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Abstract

This study assesses the reliability of resting-state dynamic causal modelling (DCM) of

magnetoencephalography (MEG) under conductance-based canonical microcircuit

models, in terms of both posterior parameter estimates and model evidence. We use

resting-state MEG data from two sessions, acquired 2 weeks apart, from a cohort

with high between-subject variance arising from Alzheimer's disease. Our focus is not

on the effect of disease, but on the reliability of the methods (as within-subject

between-session agreement), which is crucial for future studies of disease progres-

sion and drug intervention. To assess the reliability of first-level DCMs, we compare

model evidence associated with the covariance among subject-specific free energies

(i.e., the ‘quality’ of the models) with versus without interclass correlations. We then

used parametric empirical Bayes (PEB) to investigate the differences between the

inferred DCM parameter probability distributions at the between subject level. Spe-

cifically, we examined the evidence for or against parameter differences (i) within-

subject, within-session, and between-epochs; (ii) within-subject between-session;

and (iii) within-site between-subjects, accommodating the conditional dependency

among parameter estimates. We show that for data acquired close in time, and under
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similar circumstances, more than 95% of inferred DCM parameters are unlikely to dif-

fer, speaking to mutual predictability over sessions. Using PEB, we show a reciprocal

relationship between a conventional definition of ‘reliability’ and the conditional

dependency among inferred model parameters. Our analyses confirm the reliability

and reproducibility of the conductance-based DCMs for resting-state neurophysio-

logical data. In this respect, the implicit generative modelling is suitable for interven-

tional and longitudinal studies of neurological and psychiatric disorders.
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1 | INTRODUCTION

Dynamic causal modelling (DCM) has been used widely in transla-

tional neuroscience to elucidate the underlying causes of physio-

logical observations including electro/magnetoencephalography

(MEG) (Adams et al., 2022; Adams, Hughes, et al., 2021; Gilbert

et al., 2016; Jafarian, Hughes, et al., 2023; Shaw et al., 2017; Shaw

et al., 2021). However, the use of imaging and analytical methods

to reveal the effects of disease progression and treatment interven-

tion rests on reliability. This article addresses the reliability of

DCM, using variational Bayesian inversion of biologically informed

models of neuroimaging data that can be used to characterise the

neural mechanisms of cognition and the effect of disease or drugs.

We test whether inferences from DCMs of resting-state MEG data

are reliable, that is, predict both the results across trials within the

same session, and across separate sessions from the same

participants.

DCM uses the variational Bayesian inversion of biologically moti-

vated dynamical systems from neuroimaging data, to provide poste-

rior estimates of unknown parameters (e.g., synaptic physiology) from

a given model, and the model evidence (Friston et al., 2007; Friston

et al., 2008). To compare alternative hypotheses, represented by alter-

native models, one uses differences in the free energy bound on [log-]

model evidence, akin to log Bayes factors (Friston, 2011; Friston

et al., 2011; Jafarian et al., 2019; Kass & Raftery, 1995). Bayesian

model reduction (BMR) can be used for post hoc calculation of model

evidence (and posterior parameter estimates) under nested, or alter-

native priors. Removing redundant parameters can improve model

evidence by reducing model complexity. BMR is not only computa-

tionally efficient, but also eludes local minima during model inversion

(Friston & Penny, 2011). At the group level, a hierarchal Bayesian

inversion known as parametric empirical Bayes (PEB) accommodates

multiple first-level (single subject) models and constrains physiological

parameters according to empirical priors quantifying between subject

effects (Friston et al., 2015; Friston et al., 2016; Litvak et al., 2015).

PEB leverages BMR for the fast and efficient calculation of posterior

estimates for each subject under group constraints. The implicit revi-

sion of empirical priors for each subject render's local minima less

likely, because they are informed by the group mean. This effect is

reflected quantitatively in terms of the improved (free energy bound

on) model evidence at the between subjective level.

In this article, we assess the reliability of these methods in DCM,

in terms of between trials and across sessions as measures of their

reliability.

A classical statistical approach to measure reliability is the correla-

tion between measures from the same participants under matched

conditions (Bartko, 1966; Fisher, 1992). For two groups of data,

x1 kð Þ,x2 kð Þð Þ n¼1, ::kð Þ, the reliability can be defined as the modified

Pearson correlation r, as follows:
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Conventionally, a general linear model or one-way analysis of var-

iance (ANOVA) with random effects is used to quantify the reliability

between measurements. If yij is the ith measurements in the jth group,

ANOVA can be used to estimate the unknown group meanμ,

unknown jth group random effect αj and normally distributed random

effect ϵij in the following general linear model:

yij ¼ μþαjþϵij ð2Þ

The between-group reliability is defined as σα
σαþσϵ

, where the vari-

ance of group mean is σα and random effect variance is denoted by σϵ.

However, as shown by Box and Tiao (1973) and Wang and Sun

(2014), this point estimate of reliability is not always robust. Alterna-

tive reliability estimates using, for example, MCMC, can be limited by

high computational burden (Mulder & Fox, 2019).

The frequentist approach to reliability considers only the

expected values of parameters, that is, the maximum likelihood esti-

mates, but not posterior variance or covariance. In ideal settings, fre-

quentist estimates of DCM reliability may be sufficient. However,
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with complex models—with high posterior covariance among

parameters—the reliability of the expected value of particular parame-

ters can be very low (Frässle & Stephan, 2022; Rowe, 2010; Rowe

et al., 2010; Schuyler et al., 2010). The reliability of DCM parameters

has also been examined using split sampling over evoked potentials

(Adams et al., 2022) and resting-state MEG (Jafarian, Hughes,

et al., 2023). However, the frequentist approach to reliability is ill-

suited to complex nonlinear dynamic systems with posterior covari-

ance among model parameters. We therefore quantified reliability in

terms of the contribution of subject or session effects using PEB;

effectively, comparing between subject or session models with and

without between session or subject effects. This can be interpreted as

an assessment of reliability between probability distribution of param-

eters, in the sense that in the absence of between subject or session

effects, the posterior estimates from one subject or session are similar

the estimates from another.

This article has three aims: (i) to use variational Bayes to test the

reliability of evidence estimates (i.e., free energy) under DCMs

inverted from MEG data; (ii) to leverage the PEB to test reliability, in

terms of inference about effective connectivity (i.e., posterior proba-

bility distribution of parameters) and (iii) test the influence of covari-

ance among posterior parameters from DCM on the reliability of

parameter estimates. Reliability refers to the ability to consistently

reproduce a given result (and that instruments or tools used to inter-

rogate data do so in a consistent, reproducible way). Our proposed

method based on PEB (for ‘group DCM’) considers the reliability of

‘inferences’ about synaptic physiology, both within-session and

between-session. This precludes the use of classic metrics of reliability

(e.g., correlation, or intraclass correlation coefficient [ICC]), because

these classical statistics can only be used with singular measurements

(i.e., without uncertainly), as opposed to the probability distributions

that underlie the inference (of synaptic physiology) using DCM. Reli-

ability plays a crucial role in assessing reproducibility, generalisability,

and predictive validity, whether in the context of parameter estima-

tion or model-based inferences.

We use repeated measures of resting-state MEG data collected

from participants in the ‘New therapeutics in Alzheimer's disease’ study
(Lanskey et al., 2022). Our focus was not on modelling the effect of

disease, but on the reliability of the ensuing estimates of synaptic effi-

cacy. We briefly describe the participants and data, collected at base-

line and 2 weeks later at rest. These data were acquired in a task-free

or resting-state, which is suited for longitudinal studies of patients

with progressive diseases. In the context of Alzheimer's disease, we

consider the oscillatory dynamics of the default mode network (com-

prising bilateral angular gyri, medial prefrontal cortex [MPFC], and

precuneus). Although medial temporal cortex is a priori associated

with Alzheimer's disease, MEG is relatively insensitive to activity in

this region (e.g., Hillebrand & Barnes, 2002; Piastra et al., 2021).

Default mode network connectivity has been studied extensively in

Alzheimer's disease and its treatment (Greicius et al., 2004; Lorenzi

et al., 2011). We performed first-level DCM to estimate synaptic

parameters in the default mode regions, from the cross-spectral den-

sity (CSD) of the MEG. We then consider the reliability of model

evidence estimates, using a general linear model approach and the

reliability of the DCM parameters using PEB. Finally, we discuss the

potential applications and limitations of the foregoing analyses. A

glossary of acronyms and variables used in this article are provided in

Tables 1, 2 and 3.

2 | MATERIALS AND METHODS

We tested the reliability of probability distribution of DCM parame-

ters in terms of the evidence for between session (and subject)

effects, inferred from repeated-measures data with conductance-

based dynamic causal models.

TABLE 1 Acronyms.

Acronyms Description

AMPA α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

BMR Bayesian model reduction

CMM Conductance microcircuit model

DCM Dynamic causal modelling

FT Fourier transform

fMRI Functional magnetic resonance imaging

GABA Gamma-aminobutyric acid

GLU Glutamate

MEG Magnetoencephalography

NMDA N-methyl-D-aspartate receptors

PEB Parametric empirical Bayes

PSDs Power spectral density that was derived from MEG data

ss, ss, inh,

dp

Superficial pyramidal cells, spiny stellate excitatory

neurons, interneurons, deep pyramidal cells

TABLE 2 Glossary of variables and expressions in the
conductance-based model (CMM-NMDA).

Variable Description

u Exogenous input

V Mean depolarisation of a neuronal population

σ vð Þ The neuronal firing rate—A sigmoid squashing

function of depolarisation

L Lead field vector mapping from (neuronal) states

to measured (electrophysiological) responses

gx ωð Þ,go ωð Þ,gy ωð Þ Spectral density of (neuronal) state fluctuations,

observation noise and measurement, respectively

rxf System Jacobian or derivative of system flow

with respect to (neuronal) states

k tð Þ¼ FT K ωð Þ½ � First-order kernel mapping from inputs to

responses; c.f., an impulse response function of

time. This is the Fourier transform of the transfer

function

K ωð Þ¼ FT k tð Þ½ � The frequency transfer function modulates the

power of endogenous neuronal fluctuations to

produce a (cross-spectral density) response. This

is the Fourier transform of the kernel
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2.1 | Participants

The study received ethical approval from the Cambridge 2 Research

Ethics Committee. Participants provided written informed consent.

Participants met clinical diagnostic criteria for symptomatic Alzhei-

mer's disease, including mild cognitive impairment, with positive amy-

loid biomarkers (Lanskey et al., 2022). Principal participants (fourteen)

undertook two MEG scans in a resting-state with eyes open, in two

sessions that were 2 weeks apart—at a similar time of day—and with-

out any medication changes. Their average age was 74.8 (standard

deviation ±7.33), mini-mental state examination score was 26.1/30

(standard deviation ±3.05) and Addenbrookes Cognitive Examination

(revised) score 78.5/100 (standard deviation ±10.5). A second set of

participants underwent baseline MEG, with closely matched age

73 (±5.33) and cognition.

2.1.1 | Resting-state MEG data

Then, 5 min of resting-state MEG data (with eyes open) were col-

lected using an Elekta Vector View system with 204 planar

gradiometers and 102 magnetometers. MEG data were recorded con-

tinuously with 1000 Hz sampling rate. Participants' horizontal and

vertical eye movements were recorded using bipolar electrooculogram

and electro-cardiogram electrodes. Five head position indicator coils

were placed on an EEG cap to track the head position. Three fiducial

points (nasion, left, and right pre-auricular) and >100 head shape

points were digitised using Polhemus digitisation.

The Elekta Neuromag toolbox (Elekta Oy), with MaxFilter v2.2.12

was used for the detection and interpolation of bad sensors, signal

space separation to remove external noise from the data and head

movement correction. Then we pre-processed the data by downsam-

pling to 500 Hz, band-pass filtering between 0.1 and 100 Hz, and

applying a notch filter between 48–52 Hz and 98–102 Hz. We then

performed artefact rejection/removal using ICA, with EOG data. We

epoched the data into 1000 ms segments and repeated each epoch's

artefact rejection and removal.

Using T1-weighted structural MRI (3 T Siemens, TR = 2300 ms,

TE = 2.91 ms, resolution 1 mm), we performed DICOM conversion to

NII and inverse-normalised the canonical mesh, size 2. We co-

registered the MRI to the mesh using three fiducials and head shape

points to create the forward model for MEG with the single shell

TABLE 3 Parameters of the neuronal CMM-NMDA model (see also Figure 1). The i:jð Þ element in the matrix associated with parametrisation
of intrinsic connection H, means connections that originate from population j and target population i in a region (here elements 1–4 correspond to
ss, sp, inh, and dp layers, respectively). The i:jð Þ element in the matrix associated with parametrisation of extrinsic connections A and AN, means
connections that originate from population j in a region and project to population i in a distal region (here elements 1–4 correspond to ss, sp, inh,
and dp layers, respectively).

Description Parameterisation Prior

κ Rate constants of ion channels, AMPA, GABA, and NMDA, respectively exp θκð Þ �κ
κ¼ 4,16,100½ �

p θκð Þ¼N 0,1=16ð Þ

C Membrane capacitance of ss, sp, inh, and dp populations, respectively exp θcð Þ �C
C¼ 12812825632½ �=1000

p θcð Þ¼N 0,1=16ð Þ

H Intrinsic connections exp θHð Þ �H

H =

8020

4880

40322

048128

26664
37775

p θHð Þ¼N 0,1=32ð Þ

A Extrinsic forward connection exp θAð Þ �A
A = [1 0; 0 1; 0 2; 0 0]/8

p θAð Þ¼N 0,1=8ð Þ

AN Extrinsic backward connection exp θANð Þ �AN
AN = [1 0; 0 1; 0 2; 0 0]/8

p θAð Þ¼N 0,1=8ð Þ

L Sensor gain L p Lð Þ¼N 1,64ð Þ
J Contribution of spiny stellate population (Jss) and deep pyramidal (Jdp) to observation data J� , (�¼ dp,ss) p Jssð Þ¼N 0,1=16ð Þ

p Jdp
� �¼N 0,1=16ð Þ

a Endogenous random fluctuation with transfer function a1
ωa2 exp að Þ p a1,2ð Þ¼N 0,1=128ð Þ

d Structural cosine coefficients of endogenous random fluctuation exp dð Þ p d1,2,3,4ð Þ¼
N 0,1=128ð Þ

b Common sensor noise with transfer function b1
ωb2

exp bð Þ p b1,2ð Þ¼N 0,1=128ð Þ
c Specific sensor noise with transfer function c1

ωc2 exp cð Þ p c1,2ð Þ¼N 0,1=128ð Þ
f Scaling some frequencies as model of data filtration exp fð Þ p f1,2ð Þ¼N 0,1=128ð Þ
D Neuronal delay between regions and within layers exp Dð Þ:D

D¼ 2,16½ �
p Dð Þ¼N 0,1=64ð Þ

4 of 13 JAFARIAN ET AL.



boundary element model method. We used ‘COH’ source inversion

(Litvak et al., 2011) for extracting four default mode network sources/

regions in left and right angular gyri (LAG [49 �63 33], RAG

[�46 �66 30]), MPFC [�1 54 27], and Precuneus (PPC) [0 �55 32].

We used the induced source inversion option over 1000 ms epochs,

frequency range 0.1–100 Hz, with fusion across magnetometers and

gradiometers. We extracted principal components of power spectral

densities over trials, as data features for the DCM of CSD.

We use three sets of resting-state eyes open MEG data for the

reliability study: (i) split sampled baseline data where each individual

patients is divided into odd and even epochs, (ii) baseline versus

2 weeks data, and (iii) data from baseline and a second set of partici-

pants at baseline.

2.2 | DCM of resting-states MEG data

We use DCM for CSD, SPM12-version 8163 (Friston et al., 2012;

Moran et al., 2007; Moran et al., 2011) for inferring parameters and

the marginal likelihood of the conductance-based biophysically canon-

ical microcircuit model (cmm-nmda model in SPM12) from spectral

features of MEG data. DCM for CSD explains the frequency content

of MEG data in terms of a local linear perturbation (due to endoge-

nous neuronal fluctuations) around the fixed point of a nonlinear

model of canonical neuronal circuitry (Basar et al., 2012;

Haken, 1977).

The conductance-based model describes the electrical activity of

a cortical source based on the interactions of four neuronal

populations: excitatory spiny stellate cells, superficial pyramidal cells,

inhibitory interneurons, and deep pyramidal cells, as shown in

Figure 1. Each cortical source is connected to other regions via for-

ward connections (that originate from the superficial pyramidal popu-

lation and project to excitatory spiny stellate and deep pyramidal cells

of other regions) and backward connections (that originate from deep

pyramidal cells and project to superficial pyramidal and inhibitory

populations in the target source). Each population is modelled by a

Morris–Lecar model (driven by random endogenous fluctuations)

(Moran et al., 2013) as follows:

dV
dt

¼ 1
C

gL VL�Vð ÞþgAMPA VAMPA�Vð ÞþgGABA VGABA�Vð Þ
h

þ gNMDA m Vð Þ VNMDA�Vð Þ
i
þu

dg�
dt

¼ 1
τ�

X
k¼sp, inh,dp,ss

Sk σk�g�

 !
þu, �¼ L,AMPA,GABA,NMDA½ � ð3Þ

In Equation 3, the membrane potential of each population is

denoted by V, the conductance of ion channels are gL, gNMDA, gAMPA,

and gGABA. The input to the model is which represents random endog-

enous fluctuations. Constant parameters are C as the membrane

capacitance, L as a passive leak current with a fixed conductance, and

τ� as ion channel receptor time constants. VL, VNMDA, VAMPA, and

VGABA denote the reversal equilibrium potentials of the ion channels.

The dynamics of depolarisation is equipped with activity-dependent

F IGURE 1 Mesoscale model of MEG data. Panel (a) illustrates a cortical column as the origin of electrical brain activity as recorded by
neuroimaging modalities such as MEG. Panel (b) illustrates the laminar specific conductance based model with superficial (sp) and deep pyramidal
(dp) cells in the top and bottom layers, respectively, excitatory interneurons (spiny stellate cells, ss) situated in layer four, and inhibitory
interneurons that are distributed across all layers and modelled using one population. The dynamics of ion compartments with a population are
governed by the Morris–Lecar model. This model explains the dynamics of different ion currents: NMDA, AMAP, and GABA and passive ion
current and membrane capacitance as explained in Equation 1. Panel (c) shows the fully connected default mode network which contains MPFC.
PCC, RAG, and LAG sources.
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magnesium channels, which are modelled as m Vð Þ¼ 1
1þ0:2 exp �αNMDAVð Þ.

Afferent presynaptic firings from a population k are denoted by σk ,

which is scaled by connectivity Sk which can be, in nature, excitatory

AMPA, NMDA or inhibitory GABA afferent intrinsic Hk or forward

and backward extrinsic AMPA (denoted by A) and NMDA (denoted by

AN) connections. Glossary of variables and prior for unknown parame-

ters are reported in Tables 2 and 3, respectively.

The generative model of MEG data (denoted by y) can be written

as a partially observed dynamical system as follows (please see

Table 2 for definition of notations):

_x ¼ fθ x,uð Þ
y ¼ Ls ΓJ xð Þð Þþe

ð4Þ

In Equation 4, θ denotes a lump representation of all unknown

parameters (i.e., Hk , τ), x is a vector of biological states in the

model, fθ x,uð Þ is a function that is the concatenated version of the

right-hand sides of Equation 1 over all populations. In Equation 4, u is

the endogenous (structured pink) noise with a cross-spectrum,

gu ω,θð Þ¼ FT E u tð Þ,u t� τð Þ½ �ð Þ. In the second line of Equation 4, Ls is a

parameterisation of lead field projections and sensor gain, and ΓJ xð Þ is
an operator (parameterised by unknown parameters J) that links the

activity of populations (e.g., weighted sum—by J parameters—of dif-

ferent population responses) to MEG data (through lead field

projection).

Resting-state dynamics can be modelled as a response to endoge-

nous random fluctuations. In this DCM, a linearised neuronal model

(around a stable equilibrium point) is used to generate spectral con-

tent of the MEG data. The spectral response of the neuronal model,

gx ωð Þ, can be modelled as follows:

gx ωð Þ¼K ω,θð Þ: gu ω,θð Þ:K ω,θð ÞT þgo ω,θð Þ ð5Þ

In Equation 5, go ω,θð Þ represents the spectrum of the observation

noise, which is a sum of common and source-specific noise and

K ω,θð Þ¼ FT expτ:rxf x,θð Þð Þ (rx is the Jacobian) is the transfer func-

tion (input to output) of the neural model (parametrised by J). The

spectral response in sensor space can also be generated by the inclu-

sion of a forward electromagnetic model into Equation 4, which is

denoted by L:M (L is the sensor gain and M is the head model), as

follows:

gy ωð Þ¼ L:M: gx ω,θð Þ:MT :LT þϵ ð6Þ

In Equation 6, gy ωð Þ is the cross spectra of the MEG data, and

ϵ�N 0,σ2
� �

is a random effect (with unknown covariance). Because

we perform the DCM in the source space, the forward electromag-

netic model reduces to a scaling parameter.

The laminar interpretation of the conductance-based model

(e.g., superficial, deep geometry) is supported by (i) specification of

priors for intrinsic connections (Table 1), (ii) the equation of the

observer for MEG data, and (iii) endogenous inputs to the model

which targets spiny stellate cells in layer four. This model

parametrisation supports inferences about the laminar basis of degen-

erative brain neurological disorders (Adams et al., 2022; Adams,

Hughes, et al., 2021; Adams, Pinotsis, et al., 2021; Shaw et al., 2021).

The unknown parameters in the DCM are specified as log-scale

values θ¼ θ0 exp bθ� � where θ0 are biologically informed scaling con-

stants for the parameter, and bθ has Gaussian distribution, with prior

normal density bθ0 �N 0,
P

θ

� �
of zero mean and covariance

P
θ . This

expresses Bayesian beliefs about the range over which parameters

can vary and constrains the posterior density over parameters accord-

ingly. The prior distribution for parameters assures the stability and

plausibility of the model, and we refer to them as ‘micro-priors’
hereafter.

2.3 | Parametric empirical Bayes

DCM at the between session or subject level implements hierarchical

variational Bayesian inversion of data under empirical priors at the

second level (e.g., age, disease severity, etc) on the first level

(e.g., synaptic) parameters. At the first level, the neuronal model is

optimised to fit each individual's data. At the second level, the estima-

tion of some parameters is constrained by group estimates to improve

group model evidence. These parameters are those that are equipped

with random effects. For these parameters, there are micro- and

macro-priors that constrain the accompanying posterior estimates at

the first and second levels, respectively.

The micro priors are taken from the physiological literature

(Friston et al., 2003; Friston et al., 2015; Friston & Penny, 2011), while

macro priors impose constraints on parameters based on information

about the population from which the data are drawn (i.e., an empirical

prior, such as age or disease severity) (Friston et al., 2016). Due to

leveraging BMR, assessing the impact of macro-scale constraints on

synaptic parameters does not require re-estimation of the first level

DCMs (Friston et al., 2016; Friston, Preller, et al., 2019; Zeidman

et al., 2019).

2.4 | Reliability of DCM

2.4.1 | Reliability of fixed quantities without
uncertainty

This section assesses the reliability between fixed effects

(i.e., measurements without uncertainty or random effects), such as

the free energy of a model. We denote two sets of measurements of

similar phenomena by column vectors k1 and k2, each of which has

dimension n�1 (n number of, e.g., participants) and specify the fol-

lowing linear model:

k1 ¼ k2 βþϵ ð7Þ

In Equation 7, β represents the intercepts of the model between

the two measurements. The reliability between measurements can be
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specified as a covariance component of the noise term ϵ�N 0,Σð Þ,
with compound symmetry as follows (Jelenkowska, 1998;

Jelenkowska, 1999).

Σ¼ σ2

1 � � � ρ

..

. . .
. ..

.

ρ � � � 1

2664
3775 ð8Þ

The covariance matrix elements are defined as Σii½ � ¼ σ2 and

Σij

� �¼ ρσ2 (i≠ j). The parameter ρ is the inter-class correlation coeffi-

cient. The compound symmetry structure of a covariance matrix

assumes that all off-diagonal elements of the matrix are equal. This

means that the covariance between any two variables or measure-

ments is the same across all pairs. This is a common assumption in sta-

tistical analyses, particularly in the context of repeated-measures or

within-subject designs. This form of covariance is relevant for measur-

ing reliability between measurements and can be motivated in several

ways. First, the compound symmetry applies the Homogeneity

assumption, with equal covariances between all pairs of variables,

meaning that the relationships among variables or measurements are

similar across the board. This simplifies the modelling process and

reduces the number of (covariance) parameters that need to be esti-

mated. Second, there is interchangeability of observations arising from

repeated measurements on the same subjects. That is, any pair of

measurements are equally related to each other regardless of when

they were taken. The compound symmetry assumption reflects this

interchangeability by setting all off-diagonal elements equal. Third,

the compound symmetry form simplifies the covariance matrix, aiding

the estimation and interpretation of the models. With fewer parame-

ters to estimate, analyses become more efficient: this is especially rel-

evant when dealing with limited data. In the context of our reliability

analysis, the compound symmetry implies that the reliability of mea-

surements remains consistent across different conditions or time

points.

To test reliability, one can invert the general linear model in Equa-

tion 7 with and without ρ in the covariance matrix and use Bayesian

model comparison to compare the respective free energies to assess

the evidence for an interclass correlation. We use variational Laplace

(Friston et al., 2007) as implemented in SPM12 (e.g., Friston,

Diedrichsen, et al., 2019) to estimate the covariance components,

with and without the interclass correlation.

2.4.2 | Reliability of inferred DCM parameters

To assess the reliability of parameters with random effects, we used a

parametric empirical Bayesian approach to assess the contribution of

random effects to conditionally dependent parameter estimates.

Mathematically, let a column vector of model parameters at the first

level DCM, over cohort, is θ 1ð Þ
np�1 (n number of participants and p is the

number of parameters for each participant). Then, the generative

model of the PEB is given by (Friston et al., 2016):

y ið Þ ¼ Lθi,1 Γ xð Þð Þþϵ ið Þ i¼1, ::,n

θ 1ð Þ ¼ X
N

Ið Þθ 2ð Þ þϵ 2ð Þ θ 1ð Þ ¼ θi,1,…,θi,n
� � ð9Þ

The first line of Equation 9 is the generative model of each DCM

with unknown parameters inferred from neuroimaging data at the first

level. The second line models (macro-level) empirical priors that con-

strain parameter estimates from the first-level DCM. In the second

line of Equation 9, X�Rn�r is the design matrix with r ≥1 covariant.

The first column of X is equal to one and reflects the group mean;

generally, the rest of the column can be defined based on empirical

data. The symbol
N

is the Kronecker product, and I is the p�p iden-

tity matrix. The random effects have a Gaussian distribution and at

the second line of equation (6A), ϵ 2ð Þ �N 0,Π 2ð Þ� �
(where Π 2ð Þ is the

precision matrix or inverse of covariance). The precision matrix is

parameterised with a single (hyper-precision) parameter, γ, as follows

(Friston et al., 2016):

Π 2ð Þ ¼ IS
O

Q0þe�γ Q1ð Þ ð10Þ

In Equation 10, Q0 �Rp�p is the lower bound on the precision,

defined with a small positive value. The (hyper)parameter, γ, scales a

precision matrix Q1 �Rp�p, which is (by default) 16 times the prior pre-

cision of the group mean (Zeidman et al., 2019): this hyper prior

ensures that random effects are small compared to prior uncertainty

about the parameter in question. The objective of group DCMs is to

maximise the second level free energy under the PEB constraint. The

inversion of group DCM (aka PEB) starts with the inversion of each

data, followed by assessing the effect of empirical prior and adjusting

parameters so that the free energy is maximised. As part of group

DCMs inversion, BMR is used to re-evaluate first-level posteriors

under updated second-level parameters (Friston et al., 2016; Litvak

et al., 2015). This greatly expedites inversion of group data. It is com-

mon practice to ask whether there is any difference between two

cohorts. This question can be addressed using what is known as a

‘PEB of PEBs’. This analysis entails inverting second-level models for

separate cohorts that are then combined in a third level (PEB) analysis,

to identify shared characteristics and differences. The aim of a ‘PEB
of PEB’ analysis is to elucidate the similarities and differences

between the models representing distinct cohorts, providing insights

into the underlying difference between the populations under study.

Motivated by the classical definition of reliability, that is, that there

are no between-session or between-subject effects, we evaluated the

evidence for PEB models with and without these effects. This consti-

tute the predictive validity equivalent, which is useful in the context

of inferred parameters (i.e., multivariate probably distribution). We

perform PEB estimation for each parameter separately; in which syn-

aptic rate constants (T), intrinsic synaptic gain (H), extrinsic connec-

tions (A and AN), state to observation parameters (L and J), and

physiological inputs (a and d) are constrained by their group average

(a single column matrix of ones). We employed the PEB of PEB

approach, utilizing a matrix with the first column containing ones (con-

stant term) and the second column containing zeros and ones,
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indicating each group, respectively. This method was used to evaluate

the evidence for between-session or between-subject effects.

3 | RESULTS

The power spectra of the MEG data from each source and subject are

shown in the supplementary material. In addition, in Figure 2, we have

shown a sample of DCM fit in terms of predicted versus observed

response.

Comparison between the baseline and 2-week spectra show that

they are not identical. These differences are not attributable to the

progression of the disease over such a short interval but may rise from

other factors, including, for example, psychological states

(e.g., fatigue), recording noise, or movements.

3.1 | Reliability of DCM

We tested the reliability of the model's free energy estimates based

on test and re-test data: as split-sample data from one session, or two

sessions acquired in the same participants, or of two similar groups of

participants, as summarised in Figure 3. The free energy estimates

were highly reliable for within-session split-sample data, and within-

subject between session data. For the within-subject models, the free

energy was higher for the model with compound symmetry—that is,

with a high interclass correlation—with a difference of 20 (equivalent

to a Bayes factor of �5 � 108). On the other hand, there was no evi-

dence for an interclass correlation between the free energy of models

of data acquired from different people, even if demographically and

clinically matched. This is expected: even though most of the neuronal

parameters of the biophysical models that generate MEG data were

similar for matched adults, differences in signal-to-noise and other

non-neuronal factors can have a profound effect on the free energy

estimates of model evidence (a.k.a., marginal likelihood).

To test for between session and subject effects, we used PEB of

PEBs to assess the reliability of 156 physiological parameters; includ-

ing synaptic rate constants (T), intrinsic synaptic gains (H), extrinsic

forward and backward AMPA connections (denoted by A) and extrin-

sic forward and backward NMDA connections (denoted by AN), state

to observation parameters (L and J), and physiological inputs (a and d).

For the within-session split-sample analysis, the PEB of PEBs revealed

that only 4 of 156 parameters differed between odd and even trials

(Figure 4a). For the within-subject between-session analysis, the PEB

of PEBs showed that only four of 156 parameters differed between

sessions (Figure 4b). Finally, there was fair agreement across the two

separate groups of similar participants, with nine of 156 showing evi-

dence of between subject effects on parameter estimates (Figure 4c).

F IGURE 2 This graphics illustrate observed spectral densities (PSD) and their associated predicated response by DCM at baseline (BL) and
after 2 weeks (TW) in the eyes open condition, over the four default mode network sources. The differences between baseline and 2 weeks later
data are not attributable to the progression of the disease but may be linked to plasticity, psychological effects, differential fatigue, measurement
noise or movement etc. Predicted DCM responses for the four-node default model network DCMs suggest that the neuronal model replicates
regions' PSDs data. Similar graphics associated with other subject's predicted and observed responses for their baseline and 2 weeks apart data
are given in supplementary Figures 1S–7S.
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F IGURE 3 Reliability of free energies of the first level multichannel DCMs of the default mode network. There is greater evidence for the
model with compound symmetry structure than the model without, when fitting data for different trials within-subjects (panel a) or different
sessions within-subjects (panel b; baseline vs. 2-week data), but greater evidence for the model without compound symmetry when fitting data
from different subjects, as expected (panel c; baseline data).

F IGURE 4 Reliability using the PEB of PEB approach for 156 inferred parameters of the fully connected default model network DCMs for
(a) split sample data within-subject within-session, (b) within-subject between-sessions, 2 weeks apart and (c) between-subjects, within-site. Each
plot illustrates the expectation of parameters (blue bar) and their 95% confidence interval (pink bar) for parameters for which there was evidence
of a difference. Note that >95% of parameters do not differ within-session, or between-sessions. Time constants are denoted by TandCV are
membrane capacitances, A and AN are between-sources forward and backward extrinsic AMPA and NMDA connections, respectively, H are the
intrinsic within-regions connections, D are within and between regions delays, L and J are sensor gains and states that contributed to local field
potentials, respectively, and a and d are the parameters of random neuronal fluctuations. The list of all 156 parameters in x axis are provided in
the supplementary information.
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3.2 | Reliability and the correlation of parameters

To quantify the relationship between the reliability of the posterior

parameters estimates and their correlation, we examined the expected

values of parameters after first level DCM and their re-estimation by

the PEB, that is, second level DCM to implement empirical priors or

constraints. In Table 4, we report number of intrinsic, extrinsic for-

ward and backward synaptic parameters that have correlations larger

than 0.5 between their first-level DCM estimates and after re-

estimation by PEB under empirical (second level) constraints. This

confirms that after implementing empirical priors, their reliability

improves. The PEB re-estimates first-level DCM parameters to

improve model evidence by reducing model complexity and implicitly

resolving conditional dependencies. In effect, inferred parameters

become more conditionally independent, and thereby more reliable in

the classical sense.

4 | DISCUSSION

We assessed the reliability of DCM using MEG data acquired within-

session, between-session, and between-subject. In all three cases, the

group level conductance-based DCM estimates, obtained from

resting-state MEG power spectra, are highly reliable in terms of the

inferred neuronal parameters' distributions. To compare fixed

quantities (e.g., the free energy estimates of model evidence), we used

variational Laplace to estimate the covariance components due to

intra-class correlations. To assess agreement between parameters

with random effects, we used ‘PEB of PEBs’ to test for between-

session and between-subject effects, finding excellent generalisation

over split-sample and test–retest analyses. These indicate a high reli-

ability of DCM of electrophysiological observations. In addition, we

confirmed the reciprocal relationship between reliability and condi-

tional dependency (covariance) between parameter estimates. In

other words, as the covariance among parameters reduces, the reli-

ability of their expectations increases.

The frequentist correlations of singular parameters, as typically

measured by the ‘traditional’ ICC approach, are not well-suited to the

context of complex models—with high posterior covariances—such as

DCM. This is primarily due to the conditional dependency between

parameters. However, alternative metrics such as the free energies

remain consistent between sessions, despite the presence of condi-

tional dependency among inferred parameters. This consistency indi-

cates that model comparison is reliable, thereby providing a useful

means to specify and test different hypotheses related to session dif-

ferences (e.g., a drug intervention, or disease progression). Moreover,

we focus on the underlying meaning of reliability and employ the

‘PEB of PEB’ approach to determine between-session effects. This is

especially important with the use of subject-specific biomarkers as

priors in DCM, for example, in translational modelling and precision

medicine. The posterior covariance between parameters is a major

contributor to poor reliability (something that has been observed

before but is explicitly investigated here). By improving the free

energy of—that is, evidence for—the model (for instance, by using

PEB as reported in Table 4), one may observe some improvement in

the reliability of parameters (one can intuit this as an improvement

in model evidence via reducing model complexity and, consequently,

reducing the posterior correlations among parameters). By refining

and providing better priors (e.g., through, e.g., MRS or PET data), the

free energy of a model improves. However, it is important to note that

even in the case of multimodal DCM (Jafarian et al., 2020) or

pathology-enriched DCM (e.g., Jafarian, Assem, et al., 2023) the clas-

sic reliability formulation would still not be applicable to the inferred

parameters simply because the parameters are probability distribu-

tions, whereas classic reliability tests were defined for repeated singu-

lar measurements without considering uncertainty.

A key motivation for this analysis was to address the reliability of

inferences from complex biophysical models in which neuronal gener-

ators are nonlinear, and parameter estimates are correlated (Litvak

et al., 2019). In previous studies, individual DCM connectivity parame-

ters have proven unreliable, except for very simple models, despite

the high reliability of model evidence and model comparison for

hypothesis testing (Jafarian et al., 2022; Rowe, 2010; Rowe

et al., 2010; Schuyler et al., 2010). Poor reliability was attributed to

their covariance, and the use of model comparison based on model

evidence was recommended for hypothesis testing.

Parameter inference is sensitive to changes in the data (which

may arise in repeated-measures or between-subject data). The trans-

lational neuronal modelling of neurological disorders presents a signif-

icant challenge, necessitating a reliable platform for hypothesis

testing. DCM offers such a platform, but its utility rests on reliability

for repeated measures and agreement between sessions. By utilizing

TABLE 4 Reliability of parameters before and after using PEB for split sampled and follow up data.

Inferred DCM parameters

Number of parameters with correlation score >0:5 in
DCMs of split sample baseline data

Number of parameters with correlation score >0:5 in
DCMs of 2weeks apart data and baseline data

First
level DCM

Re-estimated first level DCM
by PEB

First
level DCM

Re-estimated first level DCM
by PEB

Intrinsic connections H 15 19 8 10

Extrinsic forward connection A 8 9 7 8

Intrinsic backward connections

AN

9 10 11 12
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the resting-state data, we invert neuronal models of the default mode

network with moderate complexity. We demonstrate that consistent

conclusions can be drawn from either dataset because free energies

from these data remain consistent across datasets. This complements

earlier reports of the reliability of evoked responses, spectral power

and functional connectivity (Colclough et al., 2016; Kumar

et al., 2022; Lew et al., 2021; Marquetand et al., 2019). Indeed, the

use of evoked responses rather than resting state, may increase reli-

ability further, although resting-state data facilitates large scale clinical

studies. The reliability we demonstrate is adequate for a modelling

platform for experimental medicine, improving our understanding and

treatment of neurological disorders. However, using PEB (Friston

et al., 2016; Friston & Penny, 2011; Litvak et al., 2015; Litvak

et al., 2019) one can effectively identify the similarity of underlying

neuronal dynamics between split-sample and test-re-test data for

�95% of parameters; consistent with the data being drawn from the

same distribution, and in our study the absence of disease

progression.

Parameter estimates under nonlinear models are accompanied by

a degree of co-linearity that is, changing one parameter is equivalent

to changing others. In other words, different combinations of parame-

ters in the generative model could give rise to very similar data. The

set of parameters can be considered as a manifold, which is biologi-

cally plausible (Prinz et al., 2004) but challenging when testing hypoth-

eses based on particular parameter values. Historically, solutions to

this problem have included reducing model complexity (Stephan

et al., 2007), by re-parameterisation and defining priors for the gener-

ative models for functional MRI. However, such re-parameterisation is

not straightforward, and may not be possible for generative models of

M/EEG. This is because of the inherent complexity of the models

of M/EEG cortical generators (Penny, 2012). To address this problem,

we leveraged BMR and PEB to find nested models with lower com-

plexity that can better capture the underlying dynamics.

The use of PEB can be seen as an extension of BMR to cohort

studies. PEB is well suited to address whether model evidence from

cohort data can be improved by replacing non-informative (or weakly

informative) prior parameters in DCM by empirical priors; that is,

empirical constraints (Adams et al., 2022; Adams, Pinotsis,

et al., 2021; Friston et al., 2022; Jafarian et al., 2021; Jafarian, Hughes,

et al., 2023). In PEB, a reduced model with higher model evidence is

sought at the group level by constraining parameters using group

information to enhance cohort model evidence. PEB re-estimates

first-level DCMs where all parameters are informed by the group

information. If two sets of data are sampled from the same distribu-

tion, as expected within-session, then PEB of PEB should not identify

differences in the parameters of the generative model. The improve-

ment of reliability after the application of PEB is partly due to the

application of BMR during group DCM inversion, which serves to

reduce the complexity and, implicitly, the posterior correlation

between parameters.

The reliability of the probability distributions of parameters and

model evidence from DCMs is just one aspect of their validation. It is

not expected that the inferred parameters are identical, given the

likely differences between the data acquired close together and in

‘similar’ conditions. Although disease progression is unlikely to a

meaningful degree in 2 weeks, other differences like fatigue, anxiety,

motion or scanner noise, may arise. These differences are likely to

occur in addition to longitudinal or interventional ‘repeated-measures’
studies. The effect of such cofounds for translational neuroscience is

a matter of degree, and approaches to reduce the effect of such con-

founds include (i) using larger data samples and (ii) inclusion of infor-

mative priors on individual differences (Jafarian, Hughes, et al., 2023;

Stephan et al., 2009; Zeidman et al., 2019). It is anticipated that DCM

holds promise for experimental medicine studies, particularly in esti-

mating within-subject differences following a drug intervention or dis-

ease progression, as well as in guiding treatment decisions through

model comparison. Previous studies, such as those investigating the

effects of deep brain stimulation or drug interventions in Parkinson's

disease and psychotic disorders (Jin et al., 2023), have demonstrated

this potential application. However, some prior applications of DCM

have relied on the expectation of parameters, using posterior

expected values as dependent variables in repeated measures

ANOVA. This approach ignores posterior uncertainty about parameter

estimates, which may be essential for understanding of the underlying

generators of data. One practical strategy—to address this limitation—

is through BMR, which allows for the assessment of how alternative

priors, such as treatment or time effects, predict and elucidate the

effects of interventions on individual patients. For example, recent

single-subject work by Friston, Preller, et al. (2019) used this approach

to shed light on the mechanisms of neurovascular coupling.

In summary, we have demonstrated reliable inferences based on

the posterior probabilities and reliable relative model evidences, both

within-session and between-sessions. The use of group inversion

improves the free energy of first-level DCMs and improves reliability

of individual parameters. Such DCMs, including the canonical micro-

circuit model of MEG, provide a sufficiently reliable modelling plat-

form to consider for use in longitudinal or interventional studies.
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