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A B S T R A C T

Predicting the saliency of images affected by distortion is a challenging but emerging research problem. Given
a distorted image, we wish to accurately predict saliency as perceived by humans. A recent distortion-aware
saliency benchmark – the CUDAS database – reveals the inadequacy of existing saliency models in handling
distorted images. In this paper, we devise a deep learning Distortion-Aware Saliency Module (DASM) that
enables capturing saliency features related to image distortions, and integrates this module into a saliency
prediction architecture. To achieve the high expressive capability of DASM using supervised learning, we
create a dedicated dataset that draws upon a large-scale saliency dataset and machine-generated image quality
assessments. Experimental results demonstrate the superior performance of the proposed model in predicting
the saliency of distorted images.
1. Introduction

Visual attention – a crucial function of the human visual system
(HVS) – refers to the ability to selectively focus on pertinent informa-
tion within a visual field [1]. Specifically, foveal vision encompasses a
small central portion of the visual field and provides the most detailed
and informative visual signals within the HVS [2]. The visual attention
mechanism directs foveal vision to prioritise visual stimuli, thereby
reducing the cognitive load on the cerebral cortex by selecting the most
relevant information within a visual field [1,3,4]. Visual saliency that
reflects the degree of selective attention, and in turn the detection of
the most relevant and meaningful parts of a visual scene, has become
an essential component in various applications in multimedia and
computer vision [5–8], human–computer interaction [9], and medical
imaging [10].

In machine perception, visual saliency is typically modelled using a
saliency map (also known as a fixation density map), providing a quan-
titative representation of the distribution of visual attention. Significant
research has been dedicated to comprehending gaze and simulating
visual saliency in computational methods [11–21]. However, these
studies focus on pristine images without any distortion, which limits
the applicability of the results in many real-world imaging scenarios.

In many cases, digital images are vulnerable to distortions at var-
ious stages of the visual processing pipeline including acquisition,
processing, compression, storage, transmission, and reproduction [22].
These distortions can alter human attention, thereby changing the
visual saliency of the scene [23]. Predicting visual saliency of distorted
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images has significant potential for various tasks related to human
visual perception. For example, a saliency model tailored for distorted
images can be used to optimise objective image quality assessment
(IQA) metrics [24] and to refine image enhancement algorithms, en-
abling more nuanced adjustments that better align with human visual
experiences [25]. In a recent study [26], a distortion-aware saliency
benchmark entitled the CUDAS (Cardiff University Distortion-Aware
Saliency) database was created. In this study, a fully controlled eye-
tracking experiment was conducted to collect eye movements of 96
human subjects viewing 600 stimuli with differing forms of degradation
and varying degrees of perceived quality. Based on an analysis of the
behaviour of 20 state-of-the-art saliency models applied to the CUDAS
database, the research reveals that these models often fall short in
predicting the saliency of distorted images [26]. Therefore it is critical
to develop new saliency prediction models that can effectively handle
images affected by various types and levels of distortion.

To address this new challenge, this paper proposes a distortion-
aware visual saliency prediction model. We first develop a deep learn-
ing Distortion-Aware Saliency Module (DASM) to produce a saliency
feature representation relating to image distortions. To enable high
expressive ability for the DASM during supervised learning, we create
a dedicated dataset that draws upon an existing large-scale saliency
dataset (i.e., SALICON [27]) and machine-generated image quality
assessments. More specifically, we extend the images of the SALI-
CON dataset by generating nine distorted variants for each image,
encompassing three different types of distortion at three perceptually
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distinct levels of degradation, based on the recommendations of pre-
vious research [26]; and assigning an image quality judgement using
state-of-the-art image quality assessment (IQA) algorithms namely Ma-
chine Mean Opinion Score (MMOS). The core innovation involves using
MMOS to allow DASM to produce distortion-aware saliency features
during learning. Then, we integrate the DASM into a perceptually
relevant visual saliency prediction algorithm TranSalNet [21], resulting
in a new distortion-aware saliency model named TranSalNet+. Exper-
imental results demonstrate the added value of the proposed DASM
in handling distorted images, and the proposed model TranSalNet+
achieves state-of-the-art performance on the CUDAS distortion-aware
saliency benchmark [26].

Our contributions in this paper can be summarised as follows:

• We develop a dedicated dataset, SALICON-MMOS, by leverag-
ing an existing large-scale saliency dataset, namely SALICON, in
conjunction with machine-generated image quality assessments.
This is achieved through the incorporation of the Machine Mean
Opinion Score (MMOS), which is derived from state-of-the-art
objective IQA models.

• We introduce the Distortion-Aware Saliency Module (DASM),
benefiting from the guidance of the Machine Mean Opinion Score
(MMOS) to generate distortion-aware saliency features during
the learning process. It allows the saliency prediction model to
consider the impact of image quality on visual attention, an aspect
often overlooked in conventional saliency models.

• We propose a distortion-aware visual saliency prediction model
that achieves state-of-the-art performance on the CUDAS disto-
rtion-aware saliency benchmark. It shows the efficacy of incorpo-
rating image quality information into the saliency prediction of
distorted scenes.

2. Related work

2.1. Saliency prediction models

There is substantial work that has been dedicated to developing
computational models for the automatic prediction of visual saliency.
Early foundational models, such as IttiKoch [11], GBVS [12], Tor-
ralba [28], QSS [29], and CovSal [30], have been instrumental in
establishing the field, primarily by leveraging low-level visual features
like colour, luminance, texture, and contrast. These features aim to
mimic the HVS’s innate ability to spotlight salient regions within a
scene, offering initial insights into the basic constituents of visual
attention.

Despite their contributions, these traditional models face limita-
tions, particularly in harnessing higher-level features – such as semantic
context and object recognition – that are critical for a comprehensive
understanding of visual saliency [31]. Due to recent advancements in
deep learning [32–36], saliency models have entered a new era [13–
20]. These models transcend the sole reliance on hand-crafted features,
learning intricate image representations directly from data, which has
significantly propelled the field forward.

However, despite these advancements, a critical gap remains con-
spicuously unaddressed: the majority of existing visual saliency pre-
diction research focuses on pristine, undistorted images, leaving the
saliency in distorted scenarios largely unexplored. This oversight is non-
trivial, as prior studies have convincingly shown that image quality
degradation can influence human visual attention, altering saliency pat-
terns in distorted images [24]. Besides, recent studies have shown that
existing visual saliency prediction models often fall short in accurately
predicting saliency within distorted images [26]. This underscores the
necessity of integrating an understanding of image quality percep-
tion with visual saliency prediction models for images suffering from
various distortions.
2

Fig. 1. Illustration of the 60 source images (6 pristine images × 10 scene categories)
contained in CUDAS [26]. From top row to bottom row, the categories are ACT
(Action), BNW (Black and White), CGI (Computer-Generated Imagery), IND (Indoor),
OBJ (Object), ODM (Outdoor Manmade), ODN (Outdoor Natural), PAT (Pattern), POT
(Portrait), and SOC (Social).

2.2. Image quality assessment

Since humans are the ultimate receivers of most visual information,
subjective evaluation, where participants rate the perceived quality
of images in controlled environments, is considered to be the most
reliable method for assessing image quality. Previous research has
employed extensive subjective experiments on image quality perception
to elucidate human perception and evaluation of image quality [37–
39]. Despite the invaluable insights offered by subjective assessments,
the inherent limitations of subjective assessments, notably their high
cost, time consumption, and limited scalability, significantly curtail
their utility in large-scale applications.

In recent years, objective IQA models, such as MANIQA [40], Hyper-
IQA [41], and TReS [42], have been proposed and yielded remarkable
progress, achieving results on IQA benchmarks that closely approx-
imate the subjective evaluations of human observers. By virtue of
their scalability and efficiency, these IQA models present themselves as
feasible alternatives to human observers in IQA applications. Therefore,
in order to facilitate the development of distortion-aware saliency
prediction, this study employs these three state-of-the-art IQA models
as observers to generate Machine Mean Opinion Score (MMOS) for the
expanded SALICON dataset [27] with distorted variants.

2.3. Distortion-aware saliency benchmark - CUDAS

The cornerstone of distortion-aware saliency prediction lies in the
availability of reliable distortion-aware saliency benchmarks. CUDAS
[26] stands as a leading benchmark in this domain, established on
the basis of a large-scale eye-tracking study employing rigorous experi-
mental methodologies to investigate visual attention towards distorted
images. Specifically, CUDAS comprises a collection of 60 high-quality
and high-resolution (1920 × 1080 pixels) pristine images. Fig. 1 shows
the diverse stimuli scenes within the CUDAS dataset. Distorted variants
of these images are generated by simulating three distinct distortion



Neurocomputing 600 (2024) 128155J. Lou et al.
Fig. 2. Schematic overview of the proposed architecture (TranSalNet+) for distortion-aware visual saliency prediction. The input is encoded by a deep learning encoder consisting of
a CNN backbone and transformer encoders. The DASMs yield IQA scores for the distortion-aware training phase using the SALICON-MMOS dataset, and generate the distortion-aware
features for learning the intended task of predicting saliency of distorted visual scenes. The predicted saliency maps are generated by the CNN Decoder based on the features from
the encoder and DASMs.
types: contrast change (CnC), JPEG compression (JPEG), and motion
blur (MB). For each distortion type, three distinct levels of perceived
image quality (namely, Q1, Q2, and Q3) are created by varying the
distortion strength. Consequently, CUDAS yields a total of 600 stimuli.
The eye-tracking experiments conducted for CUDAS adhered to the
International Telecommunication Union (ITU) standards [43] and were
carried out in a standardised office environment. To ensure the relia-
bility of the experimental data, a between-subjects approach [44] was
employed during data acquisition, involving 96 participants to mitigate
subject bias potentially arising from stimulus repetition [45]. Given
that CUDAS provides the largest of its kind distortion-aware saliency
dataset, this paper adopts it as a benchmark to explore distortion-aware
saliency prediction.

3. Proposed method

3.1. Overall architecture

The architecture of the proposed distortion-aware visual saliency
prediction model, TranSalNet+, is illustrated in Fig. 2. Building upon
the previous research [21], which leveraged transformer encoders to
capture long-range contextual dependencies for improved saliency pre-
diction, TranSalNet+ adopts the image encoder from the aforemen-
tioned work. This encoder utilises a ResNet-50 [33] backbone archi-
tecture, strategically integrating transformer encoders (𝑇1, 𝑇2, and 𝑇3)
into the last three convolutional blocks in a progressive manner (deeper
to shallower layers). These transformer modules effectively capture
global dependencies within the feature maps, leading to a more com-
prehensive understanding of the image content. The encoded feature
maps are subsequently processed by the Distortion-Aware Saliency
Module (DASM), detailed in Section 3.2, to incorporate crucial image
distortion information. Finally, the processed features are fed into the
CNN decoder to generate the saliency map.

The CNN decoder, detailed in Fig. 3, is tasked with efficiently
decoding the latent features from the encoder and DASMs, restoring the
spatial dimensions, and ultimately generating saliency maps. It achieves
this by employing a sequential architecture consisting of five convolu-
tional blocks (Conv_Block_1 to Conv_Block_5), followed by a dedicated
Readout block. Each Conv_Block leverages a well-established pipeline
of convolution, normalisation, ReLU activation, and upsampling to
effectively learn upsampled feature representations. The final Readout
block replaces the upsampling operation with a convolutional layer
followed by a Sigmoid activation layer to generate the final saliency
map. This design choice ensures the output saliency map lies within the
range of [0, 1], signifying the relative importance of each pixel within
the image.
3

3.2. Distortion-aware saliency module

Previous studies have indicated a connection between human vi-
sual attention distribution and image distortion [24], suggesting that
incorporating distortion-aware features could enhance the accuracy of
modelling human visual attention in distorted images. Building upon
this insight, we devise the Distortion-Aware Saliency Module (DASM), a
novel approach designed specifically to integrate distortion-aware fea-
tures into the saliency prediction process, as the structure illustrated in
Fig. 2. DASM is based on the principle of the self-attention mechanism,
which has been proven highly effective in perception-related tasks, such
as visual saliency prediction [21] and image quality assessment [40].
Let 𝑖 represent the output saliency feature maps from the transformer
encoder 𝑇𝑖. The Distortion-Aware Features (𝐷𝐴

𝑖 ) are obtained from
the DASM𝑖 by processing 𝑖. More specifically, 𝑖 is first transformed
linearly to generate  𝑞

𝑖 , 𝑘
𝑖 , and 𝑣

𝑖 for the self-attention mechanism,
i.e.,  𝑞

𝑖 = FC𝑞(𝑖), 𝑘
𝑖 = FC𝑘(𝑖), and 𝑣

𝑖 = FC𝑣(𝑖). Then 𝐷𝐴
𝑖 is

obtained by:

𝐷𝐴
𝑖 = ℎ(ℎ(𝑖)), (1)

where:

𝑖 = Softmax(𝑞
𝑖 × (𝑘

𝑖 )
𝑇 ) × 𝑣

𝑖 + 𝑖, (2)

ℎ(⋅) = ReLU(FC(⋅)), (3)

FC and ReLU represent a fully connected layer (FC) and a ReLU
function, respectively. The 𝐷𝐴

𝑖 is fused into the decoder stream by a
fusion function [46], which can be expressed as:

𝐹𝑢𝑠𝑒𝑑
𝑖 = ∗

𝑖 × 𝐷𝐴
𝑖 + ∗

𝑖 , (4)

where ∗
𝑖 denotes the saliency features that are fused with 𝐷𝐴

𝑖 in the
CNN decoder. Details regarding the specific layers where fusion takes
place are illustrated in Fig. 3.

To ensure that DASM generates distortion-aware saliency features,
the mechanism based on MMOS (see details in Section 3.3) is intro-
duced to explicitly guide feature expression during its training stage.
To facilitate this capability, we make DASM derive a image quality
score from the intended distortion-aware saliency features. According
to previous research [40], the overall quality score of an image can be
derived by allocating different weight scores to distinct regions of its
features. Inspired by this concept, in the DASM, 𝑖 (i.e., the saliency

features) are employed as weights to perform a weighted summation



Neurocomputing 600 (2024) 128155J. Lou et al.
Fig. 3. Details of the CNN Decoder, where 𝑖, 𝑖 = 1, 2, 3 denotes the saliency features from encoding phase (i.e., 𝑇𝑖, 𝑖 = 1, 2, 3); 𝐷𝐴
𝑖 and ∗

𝑖 denote the distortion-aware features
from DASM𝑖 and the features that are fused with 𝐷𝐴

𝑖 in the CNN decoder.
Fig. 4. Examples from SALICON-MMOS dataset, including images and their corresponding MMOS values. The top-left image is the original scene from SALICON [27], followed
by its nine distorted variants. CnC, JPEG, and MB represent distortions types of contrast change, JPEG compression, and motion blur, respectively; Q1, Q2, and Q3 denote low,
medium, and high levels of distortion intensity.
of 𝐷𝐴
𝑖 , thereby yielding an image quality score. This process can be

expressed as:

𝑄𝑆 =
∑

(

𝐷𝐴
𝑖 × 𝜎(𝑖)

)

∑

𝜎(𝑖)
, (5)

where 𝑄𝑆 denotes the predicted image quality score and 𝜎 denotes the
sigmoid function. Through this process, the quality perception of an im-
age is modelled together with visual saliency, yielding distortion-aware
saliency features.

3.3. MMOS-based mechanism

For deep learning-based methods, employing a large-scale and di-
rectly relevant training dataset can often be effective in achieving the
intended task [47]. However, there is a lack of large-scale saliency
datasets in the context of image quality perception, as existing datasets
are typically confined to a few hundred samples [26]. To circumvent
this problem and avoid conducting a large-scale perception exper-
iment of eye-tracking and image quality assessment, we provide a
practical solution to create a contextually relevant dataset, namely
SALICON-MMOS. The intention is to explicitly guide DASM to gen-
erate distortion-aware saliency features. We draw upon an existing
large-scale saliency dataset (i.e., SALICON) and expand it by including
distorted image variants with their quality assessed by a Machine Mean
Opinion Score (MMOS). For images of the SALICON dataset, their
distorted variants are created using the same protocol as the CUDAS
benchmark [26]. Specifically, each image is distorted by three types of
distortion including contrast change (CnC), JPEG compression (JPEG),
and motion blur (MB); and the magnitude of each distortion type is
varied to generate three perceptually distinct quality levels i.e., Q1
(perceptible but not noticeable distortion), Q2 (annoying distortion),
and Q3 (very annoying distortion). Consequently, nine distorted vari-
ants (three distortion types × three distortion levels) are created for
4

each image in the SALICON dataset, resulting in an expanded set of
stimuli named X-SALICON.

The concept of the Machine Mean Opinion Score (MMOS) is in-
formed by the definition of the Mean Opinion Score (MOS) derived
from subjective IQA [48]. Given the high correlation between the
subjective IQA and objective IQA represented by state-of-the-art IQA
models, we use a model to rapidly generate a MMOS for each im-
age contained in the X-SALICON dataset. We choose three highly
reliable deep learning-based IQA models; namely MANIQA [40], Hyper-
IQA [41], and TReS [42] to individually assess the quality of an image;
and the results are averaged to yield the MMOS. These three models
represent distinct deep learning modelling paradigms (i.e., distinct
network architectures) for the IQA task, providing diverse capabilities
in generating IQA scores. More specifically, MANIQA utilises a multi-
dimension attention network, HyperIQA adopts a self-adaptive hyper
network architecture, and TReS leverages a hybrid architecture com-
bining CNN and transformers. This approach mitigates potential biases
inherent in individual deep models and hence enhances the robustness
of the MMOS [49]. In our implementation, first IQA models are each
applied to the images of the X-SALICON dataset. Then z-scores are
calculated to calibrate the scores of different IQA models towards the
same mean and standard deviation. The z-score (𝑧𝑖𝑗) of the 𝑖th IQA
model on the 𝑗th image can be computed as:

𝑧𝑖𝑗 =
𝑟𝑖𝑗 − 𝜇𝑖

𝜎𝑖
, (6)

where 𝑟, 𝜇, and 𝜎 denote the raw IQA score, mean IQA score, and stan-
dard deviation, respectively. The outlier detection method described
in [50] is applied, and no outliers are found in the z-scores. Finally, the
MMOS for each image is calculated as the mean of the z-scores over all
IQA models:

𝑀𝑀𝑂𝑆𝑗 =
1

𝑠
∑

𝑧𝑖𝑗 , (7)

𝑠 𝑖=1
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where 𝑠 = 3 is the number of IQA models. To enhance the inter-
pretability of the final MMOS, these scores are linearly rescaled to be
within the [0, 1] range. Consequently, the SALICON-MMOS dataset
encompasses 100,000 images in its training set and 50,000 in the
validation set, with reference and distorted variants, and their corre-
sponding MMOS. A set of images from the SALICON-MMOS dataset,
including the original image and its nine distorted variants and their
corresponding MMOS values, is illustrated in Fig. 4. It can be seen that
for the same distortion type, the MMOS decreases as the distortion
intensity increases, which aligns with the subjective image quality
perception. The resulting SALICON-MMOS dataset that contains the
expanded stimuli with distortions and their MMOS values will be used
for the feature guidance of the DASM.

4. Experimental results

4.1. Datasets

• SALICON-MMOS: An extended set of stimuli of the SALICON
dataset [27], including both original images and their distorted
variants, all assigned with an MMOS value. The details are de-
tailed in Section 3.3.

• CUDAS [26]: The distortion-aware saliency benchmark, compris-
ing 600 images of different distortion types of varying perceived
quality. Ground truth data of saliency and image quality were
collected via eye-tracking and subjective IQA experiments. The
details are detailed in Section 2.3.

4.2. Evaluation metrics

A range of metrics have been established to quantify the agreement
between the predicted saliency map and the ground truth. Following
previous research [23,51,52], we adopt five widely used metrics to
thoroughly evaluate the performance of the visual saliency model on
distorted images. These metrics include Pearson correlation coefficient
(CC), Similarity (SIM), Kullback–Leibler Divergence (KLD), Area Under
Curve (AUC), and Normalised Scanpath Saliency (NSS). A brief intro-
duction to these saliency metrics is provided below. Let 𝑃 , 𝑆, and 𝐹
e the predicted saliency map, ground truth saliency map, and ground
ruth fixation map, respectively.

• CC is a statistical method to measure the correlation of two
variables, which evaluates the accuracy of saliency prediction by:

CC(𝑃 , 𝑆) = cov(𝑃 , 𝑆)
𝜎(𝑃 ) ⋅ 𝜎(𝑆)

, (8)

where cov(⋅) is the covariance and 𝜎(⋅) is the standard deviation.
• SIM measures the similarity between the predicted and the

ground truth saliency maps by:

SIM(𝑃 , 𝑆) =
∑

𝑖
min(𝑃𝑖, 𝑆𝑖), (9)

where 𝑖 indexes the 𝑖th pixel; ∑𝑖 𝐏𝑖 =
∑

𝑖 𝐒𝑖 = 1.
• KLD metric is calculate by:

KLD(𝑃 , 𝑆) =
∑

𝑖
𝑆𝑖 log

(

𝜖 +
𝑆𝑖

𝜖 + 𝑃𝑖

)

, (10)

where 𝑖 indexes the 𝑖th pixel; 𝜖 is used as a regularisation constant,
which is set to 2.2204 × 10−16 as per [51].

• NSS is a metric specifically designed for saliency evaluation,
which uses the fixation map (𝐹 ) as the ground truth reference.
It can be calculated by:

NSS(𝑃 , 𝐹 )= 1
𝑁

∑

𝑖
𝑃𝑖 × 𝐹𝑖

where 𝑁=
∑

𝑖
𝐹𝑖

𝑃=
𝑃 − 𝜇(𝑃 )

,

(11)
5

𝜎(𝑃 ) a
Table 1
Ablation study results on the distortion-aware saliency benchmark (CUDAS) [26]. Bold
and Italicised Bold fonts indicate the best and second-best performance, respectively.

Variant DASM1 DASM2 DASM3 CC ↑ SIM ↑ KLD ↓ AUC ↑ NSS ↑

A – – – 0.7853 0.7070 0.4177 0.8227 1.6814
B ✓ – – 0.7935 0.7136 0.4045 0.8241 1.6916
C – ✓ – 0.7918 0.7118 0.4136 0.8234 1.6965
D – – ✓ 0.7894 0.7087 0.4170 0.8232 1.6910
E ✓ ✓ – 0.7979 0.7156 0.4112 0.8246 1.7057
F ✓ ✓ ✓ 0.7893 0.7110 0.4258 0.8240 1.6943

where 𝑖 indexes the 𝑖th pixel; 𝑁 represents the total number of
fixated pixels; 𝜇(⋅) is the mean; 𝜎(⋅) is the standard deviation.

• AUC assesses the predicted saliency map as a binary classifier
by varying thresholds to determine if pixels are actual fixation
points. The ROC (receiver operating characteristic) curve is de-
rived from the true and false positive rates of these threshold-
based classifiers.

For KLD, values approaching zero indicate an optimal agreement with
the ground truth. For other saliency metrics, higher values indicate a
closer alignment with the ground truth.

4.3. Implementation details

The implementation of our TranSalNet+ model involves two phases.
The first phase is training the DASMs. The backbone and transformer
encoders were initialised by the pre-trained weights on SALICON and
then frozen. Only the DASMs were trained on the SALICON-MMOS
dataset using the mean squared error (MSE) loss to produce IQA scores.
Optimal models were obtained through early stopping after 5 epochs
of patience, using the AdamW optimiser [53]. The optimisation started
with a batch size of 32 and an initial learning rate of 4×10−4, decaying
by a factor of 0.1 every epoch.

The second phase is training the proposed architecture for dist-
ortion-aware saliency prediction. The saliency prediction components
of the model were initialised by the pre-trained weights on SALICON
(as per recommendations in [26]), and the DASMs were initialised by
the best parameters from the first training phase. We conducted a 𝑘-
old cross-validation (𝑘 = 6) for comprehensive model evaluation on
he CUDAS dataset, which was divided into six equal, non-overlapping
ets. In each cross-validation cycle, one set was designated for testing,
ne for validation, and the remaining four sets for training. This ap-
roach ensured no overlap or parameter sharing between the cycles
as allowed; and the models were tested on unseen samples. The

inal results represented the mean performance across all six runs. The
oss function used for training was a linear combination of CC, SIM,
SS, and KLD, as detailed in [21]. Early stopping and the optimiser
ere consistent with the first phase, with a batch size of four and an

nitial learning rate of 8 × 10−5, decaying by a factor of 0.1 every two
pochs.

.4. Ablation study

We investigate the contribution of the proposed DASM to distortion-
ware saliency prediction. Let DASM1, DASM2, and DASM3 represent
he DASMs connected to different encoding levels, i.e., 𝑇1, 𝑇2, and 𝑇3,
espectively. To this end, we devised seven model variants, denoted as
ariants A to F. These model variants include the variant without DASM
nd those utilising a single DASM, i.e., DASM1, DASM2, or DASM3,
nd a combination of them. Table 1 presents the performance of these
odel variants on the CUDAS benchmark. The results demonstrate:

1) Variant A, without the Distortion-Aware Saliency Module (DASM),
nd consequently lacking the integration of distortion-aware features
nformed by the MMOS, consistently exhibits the lowest performance

cross the majority of metrics. This observation underscores the critical



Neurocomputing 600 (2024) 128155J. Lou et al.
Fig. 5. Examples of ground truth (GT) versus predicted saliency of distorted visual scenes on the CUDAS benchmark [26]. From left to right, the first two columns present scenes
with motion blur (MB) distortion, the third and fourth columns illustrate scenes with contrast change (CnC) distortion, and the fifth and sixth columns show scenes with JPEG
compression (JPEG) distortion. The top two rows represent the distorted stimuli and their ground truth (GT) saliency maps, the other rows show the predicted saliency of our
proposed model and state-of-the-art saliency models.
role of distortion-aware features in enhancing saliency prediction for
distorted images. (2) In comparing the performance among variants
B, C, and D, it is observed that the integration of a single DASM at
different encoding levels can improve model performance, suggesting
that distortion-aware features generated by DASM are effective for the
intended task. However, incorporating DASM into the deeper encod-
ing layers (e.g., 𝑇1 and 𝑇2) of the network yields larger performance
improvements, implying that the deeper features are more capable of
representing the distortion related features for saliency prediction. (3)
In comparing the performance among all variants, the combination
of DASM1 and DASM2 achieves the highest performance, surpassing
the use of DASM1, DASM2, and DASM3 combined together. This sug-
gests that distortion-aware features derived from shallower levels have
low representational capability for distortion-aware saliency predic-
tion. Consequently, we adopt the model variant employing DASM1 and
DASM as our definitive model.
6
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Table 2
Performance comparison of our proposed model TranSalNet+ and state-of-the-art
saliency models on the distortion-aware saliency benchmark (CUDAS) [26]. Bold and
Italicised Bold fonts indicate the best and second-best performance, respectively.

Model name CC ↑ SIM ↑ KLD ↓ AUC ↑ NSS ↑

FastSal [19] 0.6940 0.6522 0.5801 0.8004 1.3627
DVA [14] 0.6940 0.6549 0.4269 0.8032 1.4689
GazeGAN [16] 0.7022 0.6535 0.6973 0.8006 1.4386
MSI-Net [17] 0.7379 0.6559 0.4895 0.8194 1.6194
EML-NET [15] 0.7603 0.6950 0.8320 0.8182 1.6759
SAM [13] 0.7672 0.7003 0.5244 0.8193 1.6281
UNISAL [18] 0.7781 0.7017 0.3857 0.8194 1.6194
TranSalNet [21] 0.7853 0.7070 0.4177 0.8227 1.6814
RINet [20] 0.7911 0.7054 0.3299 0.8217 1.6446
Proposed (TranSalNet+) 0.7979 0.7156 0.4112 0.8246 1.7057
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4.5. Comparison with the state-of-the-art

To validate the effectiveness of our proposed model against the
state-of-the-art for distortion-aware saliency prediction, we conduct a
comparative analysis on the CUDAS benchmark. The selection criteria
of models are: (1) top-tier performance on general-purpose saliency
benchmarks, and (2) the availability of implementation code for pre-
trained models. To ensure a fair comparison, the same implementation
protocol as detailed in Section 4.3 for our proposed model includ-
ing initialisation with SALICON pre-trained weights and 6-fold cross-
validation on CUDAS is applied for all other models in the comparative
study. Table 2 shows the results of performance comparison, with some
examples of visual assessment illustrated in Fig. 5. It can be seen that
our model achieves the best scores in CC, SIM, AUC, and NSS, and
a competitive score in KLD, demonstrating its overall superiority in
predicting visual saliency of distorted images.

4.6. Discussion

Previous studies have demonstrated the importance of carefully
selecting appropriate metrics to evaluate the performance of visual
saliency models. It is suggested that the choice of saliency metrics
should align with the specific application under study [51,52]. Amongst
commonly used saliency metrics, NSS, CC, and SIM are more closely
aligned with human perception [51,52]. Hence these metrics may
provide a more suitable evaluation for visual saliency prediction in
application scenarios where distortions affect viewers’ visual experi-
ences [23]. As shown in Table 2, the proposed model achieves the
best results across all metrics except for KLD. Particularly noteworthy is
our model’s exceptional performance on the NSS, CC, and SIM metrics,
demonstrating its superiority in predicting visual saliency in the more
demanding conditions, such as distorted images.

The aim of the proposed model is to predict visual saliency for
images of varying levels of distortion. In our study, we specifically
focus on three common types of distortion, i.e., contrast change, JPEG
compression, and motion blur. While these distortions are widely stud-
ied, and hence serve as representative examples in our context, it
should be noted that they do not encompass all possible distortion
types. Other types of distortion, such as white noise and Gaussian
blur, can also significantly impact visual attention in various real-world
applications. Future research could focus on evaluating the proposed
model’s performance across a broader spectrum of diverse distortions
and improving the robustness of saliency prediction.

5. Conclusion

In this paper, we have presented our work towards predicting
saliency of distorted visual scenes. To tackle this challenge, we propose
a deep learning Distortion-Aware Saliency Module (DASM), which
learns the representational features related to image distortion for the
task of saliency prediction. To facilitate the feature expression capa-
bility of DASM during training, we create a SALICON-MMOS dataset
to encompass images with distortion and their quality assessments de-
rived by a Machine Mean Opinion Score (MMOS). Experimental results
have substantiated the efficacy of our proposed model, outperforming
state-of-the-art models in predicting saliency of distorted images.
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