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Systematic assessment of long-read RNA-seq 
methods for transcript identification and 
quantification

The Long-read RNA-Seq Genome Annotation Assessment Project 
Consortium was formed to evaluate the effectiveness of long-read 
approaches for transcriptome analysis. Using different protocols and 
sequencing platforms, the consortium generated over 427 million 
long-read sequences from complementary DNA and direct RNA datasets, 
encompassing human, mouse and manatee species. Developers utilized 
these data to address challenges in transcript isoform detection, 
quantification and de novo transcript detection. The study revealed that 
libraries with longer, more accurate sequences produce more accurate 
transcripts than those with increased read depth, whereas greater read 
depth improved quantification accuracy. In well-annotated genomes, 
tools based on reference sequences demonstrated the best performance. 
Incorporating additional orthogonal data and replicate samples is advised 
when aiming to detect rare and novel transcripts or using reference-free 
approaches. This collaborative study offers a benchmark for current 
practices and provides direction for future method development in 
transcriptome analysis.

The rise of long-read RNA sequencing (lrRNA-seq) technologies 
demands thorough evaluation. The Long-read RNA-Seq Genome Anno-
tation Assessment Project (LRGASP), an open community effort mod-
eled after successful benchmarking projects1–4, tackled this by testing 
tools and platforms across three key areas (Fig. 1a):

•	 Challenge 1: reconstructing full-length transcripts for 
well-annotated genomes.

•	 Challenge 2: quantifying transcript abundance.
•	 Challenge 3: de novo transcript reconstruction for genomes  

lacking high-quality references.

Long-read sequencing showed its potential for capturing 
full-length and novel transcripts, even in well-known genomes; how-
ever, moderate agreement among bioinformatics tools highlighted 
variations in analytical goals. Quantifying transcripts effectively 

remains challenging, with long-read tools lagging behind short-read 
tools due to throughput and error limitations. The project also  
validated many lowly expressed, single-sample transcripts, suggest-
ing further exploration of long-read data for reference transcriptome 
creation.

Results
LRGASP data and study design
The LRGASP Consortium Organizers produced long-read and short-read 
RNA-seq data from aliquots of the same RNA samples using a variety of 
library protocols and sequencing platforms (Fig. 1a, Supplementary 
Table 1 and Supplementary Data 1). The Challenge 1 and 2 samples con-
sisted of human and mouse ENCODE biosamples, including the human 
WTC11 induced pluripotent stem (iPS) cell line and a mouse embryonic 
stem (ES) cell line for Challenge 1 and a mix (H1-mix) of H1 human ES 
(H1-hES) cells and definitive endoderm derived from H1 (H1-DE) for 
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Challenge 1: transcript isoform detection with a high-quality genome

Challenge 2: transcript isoform quantifcation

Challenge 3: de novo transcript isoform identifcation
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Fig. 1 | Overview of the LRGASP. a, Data produced for LRGASP. b, Distribution 
of read lengths, identify Q score and sequencing depth (per biological replicate) 
for the WTC11 sample. c, The collaborative design of the LRGASP organizers and 
participants. d, Number of isoforms reported by each tool on different data types 
for the human WTC11 sample for Challenge 1. Number of submissions per tool, in 
order, n = 6, 6, 4, 1, 6, 1, 6, 3, 1, 1 and 12. e, Median TPM value reported by each tool 
on different data types for the human WTC11 sample for Challenge 2. Number of 
submissions per tool, in order, n = 11, 3, 4, 6, 1, 6 and 1. f, Number of isoforms reported 
by each tool on different data types for the mouse ES data for Challenge 3. Number 
of submissions per tool, in order, n = 6, 5, 2 and 4. g, Pairwise relative overlap of 
unique junction chains (UJCs) reported by each submission. The UJCs reported by a 

submission are used as a reference set for each row. The fraction of overlap of UJCs 
from the column submission is shown as a heatmap. For example, a submission 
that has a small subset of many other UJCs from other submissions will have a high 
fraction shown in the rows but a low fraction by column for that submission. Data 
are only shown for WTC11 submissions. h, Spearman correlation of TPM values 
between submissions to Challenge 2. i, Pairwise relative overlap of UJCs reported by 
each submission. The UJCs reported by a submission are used as a reference set for 
each row. The fraction of overlap of UJCs from the column submission is shown as a 
heatmap. Ba, Bambu; Bl, RNA-Bloom; FM, FLAMES; FR, FLAIR; IB, Iso_IB; IQ, IsoQuant; 
IT, IsoTools; Ly, LyRic; Ma, Mandalorion; rS, rnaSPAdes; Sp, Spectra; ST, StringTie2; 
TL, TALON-LAPA. The figure was partially created with BioRender.com.
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Challenge 2. All samples were grown as biological triplicates with the 
RNA extracted at one site, spiked with 5′-capped spike-in RNA variants5 
(Lexogen SIRV-Set 4) and distributed to all production groups. A single 
pooled sample of manatee whole-blood transcriptome was generated 
for Challenge 3. We performed different cDNA preparation methods 
for each sample, including an early-access Oxford Nanopore Technolo-
gies (ONT) cDNA kit (PCS110), ENCODE Pacific Biosciences (PacBio) 

cDNA and R2C2 (ref. 6) for increased sequence accuracy with the ONT 
platform and CapTrap5 to enrich for 5′-capped RNAs7 (Supplementary 
Methods). We also performed direct RNA sequencing (dRNA) with ONT.

The quality of the LRGASP datasets was extensively assessed 
(Supplementary Tables 2–6). cDNA-PacBio and R2C2-ONT datasets 
contained the longest read-length distributions, whereas sequence 
quality was higher for CapTrap-PacBio, cDNA-PacBio and R2C2-ONT 

Box 1

Metrics used for evaluation of Challenges 1 and 2
Challenge Metric Description

1 FSM Transcripts matching a reference transcript at all splice junctions.

1 ISM Transcripts matching consecutive, but not all, splice junctions of the reference transcripts.

1 NIC Transcripts containing new combinations of (1) already annotated splice junctions, (2) novel splice junctions 
formed from already annotated donors and acceptors or (3) unannotated intron retention.

1 NNC Transcripts using novel donors and/or acceptors.

1 Reference match FSM transcript with 5′ and 3′ ends within 50 nt of the TSS/TTS annotation.

1 3′ poly(A) supported Transcript with poly(A) signal sequence support or short-read 3′ end sequencing (for example QuantSeq) 
support at the 3′ end.

1 5′ CAGE supported Transcript with CAGE support at the 5′ end.

1 3′ reference supported Transcript with 3′ end within 50 nt from a reference transcript TTS.

1 5′ reference supported Transcript with 5′ end within 50 nt from a reference transcript TSS.

1 SRTM FSM/ISM transcript with 5′ end within 50 nt of the TSS or has CAGE support AND 3′ end within 50 nt of the TTS 
or has poly(A) signal sequence support or short-read 3′ end sequencing support.

1 SNTM NIC/NNC transcript with 5′ end within 50 nt of the TSS or CAGE support AND 3′ end within 50 nt of the TTS or 
has poly(A) signal sequence support or short-read 3′ end sequencing support AND Illumina read support at 
novel junctions.

1 %LRC Fraction of the transcript model sequence length mapped by one or more long reads.

1 Read multiplicity Number of assigned transcripts per read.

1 Redundancy No. LR transcript models/reference model.

1 Longest junction chain
 ISM
 NIC/NNC

No. junctions in ISM/no. junctions reference
no. reference junctions/no. junctions in NIC/NNC.

1 Intron retention (IR) level Number of IR within the NIC category.

1 llumina splice junction support Percentage of splice junction in transcript model with Illumina support.

1 Full Illumina splice junction 
support

Percentage of transcripts in category with all splice junction supported.

1 Percentage of novel junctions No. of new junctions/total no. junctions.

1 Percentage of non-canonical 
junctions

No. of non-canonical junctions/total no. junctions.

1 Percentage of non-canonical 
transcripts

Percentage of transcripts with at least one non-canonical junction.

1 Intra-priming Evidence of intra-priming (described elsewhere8).

1 Reverse transcriptase (RT) 
switching

Evidence of RT switching (described elsewhere8).

2 IM and ACVC IM and ACVC characterize the CV of abundance estimates among multiple replicates.

2 CM and ACC CM and ACC characterize the similarity of abundance profiles between pairs of replicates.

2 RE RE characterizes the resolution of abundance estimation.

2 SCC SCC evaluates the monotonic relationship between the estimation and the ground truth.

2 MRD MRD is the median of the relative difference of abundance estimates among all transcripts.

2 NRMSE NRMSE measures the normalized root mean square error between the estimation and the ground truth, 
which characterizes the variability of the quantification accuracy.

2 PET PET characterizes the percentage of truly expressed transcripts in SIRV-Set 4 data.

http://www.nature.com/naturemethods
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than other experimental approaches. We obtained approximately ten 
times more reads from CapTrap-ONT and cDNA-ONT than with other 
methods (Fig. 1b).

LRGASP invited tool developers to submit predictions for all three 
challenges employing the consortium datasets for which ground-truth 
data were or were not available. Moreover, the consortium provided 
evaluation metrics8 and scripts to participants. (Fig. 1c and Box 1). To 
avoid conflict of interest, the evaluations and validations were per-
formed by a subgroup of the LRGASP organizers who did not submit 
predictions. The entire LRGASP study design and evaluation bench-
marks were published as a Registered Report9. This open design aimed 
for a fair and transparent benchmarking effort.

A total of 14 tools and laboratories submitted predictions (Sup-
plementary Table 7). While submitters could choose the type of 
experimental procedure (a combination of library preparation and 
sequencing platform) that they wished to participate in, predictions 
were required for all biological samples in the chosen experimental 
procedure to assess pipeline consistency. We received 141, 143 and 25 
submissions for Challenges 1, 2 and 3, respectively.

We observed a large variability in the number and quantification 
of transcript models predicted by each submission, with differences 
of up to tenfold in each challenge (Fig. 1d–f). Moreover, there was lit-
tle overlap in transcripts identified by any two pipelines in Challenges 
1 and 3 and low pairwise correlations were detected for Challenge 2 
quantification results (Fig. 1g–i and Supplementary Data 2). These 
results highlight the importance of the comprehensive benchmarking 
presented here.

Evaluation of transcript detection with a high-quality genome
In Challenge 1, we assessed transcript model predictions using various 
datasets to gauge different aspects of performance. Experimental 
methods and tools were evaluated for their ability to detect transcripts 
and genes using SQANTI3 (ref. 8) categories and orthogonal datasets 
detailed in Supplementary Table 8, Fig. 2a and Extended Data Fig. 1. 
Results were consistent across WTC11, H1-mix and mouse ES samples 
(Fig. 2a, Supplementary Figs. 1 and 2 and Supplementary Data 3–5). We 
observed considerable variation in the detection of known genes (399–
23,647) and transcripts (524–329,131) (Extended Data Fig. 1a), by the 
different methods, with an average of 3–4 transcripts per gene reported 
by most pipelines, except for Spectra10 and Iso_IB11 that reported a 
huge number of transcripts (~170,000 and 330,000K, respectively); 
however, the relationship between read metrics and detected tran-
script numbers was unclear due to pipeline variations (Supplementary 
Figs. 3–7). The analysis tool mostly dictated the number of detected 
features (Extended Data Fig. 1b–d).

Pipelines also greatly varied in detecting GENCODE-annotated 
transcripts (full splice match; FSM), transcripts missing 3′ or 5′ end 
exons (incomplete splice match; ISM), containing novel junctions of 
GENCODE-annotated donor and acceptor sites (novel in catalog; NIC) 
or containing novel donor or acceptor sites with respect to GENCODE 
(novel not in catalog; NNC). Bambu12, FLAIR13, FLAMES14 and IsoQuant15 
consistently detected a high percentage of FSM and a low proportion of 
ISM transcripts. In contrast, TALON16,17, IsoTools18 and LyRic detected a 
relatively high number of ISMs (Extended Data Fig. 1b). The LyRic sub-
mission group noted that they did not use existing annotations to guide 
analysis, which can explain their results. As for novel transcripts, Bambu 

reported the lowest values for NNC and NIC, followed by IsoQuant and 
TALON. FLAIR and Mandalorion19 pipelines typically returned around 
20% NIC and low NNC percentages. LyRic and FLAMES were among the 
pipelines with the highest percentages of novel transcript detections. 
Iso_IB and Spectra generally returned many isoforms and only a small 
fraction were FSMs (Extended Data Fig. 1c). Results stratified by library 
preparation and sequencing platform followed similar patterns (Sup-
plementary Figs. 8–15).

We compared support for transcript models against reference 
annotations and short-read sequencing data, including cDNA sequenc-
ing, CAGE and QuantSeq. Our analysis revealed that many pipelines 
achieved a high percentage of known transcripts with full support at 
transcription start sites (TSSs), transcription termination sites (TTSs) 
and junctions (referred to as supported reference transcript models 
(SRTMs); Methods) but showed lower full support for novel transcript 
models (SNTMs) (Fig. 2a, Extended Data Fig. 1d and Supplementary 
Figs. 1 and 2). Generally, tools analyzing cDNA-PacBio and cDNA-ONT 
data demonstrated high values of full support for both novel and 
known transcripts; however, many TALON pipelines exhibited only 
moderate full support for known transcripts, possibly due to a high 
number of ISMs. Nonetheless, TALON consistently provided full sup-
port for novel transcripts in most cases. In contrast, LyRic, IsoQuant, 
FLAMES and Bambu, which exhibited high full support values for novel 
transcripts using cDNA-PacBio data, yielded novel transcript models 
with lower support when processing ONT libraries. Additionally, we 
observed that, in general, pipelines were more successful in report-
ing experimentally supported 3′ ends than 5′ ends. Transcript models 
generally aligned with reference TSSs and TTSs, although variations 
among pipelines were observed. Bambu and IsoQuant reported a 
high percentage of transcripts matching reference TSSs and TTSs but 
exhibited comparatively lower support from CAGE and QuantSeq data. 
Conversely, certain submissions from LyRic and FLAMES produced 
transcript models with experimentally validated transcript ends, with 
Mandalorion achieving the most consistent high CAGE support rates. 
This result suggested that lrRNA-seq pipelines are highly guided by 
reference annotations to complete transcript sequences. We tested 
this by measuring long-read coverage (LRC) of the transcript predic-
tions from our read alignments. FLAMES, Iso_IB, IsoTools, LyRic and 
Mandalorion showed nearly complete LRC for their transcript models 
(>98% coverage for all transcripts). In contrast, FLAIR, Spectra, TALON, 
IsoQuant, Bambu and StringTie2 had lower coverage rates (~90, 90, 85, 
75, 60 and 45%, respectively) (Extended Data Fig. 2), suggesting that 
they may use different alignment strategies or additional information 
(for example, reference annotation or short reads) to finalize transcript 
models. Finally, we looked at the percentage of junctions with Illumina 
reads support and canonical splice sites. We found these values were 
generally very high for all pipelines except Spectra, Iso_IB and FLAMES 
using cDNA-ONT and CapTrap-ONT data, with LyRic on PacBio show-
ing the highest percentage of splice junctions supported by Illumina 
reads (Fig. 2a). Gene biotype detection was uniform across methods 
(Supplementary Figs. 16 and 17).

We assessed the consistency of detecting known and novel unique 
intron chains (UICs) by various pipelines across multiple sequencing 
setups. When considering all 47 WTC11 submissions, detection by 
only one pipeline was the most frequent transcript class (Fig. 2b and 
Supplementary Fig. 18). Moreover, frequency in transcript detection 

Fig. 2 | Evaluation of transcript identification with a reference annotation 
for Challenge 1. a, Percentage of transcript models fully supported at 5′ ends 
either by reference annotation or same-sample CAGE data (left), 3′ end either 
by reference annotation or same-sample QuantSeq data (middle) and splice 
junctions (SJ) by short-read coverage or a canonical site (right). b, Agreement in 
transcript detection as a function of the number of detecting pipelines,  
c, Performance of tools based on spliced-short (top) and unspliced long SIRVs 
(bottom). d, Performance of tools based on simulated data. e, Performance 

of tools on known and novel transcripts of 50 genes manually annotated by 
GENCODE. f, Summary of performance metrics of tools for the cDNA-PacBio and 
cDNA-ONT benchmarking datasets. The color scale represents the performance 
value ranging from worse (dark blue) to better (light yellow). The graphic symbol 
indicates the ranking position of the tool for the metric represented in each row. 
LO, long (reads) only; LS, long and short (reads); Sen_kn, sensitivity for known 
transcripts; Pre_kn, precision for known transcripts; Sen_no, sensitivity for novel 
transcripts; Pre_no, precision for novel transcripts; 1/Red, inverse of redundancy.
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depended on the SQANTI3 structural category. Novel transcripts were 
less consistently detected, whereas FSMs were nearly the only tran-
script type found by more than 40 pipelines. Overall, the overlap in 

detection between any two pipelines was higher for genes and junctions 
than for UICs, even when we only considered dominant UICs account-
ing for over 50% of the gene expression (Supplementary Figs. 19–21), 
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highlighting the disparity in the identification of transcript models 
across methodologies. We then re-evaluated the agreement in UIC 
detection by looking at the overlap of each analysis method with the 
rest and discarding tools with a large number of detections (Spectra 
and Iso_IB). Overall, many UICs were detected by all analysis pipelines 
when considering each library preparation/sequencing platform com-
bination separately, although discrepancies persisted among SQANTI3 
categories and experimental methods (Supplementary Figs. 22–27).

Without a ground truth in cell-line data, we gauged method accu-
racy using spike-ins, simulated data and GENCODE manual curation. 
Using the spliced SIRV-Set 4 dataset, most tools showed high sensitiv-
ity, except for TALON and LyRic, which did not use the SIRV reference 
annotation, whereas LyRic and Bambu’s sensitivity varied with the 
library preparation method (Fig. 2c and Supplementary Data 3–5). 
LyRic only had a sensitivity above 0.8 for the cDNA-PacBio sample, and 
Bambu showed lower sensitivity with R2C2-ONT and CapTrap-ONT. 
Precision was generally high for Bambu, IsoQuant, IsoTools and  
Mandalorion methods and low for TALON, Iso_IB and Spectra. FLAMES, 
FLAIR and LyRic showed variable results. F1 scores generally matched 
precision, with IsoQuant, Mandalorion, FLAIR, Bambu and IsoTools 
performing best.

The SIRV dataset’s long, non-spliced transcripts were separately 
assessed, yielding very different results (Fig. 2c and Supplementary 
Data 3–5). FLAMES reported no such transcripts, whereas Bambu 
excelled, likely aided by reference data. Sensitivity was generally lower, 
except with cDNA-PacBio, where most tools, including TALON and 
LyRic, achieved 100% sensitivity. CapTrap data typically resulted in 
lower sensitivity, suggesting limitations in capturing long transcripts. 
Precision varied with the tool and protocol used. As these SIRVs do not 
contain splice sites, low precision values indicate false variability at 
TTSs and TSSs. As results obtained with the long non-spliced dataset 
may be the combination of the ability of the analysis tool to process 
non-spliced data and accurately define TSSs and TTSs and the capac-
ity of the experimental protocol to capture long molecules, we looked 
at the aligned coverage for long SIRVs. We found that cDNA-PacBio 
provided the most uniform LRC for long SIRVs despite a drop at the 5′ 
ends of the longest transcripts (Extended Data Fig. 3).

SIRV annotation was available to participants. This benchmark, 
while useful for testing experimental protocols, might be biased 
and cannot evaluate new transcript predictions—a key advantage of 
long-read sequencing. We used simulated datasets, including undis-
closed novel transcripts, for a broader assessment (Supplementary 
Data 6 and 7). Mandalorion performed well with PacBio data for both 
known and novel transcripts, as did IsoTools and LyRic, though their 
precision for novel transcripts was lower (Fig. 2d and Supplementary 
Fig. 28). Bambu and FLAIR were sensitive and precise for known tran-
scripts but less so for novel ones, especially FLAIR without short-read 
data was unable to discover new transcripts accurately. Spectra and 
Iso_IB had sensitive but imprecise detection of novel transcripts. For 
all tools, sensitivity increased on highly expressed transcripts and 

redundancy values were close to 1, except for Iso IB and Spectra, which 
returned a higher number of redundant predictions. Nanopore simu-
lations generally showed low performance across tools, possibly due 
to lower NanoSim20 read coverage in the simulated transcript models 
(Supplementary Fig. 29). Exceptions were Bambu and IsoQuant, which 
had good precision for ONT-known simulated transcripts and StringTie 
at metrics other than those related to novel transcript discovery. In 
summary, simulated data indicated lower sensitivity and precision for 
novel compared to known transcripts (Fig. 2d).

While useful for large-scale and novel transcript analysis, simu-
lated data are limited by the simulation algorithms’ properties that 
may not replicate complexities such as library preparation and bio-
logical noise. To address this, 50 undisclosed genes were rigorously 
annotated by GENCODE experts using LRGASP sequencing data for 
evaluation. Manually annotated loci were chosen for having mapped 
reads in all six library preparation/sequencing platform combinations 
and average to moderately high expression levels (Extended Data 
Fig. 4). GENCODE annotators evaluated the long-read data for each 
experimental procedure independently and called transcript models 
in each case (Supplementary Methods). Globally, 271 models, mostly 
novel, were accepted as true transcripts in the WTC11 sample, with NNC 
as the primary category. FSMs, though fewer, were more consistently 
detected across multiple conditions. Most novel transcripts appeared 
in just one dataset (Extended Data Fig. 4) and a trend was also observed 
in the mouse ES sample (Extended Data Fig. 5).

Assessment of pipelines on selected loci revealed performance 
variations driven by the analysis method. While all showed high 
gene-level precision, sensitivity was generally lower than in previ-
ous datasets. FLAMES, LyRic, FLAIR (on dRNA data) and TALON (on 
CapTrap and cDNA-ONT datasets) exhibited lower sensitivity. Bambu, 
IsoTools, IsoQuant and Spectra showed the highest sensitivity at the 
gene detection level (Supplementary Fig. 30a), followed by TALON 
and Mandalorion, but were more dependent on the data type. A similar 
pattern of sensitivity and precision was observed when consider-
ing transcripts already present in the reference annotation (Fig. 2e); 
however, for novel transcript detection, sensitivity was surprisingly 
low in all cases and precision greatly varied, ranging from 1 to 0 to 
non-computable even within the same tool, due to a low number of 
novel discoveries (<4) by most pipelines (Fig. 2e and Supplementary 
Fig. 30b). Results were similar for the mouse ES annotated dataset 
(Supplementary Figs. 31 and 32).

In summary, differences in library preparation, sequencing plat-
forms and analysis tools significantly affected the transcriptome defini-
tion (Fig. 2f and Supplementary Figs. 33–36). Notably, the number of 
transcripts detected was not associated with the number of reads (Sup-
plementary Fig. 3). Some tools (Bambu, FLAMES, FLAIR and IsoQuant) 
heavily relied on annotation for transcript modeling, while other meth-
ods (Iso_IB, IsoTools, Mandalorion, TALON and LyRic) allowed more 
novelty based on the actual data. For all methods, accurate prediction 
of novel transcripts was challenging.

Fig. 3 | Evaluation of transcript isoform quantification for Challenge 2.  
a, Cartoon diagrams to explain evaluation metrics without or with a ground truth. 
b–e, Overall evaluation results of eight quantification tools and seven protocols-
platforms on real data with multiple replicates (b), cell mixing experiment (c), 
SIRV-Set 4 data (d) and simulation data (e). Box plots of evaluation metrics 
across various datasets, depicting the minimum, lower quartile, median, upper 
quartile and maximum values. Bar plots represent the mean values of evaluation 
metrics across diverse datasets, with error bars indicating the s.d. b, Number 
of submissions per tool or protocol-platform, in order, n = 36, 12, 16, 24, 4, 24, 6, 
and 4 per tool or n = 22, 24, 26, 18, 18, 14 and 4 per protocol-platform. c, Number 
of submissions per tool or per protocol-platform, in order, n = 6, 3, 4, 6, 1, 6, 
1 and 1 per tool or n = 5, 5, 6, 4, 4, 3 and 1 per protocol-platform. d, Number of 
submissions per tool or per protocol-platform, in order, n = 36, 12, 16, 24, 4, 24, 6 
and 4 per tool or n = 22, 24, 26, 18, 18, 14 and 4 per protocol-platform. e, Number 
of submissions per tool or per protocol-platform, in order, n = 8, 4, 2, 4, 2, 4, 1 and 

2 per tool or n = 12, 6, 7, 0, 0, 0 and 2 per protocol-platform. f, Quantification tool 
scores under common cDNA-ONT and cDNA-PacBio platforms across various 
evaluation metrics, with the top three performers highlighted for each metric.  
g, Based on the average values of each metric across all quantification tools, 
scores for protocols-platforms are displayed, along with the top three 
performers for each metric. Blank spaces denote instances where the tool or 
protocols-platforms did not have participants submitting the corresponding 
quantitative results. h, Evaluation of quantification tools with respect to multiple 
transcript features, including the number of isoforms, number of exons, isoform 
length and a customized statistic K-value representing the complexity of exon-
isoform structures. Here, the normalized MRD metric is used to evaluate the 
performance of quantification tools on human cDNA-PacBio simulation data. 
Additionally, RSEM evaluation results with respect to transcript features based 
on human short-read simulation data are shown as a control.
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Evaluation of transcript quantification
We assessed transcript quantification performance using 84 RNA 
sequencing datasets (including SIRV-Set 4) from four human 

cell lines (H1-hES cells, H1-DE, H1-mix and WTC11) and six simula-
tion datasets for Nanopore (NanoSim), PacBio (IsoSeqSim21) and  
Illumina (RSEM22) reads (Fig. 1a). Seven quantification tools (IsoQuant, 
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Bambu, TALON, FLAIR, FLAMES, NanoSim and IsoTools) were tested 
on six combinations of protocols-platforms (cDNA-PacBio, cDNA-ONT, 
dRNA-ONT, CapTrap-PacBio, CapTrap-ONT and R2C2-ONT), yielding 
143 submitted datasets. As a control, we quantified short-read datasets 
(cDNA-Illumina) using the RSEM tool with the GENCODE reference 
annotation. We employed nine metrics for performance assessment in 
various data scenarios (Fig. 3a and Box 1). A benchmarking web appli-
cation23 allowed users to upload their results, generating interactive 
evaluation reports in HTML and PDF formats.

First, we assessed eight quantification tools across diverse 
protocols-platforms in four data scenarios using multiple metrics 
(Fig. 3b–f and Extended Data Figs. 6 and 7). For real data with multiple 
replicates, four metrics were designed to evaluate the reproduc-
ibility and consistency of transcript abundance estimates among 
multiple replicates: irreproducibility measure (IM), area under the 
coefficient of variation curve (ACVC), consistency measure (CM) 
and area under the consistency curve (ACC) (Fig. 3b, Supplementary 
Figs. 37 and 38 and Supplementary Data 4). FLAMES, IsoQuant and 
IsoTools performed comparably to RSEM, showing low IM and ACVC 
and high CM and ACC (Fig. 3b and Supplementary Figs. 37b and 38c). 
FLAIR and Bambu slightly underperformed RSEM but surpassed 
other quantification tools. Specifically, IsoQuant on cDNA-ONT and 
CapTrap-ONT, and FLAMES on CapTrap-ONT ranked in the top three 
across all datasets (<0.15 and <0.53 for IM and ACVC, >0.89 and >9.53 
for CM and ACC). Notably, all tools showed poor performance on 
dRNA-ONT (mean IM = 0.66, ACVC = 2.62, CM = 0.64 and ACC = 8.31), 
likely due to its low throughput (<1 million reads per replicate). In 
addition, the resolution entropy (RE) metric characterized the reso-
lution of transcript abundance estimates among multiple replicates 
in real data (Fig. 3b, Supplementary Fig. 39 and Supplementary Data 
8). The top six tools (IsoQuant, IsoTools, FLAMES, FLAIR, TALON and 
Bambu) achieved comparable resolution, at least 2.7-fold higher 
than NanoSim and RSEM. This disparity may be due to NanoSim 
and RSEM utilizing the GENCODE reference annotation, including 
numerous transcripts not expressed in specific samples, leading to 
many low-expression transcripts in the quantification results (79.02% 
and 58.04% of transcripts with transcripts per million (TPM) ≤ 1 in 
H1-hES cell samples).

Due to the challenges of transcript-level quantification and the 
lack of a gold standard in real data, we designed an evaluation strat-
egy using a cell mixing experiment (Supplementary Fig. 40a). In this 
experiment, an undisclosed ratio of H1-hES cells and H1-DE samples 
was mixed before sequencing and participants estimated transcript 
abundance in the mixed sample initially. Subsequently, data from indi-
vidual H1-hES cell and H1-DE samples were released and participants 
submitted separate quantifications for these datasets. The quantifi-
cation of mixed samples should be equivalent to the expected ratios 
from the quantification of individual cell lines. Three metrics evaluated 
quantification accuracy by comparing expected and observed abun-
dance: Spearman correlation coefficient (SCC), median relative differ-
ence (MRD) and normalized root mean square error (NRMSE) (Fig. 3c, 
Supplementary Fig. 40b,c and Supplementary Data 9). Most tools 
showed good correlation (0.74–0.87 for mean SCC) between expected 
and observed abundance, except Bambu (0.53), with RSEM showing 
superior performance in cell mixing experiments with the highest 
SCC (0.87), lowest MRD (0.13) and NRMSE (0.38) values (Fig. 3c and 
Supplementary Fig. 40b,c). Among long-read-based tools, IsoQuant 
on cDNA-ONT performed best in MRD (0.14) and SCC (0.85), whereas 
FLAIR on cDNA-ONT recorded the lowest NRMSE (0.43).

SIRV-Set 4 and the simulation data assessed the proximity of 
estimations to ground-truth values using four metrics: percentage 
of expressed transcripts (PET), SCC, MRD and NRMSE (Fig. 3d, Sup-
plementary Figs. 41 and 42 and Supplementary Data 10 and 11). For 
SIRV-Set 4, tools exhibited substantial variation in quantifying SIRV 
transcripts with TPM > 0, ranging from 28 to 136. RSEM outperformed 

other long-read-based tools with higher average SCC (0.84 versus 
0.29–0.78), lower MRD (0.12 versus 0.13–1.00) and NRMSE (0.45 versus 
0.89–2.19). NanoSim (SCC = 0.78, MRD = 0.23 and NRMSE = 0.89) and 
IsoQuant (0.76, 0.19 and 0.89) led long-read-based tools, followed by 
IsoTools (0.69, 0.13 and 1.02), FLAIR (0.73, 0.42 and 1.13) and Bambu 
(0.68, 0.79 and 1.55). Except for TALON and FLAMES, all tools excelled in 
quantifying regular and long SIRV transcripts with TPM > 0 (PET > 80%). 
Conversely, most struggled with quantifying ERCC transcripts with 
TPM > 0 (PET < 50%), likely due to the low expression levels of many 
ERCC transcripts24,25.

For simulation data, tools performed markedly better on 
PacBio data than ONT data (Fig. 3e). Notably, FLAIR, IsoQuant, 
IsoTools and TALON on cDNA-PacBio exhibited the highest corre-
lation (SCC > 0.97) between estimation and ground truth, slightly 
surpassing RSEM (SCC = 0.90) and outperforming other long-read 
pipelines (SCC < 0.83). Moreover, transcript annotation accuracy 
notably influenced quantification accuracy. With inaccurate anno-
tation, RSEM yielded mean NRMSE values of 2.74- and 3.27-times 
higher than long-read-based tools and RSEM with accurate annotation, 
respectively (Supplementary Fig. 43). This emphasizes the critical 
importance of accurate sample-specific annotation for transcript 
quantification.

Next, we evaluated seven combinations of protocols-platforms 
across diverse quantification tools (Fig. 3b–e,g and Extended Data 
Fig. 6). Based on reproducibility and consistency metrics on real 
data (Fig. 3a and Supplementary Figs. 37b and 38c), CapTrap-ONT, 
CapTrap-PacBio, cDNA-PacBio and cDNA-ONT demonstrated similar 
performance: low IM and ACVC and high CM and ACC, outperforming 
dRNA-ONT and R2C2-ONT likely due to their lower sequencing depths 
(Fig. 1b). In particular, CapTrap-ONT and cDNA-ONT exhibited the low-
est irreproducibility (mean IM = 0.19 and 0.20 and ACVC = 0.50 and 
0.51) and highest consistency (mean CM = 0.89 and 0.86 and ACC = 9.49 
and 9.51). For abundance resolution, cDNA-PacBio and R2C2-ONT 
outperformed others, with at least a twofold higher RE than cDNA-ONT 
(Fig. 3b). Notably, there were bimodal distributions of read length 
for some protocols-platforms (cDNA-PacBio, CapTrap-PacBio and 
definitely dRNA-ONT for R2C2-ONT (Supplementary Fig. 44). Varying 
sequencing error rates across platforms (Fig. 1b) suggest that tools 
may have specific advantages in handling certain data types (Fig. 3f 
and Extended Data Fig. 7).

For cell mixing experiments (Fig. 3c and Supplementary 
Fig. 40b), CapTrap-PacBio, CapTrap-ONT, cDNA-PacBio, cDNA-ONT 
and dRNA-ONT showed similar performances (mean SCC scores, 0.73 
to 0.83), whereas the remaining R2C2-ONT scored below 0.60 in mean 
SCC. In particular, CapTrap-PacBio exhibited the best quantification 
accuracy, surpassing other long-read-based protocols-platforms and 
comparable to cDNA-Illumina.

For SIRV-Set 4 data, cDNA-PacBio outperformed other 
long-read-based protocols-platforms (Fig. 3d and Supplementary 
Fig. 41a), with the highest SCC (0.70 versus 0.60–0.66) and the  
lowest MRD (0.40 versus 0.58–0.75) and NRMSE (1.14 versus 1.38–1.52). 
cDNA-ONT followed and outperformed the other protocols-platforms. 
Notably, all protocols-platforms struggled to quantify ERCC transcripts 
with TPM > 0 (mean PET = 33.01%) compared to regular SIRV (mean 
PET = 82.17%) and long SIRV transcripts (mean PET = 69.75%). Particu-
larly, cDNA-ONT, cDNA-PacBio, CapTrap-ONT and R2C2-ONT showed 
similar PET performance (34.39–43.27%) in ERCC quantification, sur-
passing dRNA-ONT (18.35%) and CapTrap-PacBio (27.99%). For long 
SIRV transcripts, except CapTrap-PacBio and dRNA-ONT, all could quan-
tify over 70% of transcripts with TPM > 0. All performed well for regu-
lar SIRV transcripts, with dRNA-ONT, CapTrap-PacBio, cDNA-PacBio 
and cDNA-ONT being the most prominent (PET > 82.00%). Similar to 
SIRV-Set 4 data, the simulation study revealed cDNA-PacBio’s superior 
performance in SCC, MRD and NRMSE compared to cDNA-ONT and 
dRNA-ONT (Fig. 3e and Supplementary Fig. 42b).
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Fig. 4 | Evaluation of transcript identification without a reference annotation 
for Challenge 3. a, Number of detected transcripts and distribution of SQANTI 
structural categories, mouse ES cell sample. b, Number of detected transcripts 
and distribution of transcripts per loci, manatee sample. c, Length distribution 
of mouse ES cell transcripts predictions. Number of transcripts reported by each 
pipeline, in order, n = 23,540, 15,054, 21,312, 27,215, 21,913, 27,056, 85,720, 107,832, 

192,324, 144,752, 164,117, 91,833, 28,293, 75,106, 52,944, 29,458 and 44,079.  
d, Length distribution of manatee transcripts predictions. Number of transcripts 
reported by each pipeline, in order, n = 1,911, 179,258, 176,895, 695,167, 535,845, 
288,958, 63,000 and 25,643. e, Support by orthogonal data. f, BUSCO metrics. 
g, Performance metrics based on SIRVs. Sen, sensitivity; PDR, positive detection 
rate; Pre, precision; nrPred, non-redundant precision; SO, short only.
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Finally, we evaluated tool performance across various gene/
transcript sets grouped by transcript features, including abundance, 
isoform-exon number, length and a customized statistic K-value repre-
senting exon-isoform structure complexity (Fig. 3h and Supplementary 
Figs. 37c, 38d and 45).

For real data with multiple replicates, all tools showed 
reduced coefficient of variation (CV) and increased CM across six 
protocols-platforms with rising transcript abundances (Supplemen-
tary Figs. 37c and 38d). We further analyzed normalized MRD changes 
using human cDNA-PacBio simulation data (Fig. 3h). MRD scores on all 
tools spiked when transcript abundance was TPM ≤ 2, indicating height-
ened variability and errors in estimating abundance for low-expression 
transcripts. Moreover, tools exhibited poor performance at high 
K-values and isoform numbers, suggesting challenges in accurately 
quantifying more complex gene structures. Most tools performed 
well with isoforms with 5 to 15 exons, except for RSEM and Bambu. 
Notably, quantification errors were more pronounced for transcripts 
shorter than 1 kb, whereas tools exhibited varying performance for 
transcripts longer than 1 kb.

In summary, our evaluation revealed variable tool performance 
based on gene/transcript features, posing challenges in accurately 
quantifying low-expression and complex transcripts. Notably, tools 
exhibited performance differences across diverse data scenarios 
(Fig. 3f and Extended Data Figs. 6 and 7). Overall, RSEM outper-
formed long-read-based tools in different protocols-platforms and 
metrics (Fig. 3b–e). IsoQuant, FLAIR and Bambu stood out among 
long-read-based tools (Fig. 3f and Extended Data Fig. 7). IsoTools 
excelled in cDNA-PacBio data, whereas NanoSim performed best in 
SIRV transcript quantification. Generally, cDNA-Illumina showed 
top overall performance in different protocols-platforms, ranking 
among the top three in all metrics, except RE (Fig. 3g). Meanwhile, 
cDNA-PacBio, cDNA-ONT, CapTrap-ONT and CapTrap-PacBio dem-
onstrated consistently good performance across various scenarios, 
surpassing dRNA-ONT and R2C2-ONT.

Evaluation of de novo transcript detection
We assessed long-read methods for transcript identification  
without a reference in two scenarios: high-quality genome assembly 
and data (mouse ES cell sample) and limited genomic information 
on a field experiment (manatee leukocyte sample). Additionally, the 
manatee sample had excess SIRV spike-ins, representing a challeng-
ing dataset. A draft manatee genome was assembled using Nanop-
ore and Illumina sequencing (Supplementary Fig. 46) and provided 
to submitters, but no genome annotation was allowed in Challenge 
3 analyses. Matched short-read RNA-seq data were available to  
all submitters.

Four tools (Bambu, StringTie2+IsoQuant, RNA-Bloom26 
and rnaSPAdes27) submitted transcriptome predictions for both  
samples (Fig. 1f). Although overall transcript mapping rates were high 
(Supplementary Fig. 47), the number of detected transcripts varied, 
ranging from approximately 20,000 to 150,000 in mouse ES cells and 
from around 2,000 to 500,000 in the manatee sample (Fig. 4a,b and 

Supplementary Data 12 and 13). rnaSPAdes predicted the largest num-
ber of transcripts and the highest fraction of noncoding sequences, 
followed by RNA-Bloom. Conversely, Bambu predicted the fewest 
transcripts (Fig. 4a). In the mouse sample, most detected transcripts 
were novel (Fig. 4a), contrasting with IsoQuant and Bambu Challenge 
1 results using the reference annotation, highlighting the impact of 
annotation on predictions (Fig. 2a and Extended Data Fig. 8). Structural 
category analysis was not possible for the manatee sample, but exami-
nation of transcript counts per locus revealed variance among methods 
and data types. Bambu, rnaSPAdes and RNA-Bloom predicted a single 
transcript for most loci, whereas StringTie2+IsoQuant, especially with 
cDNA-ONT data, predicted two or more transcripts for nearly half of 
the loci (Fig. 4b).

In the absence of a reference annotation, Bambu, StringTie2+ 
IsoQuant and RNA-Bloom predicted transcript models mainly between 
1 kb and 3 kb. Bambu and StringTie2+IsoQuant reported many short 
transcripts in the mouse ES cell cDNA-ONT dataset (Fig. 4c), likely 
influenced by shorter reads (Fig. 1c), with Bambu showing shorter 
transcripts in the manatee cDNA-PacBio dataset (Fig. 4d). rnaSPAdes 
generated numerous short transcripts, affecting overall length distri-
butions (Fig. 4c,d).

For mouse ES cell transcripts, a link was observed between the 
number of predicted transcripts and their orthogonal data support. 
rnaSPAdes, with the most predictions, had the least support from 
Illumina, CAGE and QuantSeq datasets and a high percentage of 
non-canonical splice junctions. Conversely, Bambu had fewer predic-
tions but higher orthogonal support. RNA-Bloom showed moderate 
support and many non-canonical junctions. StringTie2+IsoQuant’s 
transcripts had good junction quality but low CAGE support (Fig. 4e).

Most transcripts identified by Bambu and StringTie2+IsoQuant in 
the mouse ES cell sample were protein-coding, except in CapTrap-ONT 
and cDNA-ONT datasets, where about 25% were noncoding, possibly 
due to the higher number of reads in these datasets. In the manatee 
sample, a lower percentage of transcripts were predicted as cod-
ing, with about 70% for IsoQuant and Bambu and less than 20% for  
rnaSPAdes (Supplementary Fig. 48).

BUSCO28 (benchmarking sets of universal single-copy orthologs), 
a database of highly conserved genes, was used to assess transcriptome 
completeness, showing good performance across most tools despite 
the observed differences in protein-coding transcript rates. In the 
mouse ES cell sample, rnaSPAdes and RNA-Bloom detected over 60% 
of complete BUSCO genes, whereas Bambu reached this only with 
cDNA-PacBio and R2C2-ONT data. In the manatee sample, IsoQuant 
and RNA-Bloom had the highest BUSCO completeness (~50%) on  
Nanopore datasets, with rnaSPAdes at around 30% and Bambu perform-
ing poorly. Incomplete BUSCO genes were generally fewer in the mouse 
ES cells than in the manatee, with rnaSPAdes showing the highest ratio 
of incompleteness in the manatee sample (Fig. 4f).

SIRV spike-in analysis showed notable tool and sample variations 
(Fig. 4g). RNA-Bloom detected SIRVs in the mouse ES sample with 
about 70% sensitivity but had low precision and a high false discovery 
rate (FDR). rnaSPAdes exhibited low sensitivity and a high positive 

Fig. 5 | Experimental validation of known and novel isoforms. a, Schematic 
for the experimental validation pipeline. QC, quality control b, Example of a 
consistently detected NIC isoform (detected in over half of all LRGASP pipeline 
submissions), which was successfully validated by targeted PCR. The primer 
set amplifies a new event of exon skipping (NIC). Only transcripts above ~5 
CPM and any part of the GENCODE Basic annotation are shown. c, Example 
of a successfully validated new terminal exon, with ONT amplicon reads 
shown in the IGV track (PacBio produces similar results). d, Recovery rates for 
GENCODE-annotated isoforms that are reference matched (known), novel and 
rejected. e, Recovery rates for consistently versus rarely detected isoforms for 
known and novel isoforms. f, Recovery rates between isoforms that are more 
frequently identified in ONT versus PacBio pipelines. g–i, Relationship between 

estimated transcript abundances (calculated as the sum of reads across all 
WTC11 sequencing samples) and validation success for GENCODE (g), consistent 
versus rare (h) and platform-preferential (i) isoforms. NV, not validated; V, 
validated. The number of transcripts in each category is shown in d–f. j, Fraction 
of validated transcripts as a function of the number of WTC11 samples in which 
supportive reads were observed. k, Example of two de novo isoforms in manatee 
validated through isoform-specific PCR amplification. Purple corresponds to 
the designed primers, orange to the possible amplification product associated 
with one isoform and black to the predicted isoforms. l, PCR validation results 
for manatee isoforms for seven target genes. Blue corresponds to supported 
transcripts and red to unsupported transcripts. The figure was partially created 
with BioRender.com.
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detection rate, suggesting incomplete transcript model detections. 
RNA-Bloom and rnaSPAdes often predicted multiple models for the 
same SIRV (low 1/redundancy values). Conversely, StringTie2+IsoQuant 

and Bambu showed lower sensitivity (~25%) but better precision and 
FDR control, particularly in cDNA-PacBio data. In the manatee sample, 
where SIRVs were abundant, performance dropped across all tools, 
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with Bambu failing to recover spiked RNAs. SQANTI3 analysis against 
annotated SIRV data indicated a majority of SIRV reads were FSM and 
most SIRVs had at least one reference-match read in both manatee 
datasets (Supplementary Fig. 49) suggesting that data quality was 
not a limiting factor.

Transcript detection without reference annotation proved chal-
lenging. Notably, transcripts with higher coverage, as in our SIRV 
spike-ins in the manatee sample, led to poorer performance for all tools, 
suggesting that accurate detection from highly expressed genes may 
be problematic. Bambu and IsoQuant had moderate to good precision 
but low sensitivity, RNA-Bloom had high sensitivity but low precision 
and rnaSPAdes generated fragmented, short transcripts with high FDR.

Experimental validation of transcript predictions
To experimentally validate isoforms, we targeted isoform-specific 
regions for PCR amplification followed by gel electrophoresis and 
sequencing of pooled amplicons via ONT and PacBio sequencing 
(Fig. 5a). We prioritized validation of three comparison groups: (1) 
GENCODE-annotated (known or novel) based on LRGASP data and 
annotation; (2) consistently identified by >50% of pipelines or rarely 
by 1–2 pipelines; and (3) preferentially identified in ONT or PacBio 
libraries. From these comparison groups, we designed primers for 178 
target regions, in which the length of the amplified region ranged from 
120 to 4,406-bp long, with a median of 488 bp and 25–75 interquartile 
range of 305 to 795 bp (Fig. 5a). Examples of a validated exon-skipping 
event (NIC) and a novel terminal exon (NNC) are shown in Fig. 5b,c.

To evaluate GENCODE-annotated isoforms, we compared 
groups of randomly selected isoforms that were (1) annotated 
(GENCODE-known, n = 26); (2) novel and confirmed through manual 
annotation (GENCODE-novel, n = 41); and (3) unsupported isoforms 
that were investigated but did not pass rigorous manual curation 
(GENCODE-rejected n = 9). As expected, we found a high validation rate 
for GENCODE-known, 81% (Fig. 5d). Of the GENCODE-known isoforms, 
we found that 5 of the 28 targets failed to validate despite orthogonal 
support29; therefore, we speculate that they failed due to suboptimal 
primer or PCR conditions. GENCODE-novel isoforms validated at a 
slightly lower validation rate (63%) compared to GENCODE-known. Fur-
ther review confirmed that GENCODE-novel isoforms that failed to vali-
date tended to be lower in abundance compared to their successfully 
validated counterparts (Fig. 5g). Only two of nine GENCODE-rejected 
isoforms were amplified, which were later confirmed to be mismapped 
due to tandem repeats.

A large number of novel isoforms were detected in this study 
(for example, 279,791 new isoforms in WTC11; Fig. 1b). We found that 
743 novel isoforms were detected consistently, but a vast majority or 
242,125 isoforms, were rarely detected and found in only one or two 
of the pipelines. We obtained a 100% validation rate for consistently 
detected new isoforms (Fig. 5e). For isoforms with low reproducibility 
across pipelines, we found a surprisingly high validation rate of 90% 
and 50% for NIC and NNC isoforms, respectively. Abundance correlated 
with validation rate (Fig. 5h), as found for the GENCODE validation set.

Last, we determined the validation rates of known and novel 
isoforms in common or preferentially detected in the cDNA-ONT 
or cDNA-PacBio experiments. For example, an isoform detected in 
more than 50% of ONT pipelines but less than 50% of PacBio pipelines 
would be considered ONT-preferential and vice versa. We found 
that all known and new isoforms found frequently across both plat-
forms were validated (Fig. 5f,i) and most validated isoforms were 
identified by amplicon sequencing on both ONT and PacBio. We 
acknowledge that this validation set is a relatively small sample 
size, which limits drawing general conclusions on validation rates 
for platform-preferential isoforms.

Validation experiments using long-read transcript models suggest 
high accuracy for novel isoform predictions, even if not consistently 
detected across pipelines and platforms. Validation success seems 

linked to the isoform detection frequency, measured by either the 
number of samples (combinations of library preparation and sequenc-
ing technology) detecting the isoform (Fig. 5j) or the total read counts 
supporting it (Extended Data Fig. 9).

To validate long-read-based isoform discovery without a  
reference annotation, we focused on the manatee dataset. Challenge 
3 had fewer submissions than Challenge 1; therefore, we established 
a goal of not explicitly comparing pipelines but rather assessing the 
ability of the long-read RNA-seq datasets to return accurate transcript 
isoform annotation.

Seven genes related to immune pathways and their respective 
isoforms were manually selected based on visualization on a custom 
UCSC Genome Browser track. We designed 22 primers that could 
potentially amplify 26 transcript predictions. The length of the ampli-
fied region ranged from 78 to 2,633-bp long, with a median of 1,038 bp 
and a 25–75 interquartile range of 379 to 1,379 bps. Validation of targets 
was confirmed by PacBio sequencing of the amplicons (Fig. 5k). For 
the five genes with few isoforms, all isoforms were validated. For the 
two genes for which many isoform models were predicted with more 
variability across participants, approximately half of the targets were 
validated (Fig. 5l and Supplementary Fig. 50).

Overall, we find a greater variability of ‘field collected’ non-model 
organism long-read data compared to the human or mouse datasets. 
Though our sample population was small, we found that isoforms 
predicted by many pipelines tended to be validated.

Final recommendations
Based on the results of LRGASP, the Consortium recommends the fol-
lowing suggestions to improve the analysis of transcriptomes using 
long reads:

 1. For transcript identification, longer and more accurate se-
quences are preferable to having more reads. Therefore, the 
cDNA-PacBio and R2C2-ONT datasets are the best options. If the 
goal is quantification, especially on a well-annotated reference, 
higher throughput sequencing, such as with cDNA-ONT and 
CapTrap-ONT, are the best choice.

 2. When choosing a bioinformatics tool, it is crucial to consider the 
study’s objective:
 a. If the goal is to identify a sample-specific transcriptome in a 

well-annotated organism when only minimal new transcripts are 
expected, Bambu, IsoQuant and FLAIR are the most effective.

 b. If the aim is to detect lowly expressed or rare transcripts, 
use a tool that allows novelty and includes orthogonal data.  
Mandalorion and FLAIR, combined with short reads, are 
among the best performers, with a good balance of sensitiv-
ity and precision. For identifying a conservative set of highly 
supported novel transcripts, LyRic is an effective tool. Experi-
mental validation of rare transcripts is recommended.

 3. If quantification is essential, IsoQuant, FLAIR and Bambu are the 
best options and can perform comparably to short-read tools.

 4. To create a reference for genome annotation, we recommend 
using high-quality data, including replicates, using extensive or-
thogonal data, imposing a transcript-level filter and using tran-
scripts identified from more than one analysis tool.

Discussion
This LRGASP study revealed that increased read quantity does not 
always lead to more accurate transcripts, emphasizing the importance 
of read quality and length. ONT sequencing of cDNA and CapTrap librar-
ies produced many reads, whereas cDNA-PacBio and R2C2-ONT gave 
the most accurate ones. The choice of analysis tool notably influenced 
results, with some favoring known transcripts and others more sensi-
tive to novel ones. Different approaches varied in their handling of RNA 
degradation and library preparation artifacts.
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Performance differed based on ground-truth data, with tools 
excelling in known transcripts but varying in simulated and manual 
annotations. Challenge 2 highlighted key factors affecting transcript 
quantification tool performance, including annotation accuracy and 
read length distributions. De novo annotation remains challenging, 
with inconsistent results in Challenge 3 indicating a need for further 
tool development. Experimental validation demonstrated long-read 
methods’ effectiveness in uncovering transcriptome complexity in 
non-model organisms.

Our benchmark has limitations. LRGASP did not evaluate long-read 
mapping methods and all tools used minimap2 (ref.30) as the aligner, 
leading to mapping errors identified by the GENCODE manual cura-
tion. Participants submitted only one set of predictions per dataset, 
configuring their methods as they saw fit. Furthermore, to facilitate 
participation, submitters were allowed to choose which data modalities 
they contributed to, and many chose a subset, resulting in unbalanced 
data when evaluating methods. We tried to consider this in our analy-
ses, but balanced participation would have been more useful. Several 
prominent long-read analysis tools31–34 did not participate in LRGASP or 
were introduced later. To address this, we have made LRGASP datasets 
and evaluation strategies available on OpenEBench35 for ongoing tool 
benchmarking and development. This platform facilitates the creation 
of new lrRNA-seq analysis tools. Finally, as data continue to evolve, 
conclusions may need revision as sequencing technologies improve.

Overall, LRGASP demonstrates the power of community collabo-
ration in assessing evolving technologies. Its insights pave the way 
for further advancements in long-read RNA-seq analysis, ultimately 
unlocking a deeper understanding of gene expression and regulation.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-024-02298-3.
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Methods
Computational evaluation of transcript isoform detection 
and quantification
Evaluation of transcript isoform detection for Challenge 1. Four sets 
of transcripts were used for the evaluation of transcript calls made on 
human and mouse lrRNA-seq data:

 1. Lexogen SIRV-Set 4 (ref. 36) (SIRV-Set 3 plus 15 new long SIRVs 
with sizes ranging from 4 to 12 kb).

 2. Comprehensive GENCODE annotation: human v.39, mouse 
v.M28. GENCODE human v.38 and v.M27 were available at the 
time of the LRGASP data release and new versions of GENCODE 
were released after the close of LRGASP submissions.

 3. A set of transcripts from a subset of undisclosed genes that 
were manually annotated by GENCODE. These transcripts are 
considered high-quality models derived from LRGASP data.

 4. Simulated data for both Nanopore (NanoSim) and PacBio 
(IsoSeqSim) reads.

The rationale for including these different types of transcript 
data is that each set creates a different evaluation opportunity but 
also has limitations. For example, SIRVs and simulated data provide a 
clear ground truth that allows the calculation of standard performance 
metrics such as sensitivity, precision or FDR. Evaluation of SIRVs can 
identify potential limitations of both library preparation and sequenc-
ing, but the SIRVs themselves represent a dataset of limited complexity 
and the SIRV annotation is known to submitters. Higher complexity 
can be generated when simulating long reads based on actual sample 
data; however, read simulation algorithms only capture some potential 
biases of the sequencing technologies (for example, error profiles) 
and not of the library preparation protocols. In any case, both types 
of data approximate but do not fully recapitulate real-world datasets. 
Evaluation against the GENCODE annotation37 represents this real 
dataset scenario, although in this case, the ground truth is not entirely 
known. This limitation was partially mitigated by the identification of 
a subset of GENCODE transcript models that were manually annotated 
by GENCODE annotators and by follow-up experimental validation 
for a small set of transcripts using semi-quantitative PCR with reverse 
transcription (RT–PCR). In this way, although an exhaustive validation 
of the real data is not possible, estimates of the methods’ performances 
can be inferred. By putting together evaluation results obtained with 
all these different benchmarking datasets, insights can be gained on 
the performance of the library preparation, sequencing and analysis 
approaches both in absolute and relative terms.

The evaluation of the transcript models was guided by the use of 
SQANTI3 categories (Box 1), implemented in the SQANTI3 software. 
It incorporated additional definitions and performance metrics to 
provide a comprehensive framework for transcript model assessment. 
The evaluation considers the accuracy of the transcript models both 
at splice junctions and at 3′ and 5′ transcript ends. It took into account 
external sources of evidence such as CAGE and QuantSeq data, poly(A) 
annotation and support by Illumina reads. The evaluation script was 
provided to participants at the time of data release.

Given the LRGASP definitions, evaluation metrics were specified 
for each type of data type.

SIRVs. To evaluate SIRVs, we extracted from each submission all tran-
script models that were associated with SIRV sequences after SQANTI3 
analysis. This includes FSM and ISM isoforms of SIRVs and NIC, NNC, 
antisense and fusion transcripts mapping to SIRV loci. The metrics for 
SIRV evaluation are shown in Supplementary Table 9.

Simulated data. The simulated data contained both transcript models 
based on the current GENCODE annotation and several simulated 
novel transcripts that will result in valid NIC and NNC annotations. 
Transcript models generated from simulated data were analyzed by 

SQANTI3, providing a GTF file that includes all simulated transcripts 
(GENCODE and novel) and excludes all transcripts for which reads were 
not simulated. The evaluation metrics for simulated data are shown in 
Supplementary Table 10.

Comprehensive GENCODE annotation. Submitted transcript models 
were analyzed with SQANTI3 using the newly released GENCODE anno-
tation (v.39 for human and M28 for mouse) and different metrics were 
obtained for FSM, ISM, NIC, NNC and ‘other’ models (Supplementary 
Table 8).

High-confidence transcripts derived from LRGASP data. Finally, a set of 
manually curated transcript models was used to estimate the sensitivity 
and precision on real data. Metrics that were applied in this transcript 
set are TP, PTP and FN, sensitivity, positive detection rate, redundancy 
and %LRC (Supplementary Table 11).

Analysis of transcript model identification across pipelines. We evalu-
ated the characteristics of the transcripts detected as a function of the 
experimental factors of the LRGASP study, for example, sequencing 
platform or library protocol. To do that, we compared detected tran-
scripts across pipelines at the level of UICs, allowing for variability in 
the 3′ and 5′ definitions, and annotated the pipelines that detected each 
UIC. The location of BED files of the UICs consolidated models can be 
found in the Data Availability section.

Transcript models were visualized in the UCSC Genome Browser38 
using the Track Hub39 facility. The track hub displayed consolidated 
transcript models from the submissions with metadata, color-coding 
and filtering by attributes. This allowed us to efficiently explore the 
significant quality of LRGASP results in the genomic context.

Evaluation of transcript isoform quantification for Challenge 2. We 
evaluated transcript isoform quantification performance with four 
data scenarios (real data with multiple replicates, cell mixing experi-
ment, SIRV-Set 4 data and simulation data). We designed nine metrics 
for performance assessment, both with and without known ground 
truth (Box 1 and Fig. 3a). The participants of Challenge 2 were able to 
run these evaluations by submitting their quantification results at the 
website at https://lrrna-seq-quantification.org/, which generates an 
interactive report in HTML and PDF formats (see Data Availability and 
Code Availability).

Ground truth is available. We evaluated how close the estimations and 
the ground-truth values are by three metrics as follows:

denote ϴ̂ = (θ̂1, θ̂2,⋯ , θ̂I) T  and ϴ = (θ1,θ2,⋯ ,θI) T  as the estimation 
and ground truth of the abundance of transcript isoforms in a sample, 
respectively. Here, we use TPM as the unit of transcript abundance. 
Then, four metrics can be calculated by the following formulas:

SCC: this evaluates the monotonic relationship between the esti-
mation and the ground truth, which is based on the rank for transcript 
isoform abundance. It is calculated by

SCCϴ,ϴ̂ =
cov (rgϴ, rgϴ̂)
Srgϴ • Srgϴ̂

,

where rgϴ and rgϴ̂ are the ranks of Θ and ϴ̂, respectively and cov (rgϴ, rgϴ̂) 
is the covariance of the corresponding ranks and Srgϴ and Srgϴ̂ are the 
sample s.d. of rgϴ and rgϴ̂, respectively.

MRD: this is the median of the relative difference of abundance 
estimates among all transcript isoforms within a sample and is cal-
culated by

MRD = median {
||θi − θ̂i

||
θi

, (i = 1, 2,⋯ , I )} .

http://www.nature.com/naturemethods
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A small MRD value indicates a good performance of abundance 
estimation.

NRMSE: this provides a measure of the extent to which the 
one-to-one relationship deviates from a linear pattern. It can be cal-
culated by

NRMSE =
√

1
I
∑I

i=1(θi − θ̂i)
2

sϴ
,

where sΘ is the sample s.d. of Θ. A good performance of abundance 
estimation should have a small value of NRMSE.

In the case of LRGASP, the above metrics were calculated using the 
cell mixing experiment, simulation data and SIRVs.

Ground truth is unavailable. For multiple replicates under different  
conditions without the ground truth, we evaluated a quantifica-
tion method by the ‘goodness’ of its statistical properties, including  
irreproducibility, consistency and RE that is also calculated for 
single-sample data.

IM: this statistic characterizes the average CV of abundance  
estimates among different replicates (Supplementary Fig. 37), which 
is calculated by

IM =
√√√
√

1
IG

I

∑
i=1

G

∑
g=1

CV 2
ig

Here, CVig is the CV of log (θ̂igr + 1) (r = 1, 2,⋯ ,R), which is calculated by

CVig =
sig
uig

,

where sig and uig are the sample s.d. and mean of abundance estimates, 
which are calculated by

sig =
√√√
√

1
R

R

∑
r=1

(log (θ̂igr + 1) − uig)
2
,

uig =
1
R

R

∑
r=1
log (θ̂igr + 1) .

By plotting CVig versus average abundance uig, we examined how the 
coefficient of variation changes with respect to the abundance and the 
ACVC was calculated as a secondary statistic. With a small value of irre-
producibility and ACVC scores, the method has high reproducibility.

Consistency: a good quantification method consistently charac-
terizes abundance patterns in different replicates. Here, we propose 
a CM C(α) to examine the similarity of abundance profiles between 
mutual pairs of replicates (Supplementary Fig. 38), which is defined as:

C (α) = 1
IG•C2R

I

∑
i=1

G

∑
g=1

∑
1≤r1<r2≤R

P ({log (θ̂igr1 + 1) < α, log (θ̂igr2 + 1) < α}

or {log (θ̂igr1 + 1) ≥ α, log (θ̂igr2 + 1) ≥ α}) ,

where α is a customized threshold defining whether a transcript is 
expressed or not.

We plotted the abundance threshold α versus CM C(α) to evaluate 
how C(α) changes with respect to the abundance threshold. The ACC 
can be used as the second metric to characterize the degree of similar-
ity of transcript expression. With a large value of consistency and ACC 
scores, the method has a higher similarity of abundance estimates 
among multiple replicates.

RE: a good quantification method should have a high resolution of 
abundance values. For a given sample, an RE statistic characterizes the 
resolution of abundance estimation (Supplementary Fig. 39):

RE = −
M

∑
m=1

PmIn (Pm) ,wherePm = nm

∑M
j=1n j

Here, the abundance estimates are binned into M groups, where nm 
represents the number of transcript isoforms with the abundance 
estimate ϴ̂ ∈ [m • α, (m + 1) • α) and α = max (ϴ̂) /M. RE = 0 if all transcript 
isoforms have the same estimated abundance values, while it obtains 
a large value when the estimates are uniformly distributed among 
M groups.

Evaluation with respect to multiple transcript features: differ-
ent transcript features, such as exon-isoform structure and the true 
abundance level could influence quantification performance. Thus, 
we also evaluated the quantification performance for different sets 
of genes/transcripts grouped by transcript features, including a num-
ber of isoforms, number of exons, ground-truth abundance values 
and a customized statistic K-value representing the complexity of 
exon-isoform structures.

K-value: most methods for transcript isoform quantification 
assign sequencing coverage to isoforms; therefore, the exon-isoform 
structure of a gene is a key factor influencing quantification accuracy. 
Here, we used a statistic K-value (Supplementary Fig. 45; H.L., manu-
script in preparation) to measure the complexity of exon-isoform struc-
tures for each gene. Suppose a gene of interest has I transcript isoforms 
and E exons and A = (aie),(i = 1,2,⋯,I;e = 1,2,⋯,E) is the exon-isoform 
binary matrix, where

aie = 1, if the isoform i includes the exon e, 0,otherwise.

K-value is the condition number of the exon-isoform binary matrix A, 
which is calculated by

K value = σmax (A)
σmin (A)

,

where σmax(A) and σmin(A) are the maximum and minimum singular 
values of the matrix A, respectively.

Evaluation of de novo transcript isoform detection without a 
high-quality genome for Challenge 3. Challenge 3 evaluated the 
applicability of lrRNA-seq for de novo delineation of transcriptomes 
in non-model organisms to assess the capacity of technologies and 
analysis pipelines for both defining accurate transcript models and 
for correctly identifying the complexity of expressed transcripts at 
genomic loci when genome information is limited.

The challenge includes three types of datasets. The mouse ES cell 
transcriptome data (Supplementary Table 2) was used to request the 
reconstruction of mouse transcripts without making use of the avail-
able genome or transcriptome resources for this species. Models were 
compared to the true annotations set with the same parameters as in 
Challenge 1. As FASTA rather than GTF files were submitted in Chal-
lenge 3, we used the same mapper, minimap2, for all the submissions 
to transform sequence information into a genome annotation file.

While this dataset allows for a quantitative evaluation of tran-
script predictions in Challenge 3, it might deliver unrealistic results 
if analysis pipelines were somehow biased by information derived 
from previous knowledge of the mouse genome. To avoid this prob-
lem, a second dataset was used corresponding to the Florida mana-
tee’s whole-blood transcriptome (Trichechus manatus latirostris). An  
Illumina draft genome of this organism exists (GCF_000243295.1) and 
the LRGASP consortium has generated a long-read genome assembly 
to support transcript predictions for this species (GCA_030013775.1). 

http://www.nature.com/naturemethods
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Additionally, Illumina RNA-seq data were generated from manatee 
blood samples. As no curated gene models exist for the manatee,  
Challenge 1 metrics cannot be applied. Instead, the evaluation of 
Challenge 3 submissions involved a comparative assessment of the 
reconstructed transcriptomes and experimental validation (see ‘Exper-
imental validation of transcript models’ section). For computational 
assessment, the following parameters were calculated:

 a. Total number of transcripts
 b. Mapping rate of transcripts to the draft genomes (for pipelines 

not using genome data)
 c. Length of the transcript models
 d. Number of mono- and multi-exon transcripts
 e. Percentage of junctions with Illumina coverage
 f. Percentage of transcripts with Illumina coverage at all junctions
 g. Percentage junctions and transcripts with non-canonical 

splicing
 h. Percentage of transcripts with predicted coding potential
 i. Predicted RT-switching incidence
 j. Predicted intra-priming
 k. Number of transcripts/loci
 l. BUSCO28 analysis:

 i. Number of complete BUSCO genes detected by a single tran-
script (complete single-copy)

 ii. Number of complete BUSCO genes detected by multiple 
transcripts (completely duplicated)

 iii. Number of fragmented BUSCO genes detected (fragmented)
 iv. Number of BUSCO genes not detected (missing)

The BUSCO analysis used the eutherian BUSCO (lineage eutheria_
odb10) gene set. We do not expect a BUSCO-complete transcriptome 
recovery as only one tissue or cell type per organism was sequenced. 
We expect that good-performing pipelines obtain longer transcripts, 
well supported by Illumina data, with a high mapping rate to the draft 
genomes, most of them coding and with a higher number of complete 
BUSCO genes.

Finally, as both the mouse and manatee datasets contained 
spiked-in SIRVs, they were used as the third dataset to compute per-
formance for Challenge 3 using the same type of metrics as described 
for Challenge 1.

GENCODE manual annotation
Expert GENCODE human annotators sought to establish the baseline 
for annotating genuine alternative isoforms using the long transcrip-
tomic data generated by the LRGASP consortium at selected loci. An 
exhaustive and fully manual investigation of all aligned reads from the 
sequence data generated by the LRGASP consortium was undertaken 
at selected loci, and all isoforms passing GENCODE annotation criteria 
that were present were captured as annotated transcript models.

GENCODE expert human annotation has very high sensitivity and 
specificity as every read can be individually considered on its merits for 
use in supporting a transcript model that is subsequently included in 
the annotation set. Consequently, the fully human annotation process 
where every read is manually reviewed and every transcript model 
built manually is time-consuming. The speed of the process limits the 
number of loci that could be considered for the LRGASP project, with 
50 human and 50 mouse loci being selected.

The selection of loci was random within constraints based on the 
properties of the locus, identification of aligned reads in all libraries 
sequenced (where possible), the number of aligned reads and an indi-
cation of the presence of valid isoforms at the locus.

Properties required of the locus to be considered for annotation 
included the presence of multiple exons and compactness. Loci with 
very long introns were excluded. While criteria required that (where 
possible) all libraries had at least one aligned read at the locus, a maxi-
mum number of aligned reads also had to be added. This additional 

requirement was necessary for two reasons: first, to allow the manual 
consideration of every read at the locus to determine whether it could 
support an isoform, and second, because the large number of reads 
generated from the LRGASP sequencing experiments exposed bugs 
affecting the consistent display of transcripts when loaded into the 
Otter/Zmap40 tools used for manual annotation, raising the possi-
bility of erroneous exclusion of reads and transcripts that failed to  
display properly.

Preliminary analysis was conducted to identify plausible alterna-
tive splicing in aligned reads using Tmerge5 at most permissive settings 
to create a set of putative transcripts from the LRGASP long transcrip-
tomic data. The introns of this set of putative transcripts were assessed 
using recount3 (ref. 29) data and those putative transcripts where all 
introns were supported by at least two RNA-seq reads from the GTEx41 
dataset captured by recount3 analysis were considered to be alterna-
tively spliced for locus selection. The transcript models generated at 
this stage were only used to select loci for manual annotation and were 
not directly included in the GENCODE annotation.

A long list of human loci fitting the criteria for annotation was 
then compared to an equivalent list derived from a similar analysis in 
mouse and candidate loci were defined. Human and mouse shortlists 
were manually reviewed to confirm that the selection criteria were 
met. Genuine alternative splicing events were maximized, and, where 
possible, orthologous loci were selected for humans and mice.

Expert human annotation was carried out independently for each 
library prep method. Independence was defined as not using reads 
from one library prep to support reads in another. For example, where 
a longer or higher-quality read from one library prep method could 
support the interpretation of a truncated or low-quality read in another 
library, it was not used to support the extension of a transcript model 
supported by the shorter or lower-quality read.

Effectively, this necessitated 12 independent sets of annotation,  
6 in humans and 6 in mice, to support complete flexibility in down-
stream analysis.

While annotation was performed independently for each library, 
orthogonal data external to LRGASP were used to support the inter-
pretation of the long transcriptomic data. Specifically, recount3 intron 
data were used to support the interpretation of splice sites and Fantom 
CAGE42 data, the definition of TSS and thereby the 5′ completeness of 
a transcript. External long transcriptomic datasets were not used to 
support this annotation in any way.

All transcript models passing standard Ensembl-GENCODE manual 
annotation criteria for splicing and supported by at least one long 
transcriptomic read were annotated as transcript models. GENCODE 
annotation criteria require that introns are canonical (GT-AG, GC-AG 
or AT-AC with evidence of U12 splicing) or those non-canonical introns 
are supported by evidence of evolutionary conservation or constraint 
of the splice site. Read data were required to align such that a canoni-
cal intron could be unambiguously resolved, which generally requires 
that there is no equally plausible alignment of the read that could give 
a ‘non-canonical intron’, for example, where sequence aligns equally 
well at the putative donor and acceptor splice site but can be forced 
into a canonical splice site by the initial alignment method or where 
a read has an indel near a splice site that leads to an error in its initial 
alignment. Where necessary, annotators could realign the read to the 
genomic sequence using various methods, including the Exonerate 
pairwise alignment software and the Dotter43 dot-plot tool. Introns 
identified by spanning RNA-seq reads by the recount3 project were 
used as orthogonal data to support the interpretation of splice sites.

Transcript models were extended to the full length of the homol-
ogy between the read (or reads) supporting a transcript model and the 
genome sequence. The 5′ transcript ends were not modified (clipped 
or extended) based on annotation already present at the locus before 
LRGASP (including the MANE Select44 transcript). While Fantom 
CAGE data were used to identify TSSs at loci in both humans and mice, 

http://www.nature.com/naturemethods


Nature Methods

Registered Report https://doi.org/10.1038/s41592-024-02298-3

CAGE data were not used to modify the TSSs. Similarly, at the 3′ end,  
transcripts were extended to the full length of the homology between 
the read and the genome. Where a poly(A) site was identified, the 
transcript model was not extended further unless another, longer read 
with the same intron chain was identified. In addition to the annotation 
of alternative isoforms, expert human annotators also defined sets 
of polyadenylation sites and signals at every locus. Again, these were 
annotated independently per library prep based on the presence of a 
poly(A) tail on one or more reads aligned to the locus and a poly(A) site 
hexamer (AATAAA or ATTAAA) within 50 bases upstream of the poly(A) 
site. Multiple poly(A) sites and their corresponding poly(A) signals 
could be annotated at any locus; however, only one poly(A) site was 
annotated per poly(A) signal.

In total, 635 transcript models and 641 poly(A) sites were anno-
tated in humans. The mean number of isoforms annotated per locus 
per library ranged from 2.58 (cDNA-PacBio) to 1.28 (CapTrap-PacBio) 
in humans and from 2.5 (cDNA-PacBio) to 1.38 (dRNA-ONT) in mice. 
The mean number poly(A) sites annotated per locus per library ranged 
from 2.42 (cDNA-PacBio) to 1.12 (dRNA-ONT) in humans and 2.26 
(CapTrap-ONT) to 1.2 (dRNA-ONT) in mice. The loci with the most 
annotated alternative splicing were ANGPT1 (cDNA-PacBio library) 
RERG ZADH2 (CapTrap-ONT) with six isoforms. ZADH2 also had the 
most poly(A) sites, with 12 reported in three libraries (cDNA-PacBio, 
cDNA-ONT and CapTrap-ONT). For mice, nine isoforms were annotated 
at Rcan1 (cDNA-PacBio), whereas Gan displayed the most diversity 
in polyadenylation with ten poly(A) sites annotated (cDNA-PacBio).

Expert human annotators reviewed transcript models that were 
included in the annotation set but failed to validate by RT–PCR and 
also, a set of reads was rejected as supporting valid transcript models 
by the first pass annotation. In both cases, the initial annotation of the 
transcript model was supported by review (Supplementary Data 14).

Experimental validation of transcript models
Gene selection process in WTC11 cells for Challenge 1. To 
semi-systematically select isoforms for comparison in the validation 
experiments, we binned isoforms based on the frequency by which 
they were detected in certain pipeline parameters. Isoform test groups 
were defined based on their presence across various pipelines and 
library preparations. In general, during the isoform selection stage, 
we prioritized isoforms with expression higher than 10 TPM, wher-
ever possible, and isoforms that contained distinguishable sequence 
regions. During the primer design process, we considered as ‘present’ 
all isoforms in the GENCODE annotation and all isoform models sub-
mitted by all participants.

We chose groups of novel isoforms (NIC or NNC) that were prefer-
entially detected by pipelines using ONT versus PacBio platform, using 
the cDNA preparations, and a control group of isoforms frequently 
detected by all pipelines across both platforms. Additionally, we chose 
known (FSM) isoforms for all three of these groups.

Targeted PCR validation of isoforms in WTC11. cDNA was synthesized 
from replicate 1 and replicate 3 of the WTC11 total RNA and used as a 
template for two sets of PCR reactions, respectively. After targeted PCR, 
amplicons were analyzed via agarose electrophoresis and sizes were 
estimated. We found that at least 60% of all targets produced a single 
band corresponding to the expected amplicon size, indicating a mod-
erately high success rate. All amplicons were pooled and sequenced 
with ONT minION (R10.4.1) and PacBio Sequel II. Amplicon reads were 
aligned to the genome as well as expected target sequences (a subset 
of the test transcript) and all targets with at least one gapless (<2 bp), 
high identity long-read alignment was considered validated.

Analysis of the amplicon reads to determine the support of targets. 
Using minimap2 (v.2.24-r1122), we aligned the RT–PCR sequences to 
the human genome assembly, with the targeted transcripts serving as 

junction specifications. We aligned the expected amplicon sequences 
extracted from the genome to control for difficult-to-align cases. We 
aligned the ONT sequences with the ‘splice’ minimap2 preset, while 
using the ‘splice:hq’ preset for the PacBio and control sequences.

We aligned the WTC11 RT–PCR sequences to the GRC3h38 assem-
bly, which includes SIRVs and an EBV sequence provided to LRGASP 
participants (syn25683364). In addition to genomic alignments, we 
aligned the RT–PCR sequences to a reference composed of the pre-
dicted amplicon sequences. Furthermore, we aligned the amplicon 
alignments to the amplicon reference. This approach facilitated the 
identification of difficult-to-align amplicons to the genome and cases 
where alignments to different isoforms might not be detected. For 
ONT sequences, we used the minimap2 ‘map-ont’ preset for ampli-
con reference alignments and the ‘map-pb’ preset for the PacBio and 
control alignments.

We evaluated each data class (ONT, PacBio or control) by examin-
ing the counts of supporting reads for each amplicon on the genomic 
and amplicon reference alignments. To validate intron chains in the 
genomic alignments, we ensured the read alignment had the same 
intron chain as the targeted amplicon. We used minimap2 to identify 
introns in reads, rejecting those with adjacent indels.

For the amplicon reference alignments, we evaluated two metrics: 
indel similarity and the maximum number of indels. The similarity 
metric is length-independent, while the absolute difference can dis-
tinguish subtle differences such as NAGNAG split sites. We filtered the 
intron chain results for only those reads with no more than two bases 
difference in indels.

We gathered these statistics in a table (Supplementary Data 15) 
and manually classified them as ‘supported’, ‘likely’ or ‘unsupported’. 
In cases where there were low read counts or conflicted data (generally 
less than 50), we examined them using IGV45.

One confounding issue when using RT–PCR for validation is that 
the primers crossing introns may result in the ends of some amplicons 
not aligning across the introns. In such cases, the ends would some-
times align into the intron with a similar sequence while the remain-
der of the amplicon was soft-clipped. The control alignments of the 
amplicons are a good indication of this issue, and targets exhibiting 
the unaligned end regions could be classified as supported based on 
other evidence.

An interesting case was the ALG6 WTC11 target. Here minimap2 
forced a rare but annotated GT-AT U12 intron into a GT-AG intron and 
genomic deletion, leading to none of the pipelines correctly identifying 
the isoforms of this gene containing this intron (Supplementary Fig. 51).

To estimate the counts across WTC11 datasets for each experimen-
tally tested transcript, long reads derived from different combinations 
of library preparation and sequencing methods were first mapped to 
hg38 using minimap2 (PacBio, minimap2 -ax splice:hq -uf–MD -t 40; 
ONT, minimap2 -ax splice–MD -t 30; and ONT direct RNA-seq, minimap2 
-ax splice -uf -k14–MD -t 30). Primary read alignments were converted 
from BAM to GTF format to extract the UICs for each read. Then, read 
counts matching the UIC of a given transcript were summed across all 
WTC11 datasets. The number of WTC11 datasets where at least one read 
supported the corresponding UIC was computed, with R2C2 samples 
with and without size selection being treated independently.

Targeted PCR validation of isoforms in manatee. As the manatee 
transcriptome is not annotated, we employed ab initio gene finding 
and transcript annotation. Genes were predicted from the manatee 
genome assembled as part of this LRGASP project and the program 
GeneMark46. BUSCO28 analysis was used to evaluate the completeness 
of the transcript assembly and for annotation of the proteins repre-
sented from translations of the transcript sequences, thus quantifying 
the coverage and completeness of the open reading frames.

We targeted a small set of relevant genes for the immune system. 
To validate our approach, we selected two genes for which a clear single 
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isoform was consistently identified across pipelines: Secreted phos-
phoprotein 1 (SPP1) and Granzyme K (GZMK). Secreted phosphoprotein 
1 is involved in immune regulation and tumor progression47,48 and GZMK 
modulates the proinflammatory immune cytokine response49.

Next, we selected six genes that were present in the BUSCO data-
base, showed variability in the number of isoforms predicted by each 
pipeline and had a role in the immune response: interleukin 2 (IL2), 
interleukin 7 (IL7), interleukin 1 β (IL1B), Pentraxin 3 (PTX3), transporter 
1, ATP binding cassette subfamily B member (TAP1) and TNF α-induced 
protein 3 (TNFAIP3). IL2 is a cytokine that regulates survival, prolifera-
tion and differentiation of T cells49,50. IL7 is important for B and T cell 
development. IL1B is an inflammatory cytokine, an amplifier of an 
immune response, involved in cell proliferation, differentiation and 
apoptosis51. PTX3 regulates complement activation of the immune sys-
tem in the innate immune system and is in the same family of proteins as 
C-reactive protein52. TNFAIP3 is a negative regulator of inflammation and 
immunity and a target for drug development47. IL2, PTX3 and TNFAIP3 
had one or three isoforms predicted by pipelines using only ONT data. 
IL7 had three isoforms predicted by ONT and three by PacBio pipelines. 
Meanwhile, TAP1 had four isoforms predicted only by ONT pipelines. 
IL1B had 11 isoforms predicted by ONT data and one by PacBio.

For manual target selection, a similar protocol employed for 
Challenge 1 targets, using Primers-Juju, was used to select regions of 
isoforms with UJCs that could be confirmed by the generation of a PCR 
amplicon product. Whenever possible, the full span of the isoform, 
up to ~2 kb, was selected. In some regions, multiple primer sets were 
designed.

Aliquots of the original nine individual manatee RNA samples used 
in Challenge 3 were stored at −80 °C until the validation stage (Sup-
plementary Data 16). RNA quality was re-verified using BioAnalyzer 
PicoChip for mRNA (Agilent). Approximately 400 ng of RNA from each 
manatee sample was pooled to prepare cDNA. cDNA was synthesized 
using Maxima H minus First Strand cDNA Synthesis kit (Thermo Scien-
tific). Following the manufacturer’s instructions, we used a combina-
tion of oligonucleotide dT and random hexamer primers for the cDNA 
synthesis. Controls lacking RT enzyme and controls lacking template 
were prepared in tandem with test samples.

Primer selection and RT–PCR. In the case of the manatee, two or four 
primer sets were designed for each gene of interest. The process used 
for primer design was similar to that used for Challenge 1, using a 
semi-automated approach (see Supplementary Methods and Sup-
plementary Data 17 for the list of primers).

Manatee PCR was performed using KAPA HiFi HotStart Ready Mix 
(Roche) due to its high sensitivity and low error rate. Approximately 
0.01 ng of cDNA was used as a template for individual PCR reactions. 
PCR protocol was also a touchdown approach with an initial annealing 
temperature of 70 °C for 15 s, with a reduction of this temperature 1 °C 
per cycle during 12 cycles. The second amplification phase was carried 
out for 21 cycles and 2 min of extension. When a PCR fragment larger 
than 1,500 pb was expected, another PCR was run for that primer set, 
including 25 cycles and 5 min of extension. PCR products were quanti-
fied and sized using an Agilent Bioanalyzer7000 DNA chip (Agilent).

The obtained PCR products were cleaned using a QIAquick PCR 
purification kit (QIAGEN). All PCR products were pooled as an equimo-
lar pool for PacBio sequencing. We prepared the equimolar solution 
based on the BioAnalyzer molarity quantification for the band corre-
sponding to the intended PCR product. Additionally, 25 µl of each PCR 
product that did not show a quantifiable band on the BioAnalyzer was 
added to the final sample equimolar pool for sequencing.

Analysis of the long-read amplicon reads was conducted in the 
same manner as for Challenge 1. The manatee RT–PCR sequences 
were aligned to the pre-submission manatee genome assembly used in 
LRGASP (GenBank accession no. JARVKP000000000.1). The resulting 
statistics were gathered (Supplementary Data 18) for manual analysis.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
An overview and documentation about the LRGASP Consortium can be 
found at https://www.gencodegenes.org/pages/LRGASP/. Biological 
sequencing data are available from the ENCODE Portal (https://www.
encodeproject.org/) and are described in the RNA-seq data matrix (Sup-
plementary Data 1). Experimental data used in GENCODE manual evalu-
ation: ssCAGE WTC11 (Gene Expression Omnibus (GEO): GSE185917); 
WTC11 QuantSeq (ENCODE: ENCSR322MWL, GEO: GSE219685); H1 
QuantSeq (ENCODE: ENCSR813AOB, GEO: GSE219788); and H1-DE 
QuantSeq (ENCODE: ENCSR198UNH, GEO: GSE219571). Reads gener-
ated for experimental validation are available in the NCBI Sequence 
Read Archive: SRR24680099, manatee whole-blood RT–PCR mixed 
with human WTC11; GCA_030013775.1, manatee Nanopore genome 
assembly, BioProject PRJNA939417 (a pre-submission version of the 
assembly, along with SIRVs, was used in LRGASP at https://cgl.gi.ucsc. 
edu/data/LRGASP/data/references/lrgasp_manatee_sirv1.fasta.gz); 
SRR24680098, human WTC11 mixed with manatee whole-blood 
RT–PCR; and SRR23881262, LRGASP WTC11 experimental validation 
RT–PCR/ONT. Other data provided to participants, participant sub-
missions, evaluation results and data for generating the paper figures 
are available from the LRGASP project at https://cgl.gi.ucsc.edu/data/ 
LRGASP/. A UCSC Browser hub with the consolidated models and 
other data is also available here. LRGASP reference genomes and 
annotations: https://cgl.gi.ucsc.edu/data/LRGASP/data/references/. 
LRGASP simulation data: https://cgl.gi.ucsc.edu/data/LRGASP/data/ 
simulation/. Participant submissions: https://cgl.gi.ucsc.edu/data/ 
LRGASP/submissions/. Evaluation results for all challenges: https://cgl. 
gi.ucsc.edu/data/LRGASP/results/. Spearman correlations of TPMs 
for each Challenge 2 pipeline: https://cgl.gi.ucsc.edu/data/LRGASP/ 
paper/Spearman_correlation_of_TPM_values.zip. Non-redundant 
genome annotations derived from the submitted annotations: https:// 
cgl.gi.ucsc.edu/data/LRGASP/annotations/. UCSC Browser Hub with 
LRGASP evaluation data for human, mouse and manatee: LRGASP 
Hub, Hub URL. LRGASP-consolidated models description and BED 
files: https://cgl.gi.ucsc.edu/data/LRGASP/consolidated-models/ 
LRGASP-consolidated-models.html. Simulation ground truth, 
including lists of incorrectly duplicated artificial transcripts: human  
simulation ground truth and mouse simulation ground truth. Data for 
generating Challenge 1 figures for the paper: https://cgl.gi.ucsc.edu/ 
data/LRGASP/paper/Challenge1_Figures_Data.zip. Data for generating 
Challenge 2 figures for the paper: https://cgl.gi.ucsc.edu/data/LRGASP/ 
paper/Challenge2_Figures_Data.zip. Data for generating Challenge 
3 figures for the paper: https://cgl.gi.ucsc.edu/data/LRGASP/paper/ 
Challenge3_Figures_Data.zip.

Code availability
LRGASP-specific code is available at the GitHub LRGASP project 
(https://github.com/LRGASP/). LRGASP submission commands, which 
include documentation on submission metadata and data files: https://
github.com/LRGASP/lrgasp-submissions/. Read simulation pipeline: 
https://github.com/LRGASP/lrgasp-simulation/. Challenge 1 evaluation 
code: https://github.com/LRGASP/lrgasp-challenge-1-evaluation/.  
Challenge 2 evaluation code: https://github.com/LRGASP/lrgasp- 
challenge-2-evaluation/. Challenge 3 evaluation code: https://github. 
com/LRGASP/lrgasp-challenge-3-evaluation/. Code to gener-
ate Challenge 1 figures for the paper: https://github.com/LRGASP/ 
Challenge1_Figures_Code/. Code to generate Challenge 2 figures for 
the paper: https://github.com/LRGASP/Challenge2_Figures_Code/.  
Code to generate Challenge 3 figures for the paper: https://github.com/ 
LRGASP/Challenge3_Figures_Code/. Primers-Juju source code is avail-
able at https://github.com/diekhans/PrimerS-JuJu/ and was developed 
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by The University of California, Santa Cruz and El Centre de Regulació 
Genòmica. Code used for analysis of long-read RNA-seq data used by 
submitters is described in the ‘Computational pipeline description 
from submitters’ section in the Supplementary Information.
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Extended Data Fig. 1 | SQANTI3 classifications of LRGASP submissions on the 
WTC11 dataset. a) Comparison of the number of known genes to transcripts in 
those genes for the WTC11 dataset. b) Percentage of FSM (Full Splice Match) vs 
ISM (Incomplete Splice Match). c) Percentage of NIC (Novel In Catalog) vs NNC 

(Novel Not in Catalog). d) Percentage of known and novel transcripts with full 
support at junctions and end positions. Ba: Bambu, FM: FLAMES, FL: FLAIR, IQ: 
IsoQuant, IT: IsoTools, IB: Iso_IB, Ly: LyRic, Ma: Mandalorion, TL: TALON-LAPA, 
Sp: Spectra, ST: StringTie2.
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Extended Data Fig. 2 | Percentage of transcript models with different ranges of sequence coverage by long reads. a) WTC11. b) H1-mix. c) Mouse ES. Ba: Bambu, 
FM: FLAMES, FL: FLAIR, IQ: IsoQuant, IT: IsoTools, IB: Iso_IB, Ly: LyRic, Ma: Mandalorion, TL: TALON-LAPA, Sp: Spectra, ST: StringTie2.
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Extended Data Fig. 3 | Positional coverage of long unspliced SIRV transcript sequences by long reads for each sample type. The coverage of bases of long 
unspliced SIRV transcript by long reads for each sample type, grouped by sequence length range.
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Extended Data Fig. 4 | Properties of GENCODE manually annotated loci for WTC11 sample. a) Distribution of gene expression. b) Distribution of SQANTI 
categories. c) Intersection of Unique Intron Chains (UIC) among experimental protocols.

http://www.nature.com/naturemethods


Nature Methods

Registered Report https://doi.org/10.1038/s41592-024-02298-3

Extended Data Fig. 5 | Properties of GENCODE manually annotated loci for mouse ES sample. a) Distribution of gene expression. b) Distribution of SQANTI 
categories. c) Intersection of Unique Intron Chains (UIC) among experimental protocols.
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Extended Data Fig. 6 | Overall evaluation results of eight quantification 
tools. Evaluation results from seven protocols-platforms on four data scenarios: 
real data with multiple replicates, cell mixing experiment, SIRV-set 4 data, 

and simulation data. To display the evaluation results more effectively, we 
normalized all metrics to 0–1 range: 0 corresponds to the worst performance, 
and 1 corresponds to the best performance.
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Extended Data Fig. 7 | Top three performance on quantification tools. 
Quantification results under six different protocols-platforms for each metric. 
Here, quantification tools showcase scores under six different protocols-
platforms across various evaluation metrics, with the top three performers 

highlighted for each metric. Blank spaces denote instances where the tool or 
protocols-platforms did not have participants submitting the corresponding 
quantitative results.
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Extended Data Fig. 8 | SQANTI category classification of transcript models. Results on transcript models detected by the same tools in Challenge 1 predictions 
using the reference annotation, and Challenge 3 predictions did not. Ba = Bambu, IQ = StringTie2/IsoQuant.

http://www.nature.com/naturemethods


Nature Methods

Registered Report https://doi.org/10.1038/s41592-024-02298-3

Extended Data Fig. 9 | Fraction of experimentally validated WTC11 transcripts. Experimental validation of WTC11 transcripts as a function of the total numbers of 
long reads that were observed across the 21 library preparations (for example, PacBio cDNA, ONT cDNA, PacBio CapTrap).
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