figure A5. Herschel map of submillimetre dust emission at 500 µm towards the TMC1 region, as detected by Herschel’s SPIRE instrument. Details as Figure A1.

emission associated with a CSAR counterpart.

(63) Number of Herschel bands in which the core is significant (\(\text{Sig}_\lambda > 5\)) and has a positive flux density, excluding the column density plane;

(64) Core type: either protostellar, robust prestellar, candidate prestellar, unbound starless, or other;

Table B2 lists the derived properties of the dense cores, only the first three lines of the catalogue are shown, the rest being available online. Each column of the table is numbered. Entries are as follows:

(1) Core running number; (2) Core name = HGBS-J prefix directly followed by a tag created from the J2000 sexagesimal coordinates;

(3) and (4): Right ascension and declination of core center;

(5) and (6): Geometrical average between the major and minor FWHM sizes of the core (in pc), as measured in the high-resolution column density map before deconvolution, and after deconvolution from the 18.2” HPBW resolution of the map, respectively. NB: Both values provide estimates of the object’s outer radius when the core can be approximately described by a Gaussian distribution, as is the case for a critical Bonnor-Ebert spheroid;

(7) Estimated core mass \((M_\odot)\) assuming the dust opacity law advocated by Roy et al. (2014); (9) SED dust temperature (K); (8) & (10) Statistical errors on the mass and temperature, respectively, including calibration uncertainties, but excluding dust opacity uncertainties;

(11) Peak \(\text{H}_2\) column density, at the resolution of the 500 µm data, derived from a graybody SED fit to the core peak flux densities measured in a common 36.3” beam at all wavelengths;

(12) Average column density, calculated as \(N_{\text{\text{H}_2}}^\text{ave} = \frac{M_{\text{core}}}{4\pi R_{\text{core}}^2 \mu_m}\), where \(M_{\text{core}}\) is the estimated core mass (col. 7), \(R_{\text{core}}\) the estimated core radius prior to deconvolution (col. 6), and \(\mu = 2.86\);

(13) Average column density calculated in the same way as for col. 12 but using the deconvolved core radius (col. 5) instead of the core radius measured prior to deconvolution;

(14) Average volume density, calculated as \(n_{\text{\text{H}_2}}^\text{ave} = \frac{M_{\text{core}}}{4\pi R_{\text{core}}^3 \mu_m}\), using the estimated core radius prior to deconvolution;

(15) Average volume density, calculated in the same way as for col. 12 but using the deconvolved core radius (col. 5) instead of the core radius measured prior to deconvolution;

(16) Bonnor-Ebert mass ratio: \(\alpha_{\text{BE}} = M_{\text{BE,\text{crit}}} / M_{\text{obs}}\) (see text for details);

(17) Core type: either protostellar, robust prestellar, candidate prestellar, unbound starless, or other;

(18) Comments may be no SED fit.
Table B1. Catalogue of dense cores identified in the HGBS maps of the TMC1 Region of the Taurus molecular cloud (template, full catalog only provided online). The header’s third row contains column references explained in the main text.

<table>
<thead>
<tr>
<th>C.No.</th>
<th>Source name</th>
<th>R.A. (2000) (h m s)</th>
<th>Dec. (2000) (° ′ ″)</th>
<th>Sig70</th>
<th>$S_{\text{peak}}^{70}$</th>
<th>$S_{\text{peak}}^{70}/S_{\text{bg}}$</th>
<th>$S_{\text{conv,500}}^{\text{peak}}$</th>
<th>$S_{\text{conv,500}}^{\text{peak}}/S_{\text{bg}}$</th>
<th>$S_{\text{tot}}^{70}$</th>
<th>$S_{\text{tot}}^{70}/S_{\text{bg}}$</th>
<th>$a_{70}$</th>
<th>$b_{70}$</th>
<th>PA$_{70}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
<td>(11)</td>
<td>(12)</td>
<td>(13)</td>
</tr>
<tr>
<td>6</td>
<td>043222.7+270051</td>
<td>04:32:22.75</td>
<td>+27:00:51.5</td>
<td>1.3</td>
<td>-5.13e-03</td>
<td>4.0e-03</td>
<td>0.72</td>
<td>-1.05e-01</td>
<td>1.83e-01</td>
<td>1.4e-01</td>
<td>234</td>
<td>93</td>
<td>119</td>
</tr>
<tr>
<td>9</td>
<td>043242.9+255231</td>
<td>04:32:42.95</td>
<td>+25:52:31.2</td>
<td>93.2</td>
<td>1.48e+00</td>
<td>1.7e-02</td>
<td>227.83</td>
<td>1.75e+00</td>
<td>2.05e+00</td>
<td>2.4e-02</td>
<td>8</td>
<td>8</td>
<td>198</td>
</tr>
<tr>
<td>14</td>
<td>043307.9+255848</td>
<td>04:33:07.99</td>
<td>+25:58:48.5</td>
<td>0.0</td>
<td>9.65e-03</td>
<td>6.0e-03</td>
<td>0.88</td>
<td>2.05e-01</td>
<td>4.85e-01</td>
<td>3.0e-01</td>
<td>178</td>
<td>170</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sig160</th>
<th>$S_{\text{peak}}^{160}$</th>
<th>$S_{\text{peak}}^{160}/S_{\text{bg}}$</th>
<th>$S_{\text{conv,500}}^{\text{peak}}$</th>
<th>$S_{\text{conv,500}}^{\text{peak}}/S_{\text{bg}}$</th>
<th>$S_{\text{tot}}^{160}$</th>
<th>$S_{\text{tot}}^{160}/S_{\text{bg}}$</th>
<th>$a_{160}$</th>
<th>$b_{160}$</th>
<th>PA$_{160}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(15)</td>
<td>(16)</td>
<td>(17)</td>
<td>(18)</td>
<td>(19)</td>
<td>(20)</td>
<td>(21)</td>
<td>(22)</td>
<td>(23)</td>
<td>(24)</td>
</tr>
<tr>
<td>0.0</td>
<td>9.89e-02</td>
<td>3.0e-02</td>
<td>0.50</td>
<td>8.26e-01</td>
<td>2.26e+01</td>
<td>6.9e+00</td>
<td>226</td>
<td>192</td>
<td>161</td>
</tr>
<tr>
<td>86.5</td>
<td>2.21e+00</td>
<td>2.6e-02</td>
<td>45.10</td>
<td>2.62e+00</td>
<td>2.03e+00</td>
<td>2.4e-02</td>
<td>13</td>
<td>117</td>
<td>109.8</td>
</tr>
<tr>
<td>0.0</td>
<td>3.09e-02</td>
<td>2.0e-02</td>
<td>0.10</td>
<td>2.56e-01</td>
<td>8.84e+00</td>
<td>5.7e+00</td>
<td>194</td>
<td>178</td>
<td>189</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$S_{\text{conv,500}}^{\text{peak}}$</th>
<th>$S_{\text{peak}}^{250}$</th>
<th>$S_{\text{peak}}^{250}/S_{\text{bg}}$</th>
<th>$a_{250}$</th>
<th>$b_{250}$</th>
<th>PA$_{250}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(15)</td>
<td>(16)</td>
<td>(17)</td>
<td>(18)</td>
<td>(19)</td>
<td>(20)</td>
</tr>
<tr>
<td>1.47e+00</td>
<td>2.56e+00</td>
<td>2.4e+00</td>
<td>135</td>
<td>131</td>
<td>125</td>
</tr>
<tr>
<td>1.71e+00</td>
<td>1.36e+00</td>
<td>2.9e+00</td>
<td>18</td>
<td>18</td>
<td>54</td>
</tr>
<tr>
<td>8.33e-01</td>
<td>8.82e+00</td>
<td>1.2e+00</td>
<td>125</td>
<td>95</td>
<td>202</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PA$_{350}$</th>
<th>Sig500</th>
<th>$S_{\text{peak}}^{500}$</th>
<th>$S_{\text{peak}}^{500}/S_{\text{bg}}$</th>
<th>$a_{500}$</th>
<th>$b_{500}$</th>
<th>PA$_{500}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(15)</td>
<td>(16)</td>
<td>(17)</td>
<td>(18)</td>
<td>(19)</td>
<td>(20)</td>
<td>(21)</td>
</tr>
<tr>
<td>110</td>
<td>12.3</td>
<td>4.22e+01</td>
<td>4.1e-02</td>
<td>2.44</td>
<td>6.29e+00</td>
<td>6.1e-01</td>
</tr>
<tr>
<td>152</td>
<td>55.1</td>
<td>8.82e+01</td>
<td>3.8e-02</td>
<td>8.06</td>
<td>7.13e+00</td>
<td>3.0e+00</td>
</tr>
<tr>
<td>195</td>
<td>17.4</td>
<td>5.11e+01</td>
<td>6.9e-02</td>
<td>0.64</td>
<td>6.30e+00</td>
<td>8.3e+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$H_{2}$</th>
<th>$N_{\text{H}_{2}}$</th>
<th>$N_{\text{H}_{2}}$</th>
<th>$N_{\text{H}_{2}}$</th>
<th>$N_{\text{H}_{2}}$</th>
<th>N$<em>{\text{H}</em>{2}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(15)</td>
<td>(16)</td>
<td>(17)</td>
<td>(18)</td>
<td>(19)</td>
<td>(20)</td>
</tr>
<tr>
<td>2.00e+00</td>
<td>133</td>
<td>102</td>
<td>112</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2.00e+00</td>
<td>21</td>
<td>18</td>
<td>170</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4.22e+00</td>
<td>101</td>
<td>81</td>
<td>187</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>


A census of dense cores in TMC1

Table B2. Derived properties of the dense cores identified in the HGBS maps of the TMC1 Region of the Taurus molecular cloud (template, full table only provided online). The header’s third row contains column references explained in the main text.

<table>
<thead>
<tr>
<th>C.No.</th>
<th>Source name</th>
<th>R.A. (2000) (h m s)</th>
<th>Dec. (2000) (° ′ ″)</th>
<th>R_{core} (pc)</th>
<th>M_{core} (M_\odot)</th>
<th>T_{core} (K)</th>
<th>N_{H_2}^{peak} (10^{21} \text{cm}^{-2})</th>
<th>N_{H_2}^{ave} (10^{21} \text{cm}^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>043222.7+270051</td>
<td>04:32:22.75</td>
<td>+27:00:51.5</td>
<td>0.079</td>
<td>0.078</td>
<td>0.276</td>
<td>0.081</td>
<td>14.9</td>
</tr>
<tr>
<td>9</td>
<td>043242.9+255231</td>
<td>04:32:42.95</td>
<td>+25:52:31.2</td>
<td>0.013</td>
<td>0.005</td>
<td>0.024</td>
<td>0.005</td>
<td>14.4</td>
</tr>
<tr>
<td>14</td>
<td>043307.9+255848</td>
<td>04:33:07.99</td>
<td>+25:58:48.5</td>
<td>0.062</td>
<td>0.060</td>
<td>1.035</td>
<td>0.416</td>
<td>9.5</td>
</tr>
</tbody>
</table>

\[ n_{H_2}^{\alpha} \] \[ \alpha_{BE} \] Core type comments

- 1.9e-01 1.9e-01 8.2 unbound starless
- 3.4e+00 6.3e+01 5.9 protostellar
- 1.5e+00 1.6e+00 1.1 robust prestellar