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5. Abstract 19 

Memory reactivation during Non-Rapid Eye Movement (NREM) sleep is important for 20 

memory consolidation but it remains unclear exactly how such activity promotes the 21 

development of a stable memory representation. We used Targeted Memory Reactivation 22 

(TMR) in combination with longitudinal structural and functional MRI to track the impact of 23 

reactivating memories in one night of sleep over the next 20 days. Our exploratory analysis 24 

showed that such cued reactivation leads to increased precuneus activation 24 h post-TMR. 25 

Furthermore, the behavioural impact of cueing, which only emerged 20 days later, was 26 

predicted by both functional and structural TMR related changes in sensorimotor cortex. 27 

These preliminary findings demonstrate that TMR leads to neuroplasticity, starting as early as 28 

24 hours after the manipulation, and evolving over the next few weeks. 29 

6. Keywords 30 

sleep, MRI, TMR, plasticity, EEG, memory  31 
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1 Introduction 32 

Memory consolidation is a process through which newly encoded memories become more 33 

stable and long-lasting. Consolidation is thought to involve repeated reinstatement, or 34 

reactivation of memory traces which allows their re-coding from short-term to long-term 35 

store (McClelland et al., 1995). Reactivation of learning-related brain activity patterns during 36 

sleep has been shown to predict subsequent memory performance (Deuker et al., 2013; 37 

Peigneux et al., 2004) and thus to play a critical role in memory consolidation (Diekelmann & 38 

Born, 2010; Born & Wilhelm, 2012). However, it is unclear exactly how such offline rehearsal 39 

promotes the development of a stable memory representation. Here, we set out to 40 

investigate the neuroplasticity underlying memory reactivation during sleep using Targeted 41 

Memory Reactivation (TMR) and magnetic resonance imaging (MRI). 42 

 43 

TMR has recently emerged as a tool to study memory reactivation. This technique involves 44 

re-presenting learning-associated cues during sleep (Rasch et al., 2007), thereby triggering 45 

reactivation of the associated memory representation and biasing their consolidation (Bendor 46 

& Wilson, 2012). In humans, this manipulation leads to strong behavioural effects (Antony et 47 

al., 2012; Schönauer et al., 2014; Cousins et al., 2016; Rakowska et al., 2021), resulting in 48 

better recall of memories that were cued through TMR compared to those that were not 49 

cued. Functional activity associated with cueing has been investigated during and 50 

immediately after sleep (Rasch et al., 2007; Cousins et al., 2016; van Dongen et al., 2012; 51 

Shanahan et al., 2018). However, little is known about precisely how the memory 52 

representations targeted by TMR evolve over longer time periods. We have previously 53 

reported behavioural effects of memory cueing during sleep twenty days post-manipulation 54 
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(Rakowska et al., 2021). Yet, the functional plasticity underlying such benefits is unknown. 55 

Furthermore, whether TMR can impact on brain structure and which regions support sleep-56 

dependent memory consolidation in the long term, remain to be established. 57 

 58 

In this study, we used TMR to determine if repeated reactivation of a memory trace during 59 

sleep engenders learning-related changes in the brain. We tracked such impacts over several 60 

weeks using both functional and structural brain imaging (Fig.1A) and hypothesized that 61 

memory cueing during sleep would lead to rapid plasticity within the precuneus, a structure 62 

which houses newly formed memory representations or ‘engrams’ (Brodt et al., 2018). This 63 

region was of special interest since it has been shown to respond to repeated learning-64 

retrieval epochs which help to strengthen a memory (Brodt et al., 2018) and can be thought 65 

of as a proxy for memory reactivation in sleep (Himmer et al., 2019).  66 

 67 

We chose to focus specifically on a Serial Reaction Time Task (SRTT) because the importance 68 

of sleep in motor sequence learning is well established (Loganathan, 2014; Walker, 2005). 69 

Furthermore improvements on motor tasks (Walker et al., 2003) and the associated structural 70 

changes (Kodama et al., 2018) have been shown to persist over time, with the same being 71 

true for the TMR effects (Rakowska et al., 2021). Our participants were trained on a Serial 72 

Reaction Time Task (SRTT), learning two motor sequences of 12-item button presses. Each 73 

sequence was associated with a different set of auditory tones (Fig.1B) but only one was 74 

reactivated during subsequent NREM sleep (Fig.1C). During learning and two post-sleep re-75 

test sessions (24 h and 10 days post-TMR), participants were scanned with structural MRI (T1-76 

weighted) and functional MRI (fMRI) acquired during SRTT performance. We were thus able 77 

to perform exploratory analysis and compare brain activity during the cued and uncued 78 
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sequence performance, as well as scrutinising brain structure after the first 10 days post -79 

stimulation. Twenty days post-TMR participants were again re-tested on the SRTT, now 80 

outside the scanner (online testing at home), allowing us to examine the long-term impacts 81 

of TMR on behaviour and relate this to functional and structural changes in the brain. The 82 

resultant dataset enabled us to investigate when the behavioural impacts of cueing emerge, 83 

and to study the relationships between structural, functional, and behavioural plasticity post-84 

TMR. Importantly, while we were interested in the precuneus as a putative seat for the 85 

‘engram’, we also expected the long-term storage of the memory engram to prevail in 86 

strongly task-related areas that are known to respond to TMR such as the hippocampus, 87 

striatum, cerebellum (Cousins et al., 2016). Additionally, the sensorimotor cortex is so clearly 88 

necessary for this task that we expected responses there. 89 
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 90 

Fig. 1. Study design and methods. (a) A schematic representation of the experimental sessions. SRTT 91 

and one or more questionnaires were delivered in each session. During S1-S3, SRTT was split in half, 92 
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with the first half completed in the 0T ‘mock’ scanner (to acclimate subjects to the scanner 93 

environment) (grey) and the second half in the 3T MRI scanner during fMRI acquisition (blue) (S1), or 94 

vice versa (S2-S3). T1w data was always acquired before fMRI. S1 also involved a stimulation night in 95 

the lab which the participants spent asleep and with the electroencephalography (EEG) cap on. During 96 

S4 SRTT data were acquired outside the MRI scanner and an explicit memory task was delivered at the 97 

very end of the study (see Fig.S4 for results). (b) Two sequences of the SRTT. Only the first few trials 98 

are shown. Visual cues appeared at the same time as the auditory cues and the participants were 99 

instructed to push the key/button corresponding to the image location as quickly and accurately as 100 

possible. (c) TMR protocol. Tones associated with one sequence were played during stable N3 and N2 101 

(grey bars on the hypnogram). One repetition of the cued sequence (dark grey rectangles) was followed 102 

by a 20 s break during which no sounds were played (light grey rectangles). Each sequence repetition 103 

comprised 12 tones (depicted as coloured notes) with inter-trial interval jittered between 2,500 and 104 

3,500 ms (light grey vertical bars). S1-S4: Session 1 – Session 4; EHI: Edinburgh Handedness Inventory; 105 

PSQI: Pittsburgh Sleep Quality Index; SQ: Stanford Sleepiness Scale Questionnaire; SRTT: Serial 106 

Reaction Time Task; fMRI: functional Magnetic Resonance Imaging; T1w: T1-weighted scan. 107 

2 Methods 108 

2.1 Participants 109 

A pre-study questionnaire was used to exclude subjects with a history of drug/alcohol abuse, 110 

psychological, neurological or sleep disorders, hearing impairments, recent stressful life 111 

event(s) or regular use of any medication or substance affecting sleep. Participants were 112 

required to be right-handed, non-smokers, have regular sleep pattern, normal or corrected-113 

to-normal vision, no prior knowledge of the tasks used in the study, and no more than three 114 

years of musical training in the past five years as musical training has previously been shown 115 
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to affect procedural learning (Romano Bergstrom et al., 2012). None of the participants 116 

reported napping regularly, working night shifts or travelling across more than two time-117 

zones one month prior to the experiment. 33 volunteers fulfilled all inclusion criteria and 118 

provided an informed consent to participate in the study, which was approved by the Ethics 119 

Committee of the School of Psychology at Cardiff University (ethics number 120 

EC.19.06.11.5651R3A2) and performed in accordance with the Declaration of Helsinki. All 121 

participants agreed to abstain from extreme physical exercise, napping, alcohol, caffeine, and 122 

other psychologically active food from 24 h prior to each experimental session. Finally, before 123 

their first session, participants were screened by a qualified radiographer from Cardiff 124 

University to assess their suitability for MRI and signed an MRI screening form prior to each 125 

scan. 126 

 127 

Three participants had to be excluded from all analyses due to: technical issues (n = 1), 128 

voluntary withdrawal (n = 1), and low score on the handedness questionnaire (indicating 129 

mixed use of both hands), combined with a positive slope of learning curve during the first 130 

session (indicating lack of sequence learning before sleep) (n = 1). Hence, the final dataset 131 

included 30 participants (16 females, age range: 18 – 23 years, mean ±SD: 20.38 ± 1.41; 14 132 

males, age range: 19 – 23 years, mean ±SD: 20.43 ± 1.16). However, due to the COVID-19 133 

outbreak, six participants were unable to complete the study, missing all data from either one 134 

(n = 1) or two (n = 5) sessions. Hence, n = 25 for all data collected during S3 and n = 24 for S4. 135 

The final dataset included one participant who could not physically attend S3. They performed 136 

the SRTT online, but their MRI data (functional, fMRI and structural, T1w) could not be 137 

collected and therefore the sample size for the MRI analyses of S3 had to be further decreased 138 

by one. Two additional participants were excluded from the fMRI analysis of S2 due to MRI 139 
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gradient coil damage during fMRI acquisition (n = 1) and failure to save the fMRI data (n = 1). 140 

Hence, the final sample size for fMRI was n = 30 for S1, n = 28 for S2 and n = 24 for S3, whereas 141 

the final sample size for analysis of T1w data was n = 30 for S1, n = 30 for S2 and n = 24 for 142 

S3. Finally, one participant had to be excluded from all the analyses concerning EEG due to 143 

substantial loss of data caused by failure of the wireless amplifier during the night. However, 144 

the TMR procedure itself was unaffected and therefore this participant was included in the 145 

behavioural and MRI analyses.  146 

2.2 Experimental Design 147 

The experiment consisted of four sessions (Fig.1A), all scheduled for ~8 pm. Upon arrival for 148 

the first session, participants completed Pittsburgh Sleep Quality Index (PSQI) (Buysse et al., 149 

1989) to examine their sleep quality over the past month and Stanford Sleepiness 150 

Questionnaire (SQ) (Hoddes et al., 1973) to assess their current level of alertness. A short 151 

version of the Edinburgh Handedness Inventory (Veale, 2014) was also administered to 152 

confirm that all subjects were right-handed before the learning session took place. Due to 153 

time constraints at the MRI scanner the learning session had to be split into two parts. The 154 

first half of the SRTT blocks (24 sequence blocks) were performed in a 0T Siemens ‘mock’ 155 

scanner which also helped to acclimate subjects to the scanner environment. The second half 156 

of the SRTT blocks (24 sequence blocks + 4 random blocks) was performed in a 3T Siemens 157 

MRI scanner during fMRI acquisition and used for functional data analysis. fMRI acquisition 158 

was preceded by a structural scan (T1w) and followed by a B0 fieldmap (see section 2.6 MRI 159 

data acquisition). Once outside the MRI scanner, participants were asked to prepare 160 

themselves for bed. They were fitted with an EEG cap and were ready for bed at ~11 pm. 161 

During N2 and N3 sleep stages, tones associated with one of the SRTT sequences were 162 
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replayed to the participants via speakers (Harman/Kardon HK206, Harman/Kardon, 163 

Woodbury, NY, USA) to trigger reactivation of the SRTT memories associated with them. 164 

Participants were woken up after, on average, 8.81 ±0.82 h in bed and had the EEG cap 165 

removed before leaving the lab. 166 

We asked participants to come back for the follow-up sessions 23-26 h (session 2, S2), 10-14 167 

days (session 3, S3) and 16-21 days (session 4, S4) after S1. The choice of 16-21 days as the 168 

final time point was deliberate, guided by our previous findings, which demonstrated a TMR 169 

effect at day 10 post-stimulation but not six weeks later. All the follow-up sessions were 170 

scheduled for the same time in the evening to control for the time-of-day effect observed in 171 

MRI data (Trefler et al., 2016). During S2, participants were asked to indicate if they remember 172 

hearing any sounds during the night in the lab. S2 and S3 lasted ~2 h each and both involved 173 

the SQ and an MRI scan, during which a structural scan was acquired. This was followed by 174 

the SRTT re-test, with the first half of the SRTT blocks (24 sequence blocks + 4 random blocks) 175 

performed during the fMRI acquisition and the second half (24 sequence blocks + 4 random 176 

blocks) in the mock scanner. Note that the order of scanners (3T vs 0T) was flipped from S1 177 

to S2 and S3 for the functional and structural assessment to occur as close to the TMR session 178 

as possible. S4 took place either in the lab or online, depending on the severity of COVID-19 179 

restrictions at the time. During S4, SQ was delivered as before, together with the SRTT (one 180 

run, 48 sequence blocks + 4 random blocks) and an explicit memory task. Upon completion 181 

of each session, participants were informed about the upcoming SRTT re-tests as this has 182 

been shown to enhance post-learning sleep benefits (Wilhelm et al., 2011). 183 

 184 

For offline data collection, the SRTT (S1-S3) was back projected onto a projection screen 185 

situated at the end of the MRI/mock scanner and reflected into the participant’s eyes via a 186 
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mirror mounted on the head coil; the questionnaires and the SRTT (S4) were presented on a 187 

computer screen with resolution 1920 x 1080 pixels, and the explicit memory task was 188 

completed with pen and paper. SRTT was presented using MATLAB 2016b (The MathWorks 189 

Inc., Natick, MA, USA) and Cogent 2000 (developed by the Cogent 2000 team at the Functional 190 

Imaging Laboratory and the Institute for Cognitive Neuroscience, University College, London, 191 

UK; http://www.vislab.ucl.ac.uk/cogent.php); questionnaires were presented using MATLAB 192 

2016b and Psychophysics Toolbox Version 3 (Brainard & Vision, 1997). 193 

 194 

For online data collection, SRTT (S4) was coded in Python using PsychoPy 3.2.2. (Peirce et al., 195 

2019) and administered through the Pavlovia online platform (https://pavlovia.org/); 196 

questionnaires were distributed via Qualtrics software (Qualtrics, 2005), and the explicit 197 

memory task was sent to the participants as a .pdf document which they were asked to edit 198 

according to the instructions provided. 199 

2.3 Experimental Tasks  200 

2.3.1 Motor Sequence Learning – the Serial Reaction Time Task (SRTT) 201 

The SRTT (Fig.1B) was used to induce and measure motor sequence learning. It was adapted 202 

from (Cousins et al., 2014), as described previously (Rakowska et al., 2021). SRTT consists of 203 

two 12-item sequences of auditorily and visually cued key presses, learned by the participants 204 

in blocks. The task was to respond to the stimuli as quickly and accurately as possible, using 205 

index and middle fingers of both hands. The two sequences – A (1–2–1–4–2–3–4–1–3–2–4–206 

3) and B (2–4–3–2–3–1–4–2–3–1–4–1) – were matched for learning difficulty, they did not 207 

share strings of more than four items and contained items that were equally represented 208 
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(three repetitions of each). Each sequence was paired with a set of 200 ms-long tones, either 209 

high (5th octave, A/B/C#/D) or low (4th octave, C/D/E/F) pitched, that were counterbalanced 210 

across sequences and participants. For each item/trial, the tone was played with 211 

simultaneous presentation of a visual cue in one of the four corners of the screen. Visual cues 212 

consisted of neutral faces and objects appearing in the same location regardless of the 213 

sequences (1 – top left corner = male face, 2 – bottom left corner = lamp, 3 – top right corner 214 

= female face, 4 – bottom right corner = water tap). Participants were told that the nature of 215 

the stimuli (faces/objects) was not relevant for the study. Their task was to press the key on 216 

the keyboard (while in the sleep lab or at home) or on an MRI-compatible button pad (2-Hand 217 

system, NatA technologies, Coquitlam, Canada) (while in the MRI/mock scanner) that 218 

corresponded to the position of the picture as quickly and accurately as possible: 1 = left 219 

shift/left middle finger button; 2 = left Ctrl/left index finger button; 3 = up arrow/right middle 220 

finger button; 4 = down arrow/right index finger button. Participants were instructed to use 221 

both hands and always keep the same fingers on the appropriate response keys. The visual 222 

cue disappeared from the screen only after the correct key was pressed, followed by a 300 223 

ms interval before the next trial. 224 

 225 

There were 24 blocks of each sequence (a total of 48 sequence blocks per session). The block 226 

type was indicated with ‘A’ or ‘B’ displayed in the centre of the screen. Each block contained 227 

three sequence repetitions (36 items) and was followed by a 15 s pause/break, with reaction 228 

time and error rate feedback. Blocks were interleaved pseudo-randomly with no more than 229 

two blocks of the same sequence in a row. Participants were aware that there were two 230 

sequences but were not asked to learn them explicitly. Block order and sequence replayed 231 

were counterbalanced across participants. 232 
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 233 

During each run of the SRTT, sequence blocks A and B were followed by 4 random blocks 234 

except for in the first half of S1 (to avoid interrupting learning, most of which occurred during 235 

S1). Random blocks were indicated with ‘R’ appearing in the centre of the screen and 236 

contained pseudo-randomised sequences. For these, visual stimuli were the same and tones 237 

matched sequence A tones for half of them (Rand_A) and sequence B tones for the other half 238 

(Rand_B). Blocks Rand_A and Rand_B were alternated, and each contained random 239 

sequences constrained by the following criteria: 1) cues within a string of 12 items were 240 

equally represented, 2) the same cue did not occur in consecutive trials, 3) the sequence did 241 

not share more than four cues in a row with either sequence A or B. 242 

2.3.2 Explicit Memory Task 243 

Explicit memory of the SRTT was assessed by a free recall test administered at the end of the 244 

study (S4). Participants were provided with printed screenshots of sequence A and sequence 245 

B trials, but the visual cues were removed. They were instructed to mark the order of each 246 

sequence by drawing an ‘X’ to indicate cue location. 247 

2.4 EEG Data Acquisition  248 

EEG data was acquired with actiCap slim active electrodes (Brain Products GmbH, Gilching, 249 

Germany). 62 scalp electrodes were embedded within an elastic cap (Easycap GmbH, 250 

Herrsching, Germany), with the reference electrode positioned at CPz and ground at AFz. 251 

Electromyogram (EMG) signals were recorded from two electrodes placed on the chin, 252 

whereas the electrooculogram (EOG) was collected from two electrodes placed below the left 253 
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eye and above the right eye. Elefix EEG-electrode paste (Nihon Kohden, Tokyo, Japan) was 254 

applied on each electrode for stable attachment and Super-Visc high viscosity electrolyte gel 255 

(Easycap GmbH) was used to keep impedance below 25 kOhm. Signals were amplified with 256 

either two BrainAmp MR plus EEG amplifiers or LiveAmp wireless amplifiers and recorded 257 

using BrainVision Recorder software (all from Brain Products GmbH). 258 

2.5 TMR During NREM Sleep 259 

The TMR protocol was administered as in our prior study (Rakowska et al., 2021), using 260 

MATLAB 2016b and Cogent 2000. Briefly, tones associated with either sequence A or B 261 

(counterbalanced across participants) were replayed to the participants during stable N2 and 262 

N3 (Fig.1C) irrespective of slow wave phase or spindle occurrence. Presentation of sounds 263 

during sleep was manually controlled by the experimenters, who initiated TMR when the 264 

target sleep stage was identified and paused it when participants exhibited signs of arousal 265 

or shifted to a non-target sleep-stage. Replay blocks contained one repetition of a sequence 266 

(i.e., 12 sounds) and were followed by 20 s of silence. The inter-trial interval between 267 

individual sounds was jittered between 2,500 and 3,500 ms. Volume was adjusted manually 268 

for each participant to prevent arousal. However, upon leaving the relevant sleep stage, 269 

replay was paused and resumed only when stable N2 or N3 was observed. TMR was 270 

performed until ~1,000 trials were delivered in N3. On average, 1385.20 ±305.53 sounds were 271 

played.  272 

2.6 MRI Data Acquisition 273 
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Magnetic resonance imaging (MRI) was performed at Cardiff University Brain Imaging Centre 274 

(CUBRIC) with a 3T Siemens Connectom scanner (maximum gradient strength 300 mT/m). All 275 

scans were acquired with a 32-channel head-coil and lasted ~1 h in total each, with whole-276 

brain coverage. Apart from the T1w and fMRI scans, the MRI protocol also included multi-277 

shell Diffusion-Weighted Imaging (DWI) and mcDESPOT acquisitions, but these are not 278 

discussed here.  279 

2.6.1 T1-weighted Imaging 280 

A high resolution T1w anatomical scan was acquired with a 3D magnetization-prepared rapid 281 

gradient echoes (MPRAGE) sequence (2,300 ms repetition time [TR]; 2 ms echo time [TE]; 857 282 

ms inversion time [TI]; 9° flip angle [FA]; bandwidth 230 Hz/Pixel; 256 mm field-of-view [FOV]; 283 

256 x 256 voxel matrix size; 1 mm isotropic voxel size; 1 mm slice thickness; 192 sagittal slices; 284 

parallel acquisition technique [PAT] with in-plane acceleration factor 2 (GRAPPA); anterior-285 

to-posterior phase-encoding direction; 5 min total acquisition time [AT]) at the beginning of 286 

each scanning session. 287 

2.6.2 Functional MRI  288 

Functional data were acquired with a T2*-weighted multi-band echo-planar imaging (EPI) 289 

sequence (2,000 ms TR; 35 ms TE; 75° FA; bandwidth 1976 Hz/Pixel; 220 mm FOV; 220 x 220 290 

voxel matrix size; 2 mm isotropic voxel size; 2 mm slice thickness; 87 slices with a ~25° axial -291 

to-coronal tilt from the anterior – posterior commissure (AC-PC) line and interleaved slice 292 

acquisition; PAT 2 (GRAPPA); multi-band acceleration factor [MB] 3; anterior-to-posterior 293 

phase-encoding direction; maximum 24 min AT and 720 scans; because the task was self-294 
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paced the exact AT and the number of scans differed between participants). Each fMRI 295 

acquisition was preceded by dummy scans to allow for saturation of the MR signal before the 296 

start of the task. Due to the nature of the task, the fMRI paradigm followed a block design 297 

consisting of sequence and random blocks (self-paced), alternating with rest blocks (15 s) (see 298 

section 2.3.1 Motor sequence learning – the serial reaction time task (SRTT)). Presentation of 299 

the first stimulus in a block was synchronised with the scanner’s trigger signal sent upon 300 

acquisition of every fMRI volume. Thus, the beginning of the task (i.e., the first stimulus of the 301 

first block) was triggered by the first fMRI volume acquisition and for that reason the initial 302 

volumes did not have to be discarded. No online motion correction was applied.  303 

2.6.3 B0 Fieldmap 304 

B0-fieldmap was acquired to correct for distortions in the fMRI data caused by magnetic field 305 

(i.e., B0) inhomogeneities (465 ms TR; 4.92 ms TE; 60° FA; bandwidth 290 Hz/Pixel; 192 mm 306 

FOV; 192 x 192 voxel matrix size; 3 mm isotropic voxel size; 3 mm slice thickness; 44 slices 307 

with a ~25° axial-to-coronal tilt from the AC-PC line and interleaved slice acquisition; 1 308 

average; anterior-to-posterior phase-encoding direction; 1 min AT). 309 

2.7 Data Analysis 310 

2.7.1 Behavioural Data 311 

2.7.1.1 SRTT: Reaction Time 312 

SRTT performance was measured using mean reaction time per block of each sequence (cued 313 

and uncued). Both hands (BH) dataset contained all SRTT trials within each block, except for 314 
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those with reaction time exceeding 1,000 ms. Trials with incorrect button presses prior to the 315 

correct ones were included in the analysis. All analysis reported in-text concerns trials 316 

performed with both hands. However, given our previous results on this task (Rakowska et 317 

al., 2021; Koopman et al., 2020) we were also interested in unpacking the effects of cueing 318 

on the SRTT performance of each hand separately. To this end, the BH dataset was divided 319 

into the right hand (RH) dataset and left hand (LH) dataset, where each contained only the 320 

trials performed with the dominant or non-dominant hand, respectively. For each sequence 321 

within a given dataset, the mean performance on the 4 target blocks was subtracted from the 322 

mean performance on the 2 random blocks. This allowed us to separate sequence learning 323 

from sensorimotor mapping and thus obtain a measure of ‘sequence-specific skill’ (SeqSpecS). 324 

The target blocks were the first 4 sequence blocks, used to calculate early SeqSpecS, and the 325 

last 4 sequence blocks, used to calculate late SeqSpecS, as illustrated below: 326 

 327 

1. Early SeqSpecS = mean (random blocks) – mean (first 4 sequence blocks) 328 

2. Late SeqSpecS = mean (random blocks) – mean (last 4 sequence blocks) 329 

 330 

Finally, to obtain a single measure reflecting the effect of TMR on the SRTT performance we 331 

calculated the difference between the SeqSpecS of the cued and uncued sequence and refer 332 

to it as the ‘cueing benefit’. 333 

2.7.1.2 Questionnaires 334 

PSQI global scores were determined in accordance with the original scoring system (Buysse 335 

et al., 1989). Answers to the short version of the EHI were scored as in (Veale, 2014) and used 336 
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to obtain laterality quotient for handedness. For results, see Supplementary Notes: 337 

Questionnaires. 338 

2.7.1.3 Explicit Memory Task 339 

Responses on the explicit memory task were considered correct only if they were in the 340 

correct position within the sequence and next to at least one other correct item, hence 341 

reducing the probability of guessing (Cousins et al., 2014). The number of items guessed by 342 

chance was determined for each participant by taking an average score of 10 randomly 343 

generated sequences. To test if the explicit memory was formed, the average chance level 344 

across all participants was compared with the average number of correct items for each 345 

sequence. For results, see Supplementary Notes: Explicit memory task and Fig.S4. 346 

2.7.2 EEG Data Analysis 347 

All EEG data were analysed in MATLAB 2018b using FieldTrip Toolbox (Oostenveld et al., 348 

2011). 349 

2.7.2.1 Sleep Scoring  350 

EEG signal recorded throughout the night at eight scalp electrodes (F3, F4, C3, C4, P3, P4, O1, 351 

O2), two EOG and two EMG channels was pre-processed and re-referenced from CPz to the 352 

mastoids (TP9, TP10). For two participants, the right mastoid channel (TP10) was deemed 353 

noisy through visual inspection and had to be interpolated based on its triangulation-based 354 

neighbours (TP8, T8, P8), before it could be used as a new reference. The data was scored 355 

according to the AASM criteria (Berry et al., 2015) by two independent sleep scorers who 356 

were blind to the cue presentation periods. Any disagreements between the scorers were 357 
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resolved through discussion. Sleep scoring was performed using a custom-made interface 358 

(https://github.com/mnavarretem/psgScore). 359 

2.7.2.2 Spindles Analysis 360 

The relationship between sleep spindles and behavioural measures was assessed using 8 361 

electrodes located over motor areas: FC3, C5, C3, C1, CP3, FC4, C6, C4, C2, CP4 due to the 362 

known local modulation of spindle activity over learning-related brain regions (Cox et al., 363 

2014; Lutz et al., 2021). However, for visualisation purposes (Fig.3A), the remaining electrodes 364 

in the International 10-20 EEG system were also analysed as described below. First, raw data 365 

from these channels were down-sampled to 250 Hz (for them to be comparable between the 366 

two EEG data acquisition systems) and filtered by Chebyshev Type II infinite impulse response 367 

(IIR) filter (passband: f = [0.3 – 35] Hz; stopband: f < 0.1 Hz & f > 45 Hz). All channels were 368 

visually inspected, and the noisy ones were interpolated via triangulation of their nearest 369 

neighbours. As a final pre-processing step, we re-referenced the data from CPz to the 370 

mastoids (TP9, TP10). A spindle-detection algorithm (Navarrete et al., 2020) was then 371 

employed to automatically identify sleep spindles (11 – 16 Hz). Briefly, the data were filtered 372 

in a sigma band by the IIR filter (passband: f = [11 – 16] Hz; stopband: f < 9 Hz & f > 18 Hz) and 373 

the root mean squared (RMS) of the signal was computed using a 300 ms time window. Any 374 

event that surpassed the 86.64 percentile (1.5 SD, Gaussian distribution) of the RMS signal 375 

was considered a candidate spindle. To fit the spindle detection criteria (Iber et al., 2007), 376 

only the events with unimodal maximum in the 11 – 16 Hz frequency range in the power 377 

spectrum, duration between 0.5 and 2.0 s and at least 5 oscillations were regarded as sleep 378 

spindles (Navarrete et al., 2020). 379 

 380 
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Any identified spindles that fell (partly or wholly) within a period that had been previously 381 

marked as an arousal during sleep scoring were removed. The remaining spindles were 382 

separated into those that fell within the cue and no-cue periods. We define the cue period as 383 

the 3.5 s time interval after the onset of each tone. Since 3.5 s was the longest inter-trial 384 

interval allowed, the cue period essentially covered the time interval from the onset of the 385 

first tone in a sequence to 3.5 s after the onset of the last one. In turn, the no-cue period 386 

covered the time interval between sequences, i.e., from 3.5 to 20.0 s after the onset of the 387 

last tone in a sequence. If a spindle fell between the cue and no-cue period, that spindle was 388 

removed from further analysis. Thus, only spindles that fell wholly within the cue or no-cue 389 

period were included in the analysis. 390 

 391 

Spindle density was calculated by dividing the number of spindles at each electrode and in 392 

each period of interest (cue period during target sleep stage, no-cue period during target 393 

sleep stage) by the duration (in minutes) of that period. 394 

2.7.3 MRI Data Analysis 395 

MRI data were pre-processed using Statistical Parametric Mapping 12 (SPM12; Wellcome 396 

Trust Centre for Neuroimaging, London, UK), running under MATLAB 2018b. 397 

2.7.3.1 fMRI 398 

2.7.3.1.1 Pre-processing 399 

Functional data pre-processing consisted of 1) B0-fieldmap correction using SPM’s fieldmap 400 

toolbox (Jezzard & Balaban, 1995); 2) realignment to the mean of the images using a least -401 
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squares approach and 6 parameter rigid body spatial transformation to correct for movement 402 

artifact (Friston et al., 1995); 3) co-registration with the participants’ individual structural 403 

image using rigid body model (Collignon et al., 1995); 4) spatial normalisation to Montreal 404 

Neurological Institute brain (MNI space) via the segmentation routine and resampling to 2 405 

mm voxels with a 4th degree B-spline interpolation (Ashburner et al., 2005); 5) smoothing with 406 

8 mm full-width half maximum (FWHM) Gaussian kernel in line with the literature (Cousins et 407 

al., 2016). All steps were performed as implemented in SPM12. B0-fieldmap correction step 408 

was omitted for one participant (n = 1) due to technical issues during B0-fieldmap acquisition. 409 

No scans had to be excluded due to excessive movement (average translations < 3.3 mm, 410 

average rotations < 0.03°). 411 

2.7.3.1.2 Single Subject Level Analysis 412 

Subject-level analysis of the fMRI data was performed using a general linear model (GLM) 413 

(Friston et al., 1994), constructed separately for each participant and session. Each block type 414 

(cued sequence, uncued sequence, cued random, uncued random) as well as the breaks 415 

between the blocks were modelled as five separate, boxcar regressors; button presses were 416 

modelled as single events with zero duration. All of these were temporally convolved with a 417 

canonical hemodynamic response function (HRF) model embedded in SPM, with no 418 

derivatives. To control for movement artifacts, the design matrix also included six head 419 

motion parameters, generated during realignment, as non-convolved nuisance regressors. A 420 

high-pass filter with a cut-off period of 128 s was implemented in the matrix design to remove 421 

low-frequency signal drifts. Finally, serial correlations in the fMRI signal were corrected for 422 

using a first-order autoregressive model during restricted maximum likelihood (REML) 423 

parameter estimation. Contrast images were obtained for each block type of interest ([cued 424 
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sequence] and [uncued sequence]), as well as for the difference between the two ([cued > 425 

uncued]). The resulting parameter images, generated per participant and per session using a 426 

fixed-effects model, were then used as an input for the group-level (i.e., random effects) 427 

analysis. Contrast images for the difference between sequence and random blocks were not 428 

generated due to the unequal number of each block type performed in the scanner (2 random 429 

blocks vs 24 sequence blocks, per session). This, however, was in accordance with the 430 

literature (Cousins et al., 2016). 431 

2.7.3.2 VBM 432 

2.7.3.2.1 Pre-processing 433 

Pre-processing of T1w images was performed in keeping with (Ashburner, 2010) 434 

recommendations. Images were first segmented into three tissue probability maps (grey 435 

matter, GM; white matter, WM; cerebrospinal fluid, CSF), with two Gaussians used to model 436 

each tissue class, very light bias regularisation (0.0001), 60 mm bias FWHM cut-off and default 437 

warping parameters (Ashburner & Friston, 2005). Spatial normalisation was performed with 438 

DARTEL (Ashburner, 2007), where the GM and WM segments were used to create customized 439 

tissue-class templates and to calculate flow fields. These were subsequently applied to the 440 

native GM and WM images of each subject to generate spatially normalised and Jacobian 441 

scaled (i.e., modulated) images in the MNI space, resampled at 1.5 mm  isotropic voxels. The 442 

modulated images were smoothed with an 8 mm FWHM Gaussian kernel, in line with the 443 

fMRI analysis. To account for any confounding effects of brain size we estimated the total 444 

intracranial volume (ICV) for each participant at each time point by summing up the volumes 445 

of the GM, WM, and CSF probability maps, obtained through segmentation of the original 446 
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images (Friston et al., 1994). The GM and WM images were then proportionally scaled to the 447 

ICV values by means of dividing intensities in each image by the image’s global (i.e., ICV) value 448 

before statistical comparisons. 449 

2.7.4 Statistical Analysis 450 

All tests conducted were two-tailed, with the significance threshold set at 0.05. For 451 

behavioural and EEG data analyses, normality assumption was checked using Shapiro-Wilk 452 

test. To compare two related samples, we used paired-samples t-test or Wilcoxon signed-rank 453 

test, depending on the Shapiro-Wilk test result. Results are presented as mean ± standard 454 

error of the mean (SEM), unless otherwise stated. 455 

2.7.4.1 Behavioural Data 456 

Statistical analysis of the behavioural data was performed in R (R Core Team, 2018) or SPSS 457 

Statistics 25 (IBM Corp., Armonk, NY, USA) as before (Rakowska et al., 2021). Each dataset 458 

(LH, RH, BH) was analysed separately. 459 

To assess the relationship between TMR, SeqSpecS and Session we used linear mixed effects 460 

analysis performed on S2-S4, using lme4 package (Bates et al., 2014) in R. We chose linear 461 

mixed effects analysis instead of an ANOVA to avoid listwise deletion due to missing data at 462 

S3 and S4 and to account for the non-independence of multiple responses collected over 463 

time, in line with previous literature (Miyamoto et al., 2021; Schapiro et al., 2018). TMR and 464 

Session were entered into the model as categorical (factor) fixed effects without interaction 465 

and random intercept was specified for each subject. The final models fitted to the BH, LH 466 

and RH datasets were as follows: 467 
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> model = lmer(early SeqSpecS ~ Session + TMR + (1|Participant), data=dataset) 468 

> model = lmer(late SeqSpecS ~ Session + TMR + (1|Participant), data=dataset) 469 

To test for the effect of hand, LH and RH datasets were combined and ‘hand’ (factor) was 470 

added as an additional fixed effect: 471 

> model = lmer(early SeqSpecS ~ Session + TMR + Hand + (1|Participant), data=dataset) 472 

> model = lmer(late SeqSpecS ~ Session + TMR + Hand + (1|Participant), data=dataset) 473 

 474 

Finally, to explore how the TMR effect evolves from S2 to S4, we entered cueing benefit 475 

(calculated using the late SeqSpecS data given no TMR effect on the early SeqSpecS) as the 476 

dependent variable and the number of days post-TMR (‘time’, integer) as a fixed effect in the 477 

following model: 478 

> model = lmer(CueingBenefit ~ Time + (1|Participant), data=dataset) 479 

 480 

To test for the effect of hand, LH and RH datasets were combined as before: 481 

> model = lmer(CueingBenefit ~ Time + Hand + (1|Participant), data=dataset) 482 

 483 

Likelihood ratio tests comparing the full model against the model without the effect of 484 

interest were performed using the ANOVA function in R to obtain p-values. Post-hoc pairwise 485 

comparisons were conducted using the emmeans package (Lenth et al., 2019) in R and 486 

corrected for multiple comparisons with Holm’s method. Effect sizes were calculated with the 487 

emmeans package as well.  488 

2.7.4.2 EEG Data 489 
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Statistical analysis of the EEG data was performed in R (R Core Team, 2018) or SPSS Statistics 490 

25 (IBM Corp., Armonk, NY, USA). Each stimulation period (cue vs no-cue) and sleep stage 491 

(N2, N3, N2 and N3 combined) was analysed separately.  492 

Correlations between our behavioural measures and EEG results were assessed with 493 

Pearson’s correlation or Spearman’s Rho (depending on the Shapiro-Wilk test result), using 494 

cor.test function in the R environment. Any datapoint that was both 1) more than 1.5 IQRs 495 

below the first quartile or 1.5 IQRs above the third quartile, and 2) deemed an outlier through 496 

visual inspection, was removed from the dataset prior to correlational analysis. False 497 

discovery rate (FDR) correction was used to correct for multiple correlations (q < 0.05) 498 

(Benjamini & Hochberg, 1995). FDR corrections were based on 3 correlations, given the 3 499 

experimental sessions of interest (S2, S3, S4).  500 

2.7.4.3 MRI Data 501 

Group level analysis of the MRI data was performed either in a Multivariate and Repeated 502 

Measures (MRM) toolbox (https://github.com/martynmcfarquhar/MRM) or in SPM12, both 503 

running under MATLAB 2018b. All contrasts performed in SPM are outlined in Table S11. All 504 

tests conducted were two-tailed, testing for both positive and negative effects. Results were 505 

voxel-level corrected for multiple comparisons by family wise error (FWE) correction for the 506 

whole brain and for the pre-defined anatomical regions of interest (ROI), with the significance 507 

threshold set at pFWE < 0.05. For the analysis performed in MRM, p-values were derived from 508 

1,000 permutations, with Wilk’s lambda specified as the test statistic. Pre-defined ROI 509 

included 1) bilateral precuneus, 2) bilateral hippocampus and parahippocampus, 3) bilateral 510 

dorsal striatum (putamen and caudate), 4) bilateral sensorimotor cortex (precentral and 511 

postcentral gyri). All ROI were selected based on their known involvement in sleep-dependent 512 
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procedural memory consolidation (Debas et al., 2010; Albouy et al., 2013; Fischer, 2005; 513 

Walker et al., 2005) and memory reactivation (Rasch et al., 2007; Cousins et al., 2016; van 514 

Dongen et al., 2012; Brodt et al., 2018; Maquet et al., 2000). A mask for each ROI was created 515 

using an Automated Anatomical Labeling (AAL) atlas in the Wake Forest University (WFU) 516 

PickAtlas toolbox (Maldjian et al., 2003). Anatomical localisation of the significant clusters was 517 

determined with the automatic labelling of MRIcroGL 518 

(https://www.nitrc.org/projects/mricrogl/) based on the AAL atlas. All significant clusters are 519 

reported in the tables, but only those with an extent equal to or above 5 voxels are discussed 520 

in text and presented in figures. 521 

 522 

To account for multiple small volume corrections, any contrast that yielded significant results 523 

for either one of our pre-defined ROIs was entered into a voxel-wise permutation analysis 524 

with FWE correction within a single mask combining all the pre-defined ROIs. The analysis was 525 

performed in MRM with p-values derived from 1,000 permutations and Wilk’s lambda 526 

specified as the test statistic. 527 

2.7.4.3.1 fMRI Data 528 

To test the effect of TMR on the post-stimulation sessions (S2, S3), one-dimensional contrast 529 

images for the [cued] and [uncued] blocks of each session were entered into a repeated-530 

measures TMR-by-Session ANOVA performed in the MRM toolbox. 531 

To compare functional brain activity during the cued and uncued sequence we carried out 532 

one-way t-tests on the [cued > uncued] contrast for S2 (n = 28) and S3 (n = 24) in SPM12. To 533 

determine the relationship between the TMR-related functional activity and other factors, we 534 
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included the behavioural cueing benefit at different time points (S2, S3, S4) as covariates in 535 

separate comparisons (Table S11A). 536 

2.7.4.3.2 VBM Data 537 

Because structural changes take time to occur, we chose to look for VBM changes between 538 

baseline and day ten (S1 and S3), rather than looking at shorter term effects in S2. Group-539 

level analysis of the structural images was performed separately for GM and WM. First, the 540 

pre-processed and proportionally scaled images from S1 and S3 were subtracted from one 541 

another (n = 24). To determine the relationship between the long-term structural brain 542 

changes and behavioural benefits of TMR, one-sample t-tests were computed in SPM12, with 543 

covariates of interest added one at a time. The covariates of interest were the behavioural 544 

cueing benefit at S3 and S4. Sex was always specified as a covariate of no interest (nuisance 545 

covariate) to control for differences between males and females. Finally, the SPM12 tissue 546 

probability maps of GM and WM were thresholded at 50% probability and the resulting binary 547 

masks were used in the analyses of the relevant tissue (Ceccarelli et al., 2012). 548 

2.7.5 Results Presentation 549 

Plots displaying behavioural results, pairwise comparisons and relationships between two 550 

variables were generated using ggplot2 (version 3.3.0) (Wickham, 2009) in R. Fig.3A was 551 

generated using ft_topoplotER function in FieldTrip Toolbox (Buysse et al., 1989). Fig.1 and 552 

Fig.6, were created in Microsoft PowerPoint v16.53. MRI results are presented using 553 

MRIcroGL, displayed on the MNI152 standard brain (University of South Carolina, Columbia, 554 
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SC), except Fig.S2 and Fig.S3 which were generated by SPM12 (Wellcome Trust Centre for 555 

Neuroimaging, London, UK). 556 

3 Results 557 

3.1 SRTT 558 

3.1.1 Reaction Time and Sequence Specific Skill  559 

Analysis of baseline SRTT performance indicated that participants learned both sequences 560 

before sleep and confirmed that any post-sleep differences between the sequences can be 561 

regarded as the effect of TMR (see Supplementary Notes: Baseline SRTT performance and 562 

Table S1). Fig.2A shows the mean reaction time (± SEM) for all trials of each SRTT block over 563 

the whole length of the study. 564 
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 565 

Fig. 2. Behavioural benefit of cueing emerges 20 days after the stimulation night.  (a) Mean reaction time for the cued 566 

sequence (blue), uncued sequence (red) and random blocks (green and orange) of the SRTT performed before sleep (S1), 24 567 

h post-TMR (S2), 10 days post-TMR (S3) and 20 days post-TMR (S4). Error bars depict SEM. Blue dashed rectangle frames 568 

mark the SRTT blocks performed during fMRI acquisition. For summary statistics see Table S1. (b) Mean late SeqSpecS for 569 

the cued (blue dots) and uncued (red dots) sequence plotted against experimental sessions (S1-S4). Error bars depict SEM. 570 

Grey lines represent individual participants. For statistical analysis results see Table S2-S4. (c) Mean late SeqSpecS on the 571 

uncued sequence subtracted from the cued sequence and plotted over time (number of days post-TMR). The effect of time 572 

was significant (see Table S5). Blue dots represent mean ±SEM calculated for S2, S3 and S4. Grey lines represent cueing 573 

benefit for each subject. For (a-c): n = 30 for S1-S2, n = 25 for S3, n = 24 for S4. S1-S4: Session 1 - Session 4; RT: reaction time; 574 

SeqSpecS: Sequence Specific Skill. *p < 0.05; ns: non-significant. For the effects of TMR and session on each hand see Fig.S1. 575 

 576 

Post-sleep SRTT re-test sessions occurred 24.67 h (SD: 0.70) (S2), 10.48 days (SD: 0.92) (S3), 577 

and 20.08 days (SD: 0.97) (S4) after session 1 (S1). In line with the methods described in 578 
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(Cousins et al., 2016; Cousins et al., 2014) SRTT performance was measured by subtracting 579 

the mean reaction time on the last or first four blocks of each sequence from that of the 580 

random blocks, thereby providing a measure of sequence specific skill for both early and late 581 

timepoints. We can then compare these measures to calculate effects of TMR on both early 582 

performance (e.g. SRTT performed immediately post-sleep without further practice, thus not 583 

require post-manipulation practice) and late performance (SRTT measured at the end of post-584 

manipulation practice session, thus including effect of TMR which unfold across subsequent 585 

practice), which we refer to as early and late sequence specific skill (SeqSpecS), respectively. 586 

To test the effect of cueing on the SeqSpecS (either early or late) over time we fitted a linear 587 

mixed effects model to our behavioural dataset, with TMR and session entered as fixed 588 

effects, and participant entered as a random effect. Results of all the likelihood ratio tests 589 

comparing the full model against the model without the fixed effect of interest are shown in 590 

Table S2.  591 

 592 

The linear mixed effect analysis revealed a main effect of session on both early (X2(2) = 175.77, 593 

p < 0.001; Table S2Ai) and late SeqSpecS (X2(2) = 93.04, p < 0.001; Table S2Aii). Post-hoc 594 

comparisons showed a difference between subsequent sessions (S2 vs S3, S3 vs S4) (padj < 595 

0.002; Table S3A), suggesting continuous learning over time. All padj values are Holm-596 

corrected. 597 

 598 

Inclusion of TMR as a fixed effect improved model fit across all post-stimulation sessions (S2-599 

S4) for late SeqSpecS (X2(1) = 11.01, p = 0.001; Table S2Aii), but not early SeqSpecS (X2(1) = 600 

1.55, p = 0.214; Table S2Ai). Thus, the linear mixed effects analysis points to a main effect of 601 

TMR on the late SeqSpecS across all post-stimulation sessions. Next, we performed post-hoc 602 
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comparisons to reveal the session(s) during which late SeqSpecS differed between the two 603 

sequences. We found a significant difference between the cued and uncued sequence 604 

performance at S4 (20 days post-stimulation, padj = 0.004) but not at S2 (24 h post-stimulation, 605 

padj = 0.282) or S3 (10 days post-stimulation, padj = 0.282) (Table S4A, Fig.2B). Together, these 606 

findings point to a main effect of TMR across all post-stimulation sessions, with the difference 607 

between the cued and uncued sequence strongest 20 days post-TMR. 608 

 609 

Our previous findings on the same task suggest differential consolidation processes for the 610 

two hands (Rakowska et al., 2021; Koopman et al., 2020). Thus, we also sought to unpack the 611 

effects of TMR and session on each hand separately (see Supplementary Notes: Individual 612 

Hands Performance). Although our results suggest greater benefits of TMR on the dominant 613 

hand performance at S4 (Fig.S1, Table S2B-C), we found no interaction between hand and 614 

TMR (Table S2D). This suggests no difference in how TMR affects the dominant and non-615 

dominant hand consolidation and thus any further analyses testing the relationship between 616 

behavioural effects of TMR and other factors involve the both hands dataset only.  617 

3.1.2 Cueing Benefit Across Time 618 

To explore how the TMR effect evolves over time, we used late SeqSpecS, as in prior studies 619 

(Rakowska et al., 2021; Cousins et al., 2014). Specifically, we calculated the difference 620 

between late SeqSpecS of the cued and uncued sequence for each session, and refer to this 621 

as the (late) cueing benefit. Next, we used a linear mixed effects analysis to determine if 622 

cueing benefit changes across post-stimulation time. Inclusion of the number of days post-623 

TMR as the fixed effect improved model fit on the extent of cueing benefit (χ2(2) = 3.97, p = 624 
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0.046; Fig.2C; Table S5A), suggesting that the effects of TMR may develop in a gradual time-625 

dependent manner. 626 

3.2 Correlations with Sleep Stages 627 

To determine the relationship between sleep parameters derived from sleep stage scoring 628 

(Table S6) and the behavioural effect of our manipulation, we correlated the percentage of 629 

time spent in stage 2 (N2) and stage 3 (N3) of NREM sleep (the two target stages for our 630 

stimulation) with the cueing benefit at each session (S2, S3, S4). Results are presented in Table 631 

S7, with no correlation surviving FDR correction (padj > 0.05). 632 

3.3 Sleep Spindles 633 

Given the well-known involvement of sleep spindles in motor sequence memory 634 

consolidation (Boutin & Doyon, 2020), we set out to describe electrophysiological changes 635 

within the spindle frequency in relation to the cueing procedure. The average spindle density 636 

over the task related regions was higher in N2 than in N3 during both the cue period (0-3.5 s 637 

after cue onset; t(28) = 4.48, p < 0.001) and the no-cue period (3.5-20 s after the onset of the 638 

last cue in the sequence; t(28) = 4.23, p < 0.0001) (paired-samples t-test). Next, we compared 639 

spindle density during the cue and the no-cue period for N2 and N3 combined. As in our 640 

previous study (Rakowska et al., 2021), we found that the average spindle density during the 641 

cue period was higher than during the no-cue period (t(28) = 4.37, p < 0.001; paired-samples 642 

t-test, Fig.3A-B), suggesting that cueing may elicit sleep spindles. The analysis also revealed 643 

higher spindle density over the left versus right motor areas for the cue period (t(28) = 2.59, 644 

p = 0.015) but not for the no-cue period (t(28) = 1.98, p = 0.057) (paired-samples t-test). 645 
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Spindle density and the number of spindle events during each period and sleep stage are 646 

summarised in Table S8. 647 

 648 

Fig. 3. Spindle density increases immediately upon cue onset. (a) Topographic distribution of spindle density (spindles per 649 

min) in the cue (left) and no-cue (right) period of NREM sleep (N2 and N3 combined). Motor channels in white. (b) Spindle 650 

density averaged over motor channels during the cue period was higher than during the no-cue period. Blue dots represent 651 

mean ±SEM. Grey lines represent individual subjects. *** p = 0.001. N2-N3: stage 2 – stage 3 of NREM sleep. n = 29. See 652 

Table S8 for summary statistics and Table S9 for the relationship between spindle density and cueing benefit.  653 

 654 

Spindle-related changes over brain regions involved in learning (Cox et al., 2014) often predict 655 

behavioural performance (Barakat et al., 2013). However, we found no correlation between 656 

spindle density averaged over bilateral motor regions and cueing benefit (padj > 0.05, Table 657 

S9). 658 

3.4 TMR-related Changes in fMRI Response 659 

To test our hypothesis that memory cueing during sleep would engender learning-related 660 

changes within precuneus, we performed a TMR-by-Session ANOVA on the fMRI data 661 

acquired during sequence performance at S2 (24 h post-TMR) and S3 (10 days post-TMR). In 662 

line with our hypothesis, the analysis revealed increased activity in the precuneus (right 663 

precuneus, 8, -72, 58) for the main effect of TMR (cued vs uncued sequence across both S2 664 
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and S3) (peak F = 22.67, p = 0.032; Table S10A), but no effect of session or interaction (p > 665 

0.05 ROI corrected). Because we have previously shown cueing-related functional activity the 666 

morning after TMR (Cousins et al., 2016) and because both microstructural plasticity and 667 

functional engagement of posterior parietal cortex (PPC) have been detected relatively soon 668 

after learning (Brodt et al., 2018), we expected to find functional activity changes already at 669 

S2. Indeed, a one-way t-test on the [cued > uncued] contrast revealed increased activity in 670 

the dorsal-anterior subregion of left precuneus (-9, -62, 66) just 24 h post-TMR (peak T = 4.79, 671 

p = 0.020; Fig.4A-B, Table S10B, Fig.S2A, but no difference between cued and uncued activity 672 

at S3 (p > 0.05). These results show that TMR alters functional activity in precuneus, with the 673 

TMR-related increase in functional response apparent relatively quickly (i.e., 24 h) post-674 

stimulation. 675 

 676 

Fig. 4. TMR-related functional activity in precuneus. (a-b) TMR-dependent increase in left precuneus activity 24 h post-677 

stimulation. (c-d) Activity for the [cued > uncued] contrast in left precuneus at S2 is positively associated with behavioural 678 

cueing benefit at the same time point. (a & c) Group level analysis. In red, colour-coded t-values for each contrast thresholded 679 

at a significance level of pFWE < 0.05, corrected for multiple voxel-wise comparisons within a pre-defined ROI for bilateral 680 
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precuneus (Table S10) (for voxel-wise correction within all four ROIs see Table S13 A-B). In gold, colour-coded t-values for 681 

each contrast thresholded at a significance level of p < 0.001, uncorrected and without masking. Results are overlaid on a 682 

Montreal Neurological Institute (MNI) brain. Note that although the clusters significant at pFWE < 0.05 in (a) and (c) fall within 683 

the Automated Anatomical Labeling (AAL) definition of precuneus, they do not overlap and their peak coordinates are 684 

different (see Table S10, Bi, Ci, Di). (b & d) Mean functional activity extracted from clusters significant at pFWE < 0.05 shown 685 

in (a & c). The scatterplots are presented for visualisation purpose only and should not be used for statistical inference. (b) 686 

Red dots represent group mean ±SEM. Grey lines represent individual subjects. (d) Each data point represents a single 687 

participant. arb. u.: arbitrary units; S2-4: Session 2-4; n = 28 for (a-d). For glass brain fMRI results see Fig.S2. 688 

 689 

Next, following the lead of prior authors (Shanahan et al., 2018; Debas et al., 2010; Albouy et 690 

al., 2013), we looked for a relationship between post-sleep performance improvements and 691 

brain activity differences between the cued and uncued conditions. First, we correlated fMRI 692 

responses to the cued > uncued contrast at each post-manipulation session with behavioural 693 

regressors collected in that same session. At S2, this revealed that TMR-related functional 694 

increase in left dorsal-posterior precuneus was significantly correlated with behavioural 695 

cueing benefit, (-4, -78, 46; peak T = 5.18, p = 0.009, Fig.4C-D, Table S10Ci, Fig.S2B), a finding 696 

which survived correction for multiple ROIs (Table S13). Next, to determine how functional 697 

responses may predict future behavioural improvements, we correlated the cued > uncued 698 

response at each post-manipulation session with behavioural responses from future sessions. 699 

This revealed that TMR related responses in the postcentral gyrus at S3 was positively 700 

predicting behavioural cueing benefit at S4, around 10 days later (58, -18, 38; peak T = 5.50, 701 

p = 0.022; Fig.5A-B, Table S10Di, Fig.S2C, Table S13). Taken together, these two results 702 

suggest that activity in dorsal precuneus 24 h post-encoding predicts behavioural effects of 703 

cueing in the short-term, while TMR impacts on activation of primary somatosensory cortex 704 

10 days post-encoding may underpin long-term behavioural effects of such cueing.  705 

 706 
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Further, both results survived correction for the multiple ROIs we examined, although the size 707 

of the latter did not exceed 5 voxels and therefore this result should be treated with caution. 708 

No significant clusters exceeding 5 voxels were apparent in any of the other ROIs, nor was 709 

there any other significant relationship between functional changes and behavioural cueing 710 

benefit (Table S10 and S11). 711 

  712 
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 713 

Fig. 5. Functional activity and structural brain changes are associated with long-term cueing benefit. (a-b) Activity for the 714 

cued > uncued contrast in the right postcentral gyrus at S3 is positively associated with behavioural cueing benefit at S4.  (c-715 

d) Grey matter volume in the right precentral gyrus at S3 relative to S1 is positively associated with behavioural cueing 716 

benefit at S4. (a, c) Group level analysis. In red, colour-coded t-values for increased fMRI activity (a) and grey matter volume 717 

(c), both thresholded at a significance level of pFWE < 0.05, corrected for multiple voxel-wise comparisons within a pre-defined 718 

ROI for bilateral sensorimotor cortex (Table S12) (for voxel-wise correction within all four ROIs see Table S13 C-D). In gold, 719 

colour-coded t-values for increased fMRI activity (a) and grey matter volume (c), both thresholded at a significance level of 720 

p < 0.001, uncorrected and without masking. Results are overlaid on a Montreal Neurological Institute (MNI) brain. Colour 721 

bars indicate t-values. (b, d) Mean functional activity (b) and grey matter volume (d) extracted from clusters significant at 722 

pFWE < 0.05 shown in (a, c). The scatterplots are presented for visualisation purpose only and should not be used for statistical 723 

inference. Each data point represents a single participant. arb. u.: arbitrary units; GM: grey matter; S1-4: Session 1-4; n = 23. 724 

For glass brain fMRI and VBM results see Fig.S2 and S3, respectively. 725 
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3.5 TMR-related Structural Plasticity 726 

To determine whether the behavioural effects of TMR were associated with volumetric 727 

changes, we performed voxel-based morphometry (VBM) analysis of the T1w scans while 728 

taking such changes into account as covariates. Structural changes take time to develop 729 

(Draganski et al., 2004; Sagi et al., 2012), and because TMR manipulation was performed 730 

within, rather than between, participants we could not use the cued vs uncued comparison 731 

when examining brain structure. We therefore examined the relationship between TMR 732 

benefits and long-term structural plasticity.  Examining changes from S1 to S2 and S2 to S3 in 733 

addition to this would have increased the number of comparisons unnecessarily. We first 734 

determined the difference between baseline grey and white matter images and equivalent 735 

images from the final MRI session collected ~10 days later, (S1 >S3), and conducted a series 736 

of analyses in which the behavioural cueing benefit at each post-sleep session was regressed 737 

against this (Table S11B). Since we were unsure about the direction of the change, we 738 

conducted a two-tailed t-test. This revealed a positive correlation between grey matter (GM) 739 

volume change in the right precentral gyrus and cueing benefit at S4 (42, -2, 45; peak T = 6.21, 740 

p = 0.020; Fig.5C-D, Table S12A, Fig.S3A), which survived voxel-wise correction for multiple 741 

ROIs (Table S13C). This finding suggests that the TMR related change in GM volume within a 742 

sensorimotor structure can predict the long-term behavioural effects of cueing. No 743 

correlation with volumetric changes was revealed in either white matter or within other ROIs, 744 

and there was no correlation with behavioural cueing benefit at S3, nor when examining 745 

shorter-term effects. 746 

4 Discussion 747 
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In this study we aimed to determine if repeated reactivation of a memory trace during sleep 748 

engenders learning-related changes within the PPC and sensorimotor areas. To this end, we 749 

tested the temporal dynamics of the TMR-related changes across structural, functional, 750 

electrophysiological, and behavioural measures. Firstly, we showed a main effect of TMR on 751 

the SRTT performance across all post-stimulation sessions, with the biggest difference 752 

between cued and uncued sequences emerging 20 days post-stimulation. In line with our 753 

hypothesis, dorsal precuneus showed a functional response that was related to the 754 

manipulation and predicted its behavioural effects the next day. However, over time, this was 755 

replaced by an increase in functional activity and volumetric grey matter in somatosensory 756 

and motor regions which predicted the longer-term behavioural benefit of our manipulation.  757 

4.1 TMR Benefits SRTT Memories up to 20 Days Post-manipulation 758 

The strongest behavioural difference between our cued and uncued sequences occurred 20 759 

days post-manipulation, suggesting that the benefits of cueing may last longer than 760 

previously believed. This is especially interesting given that neither object-location (Shanahan 761 

et al., 2018) nor emotional memory (Groch et al., 2017) seems to benefit from the 762 

manipulation even a week later. One-week-later effects of TMR have been reported for 763 

implicit biases (Hu et al., 2015), but this failed to replicate (Humiston & Wamsley, 2019). Our 764 

prior work showed behavioural effects of TMR 10 days post-manipulation but not 6 weeks 765 

later (Rakowska et al., 2021). Hence, the effect of TMR 20 days post-stimulation that we 766 

observe here appears to be the longest-term effect reported in the literature so far. This 767 

finding suggests that the TMR manipulation starts a process which then unfolds over several 768 

weeks, gradually leading to the emergence of behavioural benefits over time. Nevertheless, 769 

given the limited availability of independent evidence corroborating the observed pattern in 770 
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long-term TMR studies, we caution against making broad generalizations based on these 771 

findings. 772 

4.2 Cueing Alters Precuneus Activation 773 

Dorsal precuneus showed a TMR-dependent (cued > uncued) BOLD increase 24 h post-774 

stimulation. Importantly, this functional response predicted the extent to which TMR 775 

impacted on behavioural performance at that same time point, suggesting that repeated 776 

reactivation of memory traces during sleep may increase activity in parts of the PPC (such as 777 

precuneus) in a behaviourally relevant manner, although the cueing benefit was not yet 778 

significant at 24 h. Given that dorsal precuneus is specialised for somato-motor and visual-779 

spatial processing (Zhang & Li, 2012), this finding raises the possibility that visuomotor 780 

integration of the reactivated memories may underpin short-term cueing benefits, even if this 781 

is not enough to drive the behavioural plasticity. However, the plausibility of such a scenario 782 

remains uncertain, emphasizing the need to exercise caution when interpreting our results. 783 

Furthermore, PPC has been identified as a hippocampus-independent memory store, 784 

whereby both hippocampal activity and connectivity with PPC decrease soon after encoding, 785 

but (conversely) PPC activity increases over the next 24 h, as an independent memory 786 

representation builds up (Brodt et al., 2016). We believe that sleep plays a crucial role in this 787 

process and that the reactivation-mediated reorganisation of memories between the 788 

hippocampal-dependent short-term store and neocortex-dependent long-term store 789 

(Diekelmann & Born, 2010; Born et al., 2006) fosters engram development in the precuneus. 790 

We speculate that memory reactivation could be taking place in precuneus (Himmer et al., 791 

2021), such that SRTT memories are stored and processed in the same location. Indeed, 792 

precuneus has repeatedly been implicated in memory formation, retrieval, and storage 793 
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(Gilmore et al., 2015; Wagner et al., 2005; Myskiw & Izquierdo, 2012). Multiple studies have 794 

also linked precuneus with episodic memory, both when imagery is required (Buckner et al., 795 

1995; Fletcher et al., 1996; Henson et al., 1999; Halsband et al., 1998) and when it is not 796 

(Schmidt et al., 2002; Platel et al., 2003; Krause et al., 1999), see (Cavanna & Trimble, 2006) 797 

for a review. This structure is traditionally associated with the motor system (Cohen & 798 

Andersen, 2002; Shadmehr & Holcomb, 1997), with several studies showing a role for 799 

precuneus in finger tapping (Hanakawa et al., 2003) and bimanual motor tasks (Wenderoth 800 

et al., 2005; Fattinger et al., 2017). Further, precuneus has also recently been implicated in 801 

declarative memory processing (Brodt et al., 2018; Brodt et al., 2016). This is particularly 802 

relevant here, as the SRTT is not purely procedural, but is thought to have a declarative 803 

component (Albouy et al., 2013; Albouy et al., 2008). Our results build on all of this to suggest 804 

that precuneus may be involved in early (across 24 hours) consolidation of memories that are 805 

reactivated during sleep.  806 

 807 

Although we showed that TMR-related functional activity in precuneus is associated with 808 

behavioural cueing benefit 24 h post-manipulation, it is important to note that cueing benefit 809 

was not significant at this time point when considered in isolation. Our prior studies of the 810 

SRTT have shown a cueing benefit from TMR immediately after the manipulation (Cousins et 811 

al., 2016; Cousins et al., 2014; Koopman et al., 2020), however we have previously argued 812 

that jittering of our TMR cues as we did in the current paradigm could detract from this 813 

(Rakowska et al., 2021). Thus, randomising the inter-trial-interval between the TMR sounds 814 

during sleep could disrupt the temporal dynamics of sequence replay, decreasing the 815 

predictability of sequence elements. This may have delayed the impact of this manipulation 816 

on behaviour, such that behavioural impacts of TMR were not significant until 20 days post-817 
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manipulation. Even so, the absence of a TMR-related behavioural plasticity 10 days after 818 

cueing was unexpected given that cueing benefit was apparent at this time point in our prior 819 

study using jittered TMR (Rakowska et al., 2021). Interestingly, the only session during which 820 

we observed a significant cueing benefit was the one which was performed online and in 821 

participants’ own homes using a computer keyboard, so one possibility is that doing the task 822 

while lying down in the MRI scanner, and with somewhat clunky MR-safe button boxes, 823 

impacted on the behavioural effects of TMR which would otherwise have been apparent. 824 

However, a between-session comparison of reaction times argues against this, since it 825 

revealed that the participants were faster in the MRI environment (S3) than when performing 826 

the task on a PC (S4), with variance equal in the two sessions (Fig.S5). The MRI environment 827 

could still have influenced our behavioural results, but there is no reason to expect that it 828 

would impact differentially on the two sequences and thus the difference between them (i.e., 829 

cueing benefit). 830 

4.3 Plasticity Within Sensorimotor Regions Predicts Long-term Cueing Benefits 831 

Our data show that both the functional activation and the volumetric grey matter increase in 832 

the sensorimotor cortex at 10 days post-TMR predict long-term behavioural cueing benefits. 833 

Thus, TMR-related functional activity in the right postcentral gyrus 10 days post-stimulation 834 

predicts behavioural benefits 20 days post-stimulation. Furthermore, an increase in grey 835 

matter volume in the right precentral gyrus over the first 10 days post-stimulation predicts  836 

the same behavioural benefits. The temporal lag between changes in the brain and the 837 

delayed changes we observed in behaviour may seem surprising at first glance, but we feel 838 

that these results make sense in that they suggest that a slowly evolving reorganisation of 839 

sensorimotor representations may underpin consolidation of TMR benefit to the SRTT over a 840 
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20-day timescale. It takes time for this change to become sufficiently large to be reflected in 841 

a significant behavioural benefit. In fact, the timescale at which this behavioural benefit 842 

emerges differs between studies, as it only becomes apparent at day 20 in the current report, 843 

while it was already apparent 24 hours pst-manipulation in our prior examination of this task 844 

(Rakowska et al., 2021). We speculate that such differences in the time needed for this effect 845 

to unfold are governed by aspects of our design and the circumstances in which participants 846 

performed the task (e.g. being in the scanner vs at home, see our discussion in section 3.2 847 

Cueing Alters Precuneus Activation), but individual differences in learning strength, sleep 848 

patterns, and even brain morphology could also play a role (Rakowska et al., 2022; Buch et 849 

al., 2021; Ebrahimi & Ostry, 2024; Kumar et al., 2019; Abdellahi et al., 2023). Somatosensory 850 

cortex has been shown to be essential for motor memory consolidation, since disruption of 851 

this region after learning dramatically impairs subsequent retention of a motor task. Notably, 852 

disruption of the primary motor cortex at the same timepoint has no impact on retention 853 

(Ebrahimi & Ostry, 2024; Kumar et al., 2019). The first excitability changes during motor skill 854 

learning have been shown to occur in somatosensory cortex and these predicted extent of 855 

subsequent learning, while changes in motor cortex excitability did not (Hanakawa, et al., 856 

2003). Furthermore, wakeful replay of motor sequences has been shown to involve 857 

somatosensory cortex (Buch et al., 2021). Our results build on this prior literature to suggest 858 

that our TMR manipulation leads to both structural and functional changes in the 859 

sensorimotor cortex that evolve over time and predict TMR related performance benefit. 860 

However, they should be treated with caution due to the small sample size and the fact that 861 

behavioural data at day 20 was collected remotely and showed a large standard deviation.  862 

4.4 The Role of N2 and Sleep Spindles 863 
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There is a fundamental similarity between the reactivation of memory traces via TMR and 864 

repeated encoding-retrieval episodes during wake, both of which have been shown to 865 

engender rapid memory engram formation within precuneus (Brodt et al., 2018; Antony et 866 

al., 2017). Indeed, repeated retrieval is a powerful way to consolidate memories and shares 867 

a lot of parallels with offline reactivation (Antony et al., 2017). However, in line with other 868 

studies (Himmer et al., 2019), we argue that the role of sleep goes beyond simply allowing an 869 

opportunity for more rehearsal. Both N2 (Laventure et al., 2016; Nishida & Walker, 2007) and 870 

sleep spindles (Boutin & Doyon, 2020) have been consistently implicated in motor sequence 871 

memory consolidation. Although we found no relationship between behavioural cueing 872 

benefit and either the time spent in N2 or spindle density, we did find a surge in spindle 873 

density during the cue period relative to the no-cue period. This is in line with our prior report 874 

(Rakowska et al., 2021) and suggests that auditory cueing may elicit sleep spindles. Even 875 

though this could also indicate an immediate processing of memory traces (Antony et al., 876 

2018; Cairney et al., 2018), a comparison between the electrophysiological response to cues 877 

vs control sounds would be necessary to confirm the relationship between spindles and 878 

memory cueing. Such work is unfortunately outside the scope of this report, as we did not 879 

apply control sounds. 880 

4.5 The Search for an Engram 881 

A neuronal ensemble that holds a representation of a stable memory is known as an engram 882 

(Tonegawa et al., 2018). The term ‘engram’ also refers to the physical brain changes that are 883 

induced by learning and that enable memory recall (Josselyn et al., 2015). Due to their widely 884 

distributed and dynamic nature, engrams have long remained elusive. However, recent 885 

technological advances allow us to study memory engrams in humans (Josselyn et al., 2015). 886 
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PPC, for instance, has received increasing attention in memory research (Gilmore et al., 2015), 887 

and the precuneus is a subregion of PPC that has been shown to undergo learning-dependent 888 

plasticity, fulfilling all criteria for a memory engram (Brodt et al., 2018). These defining criteria 889 

require an engram to 1) emerge as a result of encoding and reflect the content of the encoded 890 

information, 2) engender a persistent, physical change in the underlying substrate that 3) 891 

enable memory retrieval, and 4) exist in a dormant or inactive state, i.e., between encoding 892 

and retrieval processes (Josselyn et al., 2015). Evidence for a relationship between engram 893 

formation and memory reactivation during sleep has so far been lacking. While previous 894 

literature suggests that changes in the precuneus alone fulfil all proposed criteria for an 895 

engram (Brodt et al., 2018), our data show no TMR-related structural changes in this region, 896 

and thus fail to fulfil criterion 2. This could be due to our use of different MRI modalities (i.e., 897 

structural rather than microstructural MRI as in (Brodt et al., 2018)). Nevertheless, if our 898 

results are considered collectively across regions, we can argue that they do fulfil the criteria 899 

for an engram. Specifically, we observed that TMR-related activity in the precuneus and 900 

postcentral gyrus predicted behavioural benefit of TMR at S2 and S4, respectively. These 901 

responses could therefore reflect the encoded information (criterion 1), and enable memory 902 

recall (criterion 3), and that the precentral gyrus undergoes structural changes (criterion 2) 903 

which develop over a relatively long period of time (criterion 4). Taken in this way, our results 904 

would suggest that memory reactivation during sleep could support the development and 905 

evolution of an engram that encompasses several cortical areas, but we acknowledge this is 906 

speculative. 907 

5 Conclusion 908 
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We show that the behavioural benefits of memory cueing in NREM sleep develop over time 909 

and can be significant 20 days post-encoding. Increased TMR-related activity of dorsal 910 

precuneus underpins the short-term effects of stimulation (over 24 hours), whereas 911 

sensorimotor regions support the long-term effects (over 20 days). These results advance our 912 

understanding of the neural changes associated with long-term offline skill consolidation. 913 

They also shed new light on the TMR-induced processes that unfold over several nights after 914 

auditory cueing.  915 
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