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Surrogate models (SM) present an opportunity for rapid assessment of a building's performance, 
surpassing the pace of simulation-based methods. Setting up a simulation for a single concept involves 
defining numerous parameters, disrupting the architect's creative flow due to extended simulation run 
times. Therefore, this research explores integrating building energy analysis with advanced machine 
learning techniques to predict heating and cooling loads (KWh/m2) for single and multi-zones in buildings.  
To generate the dataset, the study adopts a parametric generative workflow, building upon Chou and Bui's 
(2014) methodology. This dataset encompasses multiple building forms, each with unique topological 
connections and attributes, ensuring a thorough analysis across varied building scenarios. These scenarios 
undergo thermal simulation to generate data for machine learning analysis. The study primarily utilizes 
Random Forest (RF) as a new technique to estimate the heating and cooling loads in buildings, a critical 
factor in building energy efficiency. Following that, A random search approach is utilized to optimize the 
hyperparameters, enhancing the robustness and accuracy of the machine learning models employed later 
in the research. The RF algorithms demonstrate high performance in predicting heating and cooling loads 
(KWh/m2), contributing to enhanced building energy efficiency. The study underscores the potential of 
machine learning in optimizing building designs for energy efficiency. 
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INTRODUCTION 
Buildings account for roughly 40% of global 
primary energy consumption, with space cooling 
and heating alone contributing to half of this 
energy use. Hence, it is crucial to reduce the 
energy consumption of buildings and mitigate 
their impact on the environment. Machine 
learning has become a promising solution for 
improving the accuracy of energy consumption 
prediction utilising models such as Support 
Vector Machines (SVMs), Artificial Neural 
Networks (ANNs), and Random Forest (RF). SVMs 
provide a method for minimising risk in a 
structured way that is suitable for situations with 
few data samples. On the other hand, ANNs are 

particularly effective since they could learn on 
their own and can adapt to nonlinear patterns. 
Although both techniques show potential, SVMs 
face issues in terms of scalability, while ANNs face 
the possibility of data loss and the complexities of 
optimising network design. Random Forest (RF) 
functions as an ensemble algorithm. Ensemble 
algorithms are a type of machine learning 
approaches that combine various learning 
courses to get accurate predictions Dietterich 
(2000). RF algorithm can process both numerical 
and categorical data as well as its training 
simplicity and ability to generalize over a huge 
dataset. 

The research methodology consists of four 
key stages designed to meet the research 



objectives: Building Generator, Energy Analysis, 
Regression Modeling and Training, and Cooling 
and Heating Predictions. The surrogate model is 
built using Random Forest algorithms. The 
creation of this surrogate model is elaborated 
upon through three primary phases: (1) data pre-
processing, (2) model training and 
hyperparameter optimization, and (3) model 
validation Westermann and Evins (2019). The 
primary goal of the research was to develop a 
robust RF model capable of accurately predicting 
the heating and cooling loads in buildings. This 
involved creating a comprehensive dataset 
through parametric generative workflows, 
conducting thermal simulations, and performing 
extensive model training and validation using k-
fold cross-validation and hyperparameter tuning. 

RELATED WORK  
Building energy efficiency has attracted 
significant attention due to its potential to reduce 
greenhouse gas emissions. A critical review by 
Seyedzadeh et al. (2018) underscores the 
importance of integrating energy efficiency 
measures at the initial stages of building design 
and in retrofitting existing structures. The paper 
emphasizes the promising role of artificial 
intelligence (AI) and machine learning (ML) 
techniques, such as artificial neural networks, 
support vector machines, Gaussian-based 
regressions, and clustering, in forecasting and 
enhancing building energy performance. In 
addition, several researchers have introduced 
Random Forest (RF) for predicting building 
energy consumption. RF stands out due to its 
capability to handle both numerical and 
categorical data, its straightforward training 
process, and its capacity to generalize across 
large datasets (Tso and Yau 2007; Yu et al. 2010; 
Ahmad et al. 2017; Alammar et al. 2021; Alammar 
and Jabi 2023) 

Wang (2018) contributes to this discourse by 
examining the efficacy of a RF homogeneous 
ensemble approach for hourly energy prediction 

in educational buildings. The study highlights the 
resilience of RF to variations in the number of 
variables, showcasing its superiority over 
regression tree and Support Vector Regression 
models. It also notes the importance of seasonal 
operational differences, suggesting that energy 
prediction models could be refined by 
incorporating data on energy behavior changes 
across semesters. 

Further Rashidifar (2020) introduces a 
machine learning framework to assess the impact 
of eight input variables on the heating and 
cooling loads of residential buildings. Using 
statistical tools to identify key input variables and 
the application of both logistic regression and 
random forest regression, the study demonstrates 
machine learning's capability to provide accurate 
predictions of building parameters.  

Liu et al. (2021) focuses on predicting building 
energy consumption based on the design 
parameters of the building envelope, such as heat 
transfer and solar radiation absorption 
coefficients. By integrating data from Revit and 
DesignBuilder software and employing a Random 
Forest model, the research underscores the 
significant impact of certain design parameters on 
energy consumption. The RF model's superiority 
over BP-ANN and SVM in prediction accuracy. 

Sarmas et al. (2023)) addresses the critical 
need for predicting the energy savings of energy 
efficiency renovation actions to optimize financial 
resource allocation. The paper introduces a 
machine-learning framework that employs tree-
based algorithms with bagging, boosting, and an 
additional ensemble level to minimize prediction 
uncertainty. 

Together, these studies underscore the 
transformative potential of machine learning and 
artificial intelligence in advancing the field of 
building energy efficiency through enhancing 
predictive accuracy and informing optimal design 
and retrofitting strategies. 



METHODOLOGY 
This study employs a structured approach, 
combining building energy analysis with 
advanced machine learning model to predict 
cooling and heating demands (KWh/m2). The 
methodology comprises four stages employed to 
achieve the research objectives as follow: Building 
Generation, Energy Analysis, Regression 
Modeling and Training, and Cooling and Heating 
Prediction.  
Phase 1: Building Generation: In this phase, 12 
types of buildings are created through two 
primary tasks. The first step involves defining 
utility functions that specify the important 
characteristics of each building topology, such as 
the orientation of its faces (North, South, East, 
West), in terms of solar exposure and energy 
efficiency. Additionally, when exporting building 
models, two versions of each model are created. 
One version includes the glazing percentage to 
account for natural light and thermal 
performance, while the other version excludes the 
glazing percentage. This allows for a comparative 
investigation of the impact of glazing on building 
performance and aesthetics. It is crucial to 
emphasise that the building generator produces 
two parallel representations of buildings. A Cell is 
a model that consists of a single zone, whereas a 
CellComplex is a cellular structure that 
encompasses many zones using the TopologicPy 
3D modelling tool by .Jabi et al. (2018). 
Phase 2: Energy Analysis: In this phase, energy 
simulations are conducted for different datasets. 
Cooling simulations are initially performed for the 
Cell, then followed by heating simulations. Then, 
the same sequence is applied to the CellComplex 
(Jabi (2022). 
Phase 3: Regression Modeling and Training: 
Random Forest model was employed to predict 
the cooling and heating loads (KWh/m2) of the 
generated buildings. The model undergoes 
training to achieve the accurate model. A k-fold 
cross validation approach was utilized to optimize 
the hyperparameters, enhancing the robustness 

and accuracy of the machine learning model. In 
addition, various metrics are employed to 
evaluate the model's predictive accuracy and 
performance comparison. 
Phase 4: Cooling and Heating Prediction using 
RF: in this phase the created RF model was tested 
to predict the cooling and heating loads. 
(KWh/m2) of buildings. 

CASE STUDY MODELLING AND 
SIMULATION  

Buildings Modelling and Database 
Generation   
Adhering closely to the configurations specified 
by Chou and Bui (2014), A 3.5 × 3.5 × 3.5 standard 
cube was utilized to create 12 distinct 
architectural designs. Each design consisted of 18 
individual components and was generated using 
the TopologicPy tool within the Jupyter notebook 
environment. Regardless of differences in surface 
areas, all constructed buildings maintained a 
consistent volume of 771.75 m3. Two datasets 
were generated, each containing 769 structures. 
The first dataset focuses on a single-zone 
building, whereas the second dataset includes 18 
interconnected cellular spaces referred to as the 
'CellComplex', as shown in Figure 2. To create 
diversity in the level of transparency of the 
enclosures, the amount and distribution of 
glazing were altered on different walls and in 
different orientations. The study analysed three 
different levels of glazing area: 10%, 25%, and 
40% of the total floor area. In addition, the shapes 
experienced four rotations at 90-degree intervals 
in the north, east, west, and south directions. A 
combination of 12 shapes, 3 glazing levels, 5 
distribution possibilities, and 4 orientations 
resulted in a total of 720 simulation variants. 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Thermal Simulation Settings  
The materials used for all 18 elements are 
consistent across different types of buildings. 
These materials are selected based on their 
common application in construction and their low 
U-values. The U-values for different building 
components are as follows: walls (1.780), floors 
(0.860), roofs (0.500), and windows (2.260). In line 
with the prior research conducted by Chou and 
Bui (2014) the simulation assumes that the 
buildings are located in Athens, Greece, and 
employs similar settings for the current study. The 
architectural configuration comprising 18 spaces 
within the building, collectively referred to as the 
'Cell Complex'. 

The simulation began with examining the 
cooling dataset for the single zone building unit 
to understand the components that influence its 
cooling requirements. Afterwards, an examination 
of the heating dataset was conducted for the 
same building. This simultaneous technique 
offered a thorough perspective on the energy 
demands within a cell. The study further extended 
its scope to include multi-zoned buildings, which 
refer to more intricate architectural 
configurations. The initial simulations focused on 
analysing cooling data for these buildings, 
specifically investigating the impact of building 
interactions on cooling load requirements. 
 

RANDOM FOREST MODEL 
DEVELOPMENT  
As discussed earlier, Random Forest (RF) is an 
evolution of Decision Trees (DT) which utilized in 
this experiment for regression learning to model 
heating and cooling loads (KWh/m2). The energy 
data obtained through simulation were utilized to 
construct the RF model for training and validation. 
In this study, four experiments were conducted 
analyzing both the single cell area and the cell 
complex. 

Figure 1 A single 
space within the 
building, referred 
to as the 'cell'. 
 

Figure 2 The 
architectural 
configuration 
comprising 18 
spaces within the 
building, 
collectively 
referred to as the 
'Cell Complex'. 
 



Inputs Features and Data Pre-
processing  
During testing, the RF model was trained using 
eight input parameters as variables. The inputs 
were subjected to pre-processing to improve the 
accuracy of predictions using machine learning 
methods. The inputs were classified as either 
categorical or continuous. Orientation, Glazing 
Area, and Glazing Distribution were considered as 
categorical variables and encoded using one-hot 
encoding. In contrast, the variables Total Height, 
Relative Compactness, Surface Area, Wall Area, 
and Roof Area were treated as continuous inputs 
without any prior data transformation. Each 
feature showed different ranges that altered the 
number of building iterations in the models. The 
model's output includes both cooling and heating 
loads (KWh/m2). The network's performance was 
evaluated using root mean square error (RMSE), 
mean absolute error (MAE), and coefficient of 
determination (R2) score. RMSE is a measure of 
the average squared difference between the 
actual and predicted cooling load values. On the 
other hand, MAE reflects the average absolute 
difference or residual. Smaller numbers indicate 
superior model performance. The 𝑅2-value 
measures the distribution of predicted values 
around the regression line. It is also known as the 
coefficient of determination, which indicates the 
proportion of variance that is accounted for by 
the model. 

K-Fold Cross Validation  
In all four experiments, the dataset was divided 
into training, validation, and testing sets, with 
80% allocated to training, 6.67% to validation, and 
the remaining 13.33% to testing. The training data 
underwent a 5-fold cross-validation. In k-fold 
cross-validation, one-fold is designated as the 
testing set, while the remaining folds are used as 
the training set. notably, a validation subset of 
one-third of the testing data was allocated for 
each validation iteration. RF model accuracy is 
influenced through various hyperparameters. 

Therefore, this study considered parameters such 
as 1) number of trees, (2) bootstrap, and (3) 
minimal cost-complexity pruning parameter. 

EXPERIMENT RESULTS 
This section presents the results of the RF model 
for all experiments after tuning the 
hyperparameters; experiment (1): single cell 
(cooling loads), experiment (2): single cell 
(heating loads), experiment (3): cell complex 
(cooling loads), experiment (4): cell complex 
(heating loads).  

Experiment (1): Cell (cooling loads): 
The results from the k-fold cross-validation are 
depicted in Figure 3. This visualization displays 
the average RMSE, MAE, and R2 score 
corresponding to each parameter combination. 
On the x-axis, different bootstrap settings are 
presented, with their performance outcomes 
across varying tree numbers shown as bars. Key 
findings from the experiments include: 

- The difference in performance between 
enabled and disabled bootstrap options 
is minor; however, disabling bootstrap 
leads to decreased performance. 

- Performance generally improves with an 
increased number of trees. 

- The optimal model configuration 
identified from the experiments includes 
the bootstrap option enabled with a total 
of 90 trees. 

Figure 4, presents the performance metrics of 
the top-performing models based on the number 
of trees, all with the bootstrap option enabled. 
The final test outcomes were: RMSE of 0.050551, 
MAE of 0.171947, and an R2 score of 0.99177. 
Figure 5, showcases a visualization of RF 
predictions for randomly selected energy data. 
The graph illustrates that, for most data points, 



actual and predicted values closely align or are 
identical.  

 
 
 Tree RMSE MAE R2- score 

0 10.0 0.060561 0.190282 0.990126 
1 20.0 0.060500 0.185863 0.990150 
2 30.0 0.057517 0.187008 0.990655 
3 40.0 0.080428 0.201971 0.987150 
4 50.0 0.055405 0.181896 0.991005 
5 60.0 0.055873 0.181157 0.990864 
6 70.0 0.052140 0.176423 0.991508 
7 80.0 0.081087 0.202292 0.987054 
8 90.0 0.050551 0.171947 0.991776 
9 100.0 0.052826 0.176437 0.991366 

Experiment (2): Cell (heating loads): 
The k-fold cross-validation outcomes are 
displayed in Figure 6. From these experiments, 
several key findings emerged: 

- RMSE values exhibited variability with 
increasing tree numbers, as depicted in. 

- The optimal results occurred when the 
ccp-alpha parameter was set to 0.0, 
regardless of the number of trees or 
bootstrap option. 

- The performance significantly declined 
when a non-zero ccp-alpha value was 
used. 

- Models that had the bootstrap option 
enabled outperformed those that did 
not. 

- The best result was achieved when the 
number of trees was 100, the ccp-alpha 
value was 0, and the bootstrap option 
was enabled Table 2. 

The results demonstrate a consistent 
enhancement in performance as the number of 
trees increases. Nevertheless, there was a 
noticeable decrease in the model's performance 
when 40 and 80 trees were employed. Figure 7, 
shows the performance metrics of the most 
successful models, which were determined by the 
number of trees used and with the bootstrap 
option enabled. The k-fold cross-validation 
achieved optimal results while using 100 trees, a 
ccp-alpha value of 0, and using the bootstrap 
option. The test results are as follows: the root 
mean square error (RMSE) is 0.059805, the mean 
absolute error (MAE) is 0.188470, and the 
coefficient of determination (R2 score) is 
0.990059. The results indicate the model's 
performance after conducting cross-validation 
using the entire training dataset and testing it on 
a 20% sample.  Figure 8, displays a graphical 
representation of the RF predictions for a 
randomly chosen sample of energy data points. 
The graph indicates a strong correlation between 
the actual and predicted values for most data 

Figure 3 Results of 
hyperparameter 
tuning in RF (BS 
represents the 
bootstrap option). 

Table 1 Results of 
k-fold cross 
validation for RF. 
 

Figure 5 Actual 
versus predicted 
values for 
randomly selected 
test cases. 

Figure 4 Metrics 
showcasing the 
performance of 
the top-
performing 
models. 
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points, with a high degree of similarity or 
precision. 

 
 Tree RMSE MAE R2- score 

0 10.0 0.074548 0.200931 0.987763 
1 20.0 0.069566 0.199699 0.988710 
2 30.0 0.064396 0.191841 0.989328 
3 40.0 0.106869 0.219096 0.982605 
4 50.0 0.062652 0.188462 0.989610 
5 60.0 0.063964 0.190277 0.989603 
6 70.0 0.064061 0.192848 0.989426 
7 80.0 0.108336 0.220430 0.982368 
8 90.0 0.063216 0.187610 0.989575 
9 100.0 0.059805 0.188470 0.990059 

 

 

Experiment (3): Cell complex (cooling 
loads): 
 
The result of k-fold cross validation is given in 
Figure 9. The results of this experiments revealed 
the following: 

- In general, the performance showed 
improvement as the number of trees 
increased, except in the cases of 
choosing 40 or 80 trees, which led to a 
decrease in performance. 

- The performance was significantly worse 
when the bootstrap was disabled in 
comparison to when it was active. 

- According to the experiments, the 
optimal model consisted of a bootstrap 
that was enabled, a ccp-alpha value of 0, 
and 100 trees Table 3. 

 
Figure presents the performance metrics of 

the top-performing models based on the number 
of trees. The final test metrics were: RMSE of 
0.053527, MAE of 0.179106, and an R2 score of 
0.989864. A visualization of RF predictions for a 
randomly energy data point is depicted in Figure 
11.  

 
 

 
 
 
 

 

 
Table 2 The results 
of k-fold cross 
validation for RF. 
 

Figure 7 
Performance 
metrics 
corresponding to 
the best 
performing 
models. 

Figure 6 Results of 
hyperparameter 
tuning in RF.  

Figure 9 Results of 
hyperparameter 
tuning in RF.  

Figure 8 Actual 
versus predicted 
values for 
randomly selected 
test cases. 
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 Tree RMSE MAE R2- score 

0 10.0 0.068589 0.200871 0.986969 
1 20.0 0.058965 0.189458 0.988896 
2 30.0 0.058229 0.184866 0.988994 
3 40.0 0.090525 0.211556 0.983036 
4 50.0 0.057170 0.184962 0.989190 
5 60.0 0.055689 0.182632 0.989460 
6 70.0 0.055686 0.182269 0.989446 
7 80.0 0.090443 0.211525 0.983044 
8 90.0 0.054071 0.178023 0.989763 
9 100.0 0.053527 0.179106 0.989864 

 
 

 
 
 
 
 

 
Experiment (4): Cell complex (heating 
loads): 
The k-fold cross-validation outcomes are 
displayed in Figure 12. Insights from these 
experiments include: 

 
- Performance demonstrated an 

oscillatory trend with the addition of 
more trees, with optimal results observed 
at 60 trees. 

- Consistent with experiment (3), 
performance declined when the 
bootstrap option was turned off. 

- Based on the experiments, the best 
model configuration featured an enabled 
bootstrap and 60 trees. 

Figure 13, shows the performance metrics of 
the best-performing models, sorted according to 
the number of trees used. The final test metrics 
were: RMSE of 0.060729, MAE of 0.190074, and an 
R2 score of 0.987454. A visualization of RF 
predictions for a randomly energy data points is 
depicted in Figure 14. 
 

 

 
 Tree RMSE MAE R2- score 

0 10.0 0.075701 0.211335 0.984441 
1 20.0 0.065312 0.199333 0.986448 
2 30.0 0.063677 0.194189 0.986750 
3 40.0 0.096643 0.219836 0.980213 
4 50.0 0.062563 0.195042 0.987012 
5 60.0 0.060729 0.190074 0.987454 
6 70.0 0.062288 0.193283 0.987083 

Table 3 K-fold 
cross validation 
for RF. 

Figure 10 
Performance 
metrics 
corresponding to 
the best 
performing 
models. 

Figure 11 Actual 
versus predicted 
values for 
randomly selected 
test cases. 

Figure 12 The 
results of 
hyperparameter 
tuning in RF.  

Table 4 The results 
of k-fold cross 
validation for RF. 
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7 80.0 0.097308 0.220311 0.980056 
8 90.0 0.061227 0.193029 0.987271 
9 100.0 0.062436 0.192772 0.987068 

CONCLUSION 
This study introduced an innovative method that 
utilises machine learning (ML) algorithms to 
predict cooling and heating loads in the early 
stages of building design. While not empirically 
tested within the paper, the inherent 
characteristics of surrogate models like RF 
suggest potential time savings. Traditional 
simulation methods involve setting up detailed 
models and running computationally expensive 
simulations, which can be time-consuming and 
disrupt the creative process of architects. In 
contrast, once trained, the RF model can provide 
rapid predictions, facilitating quicker decision-
making in the early design stages. 

In general, the results highlighted the 
considerable capacity of surrogate modelling to 
precisely predict energy loads in buildings. The 
Random Forest (RF) model was trained using a 

parametric generative methodology, which 
involved creating an energy dataset using 
TopologicPy for model development. The 
investigation included two scenarios: one using a 
single building unit referred to as a 'cell,' and 
another including complex architectural 
arrangements known as 'cell complexes.' Both 
proposals were simulated to predict the cooling 
and heating loads of the building. Afterwards, the 
energy data produced by the simulations were 
used to create and verify the RF model. Four 
experiments were conducted to analyse the 
cooling and heating loads by investigating both 
single cell and cell complex structures.  In order to 
select the best model, each experiment employed 
k-fold cross-validation to split the data, along 
with hyperparameter modifications. 

The study revealed that the k-fold cross-
validation procedure improved the performance 
of the model by ensuring that each fold was used 
for both training and testing, hence reducing bias 
caused by binary splits. Furthermore, making 
alterations to the hyperparameters had a 
substantial impact on the accuracy of the RF 
model. The results indicated that the RF model 
was able to accurately predict cooling and 
heating demands with high precision as follows:  
Experiment 1 (R2: 0.991776), Experiment 2 (R2: 
0.990059), Experiment 3 (R2: 0.989864), and 
Experiment 4 (R2: 0.987454). These results 
demonstrate a high level of predicted accuracy 
which are consistent with other performance 
metrics. The results indicate that RF models show 
potential for accurately predicting cooling and 
heating loads in buildings during the first design 
phases.   

We recognize the importance of empirically 
validating the time-saving benefits of the 
proposed approach. Future research will focus on 
conducting comparative studies to quantify the 
time savings provided by RF models compared to 
traditional simulation techniques. This will involve 
direct measurements of setup and computation 
times for both methods across various case 

Figure 13 
Performance 
metrics 
corresponding to 
the best 
performing 
models. 

Figure 14 Graph 
shows actual 
versus predicted 
values for 
randomly selected 
test cases. 
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studies. Due to the timeframe of this research and 
the computation time, this study examined a 
specific range of parameters to train the RF 
models, limiting the generalizability of the 
developed surrogate model to predict other 
scenarios. We acknowledge the limitations and 
constraints of generalizing surrogate models to 
different scenarios. Therefore, future work will 
focus on generating a wider variety of parameters 
to enhance the model's generalizability to 
different design settings.  
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Perfor
mance 
metric  

Experi
ment 1 

Experi
ment 2 

Experi
ment 3 

Experi
ment 4 

RMSE  0.0505
51 

0.0598
05 

0.0535
27 

0.0607
29 

MAE  0.1719
47 

0.1884
70 

0.1791
06 

0.1900
74 

R2-
score  

0.9917
76 

0.9900
59 

0.9898
64 

0.9874
54 

Table 5 The 
performance 
metrics for all 
experiments.  


