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The Long-read RNA-Seq Genome Annotation Assessment Project
Consortium was formed to evaluate the effectiveness of long-read
approaches for transcriptome analysis. Using different protocols and

sequencing platforms, the consortium generated over 427 million

long-read sequences from complementary DNA and direct RNA datasets,
encompassing human, mouse and manatee species. Developers utilized
these datato address challenges in transcriptisoform detection,
quantification and de novo transcript detection. The study revealed that

libraries with longer, more accurate sequences produce more accurate
transcripts than those with increased read depth, whereas greater read
depthimproved quantification accuracy. In well-annotated genomes,
tools based onreference sequences demonstrated the best performance.
Incorporating additional orthogonal data and replicate samples is advised
when aiming to detect rare and novel transcripts or using reference-free
approaches. This collaborative study offers abenchmark for current
practices and provides direction for future method developmentin
transcriptome analysis.

The rise of long-read RNA sequencing (IrRNA-seq) technologies
demands thorough evaluation. The Long-read RNA-Seq Genome Anno-
tation Assessment Project (LRGASP), an open community effort mod-
eled after successful benchmarking projects'™, tackled this by testing
tools and platforms across three key areas (Fig. 1a):

« Challenge 1: reconstructing full-length transcripts for
well-annotated genomes.

 Challenge 2: quantifying transcript abundance.

 Challenge 3: de novo transcript reconstruction for genomes
lacking high-quality references.

Long-read sequencing showed its potential for capturing
full-length and novel transcripts, even in well-known genomes; how-
ever, moderate agreement among bioinformatics tools highlighted
variations in analytical goals. Quantifying transcripts effectively

remains challenging, with long-read tools lagging behind short-read
tools due to throughput and error limitations. The project also
validated many lowly expressed, single-sample transcripts, suggest-
ing further exploration of long-read data for reference transcriptome
creation.

Results

LRGASP data and study design

The LRGASP Consortium Organizers produced long-read and short-read
RNA-seq datafromaliquots of the same RNA samples using a variety of
library protocols and sequencing platforms (Fig. 1a, Supplementary
Table1and Supplementary Datal). The Challenge1and 2 samples con-
sisted of human and mouse ENCODE biosamples, including the human
WTCllinduced pluripotent stem (iPS) cell line and amouse embryonic
stem (ES) cell line for Challenge 1 and a mix (H1-mix) of HL human ES
(H1-hES) cells and definitive endoderm derived from H1 (H1-DE) for
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Fig.1| Overview of the LRGASP. a, Data produced for LRGASP. b, Distribution
ofread lengths, identify Q score and sequencing depth (per biological replicate)
for the WTCl11sample. ¢, The collaborative design of the LRGASP organizers and
participants.d, Number ofisoforms reported by each tool on different data types
for the human WTC11sample for Challenge 1. Number of submissions per tool, in
order,n=6,6,4,1,6,1,6,3,1,1and12. e, Median TPM value reported by each tool
ondifferent data types for the human WTC11sample for Challenge 2. Number of
submissions pertool,inorder,n=11,3,4, 6,1, 6 and 1.f, Number of isoforms reported
by eachtool on different data types for the mouse ES data for Challenge 3. Number
of submissions per tool, inorder,n=6, 5,2 and 4. g, Pairwise relative overlap of
uniquejunction chains (UJCs) reported by each submission. The UJCs reported by a
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submission are used as areference set for each row. The fraction of overlap of UJCs
from the column submission is shown as aheatmap. For example, asubmission

that has asmall subset of many other UJCs from other submissions will have a high
fraction shownin the rows but alow fraction by column for that submission. Data
are only shown for WTC11 submissions. h, Spearman correlation of TPM values
between submissions to Challenge 2.1, Pairwise relative overlap of UJCs reported by
each submission. The UJCs reported by asubmission are used as areference set for
eachrow. The fraction of overlap of UJCs from the column submissionis shownas a
heatmap. Ba, Bambu; Bl, RNA-Bloom; FM, FLAMES; FR, FLAIR; IB, Iso_IB; 1Q, IsoQuant;
IT, IsoTools; Ly, LyRic; Ma, Mandalorion; rS, rnaSPAdes; Sp, Spectra; ST, StringTie2;
TL, TALON-LAPA. The figure was partially created with BioRender.com.
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BOX1

Metrics used for evaluation of Challenges 1 and 2

Challenge Metric Description

1 FSM Transcripts matching a reference transcript at all splice junctions.

1 ISM Transcripts matching consecutive, but not all, splice junctions of the reference transcripts.

1 NIC Transcripts containing new combinations of (1) already annotated splice junctions, (2) novel splice junctions
formed from already annotated donors and acceptors or (3) unannotated intron retention.

1 NNC Transcripts using novel donors and/or acceptors.

1 Reference match FSM transcript with 5’ and 3' ends within 50 nt of the TSS/TTS annotation.

1 3' poly(A) supported Transcript with poly(A) signal sequence support or short-read 3' end sequencing (for example QuantSeq)
support at the 3' end.

1 5' CAGE supported Transcript with CAGE support at the 5’ end.

1 3' reference supported Transcript with 3' end within 50 nt from a reference transcript TTS.

1 5' reference supported Transcript with 5' end within 50 nt from a reference transcript TSS.

1 SRTM FSM/ISM transcript with 5" end within 50 nt of the TSS or has CAGE support AND 3' end within 50nt of the TTS
or has poly(A) signal sequence support or short-read 3' end sequencing support.

1 SNTM NIC/NNC transcript with 5' end within 50 nt of the TSS or CAGE support AND 3' end within 50nt of the TTS or
has poly(A) signal sequence support or short-read 3' end sequencing support AND Illumina read support at
novel junctions.

1 %LRC Fraction of the transcript model sequence length mapped by one or more long reads.

1 Read multiplicity Number of assigned transcripts per read.

1 Redundancy No. LR transcript models/reference model.

1 Longest junction chain No. junctions in ISM/no. junctions reference

ISM no. reference junctions/no. junctions in NIC/NNC.
NIC/NNC

1 Intron retention (IR) level Number of IR within the NIC category.

1 llumina splice junction support  Percentage of splice junction in transcript model with Illumina support.

1 Full Illumina splice junction Percentage of transcripts in category with all splice junction supported.

support
1 Percentage of novel junctions No. of new junctions/total no. junctions.
1 Percentage of non-canonical No. of non-canonical junctions/total no. junctions.
junctions
1 Percentage of non-canonical Percentage of transcripts with at least one non-canonical junction.

transcripts

1 Intra-priming Evidence of intra-priming (described elsewhere®).
1 Reverse transcriptase (RT) Evidence of RT switching (described elsewhere®).
switching
2 IMand ACVC IM and ACVC characterize the CV of abundance estimates among multiple replicates.
2 CMand ACC CM and ACC characterize the similarity of abundance profiles between pairs of replicates.
2 RE RE characterizes the resolution of abundance estimation.
2 SCC SCC evaluates the monotonic relationship between the estimation and the ground truth.
2 MRD MRD is the median of the relative difference of abundance estimates among all transcripts.
2 NRMSE NRMSE measures the normalized root mean square error between the estimation and the ground truth,
which characterizes the variability of the quantification accuracy.
2 PET PET characterizes the percentage of truly expressed transcripts in SIRV-Set 4 data.

Challenge 2. All samples were grown as biological triplicates with the
RNA extracted at one site, spiked with 5’-capped spike-in RNA variants®
(Lexogen SIRV-Set 4) and distributed to all production groups. Asingle
pooled sample of manatee whole-blood transcriptome was generated
for Challenge 3. We performed different cDNA preparation methods
foreachsample, including an early-access Oxford Nanopore Technolo-
gies (ONT) cDNA kit (PCS110), ENCODE Pacific Biosciences (PacBio)

cDNA and R2C2 (ref. 6) for increased sequence accuracy with the ONT
platform and CapTrap’to enrich for 5’-capped RNAs’ (Supplementary
Methods). We also performed direct RNA sequencing (ARNA) with ONT.

The quality of the LRGASP datasets was extensively assessed
(Supplementary Tables 2-6). cDNA-PacBio and R2C2-ONT datasets
contained the longest read-length distributions, whereas sequence
quality was higher for CapTrap-PacBio, cDNA-PacBio and R2C2-ONT
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thanother experimental approaches. We obtained approximately ten
times more reads from CapTrap-ONT and cDNA-ONT than with other
methods (Fig. 1b).

LRGASP invited tool developersto submit predictions for all three
challenges employing the consortium datasets for which ground-truth
data were or were not available. Moreover, the consortium provided
evaluation metrics® and scripts to participants. (Fig. 1cand Box 1). To
avoid conflict of interest, the evaluations and validations were per-
formed by a subgroup of the LRGASP organizers who did not submit
predictions. The entire LRGASP study design and evaluation bench-
marks were published as a Registered Report’. This open design aimed
for afair and transparent benchmarking effort.

A total of 14 tools and laboratories submitted predictions (Sup-
plementary Table 7). While submitters could choose the type of
experimental procedure (a combination of library preparation and
sequencing platform) that they wished to participate in, predictions
were required for all biological samples in the chosen experimental
procedure to assess pipeline consistency. We received 141, 143 and 25
submissions for Challenges 1,2 and 3, respectively.

We observed a large variability in the number and quantification
of transcript models predicted by each submission, with differences
of up to tenfold in each challenge (Fig. 1d-f). Moreover, there was lit-
tleoverlapintranscriptsidentified by any two pipelines in Challenges
1and 3 and low pairwise correlations were detected for Challenge 2
quantification results (Fig. 1g-i and Supplementary Data 2). These
results highlight the importance of the comprehensive benchmarking
presented here.

Evaluation of transcript detection with a high-quality genome
InChallenge 1, we assessed transcript model predictions using various
datasets to gauge different aspects of performance. Experimental
methods andtools were evaluated for their ability to detect transcripts
and genes using SQANTI3 (ref. 8) categories and orthogonal datasets
detailed in Supplementary Table 8, Fig. 2a and Extended Data Fig. 1.
Results were consistent across WTC11, HI-mix and mouse ES samples
(Fig.2a,Supplementary Figs.1and 2and Supplementary Data3-5). We
observed considerable variationin the detection of known genes (399-
23,647) and transcripts (524-329,131) (Extended Data Fig. 1a), by the
different methods, with anaverage of 3-4 transcripts per gene reported
by most pipelines, except for Spectra'® and Iso_IB" that reported a
huge number of transcripts (170,000 and 330,000K, respectively);
however, the relationship between read metrics and detected tran-
script numbers was unclear due to pipeline variations (Supplementary
Figs. 3-7). The analysis tool mostly dictated the number of detected
features (Extended Data Fig. 1b-d).

Pipelines also greatly varied in detecting GENCODE-annotated
transcripts (full splice match; FSM), transcripts missing 3’ or 5’ end
exons (incomplete splice match; ISM), containing novel junctions of
GENCODE-annotated donor and acceptor sites (novel in catalog; NIC)
or containing novel donor or acceptor sites with respect to GENCODE
(novel notin catalog; NNC). Bambu'?, FLAIR”, FLAMES" and IsoQuant®®
consistently detected a high percentage of FSM and alow proportion of
ISM transcripts. In contrast, TALON'®Y, IsoTools' and LyRic detected a
relatively highnumber of ISMs (Extended Data Fig. 1b). The LyRic sub-
missiongroup noted that they did not use existing annotations toguide
analysis, which can explain their results. As for novel transcripts, Bambu

reported thelowest values for NNC and NIC, followed by IsoQuant and
TALON. FLAIR and Mandalorion® pipelines typically returned around
20%NIC and low NNC percentages. LyRic and FLAMES were among the
pipelines with the highest percentages of novel transcript detections.
Iso_IB and Spectragenerally returned many isoforms and only asmall
fraction were FSMs (Extended Data Fig. 1c). Results stratified by library
preparation and sequencing platform followed similar patterns (Sup-
plementary Figs. 8-15).

We compared support for transcript models against reference
annotations and short-read sequencing data, including cDNA sequenc-
ing, CAGE and QuantSeq. Our analysis revealed that many pipelines
achieved a high percentage of known transcripts with full support at
transcription start sites (TSSs), transcription termination sites (TTSs)
and junctions (referred to as supported reference transcript models
(SRTMs); Methods) but showed lower full support for novel transcript
models (SNTMs) (Fig. 2a, Extended Data Fig. 1d and Supplementary
Figs.1and 2). Generally, tools analyzing cDNA-PacBio and cDNA-ONT
data demonstrated high values of full support for both novel and
known transcripts; however, many TALON pipelines exhibited only
moderate full support for known transcripts, possibly due to a high
number of ISMs. Nonetheless, TALON consistently provided full sup-
port for novel transcripts in most cases. In contrast, LyRic, IsoQuant,
FLAMES and Bambu, which exhibited high full support values for novel
transcripts using cDNA-PacBio data, yielded novel transcript models
with lower support when processing ONT libraries. Additionally, we
observed that, in general, pipelines were more successful in report-
ing experimentally supported 3’ ends than 5’ ends. Transcript models
generally aligned with reference TSSs and TTSs, although variations
among pipelines were observed. Bambu and IsoQuant reported a
high percentage of transcripts matching reference TSSs and TTSs but
exhibited comparatively lower support from CAGE and QuantSeq data.
Conversely, certain submissions from LyRic and FLAMES produced
transcript models with experimentally validated transcript ends, with
Mandalorion achieving the most consistent high CAGE supportrates.
This result suggested that IrRNA-seq pipelines are highly guided by
reference annotations to complete transcript sequences. We tested
this by measuring long-read coverage (LRC) of the transcript predic-
tions from our read alignments. FLAMES, Iso_IB, IsoTools, LyRic and
Mandalorion showed nearly complete LRC for their transcript models
(>98% coverage for all transcripts). In contrast, FLAIR, Spectra, TALON,
IsoQuant, Bambu and StringTie2 had lower coverage rates (90, 90, 85,
75, 60 and 45%, respectively) (Extended Data Fig. 2), suggesting that
they may use different alignment strategies or additional information
(for example, reference annotation or shortreads) to finalize transcript
models. Finally, we looked at the percentage of junctions with [llumina
reads support and canonical splice sites. We found these values were
generally very high for all pipelines except Spectra, Iso_IBand FLAMES
using cDNA-ONT and CapTrap-ONT data, with LyRic on PacBio show-
ing the highest percentage of splice junctions supported by lllumina
reads (Fig. 2a). Gene biotype detection was uniform across methods
(Supplementary Figs.16 and 17).

We assessed the consistency of detecting known and novel unique
intron chains (UICs) by various pipelines across multiple sequencing
setups. When considering all 47 WTC11 submissions, detection by
only one pipeline was the most frequent transcript class (Fig. 2b and
Supplementary Fig. 18). Moreover, frequency in transcript detection

Fig.2|Evaluation of transcriptidentification with areference annotation
for Challenge 1. a, Percentage of transcript models fully supported at 5’ ends
either by reference annotation or same-sample CAGE data (left), 3’ end either
by reference annotation or same-sample QuantSeq data (middle) and splice
junctions (S)) by short-read coverage or a canonical site (right). b, Agreement in
transcript detection as a function of the number of detecting pipelines,

¢, Performance of tools based on spliced-short (top) and unspliced long SIRVs
(bottom). d, Performance of tools based on simulated data. e, Performance

oftools on known and novel transcripts of 50 genes manually annotated by
GENCODE. f, Summary of performance metrics of tools for the cDNA-PacBio and
cDNA-ONT benchmarking datasets. The color scale represents the performance
value ranging from worse (dark blue) to better (light yellow). The graphic symbol
indicates the ranking position of the tool for the metric represented in each row.
LO, long (reads) only; LS, long and short (reads); Sen_kn, sensitivity for known
transcripts; Pre_kn, precision for known transcripts; Sen_no, sensitivity for novel
transcripts; Pre_no, precision for novel transcripts; 1/Red, inverse of redundancy.
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depended onthe SQANTI3 structural category. Novel transcripts were
less consistently detected, whereas FSMs were nearly the only tran-
script type found by more than 40 pipelines. Overall, the overlap in

detection between any two pipelines was higher for genes and junctions
thanfor UICs, even when we only considered dominant UICs account-
ing for over 50% of the gene expression (Supplementary Figs. 19-21),
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highlighting the disparity in the identification of transcript models
across methodologies. We then re-evaluated the agreement in UIC
detection by looking at the overlap of each analysis method with the
rest and discarding tools with a large number of detections (Spectra
andlIso_IB). Overall, many UICs were detected by all analysis pipelines
when considering eachlibrary preparation/sequencing platform com-
binationseparately, although discrepancies persisted among SQANTI3
categories and experimental methods (Supplementary Figs. 22-27).

Withoutaground truthin cell-line data, we gauged method accu-
racy using spike-ins, simulated data and GENCODE manual curation.
Using the spliced SIRV-Set 4 dataset, most tools showed high sensitiv-
ity, except for TALON and LyRic, which did not use the SIRV reference
annotation, whereas LyRic and Bambu’s sensitivity varied with the
library preparation method (Fig. 2c and Supplementary Data 3-5).
LyRiconly had asensitivity above 0.8 for the cDNA-PacBio sample, and
Bambu showed lower sensitivity with R2C2-ONT and CapTrap-ONT.
Precision was generally high for Bambu, IsoQuant, IsoTools and
Mandalorion methods and low for TALON, Iso_IB and Spectra. FLAMES,
FLAIR and LyRic showed variable results. F1scores generally matched
precision, with IsoQuant, Mandalorion, FLAIR, Bambu and IsoTools
performing best.

The SIRV dataset’s long, non-spliced transcripts were separately
assessed, yielding very different results (Fig. 2c and Supplementary
Data 3-5). FLAMES reported no such transcripts, whereas Bambu
excelled, likely aided by reference data. Sensitivity was generally lower,
except with cDNA-PacBio, where most tools, including TALON and
LyRic, achieved 100% sensitivity. CapTrap data typically resulted in
lower sensitivity, suggesting limitations in capturing long transcripts.
Precision varied with the tool and protocol used. As these SIRVs do not
contain splice sites, low precision values indicate false variability at
TTSs and TSSs. As results obtained with the long non-spliced dataset
may be the combination of the ability of the analysis tool to process
non-spliced data and accurately define TSSs and TTSs and the capac-
ity of the experimental protocol to capture long molecules, we looked
at the aligned coverage for long SIRVs. We found that cDNA-PacBio
provided the most uniform LRC for long SIRVs despite adrop at the 5’
ends of the longest transcripts (Extended Data Fig. 3).

SIRV annotation was available to participants. This benchmark,
while useful for testing experimental protocols, might be biased
and cannot evaluate new transcript predictions—a key advantage of
long-read sequencing. We used simulated datasets, including undis-
closed novel transcripts, for a broader assessment (Supplementary
Data 6 and 7). Mandalorion performed well with PacBio data for both
known and novel transcripts, as did IsoTools and LyRic, though their
precision for novel transcripts was lower (Fig. 2d and Supplementary
Fig.28). Bambu and FLAIR were sensitive and precise for known tran-
scripts but less so for novel ones, especially FLAIR without short-read
data was unable to discover new transcripts accurately. Spectra and
Iso_IB had sensitive but imprecise detection of novel transcripts. For
all tools, sensitivity increased on highly expressed transcripts and

redundancy values were close to1, except forIso IBand Spectra, which
returned a higher number of redundant predictions. Nanopore simu-
lations generally showed low performance across tools, possibly due
to lower NanoSim? read coverage in the simulated transcript models
(Supplementary Fig.29). Exceptions were Bambu and IsoQuant, which
had good precision for ONT-known simulated transcripts and StringTie
at metrics other than those related to novel transcript discovery. In
summary, simulated dataindicated lower sensitivity and precision for
novel compared to known transcripts (Fig. 2d).

While useful for large-scale and novel transcript analysis, simu-
lated data are limited by the simulation algorithms’ properties that
may not replicate complexities such as library preparation and bio-
logical noise. To address this, 50 undisclosed genes were rigorously
annotated by GENCODE experts using LRGASP sequencing data for
evaluation. Manually annotated loci were chosen for having mapped
readsinallsix library preparation/sequencing platform combinations
and average to moderately high expression levels (Extended Data
Fig. 4). GENCODE annotators evaluated the long-read data for each
experimental procedure independently and called transcript models
in each case (Supplementary Methods). Globally, 271 models, mostly
novel, were accepted astrue transcriptsinthe WTC11sample, with NNC
asthe primary category. FSMs, though fewer, were more consistently
detected across multiple conditions. Most novel transcripts appeared
injust one dataset (Extended DataFig.4) and atrend was also observed
inthe mouse ES sample (Extended Data Fig. 5).

Assessment of pipelines on selected loci revealed performance
variations driven by the analysis method. While all showed high
gene-level precision, sensitivity was generally lower than in previ-
ous datasets. FLAMES, LyRic, FLAIR (on dRNA data) and TALON (on
CapTrap and cDNA-ONT datasets) exhibited lower sensitivity. Bambu,
IsoTools, IsoQuant and Spectra showed the highest sensitivity at the
gene detection level (Supplementary Fig. 30a), followed by TALON
and Mandalorion, but were more dependent on the data type. Asimilar
pattern of sensitivity and precision was observed when consider-
ing transcripts already present in the reference annotation (Fig. 2e);
however, for novel transcript detection, sensitivity was surprisingly
low in all cases and precision greatly varied, ranging from1to O to
non-computable even within the same tool, due to a low number of
novel discoveries (<4) by most pipelines (Fig. 2e and Supplementary
Fig. 30b). Results were similar for the mouse ES annotated dataset
(Supplementary Figs.31and 32).

In summary, differences in library preparation, sequencing plat-
forms and analysis tools significantly affected the transcriptome defini-
tion (Fig. 2f and Supplementary Figs. 33-36). Notably, the number of
transcripts detected was not associated with the number of reads (Sup-
plementary Fig.3). Some tools (Bambu, FLAMES, FLAIR and IsoQuant)
heavily relied onannotation for transcript modeling, while other meth-
ods (Iso_IB, IsoTools, Mandalorion, TALON and LyRic) allowed more
novelty based on the actual data. For allmethods, accurate prediction
of novel transcripts was challenging.

Fig. 3| Evaluation of transcript isoform quantification for Challenge 2.

a, Cartoon diagrams to explain evaluation metrics without or with a ground truth.
b-e, Overall evaluation results of eight quantification tools and seven protocols-
platforms on real data with multiple replicates (b), cell mixing experiment (c),
SIRV-Set 4 data (d) and simulation data (e). Box plots of evaluation metrics
across various datasets, depicting the minimum, lower quartile, median, upper
quartile and maximum values. Bar plots represent the mean values of evaluation
metrics across diverse datasets, with error barsindicating the s.d. b, Number

of submissions per tool or protocol-platform, in order, n=36,12,16,24, 4,24, 6,
and 4 per toolorn=22,24,26,18,18,14 and 4 per protocol-platform. ¢, Number
of submissions per tool or per protocol-platform,inorder,n=6,3,4,6,1,6,
land1pertoolorn=5,5,6,4,4,3 and1per protocol-platform.d, Number of
submissions per tool or per protocol-platform, in order,n=36,12,16,24,4,24,6
and 4 per toolorn=22,24,26,18,18,14 and 4 per protocol-platform. e, Number
of submissions per tool or per protocol-platform,inorder,n=8,4,2,4,2,4,1and

2pertoolorn=12,6,7,0,0,0and 2 per protocol-platform. f, Quantification tool
scores under common cDNA-ONT and cDNA-PacBio platforms across various
evaluation metrics, with the top three performers highlighted for each metric.
g,Based on the average values of each metric across all quantification tools,
scores for protocols-platforms are displayed, along with the top three
performers for each metric. Blank spaces denote instances where the tool or
protocols-platforms did not have participants submitting the corresponding
quantitative results. h, Evaluation of quantification tools with respect to multiple
transcript features, including the number of isoforms, number of exons, isoform
length and a customized statistic K-value representing the complexity of exon-
isoformstructures. Here, the normalized MRD metric is used to evaluate the
performance of quantification tools on human cDNA-PacBio simulation data.
Additionally, RSEM evaluation results with respect to transcript features based
on humanshort-read simulation data are shown as a control.
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Evaluation of transcript quantification
We assessed transcript quantification performance using 84 RNA
sequencing datasets (including SIRV-Set 4) from four human
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cell lines (H1-hES cells, H1-DE, H1-mix and WTC11) and six simula-
tion datasets for Nanopore (NanoSim), PacBio (IsoSeqSim*') and
Illumina (RSEM*) reads (Fig. 1a). Seven quantification tools (IsoQuant,
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Bambu, TALON, FLAIR, FLAMES, NanoSim and IsoTools) were tested
onsix combinations of protocols-platforms (cDNA-PacBio, cDNA-ONT,
dRNA-ONT, CapTrap-PacBio, CapTrap-ONT and R2C2-ONT), yielding
143 submitted datasets. As a control, we quantified short-read datasets
(cDNA-Illumina) using the RSEM tool with the GENCODE reference
annotation. We employed nine metrics for performance assessment in
various data scenarios (Fig. 3a and Box 1). Abenchmarking web appli-
cation® allowed users to upload their results, generating interactive
evaluationreports in HTML and PDF formats.

First, we assessed eight quantification tools across diverse
protocols-platforms in four data scenarios using multiple metrics
(Fig.3b-fand Extended Data Figs. 6 and 7). For real data with multiple
replicates, four metrics were designed to evaluate the reproduc-
ibility and consistency of transcript abundance estimates among
multiple replicates: irreproducibility measure (IM), area under the
coefficient of variation curve (ACVC), consistency measure (CM)
and areaunder the consistency curve (ACC) (Fig. 3b, Supplementary
Figs. 37 and 38 and Supplementary Data 4). FLAMES, IsoQuant and
IsoTools performed comparably to RSEM, showing low IMand ACVC
and high CM and ACC (Fig. 3b and Supplementary Figs. 37b and 38c).
FLAIR and Bambu slightly underperformed RSEM but surpassed
other quantification tools. Specifically, IsoQuant on cDNA-ONT and
CapTrap-ONT, and FLAMES on CapTrap-ONT ranked in the top three
across all datasets (<0.15 and <0.53 for IMand ACVC, >0.89 and >9.53
for CM and ACC). Notably, all tools showed poor performance on
dRNA-ONT (meanIM = 0.66,ACVC =2.62,CM = 0.64 and ACC = 8.31),
likely due to its low throughput (<1 million reads per replicate). In
addition, the resolution entropy (RE) metric characterized the reso-
lution of transcript abundance estimates among multiple replicates
inreal data (Fig. 3b, Supplementary Fig.39 and Supplementary Data
8). Thetop six tools (IsoQuant, IsoTools, FLAMES, FLAIR, TALON and
Bambu) achieved comparable resolution, at least 2.7-fold higher
than NanoSim and RSEM. This disparity may be due to NanoSim
and RSEM utilizing the GENCODE reference annotation, including
numerous transcripts not expressed in specific samples, leading to
many low-expression transcripts in the quantification results (79.02%
and 58.04% of transcripts with transcripts per million (TPM) <1in
H1-hES cell samples).

Due to the challenges of transcript-level quantification and the
lack of a gold standard in real data, we designed an evaluation strat-
egy using a cell mixing experiment (Supplementary Fig. 40a). In this
experiment, an undisclosed ratio of HI-hES cells and H1-DE samples
was mixed before sequencing and participants estimated transcript
abundancein the mixed sampleinitially. Subsequently, data fromindi-
vidual H1-hES cell and H1-DE samples were released and participants
submitted separate quantifications for these datasets. The quantifi-
cation of mixed samples should be equivalent to the expected ratios
from the quantification of individual cell lines. Three metrics evaluated
quantification accuracy by comparing expected and observed abun-
dance: Spearman correlation coefficient (SCC), medianrelative differ-
ence (MRD) and normalized root mean square error (NRMSE) (Fig. 3¢,
Supplementary Fig. 40b,c and Supplementary Data 9). Most tools
showed good correlation (0.74-0.87 for mean SCC) between expected
and observed abundance, except Bambu (0.53), with RSEM showing
superior performance in cell mixing experiments with the highest
SCC (0.87), lowest MRD (0.13) and NRMSE (0.38) values (Fig. 3c and
Supplementary Fig. 40b,c). Among long-read-based tools, IsoQuant
on cDNA-ONT performed bestin MRD (0.14) and SCC (0.85), whereas
FLAIR on cDNA-ONT recorded the lowest NRMSE (0.43).

SIRV-Set 4 and the simulation data assessed the proximity of
estimations to ground-truth values using four metrics: percentage
of expressed transcripts (PET), SCC, MRD and NRMSE (Fig. 3d, Sup-
plementary Figs. 41 and 42 and Supplementary Data 10 and 11). For
SIRV-Set 4, tools exhibited substantial variation in quantifying SIRV
transcripts with TPM > 0, ranging from 28 to 136. RSEM outperformed

other long-read-based tools with higher average SCC (0.84 versus
0.29-0.78), lower MRD (0.12 versus 0.13-1.00) and NRMSE (0.45 versus
0.89-2.19).NanoSim (SCC = 0.78, MRD = 0.23 and NRMSE = 0.89) and
IsoQuant (0.76, 0.19 and 0.89) led long-read-based tools, followed by
IsoTools (0.69, 0.13 and 1.02), FLAIR (0.73, 0.42 and 1.13) and Bambu
(0.68,0.79 and 1.55). Except for TALON and FLAMES, all tools excelled in
quantifying regular and long SIRV transcripts with TPM > O (PET > 80%).
Conversely, most struggled with quantifying ERCC transcripts with
TPM >0 (PET < 50%), likely due to the low expression levels of many
ERCC transcripts**.

For simulation data, tools performed markedly better on
PacBio data than ONT data (Fig. 3e). Notably, FLAIR, IsoQuant,
IsoTools and TALON on cDNA-PacBio exhibited the highest corre-
lation (SCC > 0.97) between estimation and ground truth, slightly
surpassing RSEM (SCC = 0.90) and outperforming other long-read
pipelines (SCC < 0.83). Moreover, transcript annotation accuracy
notably influenced quantification accuracy. With inaccurate anno-
tation, RSEM yielded mean NRMSE values of 2.74- and 3.27-times
higher thanlong-read-based tools and RSEM with accurate annotation,
respectively (Supplementary Fig. 43). This emphasizes the critical
importance of accurate sample-specific annotation for transcript
quantification.

Next, we evaluated seven combinations of protocols-platforms
across diverse quantification tools (Fig. 3b-e,g and Extended Data
Fig. 6). Based on reproducibility and consistency metrics on real
data (Fig. 3a and Supplementary Figs. 37b and 38c), CapTrap-ONT,
CapTrap-PacBio, cDNA-PacBio and cDNA-ONT demonstrated similar
performance:lowIM and ACVC and high CM and ACC, outperforming
dRNA-ONT and R2C2-ONT likely due to their lower sequencing depths
(Fig.1b).In particular, CapTrap-ONT and cDNA-ONT exhibited the low-
est irreproducibility (mean IM =0.19 and 0.20 and ACVC = 0.50 and
0.51) and highest consistency (mean CM = 0.89 and 0.86 and ACC = 9.49
and 9.51). For abundance resolution, cDNA-PacBio and R2C2-ONT
outperformed others, withatleast atwofold higher REthan cDNA-ONT
(Fig. 3b). Notably, there were bimodal distributions of read length
for some protocols-platforms (cDNA-PacBio, CapTrap-PacBio and
definitely dRNA-ONT for R2C2-ONT (Supplementary Fig. 44). Varying
sequencing error rates across platforms (Fig. 1b) suggest that tools
may have specific advantages in handling certain data types (Fig. 3f
and Extended Data Fig. 7).

For cell mixing experiments (Fig. 3¢ and Supplementary
Fig. 40b), CapTrap-PacBio, CapTrap-ONT, cDNA-PacBio, cDNA-ONT
and dRNA-ONT showed similar performances (mean SCCscores, 0.73
t0 0.83), whereas the remaining R2C2-ONT scored below 0.60 in mean
SCC. In particular, CapTrap-PacBio exhibited the best quantification
accuracy, surpassing other long-read-based protocols-platforms and
comparable to cDNA-Illumina.

For SIRV-Set 4 data, cDNA-PacBio outperformed other
long-read-based protocols-platforms (Fig. 3d and Supplementary
Fig. 41a), with the highest SCC (0.70 versus 0.60-0.66) and the
lowest MRD (0.40 versus 0.58-0.75) and NRMSE (1.14 versus 1.38-1.52).
cDNA-ONT followed and outperformed the other protocols-platforms.
Notably, all protocols-platforms struggled to quantify ERCC transcripts
with TPM > 0 (mean PET = 33.01%) compared to regular SIRV (mean
PET =82.17%) and long SIRV transcripts (mean PET = 69.75%). Particu-
larly, cDNA-ONT, cDNA-PacBio, CapTrap-ONT and R2C2-ONT showed
similar PET performance (34.39-43.27%) in ERCC quantification, sur-
passing dRNA-ONT (18.35%) and CapTrap-PacBio (27.99%). For long
SIRVtranscripts, except CapTrap-PacBioand dRNA-ONT, all could quan-
tify over 70% of transcripts with TPM > 0. All performed well for regu-
lar SIRV transcripts, with dRNA-ONT, CapTrap-PacBio, cDNA-PacBio
and cDNA-ONT being the most prominent (PET > 82.00%). Similar to
SIRV-Set 4 data, the simulation study revealed cDNA-PacBio’s superior
performance in SCC, MRD and NRMSE compared to cDNA-ONT and
dRNA-ONT (Fig. 3e and Supplementary Fig. 42b).
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Finally, we evaluated tool performance across various gene/
transcript sets grouped by transcript features, including abundance,
isoform-exon number, length and a customized statistic K-value repre-
senting exon-isoformstructure complexity (Fig. 3hand Supplementary
Figs.37c,38d and 45).

For real data with multiple replicates, all tools showed
reduced coefficient of variation (CV) and increased CM across six
protocols-platforms with rising transcript abundances (Supplemen-
tary Figs.37cand 38d). We further analyzed normalized MRD changes
using human cDNA-PacBio simulation data (Fig. 3h). MRD scores on all
tools spiked whentranscriptabundance was TPM < 2, indicating height-
ened variability and errors in estimating abundance for low-expression
transcripts. Moreover, tools exhibited poor performance at high
K-values and isoform numbers, suggesting challenges in accurately
quantifying more complex gene structures. Most tools performed
well with isoforms with 5 to 15 exons, except for RSEM and Bambu.
Notably, quantification errors were more pronounced for transcripts
shorter than 1kb, whereas tools exhibited varying performance for
transcripts longer than1kb.

In summary, our evaluation revealed variable tool performance
based on gene/transcript features, posing challenges in accurately
quantifying low-expression and complex transcripts. Notably, tools
exhibited performance differences across diverse data scenarios
(Fig. 3f and Extended Data Figs. 6 and 7). Overall, RSEM outper-
formed long-read-based tools in different protocols-platforms and
metrics (Fig. 3b-e). IsoQuant, FLAIR and Bambu stood out among
long-read-based tools (Fig. 3f and Extended Data Fig. 7). IsoTools
excelled in cDNA-PacBio data, whereas NanoSim performed best in
SIRV transcript quantification. Generally, cDNA-Illumina showed
top overall performance in different protocols-platforms, ranking
among the top three in all metrics, except RE (Fig. 3g). Meanwhile,
cDNA-PacBio, cDNA-ONT, CapTrap-ONT and CapTrap-PacBio dem-
onstrated consistently good performance across various scenarios,
surpassing dRNA-ONT and R2C2-ONT.

Evaluation of de novo transcript detection

We assessed long-read methods for transcript identification
without a reference in two scenarios: high-quality genome assembly
and data (mouse ES cell sample) and limited genomic information
on afield experiment (manatee leukocyte sample). Additionally, the
manatee sample had excess SIRV spike-ins, representing a challeng-
ing dataset. A draft manatee genome was assembled using Nanop-
ore and lllumina sequencing (Supplementary Fig. 46) and provided
to submitters, but no genome annotation was allowed in Challenge
3 analyses. Matched short-read RNA-seq data were available to
all submitters.

Four tools (Bambu, StringTie2+IsoQuant, RNA-Bloom?*
and rnaSPAdes”’) submitted transcriptome predictions for both
samples (Fig. 1f). Although overall transcript mapping rates were high
(Supplementary Fig. 47), the number of detected transcripts varied,
ranging fromapproximately 20,000 t0150,000 in mouse ES cellsand
from around 2,000 to 500,000 in the manatee sample (Fig. 4a,b and

Supplementary Datal2 and13).rnaSPAdes predicted the largest num-
ber of transcripts and the highest fraction of noncoding sequences,
followed by RNA-Bloom. Conversely, Bambu predicted the fewest
transcripts (Fig. 4a). In the mouse sample, most detected transcripts
were novel (Fig. 4a), contrasting with IsoQuant and Bambu Challenge
1results using the reference annotation, highlighting the impact of
annotationon predictions (Fig. 2a and Extended DataFig. 8). Structural
category analysis was not possible for the manatee sample, but exami-
nation of transcript counts per locus revealed variance among methods
and datatypes. Bambu, rnaSPAdes and RNA-Bloom predicted asingle
transcript for mostloci, whereas StringTie2+IsoQuant, especially with
cDNA-ONT data, predicted two or more transcripts for nearly half of
theloci (Fig. 4b).

In the absence of a reference annotation, Bambu, StringTie2+
IsoQuantand RNA-Bloom predicted transcript models mainly between
1kb and 3 kb. Bambu and StringTie2+IsoQuant reported many short
transcripts in the mouse ES cell cDNA-ONT dataset (Fig. 4¢), likely
influenced by shorter reads (Fig. 1c), with Bambu showing shorter
transcripts in the manatee cDNA-PacBio dataset (Fig. 4d). rnaSPAdes
generated numerous short transcripts, affecting overall length distri-
butions (Fig. 4c,d).

For mouse ES cell transcripts, a link was observed between the
number of predicted transcripts and their orthogonal data support.
rnaSPAdes, with the most predictions, had the least support from
Illumina, CAGE and QuantSeq datasets and a high percentage of
non-canonical splice junctions. Conversely, Bambu had fewer predic-
tions but higher orthogonal support. RNA-Bloom showed moderate
support and many non-canonical junctions. StringTie2+IsoQuant’s
transcripts had good junction quality but low CAGE support (Fig. 4€).

Most transcripts identified by Bambu and StringTie2+IsoQuantin
the mouse ES cell sample were protein-coding, exceptin CapTrap-ONT
and cDNA-ONT datasets, where about 25% were noncoding, possibly
due to the higher number of reads in these datasets. In the manatee
sample, a lower percentage of transcripts were predicted as cod-
ing, with about 70% for IsoQuant and Bambu and less than 20% for
rnaSPAdes (Supplementary Fig. 48).

BUSCO?® (benchmarking sets of universal single-copy orthologs),
adatabase of highly conserved genes, was used to assess transcriptome
completeness, showing good performance across most tools despite
the observed differences in protein-coding transcript rates. In the
mouse ES cell sample, rnaSPAdes and RNA-Bloom detected over 60%
of complete BUSCO genes, whereas Bambu reached this only with
cDNA-PacBio and R2C2-ONT data. In the manatee sample, IsoQuant
and RNA-Bloom had the highest BUSCO completeness (-50%) on
Nanopore datasets, with rnaSPAdes at around 30% and Bambu perform-
ing poorly. Incomplete BUSCO genes were generally fewer in the mouse
ES cellsthaninthe manatee, with rnaSPAdes showing the highest ratio
ofincompleteness in the manatee sample (Fig. 4f).

SIRV spike-in analysis showed notable tool and sample variations
(Fig. 4g). RNA-Bloom detected SIRVs in the mouse ES sample with
about 70% sensitivity but had low precision and a high false discovery
rate (FDR). rnaSPAdes exhibited low sensitivity and a high positive

Fig. 5| Experimental validation of known and novel isoforms. a, Schematic
for the experimental validation pipeline. QC, quality control b, Example of a
consistently detected NIC isoform (detected in over half of all LRGASP pipeline
submissions), which was successfully validated by targeted PCR. The primer
set amplifies a new event of exon skipping (NIC). Only transcripts above -5
CPM and any part of the GENCODE Basic annotation are shown. ¢, Example

of asuccessfully validated new terminal exon, with ONT amplicon reads
shownin the IGV track (PacBio produces similar results). d, Recovery rates for
GENCODE-annotated isoforms that are reference matched (known), novel and
rejected. e, Recovery rates for consistently versus rarely detected isoforms for
known and novel isoforms. f, Recovery rates between isoforms that are more
frequently identified in ONT versus PacBio pipelines. g-i, Relationship between

estimated transcript abundances (calculated as the sum of reads across all
WTCl1sequencing samples) and validation success for GENCODE (g), consistent
versus rare (h) and platform-preferential (i) isoforms. NV, not validated; V,
validated. The number of transcripts in each category is shown ind-f. j, Fraction
of validated transcripts as a function of the number of WTC11 samples in which
supportive reads were observed. k, Example of two de novo isoforms in manatee
validated through isoform-specific PCR amplification. Purple corresponds to
the designed primers, orange to the possible amplification product associated
withoneisoform and black to the predicted isoforms. 1, PCR validation results
for manatee isoforms for seven target genes. Blue corresponds to supported
transcripts and red to unsupported transcripts. The figure was partially created
with BioRender.com.
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detection rate, suggesting incomplete transcript model detections.
RNA-Bloom and rnaSPAdes often predicted multiple models for the
same SIRV (low 1/redundancy values). Conversely, String Tie2+IsoQuant
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with Bambu failing to recover spiked RNAs. SQANTI3 analysis against
annotated SIRV dataindicated a majority of SIRV reads were FSM and
most SIRVs had at least one reference-match read in both manatee
datasets (Supplementary Fig. 49) suggesting that data quality was
notalimiting factor.

Transcript detection without reference annotation proved chal-
lenging. Notably, transcripts with higher coverage, as in our SIRV
spike-insinthe manatee sample, led to poorer performance for all tools,
suggesting that accurate detection from highly expressed genes may
be problematic. Bambu and IsoQuant had moderate to good precision
but low sensitivity, RNA-Bloom had high sensitivity but low precision
and rnaSPAdes generated fragmented, short transcripts with high FDR.

Experimental validation of transcript predictions
To experimentally validate isoforms, we targeted isoform-specific
regions for PCR amplification followed by gel electrophoresis and
sequencing of pooled amplicons via ONT and PacBio sequencing
(Fig. 5a). We prioritized validation of three comparison groups: (1)
GENCODE-annotated (known or novel) based on LRGASP data and
annotation; (2) consistently identified by >50% of pipelines or rarely
by 1-2 pipelines; and (3) preferentially identified in ONT or PacBio
libraries. Fromthese comparison groups, we designed primers for 178
targetregions, in which the length of the amplified region ranged from
120t04,406-bp long, with amedian of 488 bp and 25-75 interquartile
range of 305to 795 bp (Fig. 5a). Examples of a validated exon-skipping
event (NIC) and a novel terminal exon (NNC) are shown in Fig. 5b,c.

To evaluate GENCODE-annotated isoforms, we compared
groups of randomly selected isoforms that were (1) annotated
(GENCODE-known, n=26); (2) novel and confirmed through manual
annotation (GENCODE-novel, n = 41); and (3) unsupported isoforms
that were investigated but did not pass rigorous manual curation
(GENCODE-rejected n=9). Asexpected, we found ahigh validationrate
for GENCODE-known, 81% (Fig. 5d). Of the GENCODE-known isoforms,
we found that 5 of the 28 targets failed to validate despite orthogonal
support®’; therefore, we speculate that they failed due to suboptimal
primer or PCR conditions. GENCODE-novel isoforms validated at a
slightly lower validationrate (63%) compared to GENCODE-known. Fur-
ther review confirmed that GENCODE-novelisoforms that failed to vali-
date tended to be lower in abundance compared to their successfully
validated counterparts (Fig. 5g). Only two of nine GENCODE-rejected
isoforms were amplified, which were later confirmed to be mismapped
duetotandemrepeats.

A large number of novel isoforms were detected in this study
(for example, 279,791 new isoforms in WTC11; Fig. 1b). We found that
743 novel isoforms were detected consistently, but a vast majority or
242,125 isoforms, were rarely detected and found in only one or two
of the pipelines. We obtained a 100% validation rate for consistently
detected newisoforms (Fig. 5e). For isoforms with low reproducibility
across pipelines, we found a surprisingly high validation rate of 90%
and 50% for NIC and NNC isoforms, respectively. Abundance correlated
with validation rate (Fig. 5h), as found for the GENCODE validation set.

Last, we determined the validation rates of known and novel
isoforms in common or preferentially detected in the cDNA-ONT
or cDNA-PacBio experiments. For example, an isoform detected in
more than 50% of ONT pipelines but less than 50% of PacBio pipelines
would be considered ONT-preferential and vice versa. We found
that all known and new isoforms found frequently across both plat-
forms were validated (Fig. 5f,i) and most validated isoforms were
identified by amplicon sequencing on both ONT and PacBio. We
acknowledge that this validation set is a relatively small sample
size, which limits drawing general conclusions on validation rates
for platform-preferential isoforms.

Validation experiments using long-read transcript models suggest
high accuracy for novel isoform predictions, even if not consistently
detected across pipelines and platforms. Validation success seems

linked to the isoform detection frequency, measured by either the
number of samples (combinations of library preparation and sequenc-
ingtechnology) detecting theisoform (Fig. 5j) or the total read counts
supporting it (Extended Data Fig. 9).

To validate long-read-based isoform discovery without a
reference annotation, we focused on the manatee dataset. Challenge
3 had fewer submissions than Challenge 1; therefore, we established
a goal of not explicitly comparing pipelines but rather assessing the
ability of the long-read RNA-seq datasets to returnaccurate transcript
isoform annotation.

Seven genes related to immune pathways and their respective
isoforms were manually selected based on visualization on a custom
UCSC Genome Browser track. We designed 22 primers that could
potentially amplify 26 transcript predictions. The length of the ampli-
fied region ranged from 78 t0 2,633-bp long, with amedian of 1,038 bp
anda25-75interquartile range of 379 to 1,379 bps. Validation of targets
was confirmed by PacBio sequencing of the amplicons (Fig. 5k). For
the five genes with few isoforms, all isoforms were validated. For the
two genes for which many isoform models were predicted with more
variability across participants, approximately half of the targets were
validated (Fig. 5| and Supplementary Fig. 50).

Overall, we find agreater variability of ‘field collected’ non-model
organism long-read data compared to the human or mouse datasets.
Though our sample population was small, we found that isoforms
predicted by many pipelines tended to be validated.

Final recommendations

Based on the results of LRGASP, the Consortium recommends the fol-
lowing suggestions to improve the analysis of transcriptomes using
long reads:

1. For transcript identification, longer and more accurate se-
quences are preferable to having more reads. Therefore, the
cDNA-PacBio and R2C2-ONT datasets are the best options. If the
goal is quantification, especially on a well-annotated reference,
higher throughput sequencing, such as with ¢cDNA-ONT and
CapTrap-ONT, are the best choice.

2. When choosing abioinformatics tool, itis crucial to consider the
study’s objective:

a. If the goal is to identify a sample-specific transcriptome in a
well-annotated organism when only minimal new transcripts are
expected, Bambu, IsoQuant and FLAIR are the most effective.

b. If the aim is to detect lowly expressed or rare transcripts,
use a tool that allows novelty and includes orthogonal data.
Mandalorion and FLAIR, combined with short reads, are
among the best performers, with a good balance of sensitiv-
ity and precision. For identifying a conservative set of highly
supported novel transcripts, LyRic is an effective tool. Experi-
mental validation of rare transcripts is recommended.

3. If quantification is essential, IsoQuant, FLAIR and Bambu are the
best options and can perform comparably to short-read tools.

4. To create a reference for genome annotation, we recommend
using high-quality data, including replicates, using extensive or-
thogonal data, imposing a transcript-level filter and using tran-
scripts identified from more than one analysis tool.

Discussion

This LRGASP study revealed that increased read quantity does not
always lead to more accurate transcripts, emphasizing the importance
ofread quality and length. ONT sequencing of cDNA and CapTrap librar-
ies produced many reads, whereas cDNA-PacBio and R2C2-ONT gave
the most accurate ones. The choice of analysis tool notably influenced
results, with some favoring known transcripts and others more sensi-
tive to novel ones. Different approaches varied in their handling of RNA
degradation and library preparation artifacts.
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Performance differed based on ground-truth data, with tools
excelling in known transcripts but varying in simulated and manual
annotations. Challenge 2 highlighted key factors affecting transcript
quantification tool performance, including annotation accuracy and
read length distributions. De novo annotation remains challenging,
with inconsistent results in Challenge 3 indicating a need for further
tool development. Experimental validation demonstrated long-read
methods’ effectiveness in uncovering transcriptome complexity in
non-model organisms.

Ourbenchmark has limitations. LRGASP did not evaluate long-read
mapping methods and all tools used minimap2 (ref.30) as the aligner,
leading to mapping errors identified by the GENCODE manual cura-
tion. Participants submitted only one set of predictions per dataset,
configuring their methods as they saw fit. Furthermore, to facilitate
participation, submitters were allowed to choose which datamodalities
they contributed to, and many chose a subset, resultingin unbalanced
datawhen evaluating methods. We tried to consider this in our analy-
ses, but balanced participation would have been more useful. Several
prominent long-read analysis tools®** did not participate in LRGASP or
wereintroduced later. To address this, we have made LRGASP datasets
and evaluation strategies available on OpenEBench* for ongoing tool
benchmarking and development. This platform facilitates the creation
of new IrRNA-seq analysis tools. Finally, as data continue to evolve,
conclusions may need revision as sequencing technologies improve.

Overall, LRGASP demonstrates the power of community collabo-
ration in assessing evolving technologies. Its insights pave the way
for further advancements in long-read RNA-seq analysis, ultimately
unlockingadeeperunderstanding of gene expression and regulation.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41592-024-02298-3.

References

1. Reese, M. G. et al. Genome annotation assessment in Drosophila
melanogaster. Genome Res. 10, 483-501(2000).

2. Guigd, R. et al. EGASP: the human ENCODE genome annotation
assessment project. Genome Biol. 7, $2.1-31(2006).

3. Engstrom, P. G. et al. Systematic evaluation of spliced alignment
programs for RNA-seq data. Nat. Methods 10, 1185-1191 (2013).

4. Steijger, T. et al. Assessment of transcript reconstruction methods
for RNA-seq. Nat. Methods 10, 1177-1184 (2013).

5. Carbonell-Sala, S. et al. CapTrap-Seq: a platform-agnostic and
quantitative approach for high-fidelity full-length RNA
transcript sequencing. Preprint at bioRxiv https://doi.org/10.1101/
2023.06.16.543444 (2023).

6. Volden, R. et al. Improving nanopore read accuracy with the R2C2
method enables the sequencing of highly multiplexed full-length
single-cell cDNA. Proc. Natl Acad. Sci. USA 115, 9726-9731 (2018).

7. Carninci, P. et al. High-efficiency full-length cDNA cloning by
biotinylated CAP trapper. Genomics 37, 327-336 (1996).

8. Pardo-Palacios, F. J. et al. SQANTI3: curation of long-read
transcriptomes for accurate identification of known and novel
isoforms. Nat. Methods https://doi.org/10.1038/s41592-024-
02229-2 (2024).

9. Pardo-Palacios, F. et al. Systematic assessment of long-read
RNA-seq methods for transcript identification and quantification.
Res. Sq. https://doi.org/10.6084/m9.figshare.19642383.v1 (2021).

10. Kawaji, H. Spectra, a Set of Scripts to Build Gene Models Based on
Full-Length CDNA Reads (2021).

1. Li, W. Cdhit: Automatically Exported from Code.google.com/p/
cdhit. GitHub https://github.com/weizhongli/cdhit (2019).

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Chen, Y. et al. Context-aware transcript quantification from
long-read RNA-seq data with Bambu. Nat. Methods https://doi.
org/10.1038/s41592-023-01908-w (2023).

Tang, A. D., Hrabeta-Robinson, E., Volden, R., Vollmers, C. &
Brooks, A. N. Detecting haplotype-specific transcript variation

in long reads with FLAIR2. Preprint at bioRxiv https://doi.org/
10.1101/2023.06.09.544396 (2023).

Tian, L. et al. Comprehensive characterization of single-cell
full-length isoforms in human and mouse with long-read
sequencing. Genome Biol. 22, 310 (2021).

Prjibelski, A. D. et al. Accurate isoform discovery with IsoQuant
using long reads. Nat. Biotechnol. https://doi.org/10.1038/
s41587-022-01565-y (2023).

Wyman, D. et al. A technology-agnostic long-read analysis
pipeline for transcriptome discovery and quantification. Preprint
at bioRxiv https://doi.org/10.1101/672931 (2020).

Celik, M. H. & Mortazavi, A. Analysis of alternative polyadenylation
from long-read or short-read RNA-seq with LAPA. Preprint at
bioRxiv https://doi.org/10.1101/2022.11.08.515683 (2022).
Lienhard, M. et al. IsoTools: a flexible workflow for long-read
transcriptome sequencing analysis. Bioinformatics https://doi.
org/10.1093/bioinformatics/btad364 (2023).

Volden, R. et al. Identifying and quantifying isoforms from
accurate full-length transcriptome sequencing reads with
Mandalorion. Genome Biol. 24,167 (2023).

Hafezgorani, S. et al. Trans-NanoSim characterizes and simulates
nanopore RNA-sequencing data. Gigascience 9, giaa061(2020).
Wang, Y. IsoSegSim: Iso-Seq reads simulator for PacBio and
ONT full-length isoform sequencing technologies. GitHub
https://github.com/yunhaowang/IsoSeqSim (2022).

Li, B. & Dewey, C. N. RSEM: accurate transcript quantification
from RNA-Seq data with or without a reference genome. BMC
Bioinform. 12, 323 (2011).

LRGASP Quantification Evaluation Server https://lrrna-seq-
quantification.org/

Baker, S. C. et al. The External RNA Controls Consortium: a
progress report. Nat. Methods 2, 731-734 (2005).

External RNA Controls Consortium. Proposed methods for testing
and selecting the ERCC external RNA controls. BMC Genomics 6,
150 (2005).

Nip, K. M. et al. Reference-free assembly of long-read
transcriptome sequencing data with RNA-Bloom2. Nat. Commun.
14, 2940 (2023).

Bushmanova, E., Antipov, D., Lapidus, A. & Prjibelski, A. D.
rnaSPAdes: a de novo transcriptome assembler and its
application to RNA-seq data. Gigascience 8, giz100 (2019).
Manni, M., Berkeley, M. R., Seppey, M., Simao, F. A. & Zdobnoy,

E. M. BUSCO update: novel and streamlined workflows along
with broader and deeper phylogenetic coverage for scoring of
eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38,
4647-4654 (2021).

Wilks, C. et al. recount3: summaries and queries for large-scale
RNA-seq expression and splicing. Genome Biol. 22, 323 (2021).
Li, H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34, 3094-3100 (2018).

Kuo, R. I. et al. Illuminating the dark side of the human
transcriptome with long read transcript sequencing. BMC
Genomics 21, 751 (2020).

Topfer, A. et al. IsoSeq v3: scalable de novo isoform discovery.
GitHub https://github.com/PacificBiosciences/IsoSeq (2023).
Hu, Y. et al. LIQA: long-read isoform quantification and analysis.
Genome Biol. 22,182 (2021).

Gao, Y. et al. ESPRESSO: robust discovery and quantification of
transcript isoforms from error-prone long-read RNA-seq data. Sci.
Adv. 9, eabg5072 (2023).

Nature Methods | Volume 21| July 2024 | 1349-1363

1361


http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02298-3
https://doi.org/10.1101/2023.06.16.543444
https://doi.org/10.1101/2023.06.16.543444
https://doi.org/10.1038/s41592-024-02229-2
https://doi.org/10.1038/s41592-024-02229-2
https://doi.org/10.6084/m9.figshare.19642383.v1
https://github.com/weizhongli/cdhit
https://doi.org/10.1038/s41592-023-01908-w
https://doi.org/10.1038/s41592-023-01908-w
https://doi.org/10.1101/2023.06.09.544396
https://doi.org/10.1101/2023.06.09.544396
https://doi.org/10.1038/s41587-022-01565-y
https://doi.org/10.1038/s41587-022-01565-y
https://doi.org/10.1101/672931
https://doi.org/10.1101/2022.11.08.515683
https://doi.org/10.1093/bioinformatics/btad364
https://doi.org/10.1093/bioinformatics/btad364
https://github.com/yunhaowang/IsoSeqSim
https://lrrna-seq-quantification.org/
https://lrrna-seq-quantification.org/
https://github.com/PacificBiosciences/IsoSeq

Registered Report

https://doi.org/10.1038/s41592-024-02298-3

35. Capella-Gutierrez, S. et al. Lessons learned: recommendations for
establishing critical periodic scientific benchmarking. Preprint at
bioRxiv https://doi.org/10.1101/181677 (2017).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Francisco J. Pardo-Palacios ® '*, Dingjie Wang>*®', Fairlie Reese ® *>*', Mark Diekhans ® ¢*, Silvia Carbonell-Sala® ",
Brian Williams ® 2%, Jane E. Loveland ® *°, Maite De Maria ® '*""%!, Matthew S. Adams® 2,

Gabriela Balderrama-Gutierrez*®, Amit K. Behera®™, Jose M. Gonzalez Martinez® °, Toby Hunt ®%, Julien Lagarde™*,
Cindy E. Liang® ", Haoran Li*?, Marcus Jerryd Meade', David A. Moraga Amador'®, Andrey D. Prjibelski® "8,

Inanc Birol®'°, Hamed Bostan ® ?°, Ashley M. Brooks ® 2°, Muhammed Hasan Celik ®*®, Ying Chen®?, MeiR. M. Du®?,
Colette Felton ® %, Jonathan Géke ® %%, Saber Hafezqorani® ™, Ralf Herwig ® %, Hideya Kawaji® %, Joseph Lee?,
Jian-Liang Li®?°, Matthias Lienhard ® %%, Alla Mikheenko??, Dennis Mulligan®, Ka Ming Nip ® *°, Mihaela Pertea ® 7%,
Matthew E. Ritchie ® 2>?°, Andre D. Sim®?, Alison D. Tang™®, Yuk Kei Wan ® 2'3°, Changqing Wang ®?%,

Brandon Y. Wong ® 2%, Chen Yang", If Barnes®, Andrew E. Berry ®°, Salvador Capella-Gutierrez®*', Alyssa Cousineau®?,
Namrita Dhillon™, Jose M. Fernandez-Gonzalez®®, Luis Ferrandez-Peral ®', Natalia Garcia-Reyero ® %3, Stefan G6tz® **,
Carles Hernandez-Ferrer ® %', Liudmyla Kondratova ® *°, Tianyuan Liu® 3¢, Alessandra Martinez-Martin’',

Carlos Menor®**, Jorge Mestre-Tomas®", Jonathan M. Mudge ® °, Nedka G. Panayotova'®, Alejandro Paniagua’,

Dmitry Repchevsky ® ¥, Xingjie Ren® %, Eric Rouchka® ¢, Brandon Saint-John™, Enrique Sapena ®*°, Leon Sheynkman®,
Melissa Laird Smith ® %%, Marie-Marthe Suner ®°, Hazuki Takahashi®“°, Ingrid A. Youngworth*, Piero Carninci® %%,
Nancy D. Denslow ® '°*3, Roderic Guigé ® »**, Margaret E. Hunter ® *°, Rene Maehr ® *2, Yin Shen ® *6, Hagen U. Tilgner?,

Barbara J. Wold ®8, Christopher Vollmers ® 352
Gloria M. Sheynkman ®>#%4952[.7, Ali Mortazavi® *>*

, Adam Frankish ® %2
, Ana Conesa ®"%%2

, Kin Fai Au®?23%2[.7,
& Angela N. Brooks ® 5352

'Institute for Integrative Systems Biology, Spanish National Research Council (CSIC), Paterna, Spain. 2Department of Biomedical Informatics, The
Ohio State University, Columbus, OH, USA. ®Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
“Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA. *Center for Complex Biological Systems, University of
California, Irvine, Irvine, CA, USA. ®UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA. "Centre for Genomic
Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. ®Division of Biology and Biological Engineering, California
Institute of Technology, Pasadena, CA, USA. °European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus
Hinxton, Cambridge, UK. ®Department of Physiological Sciences, College of Veterinary Medicine, Gainesville, FL, USA. "Cherokee Nation System
Solutions, contractor to the US Geological Survey-Wetland and Aquatic Research Center, Gainesville, FL, USA. ?Department of Molecular Cell and
Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA. ®Department of Biomolecular Engineering, University of California,
Santa Cruz, Santa Cruz, CA, USA. “Flomics Biotech, SL, Barcelona, Spain. ®Department of Molecular Physiology and Biological Physics, University

of Virginia, Charlottesville, VA, USA. ®Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA. "Department

of Computer Science, University of Helsinki, Helsinki, Finland. ®Center for Bioinformatics and Algorithmic Biotechnology, Institute of Translational
Biomedicine, St. Petersburg State University, St. Petersburg, Russia. ®Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver,
British Columbia, Canada. *°Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC,

USA. ?Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. 2?Walter and Eliza Hall
Institute of Medical Research, Parkville, Victoria, Australia. 2?Department of Statistics and Data Science, National University of Singapore, Singapore,
Singapore. **Department Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany. *Research Center for
Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan. ®Department of Neuromuscular Diseases, UCL Queen
Square Institute of Neurology, London, UK. ?’Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA. ?®Center for
Computational Biology, Johns Hopkins University, Baltimore, MD, USA. Department of Medical Biology, The University of Melbourne, Parkville,
Victoria, Australia. **Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. *'Barcelona Supercomputing Center,
Barcelona, Spain. *2Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA,
USA. *3Energy, Installations & Environment, Office of the Assistant Secretary of Defense, Washington, DC, USA. **Biobam Bioinformatics, Valencia,
Spain. *®*Genetics Institute, University of Florida, Gainesville, FL, USA. *Cardiff University, Cardiff, UK. ¥Institute for Human Genetics, University of
California, San Francisco, San Francisco, CA, USA. *®Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY, USA.
3European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK. “°Center for Integrative Medical Sciences, Laboratory for
Transcriptome Technology, RIKEN, Yokohama, Japan. “'Department of Genetics, Stanford University, Palo Alto, CA, USA. **Human Technopole, Milano,
Italy. “*Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, FL, USA. **Universitat
Pompeu Fabra (UPF), Barcelona, Spain. “°US Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, USA. *Institute for Human
Genetics, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA. “Brain and Mind Research Institute and Center for
Neurogenetics, Weill Cornell Medicine, New York City, NY, USA. “Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.

Nature Methods | Volume 21| July 2024 | 1349-1363

1362


http://www.nature.com/naturemethods
https://doi.org/10.1101/181677
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-3067-0166
http://orcid.org/0000-0002-9240-0102
http://orcid.org/0000-0002-0430-0989
http://orcid.org/0000-0001-7956-6215
http://orcid.org/0000-0003-3253-611X
http://orcid.org/0000-0002-7669-2934
http://orcid.org/0000-0002-5251-4869
http://orcid.org/0000-0001-6793-6557
http://orcid.org/0000-0002-2087-7016
http://orcid.org/0000-0001-5569-0705
http://orcid.org/0000-0001-8377-0841
http://orcid.org/0000-0003-3763-2987
http://orcid.org/0000-0003-2816-4608
http://orcid.org/0000-0003-0950-7839
http://orcid.org/0000-0003-4102-807X
http://orcid.org/0000-0003-2242-5942
http://orcid.org/0000-0001-7185-3711
http://orcid.org/0000-0001-7876-4877
http://orcid.org/0000-0001-6915-6765
http://orcid.org/0000-0003-0810-0084
http://orcid.org/0000-0002-0825-4991
http://orcid.org/0000-0003-0553-9227
http://orcid.org/0000-0002-9335-1760
http://orcid.org/0000-0002-0575-0308
http://orcid.org/0000-0002-6487-081X
http://orcid.org/0000-0002-2549-3142
http://orcid.org/0000-0002-1574-3363
http://orcid.org/0000-0003-0762-8637
http://orcid.org/0000-0002-7383-0609
http://orcid.org/0000-0002-4062-469X
http://orcid.org/0000-0003-1774-261X
http://orcid.org/0000-0001-7868-3882
http://orcid.org/0000-0002-7644-1916
http://orcid.org/0000-0001-5096-7701
http://orcid.org/0000-0002-0309-604X
http://orcid.org/0000-0002-4806-5140
http://orcid.org/0000-0003-0338-0603
http://orcid.org/0000-0002-1667-5294
http://orcid.org/0000-0001-5777-3520
http://orcid.org/0000-0002-8029-7160
http://orcid.org/0000-0002-7427-0164
http://orcid.org/0000-0002-8561-6239
http://orcid.org/0009-0000-6433-4585
http://orcid.org/0000-0002-8983-3417
http://orcid.org/0000-0003-4789-7495
http://orcid.org/0000-0001-6415-0532
http://orcid.org/0000-0002-2348-4162
http://orcid.org/0000-0003-3487-6572
http://orcid.org/0000-0003-4554-9040
http://orcid.org/0000-0001-7151-3207
http://orcid.org/0000-0002-0380-7171
http://orcid.org/0000-0001-7315-7349
http://orcid.org/0000-0001-7202-7243
http://orcid.org/0000-0002-3946-3112
http://orcid.org/0000-0002-5738-4477
http://orcid.org/0000-0002-4760-9302
http://orcid.org/0000-0002-9520-3382
http://orcid.org/0000-0001-9901-5613
http://orcid.org/0000-0003-3235-8130
http://orcid.org/0000-0002-7626-6222
http://orcid.org/0000-0002-4333-628X
http://orcid.org/0000-0002-9222-4241
http://orcid.org/0000-0002-4223-9947
http://orcid.org/0000-0002-4259-6362
http://orcid.org/0000-0001-9597-311X
http://orcid.org/0000-0002-7898-3073

Registered Report https://doi.org/10.1038/s41592-024-02298-3

“SUVA Cancer Center, University of Virginia, Charlottesville, VA, USA. *°Microbiology and Cell Science Department, Institute for Food and Agricultural
Sciences, University of Florida, Gainesville, FL, USA. ®'These authors contributed equally: Francisco J. Pardo-Palacios, Dingjie Wang, Fairlie Reese,
Mark Diekhans, Silvia Carbonell-Sala, Brian Williams, Jane E. Loveland, Maite De Maria. %>These authors jointly supervised this work: Christopher
Vollmers, Adam Frankish, Kin Fai Au, Gloria M. Sheynkman, Ali Mortazavi, Ana Conesa, Angela N. Brooks. [</e-mail: vollmers@ucsc.edu;
frankish@ebi.ac.uk; kinfai@med.umich.edu; gs9yr@virginia.edu; ali.mortazavi@uci.edu; ana.conesa@csic.es; anbrooks@ucsc.edu

Nature Methods | Volume 21| July 2024 | 1349-1363 1363


http://www.nature.com/naturemethods
mailto:vollmers@ucsc.edu
mailto:frankish@ebi.ac.uk
mailto:kinfai@med.umich.edu
mailto:gs9yr@virginia.edu
mailto:ali.mortazavi@uci.edu
mailto:ana.conesa@csic.es
mailto:anbrooks@ucsc.edu

Registered Report

https://doi.org/10.1038/s41592-024-02298-3

Methods

Computational evaluation of transcript isoform detection
and quantification

Evaluation of transcript isoform detection for Challenge 1. Four sets
of transcripts were used for the evaluation of transcript calls made on
human and mouse IrRNA-seq data:

1. Lexogen SIRV-Set 4 (ref. 36) (SIRV-Set 3 plus 15 new long SIRVs
with sizes ranging from 4 to 12 kb).

2. Comprehensive GENCODE annotation: human v.39, mouse
v.M28. GENCODE human v.38 and v.M27 were available at the
time of the LRGASP data release and new versions of GENCODE
were released after the close of LRGASP submissions.

3. Asetof transcripts from a subset of undisclosed genes that
were manually annotated by GENCODE. These transcripts are
considered high-quality models derived from LRGASP data.

4. Simulated data for both Nanopore (NanoSim) and PacBio
(IsoSeqSim) reads.

The rationale for including these different types of transcript
datais that each set creates a different evaluation opportunity but
also has limitations. For example, SIRVs and simulated data provide a
clear ground truth that allows the calculation of standard performance
metrics such as sensitivity, precision or FDR. Evaluation of SIRVs can
identify potential limitations of both library preparation and sequenc-
ing, but the SIRVs themselves represent a dataset of limited complexity
and the SIRV annotation is known to submitters. Higher complexity
can be generated when simulating long reads based on actual sample
data; however, read simulation algorithms only capture some potential
biases of the sequencing technologies (for example, error profiles)
and not of the library preparation protocols. In any case, both types
of dataapproximate but do not fully recapitulate real-world datasets.
Evaluation against the GENCODE annotation® represents this real
dataset scenario, althoughinthis case, the ground truthis not entirely
known. This limitation was partially mitigated by the identification of
asubset of GENCODE transcript models that were manually annotated
by GENCODE annotators and by follow-up experimental validation
for asmall set of transcripts using semi-quantitative PCR with reverse
transcription (RT-PCR). In this way, although an exhaustive validation
ofthereal datais not possible, estimates of the methods’ performances
canbeinferred. By putting together evaluation results obtained with
all these different benchmarking datasets, insights can be gained on
the performance of the library preparation, sequencing and analysis
approachesbothin absolute and relative terms.

The evaluation of the transcript models was guided by the use of
SQANTI3 categories (Box 1), implemented in the SQANTI3 software.
It incorporated additional definitions and performance metrics to
provide acomprehensive framework for transcript model assessment.
The evaluation considers the accuracy of the transcript models both
atsplicejunctionsand at3’and 5’ transcript ends. It took into account
external sources of evidence such as CAGE and QuantSeq data, poly(A)
annotation and support by lllumina reads. The evaluation script was
provided to participants at the time of datarelease.

Given the LRGASP definitions, evaluation metrics were specified
for eachtype of datatype.

SIRVs. To evaluate SIRVs, we extracted from each submission all tran-
script models that were associated with SIRV sequences after SQANTI3
analysis. This includes FSM and ISM isoforms of SIRVs and NIC, NNC,
antisense and fusion transcripts mapping to SIRV loci. The metrics for
SIRV evaluation are shown in Supplementary Table 9.

Simulated data. The simulated data contained both transcript models
based on the current GENCODE annotation and several simulated
novel transcripts that will result in valid NIC and NNC annotations.
Transcript models generated from simulated data were analyzed by

SQANTI3, providing a GTF file that includes all simulated transcripts
(GENCODE and novel) and excludes all transcripts for which reads were
notsimulated. The evaluation metrics for simulated dataare shownin
Supplementary Table 10.

Comprehensive GENCODE annotation. Submitted transcript models
were analyzed with SQANTI3 using the newly released GENCODE anno-
tation (v.39 for human and M28 for mouse) and different metrics were
obtained for FSM, ISM, NIC, NNC and ‘other’ models (Supplementary
Table 8).

High-confidence transcripts derived from LRGASPdata.Finally, a set of
manually curated transcript models was used to estimate the sensitivity
and precisiononreal data. Metrics that were applied in this transcript
setare TP,PTPand FN, sensitivity, positive detection rate, redundancy
and %LRC (Supplementary Table 11).

Analysis of transcript model identification across pipelines. We evalu-
ated the characteristics of the transcripts detected as afunction of the
experimental factors of the LRGASP study, for example, sequencing
platform or library protocol. To do that, we compared detected tran-
scripts across pipelines at the level of UICs, allowing for variability in
the 3’ and 5’ definitions, and annotated the pipelines that detected each
UIC. The location of BED files of the UICs consolidated models can be
found in the Data Availability section.

Transcript models were visualized in the UCSC Genome Browser**
using the Track Hub® facility. The track hub displayed consolidated
transcript models from the submissions with metadata, color-coding
and filtering by attributes. This allowed us to efficiently explore the
significant quality of LRGASP results in the genomic context.

Evaluation of transcript isoform quantification for Challenge 2. We
evaluated transcript isoform quantification performance with four
data scenarios (real data with multiple replicates, cell mixing experi-
ment, SIRV-Set 4 data and simulation data). We designed nine metrics
for performance assessment, both with and without known ground
truth (Box 1and Fig. 3a). The participants of Challenge 2 were able to
runthese evaluations by submitting their quantification results at the
website at https://Irrna-seq-quantification.org/, which generates an
interactivereportin HTML and PDF formats (see Data Availability and
Code Availability).

Ground truthis available. We evaluated how close the estimations and
the ground-truth values are by three metrics as follows:

denote 6 = (8,,0,,--,6,)"and © = (6,,6,,--,6,) " as the estimation
and ground truth of the abundance of transcriptisoformsinasample,
respectively. Here, we use TPM as the unit of transcript abundance.
Then, four metrics can be calculated by the following formulas:

SCC:this evaluates the monotonic relationship between the esti-
mation and the ground truth, whichis based on the rank for transcript
isoform abundance. It is calculated by

cov(rgy.rgs)

SCCop = ———%

rgo gy
where rg,and rg,are the ranks of ©and 6, respectively and cov (rg,, rg,)
is the covariance of the corresponding ranks and S, and S, are the
samples.d. of rgg and rg,, respectively.

MRD: this is the median of the relative difference of abundance
estimates among all transcript isoforms within a sample and is cal-
culated by

|6: - 6
)

i

MRD = median

(=12,
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A small MRD value indicates a good performance of abundance
estimation.

NRMSE: this provides a measure of the extent to which the
one-to-one relationship deviates from a linear pattern. It can be cal-
culated by

where s, is the sample s.d. of 0. A good performance of abundance
estimation should have a small value of NRMSE.

Inthe case of LRGASP, the above metrics were calculated using the
cell mixing experiment, simulation data and SIRVs.

Ground truth is unavailable. For multiple replicates under different
conditions without the ground truth, we evaluated a quantifica-
tion method by the ‘goodness’ of its statistical properties, including
irreproducibility, consistency and RE that is also calculated for
single-sample data.

IM: this statistic characterizes the average CV of abundance
estimates among different replicates (Supplementary Fig. 37), which

is calculated by
1 I G
— - 2
M = IG’;gZ:lcvig

Here, CV,isthe CV of log (B, + 1) (r = 1,2, -, R), which s calculated by

Si
CVy = —=2,
U,‘g

wheres;, and u,are the sample s.d. and mean of abundance estimates,
which are calculated by

1< ; 2
Sig = R Zl (IOg (eigr + l) - uig) ’
=

R
Uy = % z‘i log (Bgr +1).
r=

By plotting CV,, versus average abundance u;,, we examined how the
coefficient of variation changes withrespect to the abundance and the
ACVCwas calculated as asecondary statistic. With asmall value of irre-
producibility and ACVC scores, the method has high reproducibility.

Consistency: agood quantification method consistently charac-
terizes abundance patterns in different replicates. Here, we propose
a CM C(a) to examine the similarity of abundance profiles between
mutual pairs of replicates (Supplementary Fig. 38), which is defined as:

I G n -
Cla) = # >Y X P({log(b, +1) <alog (b, +1) < af

R i=1g=11<r<r,<R

or{log (Big, +1) > a,log (B, +1) > a}),

where a is a customized threshold defining whether a transcript is
expressed or not.

We plotted the abundance threshold a versus CM C(a) to evaluate
how C(a) changes with respect to the abundance threshold. The ACC
canbeused as the second metricto characterize the degree of similar-
ity of transcript expression. With alarge value of consistency and ACC
scores, the method has a higher similarity of abundance estimates
among multiple replicates.

RE:agood quantification method should have a high resolution of
abundance values. For agivensample, an RE statistic characterizes the
resolution of abundance estimation (Supplementary Fig. 39):

M
RE = — Y Ppln(Py) Where P, = —
m=1 j=1r[j

Here, the abundance estimates are binned into M groups, where n,,,
represents the number of transcript isoforms with the abundance
estimate & € [m - &, (m + 1) - @and a = max (6) /M. RE = Oif alltranscript
isoforms have the same estimated abundance values, while it obtains
alarge value when the estimates are uniformly distributed among
M groups.

Evaluation with respect to multiple transcript features: differ-
ent transcript features, such as exon-isoform structure and the true
abundance level could influence quantification performance. Thus,
we also evaluated the quantification performance for different sets
of genes/transcripts grouped by transcript features, including anum-
ber of isoforms, number of exons, ground-truth abundance values
and a customized statistic K-value representing the complexity of
exon-isoform structures.

K-value: most methods for transcript isoform quantification
assign sequencing coverage toisoforms; therefore, the exon-isoform
structure of ageneis akey factor influencing quantification accuracy.
Here, we used a statistic K-value (Supplementary Fig. 45; H.L., manu-
scriptin preparation) to measure the complexity of exon-isoform struc-
turesfor eachgene. Suppose agene ofinterest has /transcriptisoforms
and Eexonsand A =(a,),(i=1,2,---,;e=1,2,--- F) is the exon-isoform
binary matrix, where

a;. = 1,if the isoform i includes the exon e, 0, otherwise.

K-value is the condition number of the exon-isoform binary matrix 4,
whichis calculated by

Omax (4)

Kvalue = ,
Omin (A)

where 0,,,.(A) and 0,,,,(A) are the maximum and minimum singular
values of the matrix A4, respectively.

Evaluation of de novo transcript isoform detection without a
high-quality genome for Challenge 3. Challenge 3 evaluated the
applicability of IrRNA-seq for de novo delineation of transcriptomes
in non-model organisms to assess the capacity of technologies and
analysis pipelines for both defining accurate transcript models and
for correctly identifying the complexity of expressed transcripts at
genomic loci when genome information is limited.

The challenge includes three types of datasets. The mouse ES cell
transcriptome data (Supplementary Table 2) was used to request the
reconstruction of mouse transcripts without making use of the avail-
able genome or transcriptome resources for this species. Models were
compared to the true annotations set with the same parameters as in
Challenge 1. As FASTA rather than GTF files were submitted in Chal-
lenge 3, we used the same mapper, minimap2, for all the submissions
to transform sequence information into agenome annotation file.

While this dataset allows for a quantitative evaluation of tran-
script predictions in Challenge 3, it might deliver unrealistic results
if analysis pipelines were somehow biased by information derived
from previous knowledge of the mouse genome. To avoid this prob-
lem, a second dataset was used corresponding to the Florida mana-
tee’swhole-blood transcriptome (Trichechus manatus latirostris). An
lllumina draft genome of this organism exists (GCF_000243295.1) and
the LRGASP consortium has generated along-read genome assembly
tosupporttranscript predictions for this species (GCA_030013775.1).
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Additionally, lllumina RNA-seq data were generated from manatee
blood samples. As no curated gene models exist for the manatee,
Challenge 1 metrics cannot be applied. Instead, the evaluation of
Challenge 3 submissions involved a comparative assessment of the
reconstructed transcriptomes and experimental validation (see ‘Exper-
imental validation of transcript models’ section). For computational
assessment, the following parameters were calculated:

a. Total number of transcripts

b. Mappingrate of transcripts to the draft genomes (for pipelines
not using genome data)

Length of the transcript models

Number of mono- and multi-exon transcripts

Percentage of junctions with lllumina coverage

Percentage of transcripts with Illumina coverage at all junctions
Percentage junctions and transcripts with non-canonical
splicing

Percentage of transcripts with predicted coding potential
Predicted RT-switching incidence

Predicted intra-priming

Number of transcripts/loci

BUSCO? analysis:

i. Number of complete BUSCO genes detected by a single tran-
script (complete single-copy)

ii. Number of complete BUSCO genes detected by multiple
transcripts (completely duplicated)

iii. Number of fragmented BUSCO genes detected (fragmented)

iv. Number of BUSCO genes not detected (missing)

The BUSCO analysis used the eutherian BUSCO (lineage eutheria_
odb10) gene set. We do not expect a BUSCO-complete transcriptome
recovery as only one tissue or cell type per organism was sequenced.
We expect that good-performing pipelines obtain longer transcripts,
wellsupported by Illumina data, with a high mapping rate to the draft
genomes, most of them coding and with a higher number of complete
BUSCO genes.

Finally, as both the mouse and manatee datasets contained
spiked-in SIRVs, they were used as the third dataset to compute per-
formance for Challenge 3 using the same type of metrics as described
for Challenge1.

@™o an

bl S

GENCODE manual annotation

Expert GENCODE human annotators sought to establish the baseline
for annotating genuine alternative isoforms using the long transcrip-
tomic data generated by the LRGASP consortium at selected loci. An
exhaustive and fully manualinvestigation of all aligned reads from the
sequence datagenerated by the LRGASP consortium was undertaken
atselected loci, and allisoforms passing GENCODE annotation criteria
that were present were captured as annotated transcript models.

GENCODE expert human annotation has very high sensitivity and
specificity as every read can be individually considered on its merits for
use in supporting a transcript model that is subsequently included in
the annotation set. Consequently, the fully human annotation process
where every read is manually reviewed and every transcript model
built manually is time-consuming. The speed of the process limits the
number of loci that could be considered for the LRGASP project, with
50 human and 50 mouse loci being selected.

The selection of loci was random within constraints based on the
properties of the locus, identification of aligned reads in all libraries
sequenced (where possible), the number of aligned reads and an indi-
cation of the presence of valid isoforms at the locus.

Properties required of the locus to be considered for annotation
included the presence of multiple exons and compactness. Loci with
very long introns were excluded. While criteria required that (where
possible) all libraries had atleast one aligned read at the locus, a maxi-
mum number of aligned reads also had to be added. This additional

requirement was necessary for two reasons: first, to allow the manual
consideration of every read at the locus to determine whether it could
support an isoform, and second, because the large number of reads
generated from the LRGASP sequencing experiments exposed bugs
affecting the consistent display of transcripts when loaded into the
Otter/Zmap*° tools used for manual annotation, raising the possi-
bility of erroneous exclusion of reads and transcripts that failed to
display properly.

Preliminary analysis was conducted to identify plausible alterna-
tive splicingin aligned reads using Tmerge’ at most permissive settings
to createaset of putative transcripts from the LRGASP long transcrip-
tomicdata. Theintrons of this set of putative transcripts were assessed
using recount3 (ref. 29) data and those putative transcripts where all
introns were supported by at least two RNA-seq reads from the GTEx"
dataset captured by recount3 analysis were considered to be alterna-
tively spliced for locus selection. The transcript models generated at
this stage were only used to select loci for manual annotation and were
notdirectly included in the GENCODE annotation.

A long list of human loci fitting the criteria for annotation was
then compared to an equivalent list derived from a similar analysis in
mouse and candidate loci were defined. Human and mouse shortlists
were manually reviewed to confirm that the selection criteria were
met. Genuine alternative splicing events were maximized, and, where
possible, orthologous loci were selected for humans and mice.

Expert humanannotation was carried outindependently for each
library prep method. Independence was defined as not using reads
fromonelibrary prep tosupportreadsinanother. For example, where
alonger or higher-quality read from one library prep method could
supporttheinterpretationofatruncated or low-quality read inanother
library, it was not used to support the extension of a transcript model
supported by the shorter or lower-quality read.

Effectively, this necessitated 12 independent sets of annotation,
6 in humans and 6 in mice, to support complete flexibility in down-
stream analysis.

While annotation was performed independently for eachlibrary,
orthogonal data external to LRGASP were used to support the inter-
pretation of the long transcriptomic data. Specifically, recount3 intron
datawere used tosupporttheinterpretation of splice sitesand Fantom
CAGE* data, the definition of TSS and thereby the 5’ completeness of
a transcript. External long transcriptomic datasets were not used to
support this annotation in any way.

Alltranscript models passing standard Ensembl-GENCODE manual
annotation criteria for splicing and supported by at least one long
transcriptomic read were annotated as transcript models. GENCODE
annotation criteria require that introns are canonical (GT-AG, GC-AG
or AT-AC with evidence of U12 splicing) or those non-canonical introns
aresupported by evidence of evolutionary conservation or constraint
of the splice site. Read data were required to align such that a canoni-
calintron could be unambiguously resolved, which generally requires
thatthereis no equally plausible alignment of the read that could give
a ‘non-canonical intron’, for example, where sequence aligns equally
well at the putative donor and acceptor splice site but can be forced
into a canonical splice site by the initial alignment method or where
aread has an indel near a splice site that leads to an error in its initial
alignment. Where necessary, annotators could realign theread to the
genomic sequence using various methods, including the Exonerate
pairwise alignment software and the Dotter*® dot-plot tool. Introns
identified by spanning RNA-seq reads by the recount3 project were
used as orthogonal data to support the interpretation of splice sites.

Transcript models were extended to the full length of the homol-
ogy betweentheread (orreads) supportingatranscript model and the
genome sequence. The 5’ transcript ends were not modified (clipped
or extended) based on annotation already present at the locus before
LRGASP (including the MANE Select** transcript). While Fantom
CAGE datawere used toidentify TSSs at lociin both humans and mice,
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CAGE data were not used to modify the TSSs. Similarly, at the 3’ end,
transcripts were extended to the full length of the homology between
the read and the genome. Where a poly(A) site was identified, the
transcript model was not extended further unless another, longer read
with the sameintron chainwasidentified. Inaddition to the annotation
of alternative isoforms, expert human annotators also defined sets
of polyadenylation sites and signals at every locus. Again, these were
annotated independently per library prep based on the presence of a
poly(A) tailonone or morereads aligned to the locus and a poly(A) site
hexamer (AATAAA or ATTAAA) within 50 bases upstream of the poly(A)
site. Multiple poly(A) sites and their corresponding poly(A) signals
could be annotated at any locus; however, only one poly(A) site was
annotated per poly(A) signal.

In total, 635 transcript models and 641 poly(A) sites were anno-
tated in humans. The mean number of isoforms annotated per locus
per library ranged from 2.58 (cDNA-PacBio) to 1.28 (CapTrap-PacBio)
in humans and from 2.5 (cDNA-PacBio) to 1.38 (dRNA-ONT) in mice.
The meannumber poly(A) sites annotated per locus per library ranged
from 2.42 (cDNA-PacBio) to 1.12 (dRNA-ONT) in humans and 2.26
(CapTrap-ONT) to 1.2 (ARNA-ONT) in mice. The loci with the most
annotated alternative splicing were ANGPT1 (cDNA-PacBio library)
RERG ZADH2 (CapTrap-ONT) with six isoforms. ZADH2 also had the
most poly(A) sites, with 12 reported in three libraries (cDNA-PacBio,
cDNA-ONT and CapTrap-ONT). For mice, nineisoforms were annotated
at Rcanl (cDNA-PacBio), whereas Gan displayed the most diversity
in polyadenylation with ten poly(A) sites annotated (cDNA-PacBio).

Expert human annotators reviewed transcript models that were
included in the annotation set but failed to validate by RT-PCR and
also, aset of reads was rejected as supporting valid transcript models
by the first pass annotation. In both cases, the initial annotation of the
transcript model was supported by review (Supplementary Data14).

Experimental validation of transcript models

Gene selection process in WTC11 cells for Challenge 1. To
semi-systematically select isoforms for comparison in the validation
experiments, we binned isoforms based on the frequency by which
they were detected in certain pipeline parameters. Isoformtest groups
were defined based on their presence across various pipelines and
library preparations. In general, during the isoform selection stage,
we prioritized isoforms with expression higher than 10 TPM, wher-
ever possible, and isoforms that contained distinguishable sequence
regions. During the primer design process, we considered as ‘present’
allisoforms in the GENCODE annotation and all isoform models sub-
mitted by all participants.

We chose groups of novel isoforms (NIC or NNC) that were prefer-
entially detected by pipelines using ONT versus PacBio platform, using
the cDNA preparations, and a control group of isoforms frequently
detected by all pipelines across both platforms. Additionally, we chose
known (FSM) isoforms for all three of these groups.

Targeted PCR validation of isoforms in WTC11. cDNA was synthesized
fromreplicate 1and replicate 3 of the WTC11 total RNA and used as a
template for two sets of PCR reactions, respectively. After targeted PCR,
amplicons were analyzed via agarose electrophoresis and sizes were
estimated. We found that at least 60% of all targets produced a single
band correspondingto the expected ampliconsize, indicatinga mod-
erately high success rate. All amplicons were pooled and sequenced
with ONT minION (R10.4.1) and PacBio Sequel Il. Amplicon reads were
aligned to the genome as well as expected target sequences (a subset
of the test transcript) and all targets with at least one gapless (<2 bp),
highidentity long-read alignment was considered validated.

Analysis of the amplicon reads to determine the support of targets.
Using minimap2 (v.2.24-r1122), we aligned the RT-PCR sequences to
the human genome assembly, with the targeted transcripts serving as

junctionspecifications. We aligned the expected amplicon sequences
extracted from the genome to control for difficult-to-align cases. We
aligned the ONT sequences with the ‘splice’ minimap2 preset, while
using the ‘splice:hq’ preset for the PacBio and control sequences.

Wealigned the WTC11RT-PCR sequences to the GRC3h38 assem-
bly, which includes SIRVs and an EBV sequence provided to LRGASP
participants (syn25683364). In addition to genomic alignments, we
aligned the RT-PCR sequences to a reference composed of the pre-
dicted amplicon sequences. Furthermore, we aligned the amplicon
alignments to the amplicon reference. This approach facilitated the
identification of difficult-to-align amplicons to the genome and cases
where alignments to different isoforms might not be detected. For
ONT sequences, we used the minimap2 ‘map-ont’ preset for ampli-
con reference alignments and the ‘map-pb’ preset for the PacBio and
control alignments.

We evaluated each data class (ONT, PacBio or control) by examin-
ing the counts of supporting reads for each amplicon on the genomic
and amplicon reference alignments. To validate intron chains in the
genomic alignments, we ensured the read alignment had the same
intron chain as the targeted amplicon. We used minimap2 to identify
intronsinreads, rejecting those with adjacent indels.

For the ampliconreference alignments, we evaluated two metrics:
indel similarity and the maximum number of indels. The similarity
metric is length-independent, while the absolute difference can dis-
tinguish subtle differences such as NAGNAG split sites. We filtered the
intron chain results for only those reads with no more than two bases
differenceinindels.

We gathered these statistics in a table (Supplementary Data 15)
and manually classified them as ‘supported’, ‘likely’ or ‘unsupported’.
In cases where there were low read counts or conflicted data (generally
less than 50), we examined them using IGV*.

One confounding issue when using RT-PCR for validation is that
the primers crossingintrons may result in the ends of some amplicons
not aligning across the introns. In such cases, the ends would some-
times align into the intron with a similar sequence while the remain-
der of the amplicon was soft-clipped. The control alignments of the
amplicons are a good indication of this issue, and targets exhibiting
the unaligned end regions could be classified as supported based on
other evidence.

An interesting case was the ALG6 WTC11 target. Here minimap2
forced arare but annotated GT-AT U12 intron into a GT-AG intron and
genomic deletion, leading to none of the pipelines correctly identifying
theisoforms of this gene containing thisintron (Supplementary Fig. 51).

To estimate the counts across WTC11 datasets for each experimen-
tally tested transcript, long reads derived from different combinations
of library preparation and sequencing methods were first mapped to
hg38 using minimap2 (PacBio, minimap2 -ax splice:hq -uf-MD -t 40;
ONT, minimap2-ax splice-MD-t30; and ONT direct RNA-seq, minimap2
-ax splice -uf-k14-MD-t30). Primary read alignments were converted
from BAM to GTF format to extract the UICs for each read. Then, read
counts matching the UIC of agiven transcript were summed across all
WTCl1datasets. The number of WTC11 datasets where at least one read
supported the corresponding UIC was computed, with R2C2 samples
with and without size selection being treated independently.

Targeted PCR validation of isoforms in manatee. As the manatee
transcriptome is not annotated, we employed ab initio gene finding
and transcript annotation. Genes were predicted from the manatee
genome assembled as part of this LRGASP project and the program
GeneMark*®. BUSCO?® analysis was used to evaluate the completeness
of the transcript assembly and for annotation of the proteins repre-
sented from translations of the transcript sequences, thus quantifying
the coverage and completeness of the open reading frames.

We targeted a small set of relevant genes for the immune system.
Tovalidate our approach, we selected two genes for which aclear single
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isoform was consistently identified across pipelines: Secreted phos-
phoprotein1(SPPI) and Granzyme K (GZMK).Secreted phosphoprotein
lisinvolvedinimmune regulation and tumor progression****and GZMK
modaulates the proinflammatory immune cytokine response®.

Next, we selected six genes that were present in the BUSCO data-
base, showed variability in the number of isoforms predicted by each
pipeline and had arole in the immune response: interleukin 2 (/L2),
interleukin7 (IL7),interleukin1( (/L1B), Pentraxin 3 (PTX3), transporter
1, ATP binding cassette subfamily Bmember (7API) and TNF a-induced
protein 3 (TNFAIP3).IL2is a cytokine that regulates survival, prolifera-
tion and differentiation of T cells***°. /L7 is important for B and T cell
development. /L1B is an inflammatory cytokine, an amplifier of an
immune response, involved in cell proliferation, differentiation and
apoptosis’. PTX3regulates complement activation of theimmune sys-
temintheinnateimmunesystemandisin the same family of proteins as
C-reactive protein®’. TNFAIP3is anegative regulator of inflammation and
immunity and a target for drug development". /L2, PTX3 and TNFAIP3
had one or threeisoforms predicted by pipelines using only ONT data.
IL7had threeisoforms predicted by ONT and three by PacBio pipelines.
Meanwhile, TAPI had four isoforms predicted only by ONT pipelines.
IL1Bhad11isoforms predicted by ONT data and one by PacBio.

For manual target selection, a similar protocol employed for
Challenge 1targets, using Primers-Juju, was used to select regions of
isoforms with UJCs that could be confirmed by the generation of aPCR
amplicon product. Whenever possible, the full span of the isoform,
up to -2 kb, was selected. In some regions, multiple primer sets were
designed.

Aliquots of the original nineindividual manatee RNA samples used
in Challenge 3 were stored at -80 °C until the validation stage (Sup-
plementary Data 16). RNA quality was re-verified using BioAnalyzer
PicoChip for mRNA (Agilent). Approximately 400 ng of RNA from each
manatee sample was pooled to prepare cDNA. cDNA was synthesized
using Maxima H minus First Strand cDNA Synthesis kit (Thermo Scien-
tific). Following the manufacturer’s instructions, we used a combina-
tion of oligonucleotide dT and random hexamer primers for the cDNA
synthesis. Controls lacking RT enzyme and controls lacking template
were prepared in tandem with test samples.

Primer selection and RT-PCR. In the case of the manatee, two or four
primer sets were designed for each gene of interest. The process used
for primer design was similar to that used for Challenge 1, using a
semi-automated approach (see Supplementary Methods and Sup-
plementary Data 17 for the list of primers).

Manatee PCR was performed using KAPA HiFi HotStart Ready Mix
(Roche) due toits high sensitivity and low error rate. Approximately
0.01 ng of cDNA was used as a template for individual PCR reactions.
PCR protocolwas also atouchdown approach with aninitial annealing
temperature of 70 °Cfor15s, with areduction of this temperature1°C
percycle during12 cycles. The second amplification phase was carried
out for 21 cycles and 2 min of extension. When a PCR fragment larger
than 1,500 pb was expected, another PCR was run for that primer set,
including 25 cycles and 5 min of extension. PCR products were quanti-
fied and sized using an Agilent Bioanalyzer7000 DNA chip (Agilent).

The obtained PCR products were cleaned using a QIAquick PCR
purification kit (QIAGEN). Al PCR products were pooled as an equimo-
lar pool for PacBio sequencing. We prepared the equimolar solution
based on the BioAnalyzer molarity quantification for the band corre-
spondingtotheintended PCR product. Additionally, 25 pl of each PCR
product that did not show a quantifiable band on the BioAnalyzer was
addedto the final sample equimolar pool for sequencing.

Analysis of the long-read amplicon reads was conducted in the
same manner as for Challenge 1. The manatee RT-PCR sequences
were aligned to the pre-submission manatee genome assembly usedin
LRGASP (GenBank accessionno.JARVKPOO0000000.1). The resulting
statistics were gathered (Supplementary Data18) for manual analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Anoverview and documentation about the LRGASP Consortiumcanbe
found at https://www.gencodegenes.org/pages/LRGASP/. Biological
sequencing data are available from the ENCODE Portal (https://www.
encodeproject.org/) and are described in the RNA-seq datamatrix (Sup-
plementary Datal). Experimental dataused in GENCODE manual evalu-
ation: ssCAGE WTCI1 (Gene Expression Omnibus (GEO): GSE185917);
WTCI11 QuantSeq (ENCODE: ENCSR322MWL, GEO: GSE219685); H1
QuantSeq (ENCODE: ENCSR813A0B, GEO: GSE219788); and H1-DE
QuantSeq (ENCODE: ENCSR198UNH, GEO: GSE219571). Reads gener-
ated for experimental validation are available in the NCBI Sequence
Read Archive: SRR24680099, manatee whole-blood RT-PCR mixed
with human WTC11; GCA_030013775.1, manatee Nanopore genome
assembly, BioProject PRINA939417 (a pre-submission version of the
assembly, along with SIRVs, was used in LRGASP at https://cgl.gi.ucsc.
edu/data/LRGASP/data/references/Irgasp_manatee_sirvl.fasta.gz);
SRR24680098, human WTCI11 mixed with manatee whole-blood
RT-PCR; and SRR23881262, LRGASP WTCI11 experimental validation
RT-PCR/ONT. Other data provided to participants, participant sub-
missions, evaluationresults and data for generating the paper figures
areavailable from the LRGASP project at https://cgl.gi.ucsc.edu/data/
LRGASP/. A UCSC Browser hub with the consolidated models and
other data is also available here. LRGASP reference genomes and
annotations: https://cgl.gi.ucsc.edu/data/LRGASP/data/references/.
LRGASP simulation data: https://cgl.gi.ucsc.edu/data/LRGASP/data/
simulation/. Participant submissions: https://cgl.gi.ucsc.edu/data/
LRGASP/submissions/. Evaluationresults for all challenges: https://cgl.
gi.ucsc.edu/data/LRGASP/results/. Spearman correlations of TPMs
for each Challenge 2 pipeline: https://cgl.gi.ucsc.edu/data/LRGASP/
paper/Spearman_correlation_of TPM_values.zip. Non-redundant
genome annotations derived from the submitted annotations: https://
cgl.gi.ucsc.edu/data/LRGASP/annotations/. UCSC Browser Hub with
LRGASP evaluation data for human, mouse and manatee: LRGASP
Hub, Hub URL. LRGASP-consolidated models description and BED
files: https://cgl.gi.ucsc.edu/data/LRGASP/consolidated-models/
LRGASP-consolidated-models.html. Simulation ground truth,
including lists of incorrectly duplicated artificial transcripts: human
simulation ground truth and mouse simulation ground truth. Data for
generating Challenge 1 figures for the paper: https://cgl.gi.ucsc.edu/
data/LRGASP/paper/Challengel_Figures_Data.zip. Datafor generating
Challenge 2 figures for the paper: https://cgl.gi.ucsc.edu/data/LRGASP/
paper/Challenge2_Figures_Data.zip. Data for generating Challenge
3 figures for the paper: https://cgl.gi.ucsc.edu/data/LRGASP/paper/
Challenge3_Figures_Data.zip.

Code availability

LRGASP-specific code is available at the GitHub LRGASP project
(https://github.com/LRGASP/). LRGASP submission commands, which
include documentation on submission metadataand datafiles: https://
github.com/LRGASP/Irgasp-submissions/. Read simulation pipeline:
https://github.com/LRGASP/Irgasp-simulation/. Challenge 1 evaluation
code: https://github.com/LRGASP/Irgasp-challenge-1-evaluation/.
Challenge 2 evaluation code: https://github.com/LRGASP/Irgasp-
challenge-2-evaluation/. Challenge 3 evaluation code: https://github.
com/LRGASP/Irgasp-challenge-3-evaluation/. Code to gener-
ate Challenge 1 figures for the paper: https://github.com/LRGASP/
Challengel_Figures_Code/. Code to generate Challenge 2 figures for
the paper: https://github.com/LRGASP/Challenge2_Figures_Code/.
Codetogenerate Challenge 3 figures for the paper: https://github.com/
LRGASP/Challenge3_Figures_Code/. Primers-Juju source codeis avail-
ableat https://github.com/diekhans/PrimerS-JuJu/and was developed
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by The University of California, Santa Cruzand El Centre de Regulacio
Genomica. Code used for analysis of long-read RNA-seq data used by
submitters is described in the ‘Computational pipeline description
from submitters’ section in the Supplementary Information.
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Sample size RNA from each human and mouse sample was obtained and sequenced in biological triplicate. This is a minimum standard in the RNA-seq
field.

Data exclusions  No data exclusions
Replication All data and code are made publicly available.
Randomization  Randomization is not relevant to our study as this did not involve any experiments

Blinding For benchmarking computational tools, multiple benchmarks were blinded or unknown to submitters upon submission.
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Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) ENCODE cell lines WTC11 (Gladstone Stem Cell Core; cat. # human iPSC line: WTC), H1 (WiCell; cat# WAO1), and a Mouse ES

>
Q
]
(e
D
1®)
O
=
o
c
-
(D
1®)
O
=
5
(@]
wn
(e
3
=
Q
A




Cell line source(s)

Authentication

F129-1 (S129 Sv/Jae X Cast) cell line (4D Nucleome Consortium, 4DN Biosource ID: ADNSRMG5APUM) were used.

Short tandem repeat authentication was not performed for cell lines.

Mycoplasma contamination WTC11 and H1 cell lines were routinely tested for mycoplasma and none as detected. The mouse ES cell line was tested with

MycoAlert PLUS (Lonza # LTO7-710) and none detected

Commonly misidentified lines  None

(See ICLAC register)
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Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied-
Describe-any-atuthentication-procedures foreachseed stock-tused-ornovel-genotype-generated—Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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