
Graph Neural Networks for Node Classification and 
Attribute Allocation in Architectural BIM 
 

Wassim Jabi1, Yang Li2 
1,2Cardiff University 
1,2{jabiw|liy327}@cardiff.ac.uk 

Building Information Modelling (BIM) marks a notable shift in architectural design, 
extending beyond simple digital reproductions by capturing the spatial, physical, and 
operational characteristics of structures. Unfortunately, these representations are often 
complex in nature and difficult to inspect, analyze, and understand which can lead to 
errors and omissions during model construction. This research aims to leverage graph 
machine learning systems, utilizing learned datasets, to detect and rectify these issues, 
improving model quality and minimizing costly mistakes. To illustrate the application of 
graph neural networks in this domain, this paper applied a graph-based geometric and 
topological editor coupled with a graph neural network to a real-world dataset of 
residential building complexes. The developed workflow operates by converting 
traditional architectural floor plans into graph-structured data, enabling precise node 
classification predictions. The paper details the overall workflow, data preparation and 
conversion, hyperparameter optimization and experimental results. Comparing the 
performance of various graph neural network models has validated the efficiency of the 
chosen prediction model in processing and analyzing architectural floor plans, achieving 
an overall accuracy rate of approximately 95%. The paper concludes with a discussion of 
the potential and limitations of graph-based machine learning methodologies within the 
architectural domain and an outline of future work plans. 

Keywords: Topology, Artificial Intelligence, Machine Learning, Graph Neural Network, 
Node Classification, Floor Plans.

INTRODUCTION 
In contemporary architectural design, Building 
Information Modelling (BIM) has become an 
indispensable digital three-dimensional tool to 
design and specify a project. BIM models encode 
the relationships among the various components 
of the project. However, the creation and 
maintenance of BIM models are resource-
intensive tasks, fraught with the potential for 
human error. Architects and engineers spend 

countless hours manually inputting data into 
digital BIM models, risking inconsistencies and 
inefficiencies. A possible solution to this issue 
takes advantage of the graph-like structure of 
BIM models which paves the way for the 
application of a field of artificial intelligence called 
graph-based machine learning (GML). If we can 
harness the power of GML, we can not only 
visualize and analyze these networks but also 
predict and automatically assign attributes to 



increase efficiency and reduce errors. This is the 
main aim of and motivation for this research. 

Graphs and Graph Machine Learning 
Zhou et al (2020) describe a graph as a 
fundamental data structure for illustrating 
relationships between entities, where nodes 
denote entities and edges signify relationships. In 
the field of urban analysis and space syntax, Batty 
(2004) relied on graphs to represent relationships 
between streets – where each street is 
represented as a node in the graph. Early in the 
field of computational methods in architecture, 
March and Earl (1977) analysed the the problem 
of counting various classes of architectural plans 
and their adjacency structures using the graphs of 
trivalent 3-polytopes. Unlike traditional Euclidean 
structures such as matrices and vectors, graph 
data exhibits dynamic and variable numbers and 
orders of node neighbors. This poses a challenge 
for applying conventional convolutional neural 
networks to unstructured graphs due to the 
difficulty in defining regular convolutional filters. 

To overcome this hurdle, researchers have 
adapted machine learning (ML) techniques to 
learn from graphs. The field of graph-based 
machine learning (GML) is credited to many 
researchers who have contributed to its 
development. However, one seminal paper often 
credited with laying the foundation for this field is 
"Semi-Supervised Classification with Graph 
Convolutional Networks” by Kipf and Welling 
(2017). This paper introduced the concept of 
Graph Convolutional Networks (GCNs), which are 
a type of graph neural network designed for semi-
supervised learning tasks on graph-structured 
data. The paper demonstrated the effectiveness 
of GCNs in classifying nodes in graph data and 
sparked significant interest and research in the 
field of graph-based machine learning. 

Through continuous advancements, GCNs 
have emerged as a predominant method for 
processing graph data, delivering notable 
achievements across diverse applications. 

RESEARCH METHODOLOGY 
The research methodology in this paper focuses 
on the construction and testing of graph neural 
network models to automate the classification of 
room types within architectural floor plans. This 
involves data preprocessing to enable the 
conversion of floor plans, derived from an existing 
public dataset, into graph representations. 
Feature engineering techniques are then applied 
to extract relevant features from the architectural 
data. The connectivity between architectural 
elements, such as doors, windows, and walls, is 
carefully considered and encoded to capture the 
spatial relationships within the graph. 
Furthermore, feature fusion strategies are 
employed to integrate zone and connectivity 
attributes. Finally, graph construction techniques, 
leveraging a 3D geometrical and topological 
editor are utilized to construct the architectural 
graphs, ensuring a structured representation of 
the building layout for efficient processing by the 
graph neural network models. Once the dataset is 
ready, a rigorous experiment was designed to test 
the classification models against it. 

Data Preprocessing 
Residential floor plans often categorize areas into 
distinct zones like living, dynamic, static, and 
functional zones, each comprising various room 
types. For example, a dynamic zone may include 
living rooms, kitchens, and corridors. Visualizing 
the layout, each room is represented as a node, 
forming the planar structure of a residence, as 
depicted in Figure 1. 

 
 
 
 
 
 
 
 
 
 

Figure 1 
Floor Plan 
Structure 
Schematic 



Edges in the diagram possess a characteristic 
called connectivity, indicating architectural 
elements linking two rooms, notably doors, 
windows, and walls. Figure 1a showcases nodes 
colored according to four distinct zone types, 
while Figure 1b uses nine colors to depict various 
room types. This study aims to predict room types 
for each node based on zone and connectivity 
attributes, leveraging information from Figure 1a 
to infer Figure 1b. 

A residential floor diagram comprises three 
main parts: the graph, nodes, and edges. The 
graph includes information about the number of 
nodes, represented by [num_nodes]. Each node 
within the graph holds two attributes: zone, 
representing its area, and room type, the 
prediction target, forming [zone, room_type] 
pairs. Edges in the graph contain three pieces of 
information: source node number, destination 
node number, and connectivity attribute, denoted 
as [src, dst, connectivity]. Thus, each edge 
represents the connection between nodes, crucial 
for understanding spatial relationships within the 
floor plan. 

Feature Engineering 
Feature engineering is the process of selecting, 
transforming, and creating new features from raw 
data to improve the performance of machine 
learning models. It involves extracting relevant 
information, identifying patterns, and crafting 
input variables that enhance the model's ability to 
learn and make accurate predictions. In this 
paper, feature engineering involved extracting 
key attributes from the architectural floor plans 
dataset. These features included zone types, room 
classifications, and connectivity attributes such as 
doors, windows, and walls. 

When handling different zone types, 
numerical representation and one-hot encoding 
proved efficient for feature processing. This 
method converts each zone into a binary vector 
with dimensions equal to the total zone types. For 
example, assuming the categories are (0,1,2,3), if 

a node's zone type is 2, then its zone feature 
vector becomes [0,0,1,0]. One-hot encoding 
prevents categorical variables from being 
misinterpreted as ordinal, ensuring model 
accuracy and reliability. 

When distinguishing between different room 
types, understanding the number and types of 
connectivity within a room is important. For 
example, areas like stairs or corridors typically 
exhibit the highest connectivity count, while 
rooms like living rooms and bedrooms linked to 
windows may have varying connectivity 
quantities. Since connectivity varies across room 
types, accurately tallying each type aids in 
prediction. However, due to variations in 
residence size, connectivity counts also fluctuate. 
Simply counting connectivity counts at each node 
can increase prediction error. To mitigate this, 
calculating the proportion of each node's 
connectivity within the residential graph is crucial. 
For instance, using one-hot encoding might 
initially yield an array like [5,0,0] for three 
connectivity types (0,1,2) where the first type has 
5 connections. If connectivity type 0 in the graph 
total 30 connections, then the processed result 
becomes [5/30,0,0] for this node. This method 
reduces prediction errors, enhancing accuracy 
and robustness. 

Feature Fusion 
Feature fusion involves concatenating different 
feature vectors along a specific dimension. This 
entails combining the zone feature and 
connectivity feature of each node in every graph 
to create a new feature vector. For instance, if a 
node's zone feature and connectivity feature are 
represented as one-dimensional arrays, they are 
concatenated into a longer array, thus creating a 
feature vector with enhanced information. This 
fusion strategy enables the model to 
simultaneously process and learn multiple feature 
information from both zone and connectivity 
sources. 



Graph Construction 
Constructing the graph is a fundamental step in 
graph neural networks, for which the topologicpy 
library is chosen as the primary tool as described 
in Jabi and Chatzivasileiadi (2021). Topologicpy is 
an open-source Python 3 adaptation of 
Topologic, a robust spatial design and analysis 
tool in architecture, engineering, and construction 
based on the concept of non-manifold topology 
as explained in Jabi and Aish (2018). It integrates 
Graph Machine Learning (GML) capabilities using 
the DGL library by Wang et al (2019). DGL is a 
high-performance Python package for deep 
learning that enables accurate processing and 
analysis of interconnected data. The combination 
of Topologicpy and DGL provide the needed 
algorithms for graph and node classification, 
building type identification, association 
prediction, and completion of missing 
information in building information models. The 
library has already been used for graph 
classification as shown in Alymani et al (2023). 

Drawing from these technologies, the graph 
structure is primarily defined by node count 
(num_nodes), edge start nodes (src), and end 
nodes (dst). Src and dst determine the edge 
direction, while num_nodes sets the total node 
count. Once the graph structure is defined, 
predicted node labels (e.g., room types) and 
features from feature engineering are integrated 
into the DGL graph's node data. This provides a 
comprehensive graph structure and node 
attributes for the graph neural network, 
optimizing performance across tasks. This 
approach ensures the model effectively utilizes 
graph information, resulting in more accurate 
parsing of room types and associations. 

Model Framework Construction 
This paper uses a Graph Neural Network model 
method based on Graph SAGE for node 
prediction created by Hamilton et al (2017). Graph 
SAGE leverages neighborhood information for 
feature extraction and node prediction, allowing 

the model to operate without the entire graph 
structure. It aggregates node and neighbor 
information through multiple layers of 
aggregation functions, producing feature vectors 
for subsequent layers. Both node sampling and 
structural sampling are achieved via random 
sampling in the Graph SAGE model, ensuring a 
direct connection between sampled nodes and 
those aggregated in the graph structure. 
The proposed model method differs significantly 
from traditional Convolutional Neural Networks 
(CNNs). While CNNs focus on learning from 
regular grid-like data such as images, Graph SAGE 
is tailored for learning from graph data with 
irregular structures. This flexibility enables better 
understanding of complex structures and 
relationships within graph data, resulting in 
higher predictive accuracy and model 
performance. 

Graph SAGE's principle process comprises 
four steps: Sampling, Aggregation, Updating 
Target Node Representation, and 
Classification/Prediction. 

Sampling: Graph SAGE conducts neighbor 
sampling for each node, organizing graph data 
from inside out into k layers, centered on each 
target node. For nodes at layer x (1≤ x <k), the 
model samples Sx neighbor nodes. If a node has 
fewer than Sx neighbors, all its neighbors are 
sampled in this step. As illustrated in Figure 2, 
dashed lines delineate layers where neighbor 
nodes reside. Central nodes are marked with a 
cross symbol, first-order neighbor nodes with one 
horizontal line, and second-order neighbor nodes 
with two horizontal lines. Blank nodes denote 
unsampled nodes, and arrows indicate the 
direction of sampling along edges between 
nodes. 

Aggregation: The aggregation operation 
gathers and integrates information from a node's 
neighbors, ensuring a fixed-dimensional feature 
representation for each node regardless of the 
varying number of neighbors. Graph SAGE utilizes 
predefined aggregation functions to integrate 



information from all neighbor nodes. For 
example, in a graph G(V,E) where V is the number 
of nodes and E is the number of edges, the 
average aggregation function can be 
mathematically represented as: 

ℎேሺ௩ሻ
௞ ൌ

1
|𝑁ሺ𝑣ሻ|

෍𝑢 ∈ 𝑁ሺ𝑣ሻℎ௨௞ିଵ                1ሻ 
Where: 
 𝑁ሺ𝑣ሻ is the set of neighbor nodes for node 𝑣. 
 ℎேሺ௩ሻ

௞  is the aggregated representation of the 
neighbor nodes at layer 𝑘. 

 ℎ௨௞ିଵ is the representation of node 𝑢 at layer 
𝑘 െ 1. 
Updating Target Node Representation: 

Following aggregation, the model combines 
obtained neighbor information with the target 
node's features, typically through concatenation. 
Subsequently, a fully connected layer and 
activation function yield the updated node 
representation, expressed as: 

ቂℎ௩௞ ൌ 𝜎 ቀ𝑊௞ ∙ 𝐶𝑂𝑁𝐶𝐴𝑇൫ℎ௩௞ିଵ,ℎேሺ௩ሻ
௞ ൯ቁቃ     2ሻ 

Where: 
 𝜎 is the activation function, for example ReLU 

or Tanh. 
 𝑊௞ is the trainable weight matrix for layer 𝑘. 
 𝐶𝑂𝑁𝐶𝐴𝑇 represents the concatenation 

operation. 
Figure 3 depicts a schematic diagram of node 
aggregation, where aggregation occurs from 
second-order nodes to corresponding first-order 
nodes and then to the central node. Classification 
is subsequently performed based on the 
aggregated features of the central node. 

Classification/Prediction: The model utilizes 
the resulting embedding representations from 
the aggregation stage for classification or 
prediction tasks. This typically involves employing 
standard machine learning classifiers like SoftMax 
to predict node labels. 

The Graph Neural Network model employed 
in this paper consists of four layers, each utilizing 
Graph SAGE networks and employing the pool 
aggregation method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First Layer: The model transforms input 

features into hidden node representations 
through sampling and pool aggregation 
operations. Batch normalization is applied to 
standardize inputs to a mean of 0 and a variance 
of 1, reducing internal covariate shift and 
enhancing stability. Subsequently, the tanh 
activation function is applied for non-linear 
transformation, compressing input values 
between -1 and 1 to enable the learning of 
complex representations. 

Second, Third, and Fourth Layers: These layers 
repeat the process of the first layer, including 
resampling, aggregation, batch normalization, 
and tanh activation on updated features. 

The output dimension of the fourth layer 
matches the number of classes for classification 
tasks. Through progressive learning and 
integration across these layers, the model 
effectively captures structural information in the 

 
Figure 2 
Node Sampling 
Schematic 

Figure 3 
Node Aggregation 
Schematic 



graph and maps original input features to 
classification output, ensuring robust learning 
and generalization capabilities. 

EXPERIMENT DESIGN 
This section provides an overview of the 
configuration and design of the experiment in this 
study, including hardware and software 
configurations, dataset, hyperparameters, 
training and validation methods, and 
performance evaluation metrics. In addition, this 
section includes a description of a comparative 
experiment to validate the performance of the 
chosen experiment design. 

Hardware and Software Configuration 
The specifications of the computer hardware and 
operating system, and software libraries used in 
this experiment are as follows: 

 Processor: 11th Gen Intel® Core™ i7-1165G7
@ 2.80GHz, 1690 MHz, 4 Core(s), 8 Logical
Processor(s)

 Installed Physical Memory (RAM): 16.0 GB
 GPU: Intel(R) Iris(R) Xe Graphics
 Operating System: Microsoft Windows 10

Education (x64)
 Software Libraries: Python (version 3.10.4),

topologicpy (version 0.4.32), pytorch (version
2.0.1), DGL (version 0.9.1).

Dataset 
The data utilized in this study is sourced from a 
Kaggle project available at “Modified Swiss 
Dwellings” (n.d.). The dataset is derived from the 
Swiss Dwellings database (v3.0.0) and contains 
highly detailed floor plans of single and multi-unit 
buildings from across Switzerland. Figure 4 
visually depicts typical floor plans found in this 
dataset. 

The dataset comprises two main file types: 
.npy and .pickle, totaling 4,167 samples. For this 
research, pickle data was employed. Here is 

detailed information about the input and output 
datasets: 

Input Dataset: .pickle file: This file represents a 
NetworkX graph. Nodes within this graph possess 
an attribute named "zoning," while edges have an 
attribute named "connectivity," categorizing 
various types of access such as "door," "entrance 
door," and "passage." 

Output Dataset: .pickle file: This file also 
represents a NetworkX graph, where nodes have 
attributes including: 

 roomtype: Categorization of room types such
as "Bathroom," "Livingroom," and "Bedroom."

 centroid: The centroid (middle point) of each
room.

 geometry: The shape of each room is
represented as a polygon using
shapely.geometry.Polygon().

Edges in this graph possess an attribute named 
"connectivity," indicating access types. 

Hyperparameters and Model Training 
The Graph SAGE model's hyperparameters 
include the number of hidden layers, the number 
of units per layer, the activation function, the 
learning rate, and the batch size. To find the 
optimal model parameters, a grid search was 
conducted. Grid search operates by exhaustively 
testing all possible combinations of 
hyperparameter values within predefined ranges, 
creating a grid-like structure, and evaluating each 
combination using cross-validation to determine 
the model's performance. The combination with 
the highest performance metric is then selected 

Figure 4 
Visual samples 
from the dataset  



as the optimal set of hyperparameters for the 
model. 
The model was trained using the Adam optimizer, 
with the learning rate selected from the 
parameter grid. The Adam optimizer is an 
adaptive learning rate optimization algorithm 
that combines techniques such as momentum 
and adaptive learning rates to efficiently update 
model parameters during training. Each model 
underwent training for 20 epochs, utilizing the 
cross-entropy loss function, commonly used for 
classification problems. The chosen parameter 
ranges were: 

 Number of Hidden Layers: [2, 3, 4, 5]
 Number of Units per Layer: [8,16, 32, 64]
 Activation Function: ['relu', 'tanh']
 Learning Rate: [0.01, 0.0005, 0.001, 0.0001]
 Batch Size: [16, 32, 64]

Validation 
In the experiment, the hold-out validation 
method is used to evaluate the model. For each 
graph, all nodes are randomly divided into a 
training set, a validation set, and a test set, with 
the respective ratios of 80%, 10%, and 10%. The 
training set is used for training the model; the 
validation set is used for model tuning and 
selection; the test set is used for assessing the 
final performance of the model. Through this 
method, the generalization ability of the model 
can be judged by its performance on unseen data. 

Performance Evaluation Metrics 
Since this paper investigates classification 
problems using graph neural networks, four 
scenarios will arise during the experiment based 
on the combination of actual classes of sample 
data and classes predicted by the graph network. 
Taking binary classification as an example, the 
four situations are: 

1. True Positive (TP): Positive samples correctly
predicted as positive by the graph network
model.

2. False Positive (FP): Negative samples
incorrectly predicted as positive by the graph
network model.

3. True Negative (TN): Negative samples
correctly predicted as negative by the graph
network model.

4. False Negative (FN): Positive samples
incorrectly predicted as negative by the graph 
network model.

To evaluate the model's performance, four main 
metrics will be employed: 

1. Accuracy: The proportion of correctly
classified samples to the total number of
samples.

2. Precision: The proportion of true positive
samples to all samples predicted as positive.

3. Recall: The proportion of true positive
samples to all actual positive samples.

4. F1 Score: The harmonic mean of precision and 
recall, providing a balanced measure between
the two.

To further validate the superiority of the Graph 
SAGE model, commonly used models for node 
prediction, GCN (Graph Convolutional Networks), 
and GIN (Graph Isomorphism Network), were 
utilized as baselines for comparison with Graph 
SAGE. Performance was compared based on 
average accuracy, precision, F1 score, and recall. 

RESULTS 
This section reports the results of the analysis of 
several hyperparameters with a focus on the 
aggregation method, number of layers, number 
of units, and learning rate. The section concludes 
with a comparison of the performance of the 
Graph SAGE model with other models frequently 
used for graph machine learning. 



Hyperparameter Optimization 
In the experiment, the primary goal is to achieve 
optimal model performance. To this end, in the 
first stage all variables are kept constant, with only 
the aggregation method of Graph SAGE being 
varied. This approach aims to identify the most 
suitable aggregation method for the given data. 
In the initial setup, the following hyperparameters 
were kept constant: 

 Number of hidden layers: 3
 Hidden units: 16
 Activation function: tanh
 Learning rate: 0.005
 Batch size: 32
 Maximum number of epochs: 50

Three types of aggregation methods were tested: 
mean, pool, and LSTM. The results are 
summarized in Table 1. 
These results suggest that the GraphSAGE-Pool 
aggregation method yields the highest 
performance in terms of accuracy while the 
GraphSAGE-LSTM aggregation method 
demonstrates the highest precision, recall, and 
F1-score. 

Figure 5a illustrates the change in loss 
function curves for the Graph SAGE models with 
different aggregation methods over increasing 
epochs, while Figure 5b depicts the accuracy 
trend on the validation set. Additionally, Figure 5c 
presents the training duration of these models at 
each epoch. 

Observing Figure 5c, it is evident that the 
training duration of GraphSAGE-LSTM 
significantly exceeds that of GraphSAGE-Mean 
and GraphSAGE-Pool. Considering all factors, 
particularly time efficiency, the GraphSAGE-Pool 
model appears to be a more suitable choice as it 
maintains a good balance between performance 
and training efficiency. 

In the next stage, further parameter tuning 
and in-depth experimental analysis were 
conducted. While keeping other settings 

constant, the learning rate was set to 0.0005, 
batch size to 32, activation function to tanh, and 
hidden units to 16. Experiments varying the 
number of layers were performed, specifically 
setting 2, 3, 4, and 5 layers respectively. The 
results obtained are presented in Table 2. 

These results indicate that the model with 4 
hidden layers consistently achieves the highest 
performance across all evaluation metrics. Further 
analysis of loss, validation accuracy, and runtime, 
as shown in Figure 6, also shows that the 4-layer 
model is the most balanced across all aspects. 

Accuracy Precision Recall F1 Score 
GraphSAGE-Mean 93.05 76.00 74.08 74.02 
GraphSAGE-Pool 93.70 77.29 75.03 74.96 
GraphSAGE-LSTM 93.56 84.58 76.66 77.22 

Accuracy Precision Recall F1 Score 
2-layer 92.61 78.39 75.17 75.08
3-layer 92.60 78.12 75.32 75.47
4-layer 93.12 78.25 75.51 76.85
5-layer 92.57 78.21 74.99 75.12

Next, the impact of different numbers of hidden 
units on model performance was compared. In 
the experiment, the learning rate was set at 
0.0005, batch size at 32, the activation function as 

Table 1 
Performance of 
models with 
different 
aggregation types 

Figure 5 
Comparison of 
models with 
different 
aggregation 
methods 

Table 2 
Prediction 
performance of 
models with 
different number 
of layers 

Figure 6 
Comparison of 
models with 
different number 
of layers 



tanh, and the number of hidden layers was fixed 
at 4. The number of hidden units was varied, 
specifically set at 8, 16, 32, and 64. The 
experimental results are summarized in Table 3. 
The model with 64 hidden units exhibits the best 
combination of high accuracy, precision, recall, 
and F1 score. 

Finally, with other parameters fixed, the 
performance of the Graph SAGE model under 
different learning rates was compared. In these 
settings, the batch size is set to 32, the activation 
function is set to tanh, the number of hidden 
layers is set to 4, and the number of hidden units 
is set to 64. The learning rates were varied, 
specifically set at 0.01, 0.005, 0.001, and 0.0005. 
The experimental results obtained are 
summarized in Table 4. 

Referring to Table 4 and Figures 7a and 7b, 
the model performs best when the learning rate 
is set to 0.001. Meanwhile, Figure 7c shows that 
the training times for models under all four 
learning rates fluctuate around 3 seconds, so 
these four models are essentially equivalent in 
terms of time consumption. Therefore, all things 
considered, the model with a learning rate of 
0.001 is the optimal choice 

To verify the superiority of the Graph SAGE 
model, its performance was compared to three 
other models typically used for graph machine 
learning: GCN, GIN, and TAG. The experimental 
setups for these models were defined with 
specific configurations tailored to their 
architectures. The GCN model was configured 
with 3 layers, each containing a GraphConv layer, 
followed by BatchNorm1d and ReLU activation 
functions. The GIN model also had 3 layers, each 
featuring a GINConv layer, BatchNorm1d, ReLU 
activation, and a Linear layer. The TAG model 
comprised an input layer, two hidden layers, and 
an output layer, all utilizing k=2 TAGConv layers 
and ReLU activation functions, with dropout 
applied after each hidden layer. The number of 
input features for all models was 7, with varying 
numbers of hidden units and output classes. 

Training settings for all models included a 
learning rate of 0.001, a batch size of 16, and 50 
epochs. The obtained results are summarized in 
Table 5. 
The results clearly demonstrate that the Graph 
SAGE model outperforms the other three models 
across all performance metrics with a final 
accuracy of 94.74%. 

Accuracy Precision Recall F1 Score 
Units = 8 92.56 73.90 71.82 70.86 
Units = 16 92.53 77.90 75.16 75.17 
Units = 32 92.57 80.81 74.74 74.69 
Units = 64 92.67 84.16 77.62 78.32 

Accuracy Precision Recall F1 Score 
lr = 0.01 92.66 85.19 81.95 82.98 
lr = 0.005 92.71 84.25 77.07 77.49 
lr = 0.001 92.64 88.07 83.16 84.80 
lr = 0.0005 92.72 85.41 79.36 80.57 

Accuracy Precision Recall F1 Score 
GCN 62.05 57.14 49.27 50.35
GIN 89.75 76.86 74.31 74.70
TAG 88.45 76.02 69.45 69.26
SAGE 94.74 86.55 79.90 81.48

CONCLUSIONS 
The application of the Graph SAGE model in 
classifying nodes within architectural graphs 
represents a significant and novel advancement in 
the field of architecture. By converting traditional 
architectural floor plans into graph-structured 
data and employing graph neural network 
models, precise node classification predictions 
were achieved which enables the automation of 
architectural information extraction and analysis. 

Table 3 
Performance of 
models with 
different number 
of units 

Table 4 
Performance of 
models with 
different learning 
rates 

Figure 7 
Comparison of 
models with 
different learning 
rates 

Table 5 
Performance of 
different graph 
neural network 
models 



The comparison of various graph neural network 
models underscored the superiority of the Graph 
SAGE model on the dataset, achieving a 
significantly higher accuracy rate of 94.74% when 
compared to other models. This validation 
highlights the effectiveness of the chosen 
approach in handling architectural graphs. 

While the research demonstrates notable 
achievements, there remain areas for 
improvement. Although the topologicpy library 
can convert 3D models into graphs, the dataset 
contains 2D floor plans with a relatively limited 
number of nodes. Exploring large-scale 
architectural graphs containing numerous nodes 
within individual data points could provide 
valuable insights. Such efforts could enable the 
model to better handle complex architectural 
information and extend node classification 
capabilities from 2D to 3D spaces. 

By leveraging graph-based models, architects 
can enhance the accuracy in BIM creation, but 
also uncover nuanced spatial relationships and 
insights that would otherwise be difficult to 
access. This methodology promises to streamline 
architectural workflows, optimize resource 
allocation, and lead to a more sustainable built 
environment. 

NOTES 
This paper is based on a masters research 
dissertation conducted by Yang Li under the 
supervision of Professor Wassim Jabi at Cardiff 
University. All code and data are open-source and 
available at: https://shorturl.at/emnQR 

REFERENCES 
Alymani, A., Jabi, W., Corcoran, P., 2023. 

Graph machine learning classification 
using architectural 3D topological 
models. Simulation 99. 
https://doi.org/10.1177/003754972211
05894

Batty, M., 2004. A new theory of space 
syntax. 

Hamilton, W.L., Ying, R., Leskovec, J., 2017. 
Inductive Representation Learning on 
Large Graphs, in: NIPS. 

Jabi, W., Aish, R., 2018. Non-manifold 
Topology for Architectural and 
Engineering Modelling, in: 
Proceedings of the International 
Conference on Education and 
Research in Computer Aided 
Architectural Design in Europe. 

Jabi, W., Chatzivasileiadi, A., 2021. 
Topologic: Exploring Spatial Reasoning 
Through Geometry, Topology, and 
Semantics, Advances in Science, 
Technology and Innovation. 
https://doi.org/10.1007/978-3-030-
57509-0_25 

Kipf, T.N., Welling, M., 2017. Semi-
Supervised Classification with Graph 
Convolutional Networks. 

March, L., Earl, C.F., 1977. On Counting 
Architectural Plans. Environ Plann B 
Plann Des 4, 57–80. 
https://doi.org/10.1068/b040057 

Modified Swiss Dwellings [WWW 
Document], n.d. URL 
https://www.kaggle.com/datasets/casp
ervanengelenburg/modified-swiss-
dwellings (accessed 3.27.24). 

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., 
Song, X., Zhou, J., Ma, C., Yu, L., Gai, Y., 
Xiao, T., He, T., Karypis, G., Li, J., Zhang, 
Z., 2019. Deep Graph Library: A Graph-
Centric, Highly-Performant Package 
for Graph Neural Networks. 

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., 
Liu, Z., Wang, L., Li, C., Sun, M., 2020. 
Graph neural networks: A review of 
methods and applications. AI Open 1, 
57–81. 
https://doi.org/https://doi.org/10.1016
/j.aiopen.2021.01.001 




