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1. INTRODUCTION

Memory consolidation is a process through which newly 
encoded memories become more stable and long- 
lasting. Consolidation is thought to involve repeated rein-
statement, or reactivation of memory traces which allows 
their re- coding from short- term to long- term store 
( McClelland  et al.,  1995). Reactivation of learning- related 
brain activity patterns during sleep has been shown to 
predict subsequent memory performance ( Deuker  et al., 
 2013;  Peigneux  et al.,  2004) and thus to play a critical role 
in memory consolidation ( Born  &  Wilhelm,  2012; 
 Diekelmann  &  Born,  2010). However, it is unclear exactly 
how such offline rehearsal promotes the development of 
a stable memory representation. Here, we set out to 
investigate the neuroplasticity underlying memory reacti-

vation during sleep using Targeted Memory Reactivation 
(TMR) and magnetic resonance imaging (MRI).

TMR has recently emerged as a tool to study memory 
reactivation. This technique involves re- presenting 
learning- associated cues during sleep ( Rasch  et  al., 
 2007), thereby triggering reactivation of the associated 
memory representation and biasing their consolidation 
( Bendor  &  Wilson,  2012). In humans, this manipulation 
leads to strong behavioural effects ( Antony  et al.,  2012; 
 Cousins  et al.,  2016;  Rakowska  et al.,  2021;  Schönauer 
 et  al.,  2014), resulting in better recall of memories that 
were cued through TMR compared to those that were not 
cued. Functional activity associated with cueing has 
been investigated during and immediately after sleep 
( Cousins  et al.,  2016;  Rasch  et al.,  2007;  Shanahan  et al., 
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 2018;  van  Dongen  et al.,  2012). However, little is known 
about precisely how the memory representations tar-
geted by TMR evolve over longer time periods. We have 
previously reported behavioural effects of memory cue-
ing during sleep 20 days post- manipulation ( Rakowska 
 et al.,  2021). Yet, the functional plasticity underlying such 
benefits is unknown. Furthermore, whether TMR can 
impact on brain structure and which regions support 
sleep- dependent memory consolidation in the long term 
remain to be established.

In this study, we used TMR to determine if repeated 
reactivation of a memory trace during sleep engenders 
learning- related changes in the brain. We tracked such 
impacts over several weeks using both functional and 
structural brain imaging (Fig. 1a) and hypothesised that 
memory cueing during sleep would lead to rapid plas-
ticity within the precuneus, a structure which houses 
newly formed memory representations or “engrams” 
( Brodt  et  al.,  2018). This region was of special interest 
since it has been shown to respond to repeated learning- 
retrieval epochs which help to strengthen a memory 
( Brodt  et al.,  2018) and can be thought of as a proxy for 
memory reactivation in sleep ( Himmer  et al.,  2019).

We chose to focus specifically on a Serial Reaction 
Time Task (SRTT) because the importance of sleep in 
motor sequence learning is well established ( Loganathan, 
 2014;  Walker,  2005). Furthermore, improvements on 
motor tasks ( Walker  et  al.,  2003) and the associated 
structural changes ( Kodama  et  al.,  2018) have been 
shown to persist over time, with the same being true for 
the TMR effects ( Rakowska  et al.,  2021). Our participants 
were trained on a Serial Reaction Time Task (SRTT), 
learning two motor sequences of 12- item button presses. 
Each sequence was associated with a different set of 
auditory tones (Fig.  1b) but only one was reactivated 
during subsequent NREM sleep (Fig. 1c). During learning 
and two post- sleep re- test sessions (24 h and 10 days 
post- TMR), participants were scanned with structural 

MRI (T1- weighted) and functional MRI (fMRI) acquired 
during SRTT performance. We were thus able to perform 
exploratory analysis and compare brain activity during 
the cued and uncued sequence performance, as well as 
scrutinising brain structure after the first 10 days post- 
stimulation. Twenty days post- TMR, participants were 
again re- tested on the SRTT, now outside the scanner 
(online testing at home), allowing us to examine the long- 
term impacts of TMR on behaviour and relate this to 
functional and structural changes in the brain. The resul-
tant dataset enabled us to investigate when the 
behavioural impacts of cueing emerge, and to study the 
relationships between structural, functional, and 
behavioural plasticity post- TMR. Importantly, while we 
were interested in the precuneus as a putative seat for 
the “engram,” we also expected the long- term storage of 
the memory engram to prevail in strongly task- related 
areas that are known to respond to TMR such as the hip-
pocampus, striatum, and cerebellum ( Cousins  et  al., 
 2016). Additionally, the sensorimotor cortex is so clearly 
necessary for this task that we expected responses there.

2. METHODS

2.1. Participants

A pre- study questionnaire was used to exclude subjects 
with a history of drug/alcohol abuse, psychological, neu-
rological, or sleep disorders, hearing impairments, recent 
stressful life event(s), or regular use of any medication or 
substance affecting sleep. Participants were required to 
be right- handed, non- smokers, have regular sleep pat-
terns, normal or corrected- to- normal vision, no prior 
knowledge of the tasks used in the study, and no more 
than 3  years of musical training in the past 5  years as 
musical training has previously been shown to affect pro-
cedural learning ( Romano  Bergstrom  et al.,  2012). None 
of the participants reported napping regularly, working 

Fig. 1. Study design and methods. (a) A schematic representation of the experimental sessions. SRTT and one or more 
questionnaires were delivered in each session. During S1– S3, SRTT was split in half, with the first half completed in the 
0T “mock” scanner (to acclimate subjects to the scanner environment) (grey) and the second half in the 3T MRI scanner 
during fMRI acquisition (blue) (S1), or vice versa (S2– S3). T1w data were always acquired before fMRI. S1 also involved a 
stimulation night in the lab which the participants spent asleep and with the electroencephalography (EEG) cap on. During 
S4, SRTT data were acquired outside the MRI scanner and an explicit memory task was delivered at the very end of the 
study (see Fig. S4 for results). (b) Two sequences of the SRTT. Only the first few trials are shown. Visual cues appeared 
at the same time as the auditory cues, and the participants were instructed to push the key/button corresponding to the 
image location as quickly and accurately as possible. (c) TMR protocol. Tones associated with one sequence were played 
during stable N3 and N2 (grey bars on the hypnogram). One repetition of the cued sequence (dark grey rectangles) was 
followed by a 20 s break during which no sounds were played (light grey rectangles). Each sequence repetition comprised 
12 tones (depicted as coloured notes) with inter- trial interval jittered between 2,500 and 3,500 ms (light grey vertical bars). 
S1– S4: Session 1– Session 4; EHI: Edinburgh Handedness Inventory; PSQI: Pittsburgh Sleep Quality Index; SQ: Stanford 
Sleepiness Scale Questionnaire; SRTT: Serial Reaction Time Task; fMRI: functional Magnetic Resonance Imaging; T1w: 
T1- weighted scan.
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night shifts or travelling across more than two time- zones 
1 month prior to the experiment. Thirty- three volunteers 
fulfilled all inclusion criteria and provided informed con-
sent to participate in the study, which was approved by 
the Ethics Committee of the School of Psychology at 
Cardiff University (ethics number EC.19.06.11.5651R3A2) 

and performed in accordance with the Declaration of Hel-
sinki. All participants agreed to abstain from extreme 
physical exercise, napping, alcohol, caffeine, and other 
psychologically active food from 24 h prior to each exper-
imental session. Finally, before their first session, partici-
pants were screened by a qualified radiographer from 
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Cardiff University to assess their suitability for MRI and 
signed an MRI screening form prior to each scan.

Three participants had to be excluded from all analyses 
due to: technical issues (n  =  1), voluntary withdrawal 
(n = 1), and low score on the handedness questionnaire 
(indicating mixed use of both hands), combined with a 
positive slope of learning curve during the first session 
(indicating lack of sequence learning before sleep) (n = 1). 
Hence, the final dataset included 30 participants (16 
females, age range: 18– 23 years, mean ± SD: 20.38 ± 1.41; 
14 males, age range: 19– 23 years, mean ± SD: 20.43 ± 
1.16). However, due to the COVID- 19 outbreak, six partic-
ipants were unable to complete the study, missing all data 
from either one (n = 1) or two (n = 5) sessions. Hence, 
n = 25 for all data collected during S3 and n = 24 for S4. 
The final dataset included one participant who could not 
physically attend S3. They performed the SRTT online, 
but their MRI data (functional, fMRI and structural, T1w) 
could not be collected and therefore the sample size for 
the MRI analyses of S3 had to be further decreased by 
one. Two additional participants were excluded from the 
fMRI analysis of S2 due to MRI gradient coil damage 
during fMRI acquisition (n = 1) and failure to save the fMRI 
data (n = 1). Hence, the final sample size for fMRI was 
n = 30 for S1, n = 28 for S2 and n = 24 for S3, whereas the 
final sample size for analysis of T1w data was n = 30 for 
S1, n = 30 for S2, and n = 24 for S3. Finally, one partici-
pant had to be excluded from all the analyses concerning 
EEG due to substantial loss of data caused by failure of 
the wireless amplifier during the night. However, the TMR 
procedure itself was unaffected and therefore this partici-
pant was included in the behavioural and MRI analyses.

2.2. Experimental design

The experiment consisted of four sessions (Fig. 1a), all 
scheduled for ~8 pm. Upon arrival for the first session, 
participants completed Pittsburgh Sleep Quality Index 
(PSQI) ( Buysse  et al.,  1989) to examine their sleep quality 
over the past month and Stanford Sleepiness Question-
naire (SQ) ( Hoddes  et al.,  1973) to assess their current 
level of alertness. A short version of the Edinburgh Hand-
edness Inventory ( Veale,  2014) was also administered to 
confirm that all subjects were right- handed before the 
learning session took place. Due to time constraints at 
the MRI scanner, the learning session had to be split into 
two parts. The first half of the SRTT blocks (24 sequence 
blocks) was performed in a 0T Siemens “mock” scanner 
which also helped to acclimate subjects to the scanner 
environment. The second half of the SRTT blocks (24 
sequence blocks + 4 random blocks) was performed in a 
3T Siemens MRI scanner during fMRI acquisition and 
used for functional data analysis. fMRI acquisition was 

preceded by a structural scan (T1w) and followed by a B0 
fieldmap (see section 2.6 MRI data acquisition). Once 
outside the MRI scanner, participants were asked to pre-
pare themselves for bed. They were fitted with an EEG 
cap and were ready for bed at ~11 pm. During N2 and N3 
sleep stages, tones associated with one of the SRTT 
sequences were replayed to the participants via speakers 
(Harman/Kardon HK206, Harman/Kardon, Woodbury, 
NY, USA) to trigger reactivation of the SRTT memories 
associated with them. Participants were woken up after, 
on average, 8.81 ± 0.82 h in bed and had the EEG cap 
removed before leaving the lab.

We asked participants to come back for the follow- up 
sessions 23– 26 h (session 2, S2), 10– 14 days (session 
3, S3), and 16– 21  days (session 4, S4) after S1. The 
choice of 16– 21 days as the final time point was deliber-
ate, guided by our previous findings, which demon-
strated a TMR effect at day 10 post- stimulation but not 
6 weeks later. All the follow- up, sessions were sched-
uled for the same time in the evening to control for the 
time- of- day effect observed in MRI data ( Trefler  et al., 
 2016). During S2, participants were asked to indicate if 
they remember hearing any sounds during the night in 
the lab. S2 and S3 lasted ~2 h each and both involved 
the SQ and an MRI scan, during which a structural scan 
was acquired. This was followed by the SRTT re- test, 
with the first half of the SRTT blocks (24 sequence 
blocks + 4 random blocks) performed during the fMRI 
acquisition and the second half (24 sequence blocks + 4 
random blocks) in the mock scanner. Note that the order 
of scanners (3T vs. 0T) was flipped from S1 to S2 and S3 
for the functional and structural assessment to occur as 
close to the TMR session as possible. S4 took place 
either in the lab or online, depending on the severity of 
COVID- 19 restrictions at the time. During S4, SQ was 
delivered as before, together with the SRTT (one run, 48 
sequence blocks  +  4 random blocks) and an explicit 
memory task. Upon completion of each session, partic-
ipants were informed about the upcoming SRTT re- tests 
as this has been shown to enhance post- learning sleep 
benefits ( Wilhelm  et al.,  2011).

For offline data collection, the SRTT (S1– S3) was back 
projected onto a projection screen situated at the end of 
the MRI/mock scanner and reflected into the participant’s 
eyes via a mirror mounted on the head coil; the question-
naires and the SRTT (S4) were presented on a computer 
screen with resolution 1,920  x  1,080 pixels, and the 
explicit memory task was completed with pen and paper. 
SRTT was presented using MATLAB 2016b (The Math-
Works Inc., Natick, MA, USA) and Cogent 2000 (devel-
oped by the Cogent 2000 team at the Functional Imaging 
Laboratory and the Institute for Cognitive Neuroscience, 
University College, London, UK; http://www . vislab . ucl . ac 

http://www.vislab.ucl.ac.uk/cogent.php


5

M. Rakowska, P. Bagrowska, A. Lazari et al. Imaging Neuroscience, Volume 2, 2024

. uk / cogent . php); questionnaires were presented using 
MATLAB 2016b and Psychophysics Toolbox Version 3 
( Brainard  &  Vision,  1997).

For online data collection, SRTT (S4) was coded in 
Python using PsychoPy 3.2.2. ( Peirce  et  al.,  2019) and 
administered through the Pavlovia online platform 
(https://pavlovia . org/); questionnaires were distributed 
via Qualtrics software ( Qualtrics,  2005), and the explicit 
memory task was sent to the participants as a .pdf doc-
ument which they were asked to edit according to the 
instructions provided.

2.3. Experimental tasks

2.3.1. Motor sequence learning— the serial reaction 
time task (SRTT)

The SRTT (Fig.  1b) was used to induce and measure 
motor sequence learning. It was adapted from ( Cousins 
 et  al.,  2014), as described previously ( Rakowska  et  al., 
 2021). SRTT consists of two 12- item sequences of audi-
torily and visually cued key presses, learned by the par-
ticipants in blocks. The task was to respond to the stimuli 
as quickly and accurately as possible, using index and 
middle fingers of both hands. The two sequences— A 
(1– 2– 1– 4– 2– 3– 4– 1– 3– 2– 4– 3) and B (2– 4– 3– 2– 3– 1– 4– 2–  
3– 1– 4– 1)— were matched for learning difficulty, they did 
not share strings of more than four items and contained 
items that were equally represented (three repetitions of 
each). Each sequence was paired with a set of 200 ms- 
long tones, either high (5th octave, A/B/C#/D) or low (4th 
octave, C/D/E/F) pitched, that were counterbalanced 
across sequences and participants. For each item/trial, 
the tone was played with simultaneous presentation of a 
visual cue in one of the four corners of the screen. Visual 
cues consisted of neutral faces and objects appearing in 
the same location regardless of the sequences (1— top 
left corner  =  male face, 2— bottom left corner  =  lamp, 
3— top right corner = female face, 4— bottom right cor-
ner = water tap). Participants were told that the nature of 
the stimuli (faces/objects) was not relevant for the study. 
Their task was to press the key on the keyboard (while in 
the sleep lab or at home) or on an MRI- compatible button 
pad (2- Hand system, NatA technologies, Coquitlam, 
Canada) (while in the MRI/mock scanner) that corre-
sponded to the position of the picture as quickly and 
accurately as possible: 1 = left shift/left middle finger but-
ton; 2 =  left Ctrl/left index finger button; 3 = up arrow/
right middle finger button; 4  =  down arrow/right index 
finger button. Participants were instructed to use both 
hands and always keep the same fingers on the appropri-
ate response keys. The visual cue disappeared from the 

screen only after the correct key was pressed, followed 
by a 300 ms interval before the next trial.

There were 24 blocks of each sequence (a total of 48 
sequence blocks per session). The block type was indi-
cated with “A” or “B” displayed in the centre of the 
screen. Each block contained three sequence repetitions 
(36 items) and was followed by a 15 s pause/break, with 
reaction time and error rate feedback. Blocks were inter-
leaved pseudo- randomly with no more than two blocks 
of the same sequence in a row. Participants were aware 
that there were two sequences but were not asked to 
learn them explicitly. Block order and sequence replayed 
were counterbalanced across participants.

During each run of the SRTT, sequence blocks A and 
B were followed by 4 random blocks except for in the first 
half of S1 (to avoid interrupting learning, most of which 
occurred during S1). Random blocks were indicated with 
“R” appearing in the centre of the screen and contained 
pseudo- randomised sequences. For these, visual stimuli 
were the same and tones matched sequence A tones for 
half of them (Rand_A) and sequence B tones for the other 
half (Rand_B). Blocks Rand_A and Rand_B were alter-
nated, and each contained random sequences con-
strained by the following criteria: 1) cues within a string of 
12 items were equally represented, 2) the same cue did 
not occur in consecutive trials, and 3) the sequence did 
not share more than four cues in a row with either 
sequence A or B.

2.3.2. Explicit memory task

Explicit memory of the SRTT was assessed by a free 
recall test administered at the end of the study (S4). Par-
ticipants were provided with printed screenshots of 
sequence A and sequence B trials, but the visual cues 
were removed. They were instructed to mark the order 
of each sequence by drawing an “X” to indicate cue 
location.

2.4. EEG data acquisition

EEG data were acquired with actiCap slim active elec-
trodes (Brain Products GmbH, Gilching, Germany). Sixty- 
two scalp electrodes were embedded within an elastic cap 
(Easycap GmbH, Herrsching, Germany), with the reference 
electrode positioned at CPz and ground at AFz. Electro-
myogram (EMG) signals were recorded from two elec-
trodes placed on the chin, whereas the electrooculogram 
(EOG) was collected from two electrodes placed below the 
left eye and above the right eye. Elefix EEG- electrode 
paste (Nihon Kohden, Tokyo, Japan) was applied on each 
electrode for stable attachment, and Super- Visc high vis-
cosity electrolyte gel (Easycap GmbH) was used to keep 

http://www.vislab.ucl.ac.uk/cogent.php
https://pavlovia.org/
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impedance below 25 kOhm. Signals were amplified with 
either two BrainAmp MR plus EEG amplifiers or LiveAmp 
wireless amplifiers and recorded using BrainVision 
Recorder software (all from Brain Products GmbH).

2.5. TMR during NREM sleep

The TMR protocol was administered as in our prior study 
( Rakowska  et  al.,  2021), using MATLAB 2016b and 
Cogent 2000. Briefly, tones associated with either 
sequence A or B (counterbalanced across participants) 
were replayed to the participants during stable N2 and 
N3 (Fig. 1c) irrespective of slow wave phase or spindle 
occurrence. Presentation of sounds during sleep was 
manually controlled by the experimenters, who initiated 
TMR when the target sleep stage was identified and 
paused it when participants exhibited signs of arousal or 
shifted to a non- target sleep- stage. Replay blocks con-
tained one repetition of a sequence (i.e., 12 sounds) and 
were followed by 20 s of silence. The inter- trial interval 
between individual sounds was jittered between 2,500 
and 3,500 ms. Volume was adjusted manually for each 
participant to prevent arousal. However, upon leaving the 
relevant sleep stage, replay was paused and resumed 
only when stable N2 or N3 was observed. TMR was per-
formed until ~1,000 trials were delivered in N3. On aver-
age, 1,385.20 ± 305.53 sounds were played.

2.6. MRI data acquisition

Magnetic resonance imaging (MRI) was performed at 
Cardiff University Brain Imaging Centre (CUBRIC) with a 
3T Siemens Connectom scanner (maximum gradient 
strength 300  mT/m). All scans were acquired with a 
32- channel head- coil and lasted ~1 h in total each, with 
whole- brain coverage. Apart from the T1w and fMRI 
scans, the MRI protocol also included multi- shell 
Diffusion- Weighted Imaging (DWI) and mcDESPOT 
acquisitions, but these are not discussed here.

2.6.1. T1- weighted imaging

A high- resolution T1w anatomical scan was acquired 
with a 3D magnetization- prepared rapid gradient echoes 
(MPRAGE) sequence (2,300 ms repetition time [TR]; 2 ms 
echo time [TE]; 857 ms inversion time [TI]; 9° flip angle 
[FA]; bandwidth 230  Hz/Pixel; 256  mm field- of- view 
[FOV]; 256 x 256 voxel matrix size; 1 mm isotropic voxel 
size; 1  mm slice thickness; 192 sagittal slices; parallel 
acquisition technique [PAT] with in- plane acceleration 
factor 2 (GRAPPA); anterior- to- posterior phase- encoding 
direction; 5 min total acquisition time [AT]) at the begin-
ning of each scanning session.

2.6.2. Functional MRI

Functional data were acquired with a T2*- weighted multi- 
band echo- planar imaging (EPI) sequence (2,000 ms TR; 
35  ms TE; 75° FA; bandwidth 1,976  Hz/Pixel; 220  mm 
FOV; 220 x 220 voxel matrix size; 2 mm isotropic voxel 
size; 2 mm slice thickness; 87 slices with a ~25° axial- to- 
coronal tilt from the anterior– posterior commissure (AC- 
PC) line and interleaved slice acquisition; PAT 2 (GRAPPA); 
multi- band acceleration factor [MB] 3; anterior- to- 
posterior phase- encoding direction; maximum 24 min AT 
and 720 scans; because the task was self- paced the 
exact AT and the number of scans differed between par-
ticipants). Each fMRI acquisition was preceded by 
dummy scans to allow for saturation of the MR signal 
before the start of the task. Due to the nature of the task, 
the fMRI paradigm followed a block design consisting of 
sequence and random blocks (self- paced), alternating 
with rest blocks (15 s) (see section 2.3.1 Motor sequence 
learning— the serial reaction time task (SRTT)). Presenta-
tion of the first stimulus in a block was synchronised with 
the scanner’s trigger signal sent upon acquisition of every 
fMRI volume. Thus, the beginning of the task (i.e., the first 
stimulus of the first block) was triggered by the first fMRI 
volume acquisition and for that reason the initial volumes 
did not have to be discarded. No online motion correc-
tion was applied.

2.6.3. B0 fieldmap

B0- fieldmap was acquired to correct for distortions in the 
fMRI data caused by magnetic field (i.e., B0) inhomoge-
neities (465  ms TR; 4.92  ms TE; 60° FA; bandwidth 
290 Hz/Pixel; 192 mm FOV; 192 x 192 voxel matrix size; 
3 mm isotropic voxel size; 3 mm slice thickness; 44 slices 
with a ~25° axial- to- coronal tilt from the AC- PC line and 
interleaved slice acquisition; 1 average; anterior- to- 
posterior phase- encoding direction; 1 min AT).

2.7. Data analysis

2.7.1. Behavioural data

2.7.1.1. SRTT: Reaction time. SRTT performance was 
measured using mean reaction time per block of each 
sequence (cued and uncued). Both hands (BH) dataset 
contained all SRTT trials within each block, except for 
those with reaction time exceeding 1,000 ms. Trials with 
incorrect button presses prior to the correct ones were 
included in the analysis. All analysis reported in- text con-
cerns trials performed with both hands. However, given 
our previous results on this task ( Koopman  et al.,  2020; 
 Rakowska  et  al.,  2021), we were also interested in 
unpacking the effects of cueing on the SRTT performance 
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of each hand separately. To this end, the BH dataset was 
divided into the right hand (RH) dataset and left hand (LH) 
dataset, where each contained only the trials performed 
with the dominant or non- dominant hand, respectively. 
For each sequence within a given dataset, the mean per-
formance on the 4 target blocks was subtracted from the 
mean performance on the 2 random blocks. This allowed 
us to separate sequence learning from sensorimotor 
mapping and thus obtain a measure of “sequence- 
specific skill” (SeqSpecS). The target blocks were the 
first 4 sequence blocks, used to calculate early SeqSpecS, 
and the last 4 sequence blocks, used to calculate late 
SeqSpecS, as illustrated below:

 1.  Early SeqSpecS = mean (random blocks) – mean 
(first 4 sequence blocks)

 2.  Late SeqSpecS = mean (random blocks) – mean 
(last 4 sequence blocks)

Finally, to obtain a single measure reflecting the effect 
of TMR on the SRTT performance we calculated the dif-
ference between the SeqSpecS of the cued and uncued 
sequence and refer to it as the “cueing benefit.”

2.7.1.2. Questionnaires. PSQI global scores were 
determined in accordance with the original scoring sys-
tem ( Buysse  et al.,  1989). Answers to the short version of 
the EHI were scored as in ( Veale,  2014) and used to 
obtain laterality quotient for handedness. For results, see 
Supplementary Notes: Questionnaires.

2.7.1.3. Explicit memory task. Responses on the 
explicit memory task were considered correct only if they 
were in the correct position within the sequence and next 
to at least one other correct item, hence reducing the 
probability of guessing ( Cousins  et al.,  2014). The num-
ber of items guessed by chance was determined for each 
participant by taking an average score of 10 randomly 
generated sequences. To test if the explicit memory was 
formed, the average chance level across all participants 
was compared with the average number of correct items 
for each sequence. For results, see Supplementary 
Notes: Explicit Memory Task and Figure S4.

2.7.2. EEG data analysis

All EEG data were analysed in MATLAB 2018b using 
FieldTrip Toolbox ( Oostenveld  et al.,  2011).

2.7.2.1. Sleep scoring. EEG signal was recorded 
throughout the night at eight scalp electrodes (F3, F4, 
C3, C4, P3, P4, O1, O2); two EOG and two EMG chan-
nels were pre- processed and re- referenced from CPz to 
the mastoids (TP9, TP10). For two participants, the right 

mastoid channel (TP10) was deemed noisy through visual 
inspection and had to be interpolated based on its 
triangulation- based neighbours (TP8, T8, P8), before it 
could be used as a new reference. The data were scored 
according to the AASM criteria ( Berry  et al.,  2015) by two 
independent sleep scorers who were blinded to the cue 
presentation periods. Any disagreements between the 
scorers were resolved through discussion. Sleep scoring 
was performed using a custom- made interface (https://
github . com / mnavarretem / psgScore).

2.7.2.2. Spindles analysis. The relationship between 
sleep spindles and behavioural measures was assessed 
using 8 electrodes located over motor areas: FC3, C5, 
C3, C1, CP3, FC4, C6, C4, C2, and CP4 due to the known 
local modulation of spindle activity over learning- related 
brain regions ( Cox  et al.,  2014;  Lutz  et al.,  2021). How-
ever, for visualisation purposes (Fig.  3a), the remaining 
electrodes in the International 10- 20 EEG system were 
also analysed as described below. First, raw data from 
these channels were down- sampled to 250 Hz (for them 
to be comparable between the two EEG data acquisition 
systems) and filtered by Chebyshev Type II infinite 
impulse response (IIR) filter (passband: f =  [0.3– 35] Hz; 
stopband: f < 0.1 Hz & f > 45 Hz). All channels were visu-
ally inspected, and the noisy ones were interpolated via 
triangulation of their nearest neighbours. As a final pre- 
processing step, we re- referenced the data from CPz to 
the mastoids (TP9, TP10). A spindle- detection algorithm 
( Navarrete  et al.,  2020) was then employed to automati-
cally identify sleep spindles (11– 16 Hz). Briefly, the data 
were filtered in a sigma band by the IIR filter (passband: 
f = [11– 16] Hz; stopband: f < 9 Hz & f > 18 Hz) and the 
root mean squared (RMS) of the signal was computed 
using a 300 ms time window. Any event that surpassed 
the 86.64 percentile (1.5 SD, Gaussian distribution) of the 
RMS signal was considered a candidate spindle. To fit 
the spindle detection criteria ( Iber,  2007), only the events 
with unimodal maximum in the 11– 16 Hz frequency range 
in the power spectrum, duration between 0.5 and 2.0 s 
and at least 5 oscillations, were regarded as sleep spin-
dles ( Navarrete  et al.,  2020).

Any identified spindles that fell (partly or wholly) within 
a period that had been previously marked as an arousal 
during sleep scoring were removed. The remaining spin-
dles were separated into those that fell within the cue and 
no- cue periods. We define the cue period as the 3.5  s 
time interval after the onset of each tone. Since 3.5 s was 
the longest inter- trial interval allowed, the cue period 
essentially covered the time interval from the onset of the 
first tone in a sequence to 3.5 s after the onset of the last 
one. In turn, the no- cue period covered the time interval 
between sequences, that is, from 3.5 to 20.0 s after the 

https://github.com/mnavarretem/psgScore
https://github.com/mnavarretem/psgScore
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onset of the last tone in a sequence. If a spindle fell 
between the cue and no- cue period, that spindle was 
removed from further analysis. Thus, only spindles that 
fell wholly within the cue or no- cue period were included 
in the analysis.

Spindle density was calculated by dividing the number 
of spindles at each electrode and in each period of inter-
est (cue period during target sleep stage, no- cue period 
during target sleep stage) by the duration (in minutes) of 
that period.

2.7.3. MRI data analysis

MRI data were pre- processed using Statistical Paramet-
ric Mapping 12 (SPM12; Wellcome Trust Centre for Neu-
roimaging, London, UK), running under MATLAB 2018b.

2.7.3.1. fMRI

2.7.3.1.1. Pre- processing. Functional data pre- processing 
consisted of 1) B0- fieldmap correction using SPM’s field-
map toolbox ( Jezzard  &  Balaban,  1995); 2) realignment to 
the mean of the images using a least- squares approach 
and 6 parameter rigid body spatial transformation to cor-
rect for movement artifact ( Friston  et  al.,  1995); 3) co- 
registration with the participants’ individual structural 
image using rigid body model ( Collignon  et al.,  1995); 4) 
spatial normalisation to Montreal Neurological Institute 
brain (MNI space) via the segmentation routine and resam-
pling to 2 mm voxels with a 4th- degree B- spline interpola-
tion (Ashburner & Friston, 2005); and 5) smoothing with 
8 mm full- width half maximum (FWHM) Gaussian kernel in 
line with the literature ( Cousins  et al.,  2016). All steps were 
performed as implemented in SPM12. B0- fieldmap cor-
rection step was omitted for one participant (n = 1) due to 
technical issues during B0- fieldmap acquisition. No scans 
had to be excluded due to excessive movement (average 
translations < 3.3 mm, average rotations < 0.03°).

2.7.3.1.2. Single subject level analysis. Subject- level 
analysis of the fMRI data was performed using a general 
linear model (GLM) ( Friston  et  al.,  1994), constructed 
separately for each participant and session. Each block 
type (cued sequence, uncued sequence, cued random, 
uncued random) as well as the breaks between the 
blocks were modelled as five separate, boxcar regres-
sors; button presses were modelled as single events 
with zero duration. All of these were temporally con-
volved with a canonical hemodynamic response function 
(HRF) model embedded in SPM, with no derivatives. To 
control for movement artifacts, the design matrix also 
included six head motion parameters, generated during 
realignment, as non- convolved nuisance regressors. A 
high- pass filter with a cut- off period of 128 s was imple-

mented in the matrix design to remove low- frequency 
signal drifts. Finally, serial correlations in the fMRI signal 
were corrected for using a first- order autoregressive 
model during restricted maximum likelihood (REML) 
parameter estimation. Contrast images were obtained 
for each block type of interest ([cued sequence] and 
[uncued sequence]), as well as for the difference between 
the two ([cued  >  uncued]). The resulting parameter 
images, generated per participant and per session using 
a fixed- effects model, were then used as an input for the 
group- level (i.e., random effects) analysis. Contrast 
images for the difference between sequence and ran-
dom blocks were not generated due to the unequal num-
ber of each block type performed in the scanner (2 
random blocks vs. 24 sequence blocks, per session). 
This, however, was in accordance with the literature 
( Cousins  et al.,  2016).

2.7.3.2. VBM

2.7.3.2.1. Pre- processing. Pre- processing of T1w images 
was performed in keeping with ( Ashburner,  2010) recom-
mendations. Images were first segmented into three tis-
sue probability maps (grey matter, GM; white matter, WM; 
cerebrospinal fluid, CSF), with two Gaussians used to 
model each tissue class, very light bias regularisation 
(0.0001), 60 mm bias FWHM cut- off, and default warping 
parameters ( Ashburner  &  Friston,  2005). Spatial normali-
sation was performed with DARTEL ( Ashburner,  2007), 
where the GM and WM segments were used to create 
customised tissue- class templates and to calculate flow 
fields. These were subsequently applied to the native GM 
and WM images of each subject to generate spatially nor-
malised and Jacobian scaled (i.e., modulated) images in 
the MNI space, resampled at 1.5 mm isotropic voxels. The 
modulated images were smoothed with an 8 mm FWHM 
Gaussian kernel, in line with the fMRI analysis. To account 
for any confounding effects of brain size, we estimated 
the total intracranial volume (ICV) for each participant at 
each time point by summing up the volumes of the GM, 
WM, and CSF probability maps, obtained through seg-
mentation of the original images ( Friston  et al.,  1994). The 
GM and WM images were then proportionally scaled to 
the ICV values by means of dividing intensities in each 
image by the image’s global (i.e., ICV) value before statis-
tical comparisons.

2.7.4. Statistical analysis

All tests conducted were two- tailed, with the significance 
threshold set at 0.05. For behavioural and EEG data anal-
yses, normality assumption was checked using Shapiro- 
Wilk test. To compare two related samples, we used 
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paired- samples t- test or Wilcoxon signed- rank test, 
depending on the Shapiro- Wilk test result. Results are 
presented as mean ± standard error of the mean (SEM), 
unless otherwise stated.

2.7.4.1. Behavioural data. Statistical analysis of the 
behavioural data was performed in R ( R  Core  Team,  2018) 
or SPSS Statistics 25 (IBM Corp., Armonk, NY, USA) as 
before ( Rakowska  et  al.,  2021). Each dataset (LH, RH, 
BH) was analysed separately.

To assess the relationship between TMR, SeqSpecS, 
and Session, we used linear mixed- effects analysis per-
formed on S2– S4, using lme4 package ( Bates  et  al., 
 2014) in R. We chose linear mixed- effects analysis instead 
of an ANOVA to avoid listwise deletion due to missing 
data at S3 and S4 and to account for the non- 
independence of multiple responses collected over time, 
in line with previous literature ( Miyamoto  et  al.,  2021; 
 Schapiro  et  al.,  2018). TMR and Session were entered 
into the model as categorical (factor) fixed effects without 
interaction and random intercept was specified for each 
subject. The final models fitted to the BH, LH, and RH 
datasets were as follows:

> model =  lmer(early SeqSpecS ~ Session  +  TMR  + 
(1|Participant), data = dataset)

> model =  lmer(late SeqSpecS ~ Session  +  TMR  +  
(1|Participant), data = dataset)

To test for the effect of hand, LH and RH datasets 
were combined and “hand” (factor) was added as an 
additional fixed effect:

> model =  lmer(early SeqSpecS ~ Session + TMR + Hand + 
(1|Participant), data = dataset)

> model =  lmer(late SeqSpecS ~ Session + TMR + Hand + 
(1|Participant), data = dataset)

Finally, to explore how the TMR effect evolves from S2 
to S4, we entered cueing benefit (calculated using the 
late SeqSpecS data given no TMR effect on the early 
SeqSpecS) as the dependent variable and the number of 
days post- TMR (“time,” integer) as a fixed effect in the 
following model:

> model =  lmer(CueingBenefit ~ Time  + (1|Participant), 
data = dataset)

To test for the effect of hand, LH and RH datasets 
were combined as before:

> model =  lmer(CueingBenefit ~ Time  +  Hand  +  
(1|Participant), data = dataset)

Likelihood ratio tests comparing the full model against 
the model without the effect of interest were performed 
using the ANOVA function in R to obtain p- values. Post- 
hoc pairwise comparisons were conducted using the 
emmeans package ( Lenth  et al.,  2019) in R and corrected 
for multiple comparisons with Holm’s method. Effect 
sizes were calculated with the emmeans package as well.

2.7.4.2. EEG data. Statistical analysis of the EEG data 
was performed in R ( R  Core  Team,  2018) or SPSS Statis-
tics 25 (IBM Corp., Armonk, NY, USA). Each stimulation 
period (cue vs. no- cue) and sleep stage (N2, N3, N2 and 
N3 combined) was analysed separately.

Correlations between our behavioural measures and 
EEG results were assessed with Pearson’s correlation or 
Spearman’s Rho (depending on the Shapiro- Wilk test 
result), using cor.test function in the R environment. Any 
datapoint that was both 1) more than 1.5 IQRs below the 
first quartile or 1.5 IQRs above the third quartile, and 2) 
deemed an outlier through visual inspection, was 
removed from the dataset prior to correlational analysis. 
False discovery rate (FDR) correction was used to correct 
for multiple correlations (q < 0.05) ( Benjamini  &  Hochberg, 
 1995). FDR corrections were based on 3 correlations, 
given the 3 experimental sessions of interest (S2, S3, S4).

2.7.4.3. MRI data. Group- level analysis of the MRI data 
was performed either in a Multivariate and Repeated 
Measures (MRM) toolbox (https://github . com / martynmc 
farquhar / MRM) or in SPM12, both running under MAT-
LAB 2018b. All contrasts performed in SPM are outlined 
in Table S11. All tests conducted were two- tailed, testing 
for both positive and negative effects. Results were 
voxel- level corrected for multiple comparisons by family 
wise error (FWE) correction for the whole brain and for 
the pre- defined anatomical regions of interest (ROI), with 
the significance threshold set at pFWE  <  0.05. For the 
analysis performed in MRM, p- values were derived from 
1,000 permutations, with Wilk’s lambda specified as the 
test statistic. Pre- defined ROI included 1) bilateral precu-
neus, 2) bilateral hippocampus and parahippocampus, 
3) bilateral dorsal striatum (putamen and caudate), and 4) 
bilateral sensorimotor cortex (precentral and postcentral 
gyri). All ROI were selected based on their known involve-
ment in sleep- dependent procedural memory consoli-
dation ( Albouy  et al.,  2013;  Debas  et al.,  2010;  Fischer 
 et al.,  2005;  Walker  et al.,  2005) and memory reactivation 
( Brodt  et al.,  2018;  Cousins  et al.,  2016;  Maquet  et al., 
 2000;  Rasch  et  al.,  2007;  van  Dongen  et  al.,  2012). A 
mask for each ROI was created using an Automated 
Anatomical Labeling (AAL) atlas in the Wake Forest Uni-
versity (WFU) PickAtlas toolbox ( Maldjian  et  al.,  2003). 
Anatomical localisation of the significant clusters was 

https://github.com/martynmcfarquhar/MRM
https://github.com/martynmcfarquhar/MRM
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determined with the automatic labelling of MRIcroGL 
(https://www . nitrc . org / projects / mricrogl/) based on the 
AAL atlas. All significant clusters are reported in the 
tables, but only those with an extent equal to or above 5 
voxels are discussed in text and presented in figures.

To account for multiple small volume corrections, any 
contrast that yielded significant results for either one of 
our pre- defined ROIs was entered into a voxel- wise per-
mutation analysis with FWE correction within a single 
mask combining all the pre- defined ROIs. The analysis 
was performed in MRM with p- values derived from 
1,000 permutations and Wilk’s lambda specified as the 
test statistic.

2.7.4.3.1. fMRI data. To test the effect of TMR on the 
post- stimulation sessions (S2, S3), one- dimensional con-
trast images for the [cued] and [uncued] blocks of each 
session were entered into a repeated- measures TMR- by- 
Session ANOVA performed in the MRM toolbox.

To compare functional brain activity during the cued 
and uncued sequence, we carried out one- way t- tests on 
the [cued  >  uncued] contrast for S2 (n  =  28) and S3 
(n = 24) in SPM12. To determine the relationship between 
the TMR- related functional activity and other factors, we 
included the behavioural cueing benefit at different time 
points (S2, S3, S4) as covariates in separate compari-
sons (Table S11A).

2.7.4.3.2. VBM data. Because structural changes take 
time to occur, we chose to look for VBM changes 
between baseline and day 10 (S1 and S3), rather than 
looking at shorter term effects in S2. Group- level analy-
sis of the structural images was performed separately 
for GM and WM. First, the pre- processed and propor-
tionally scaled images from S1 and S3 were subtracted 
from one another (n = 24). To determine the relationship 
between the long- term structural brain changes and 
behavioural benefits of TMR, one- sample t- tests were 
computed in SPM12, with covariates of interest added 
one at a time. The covariates of interest were the 
behavioural cueing benefit at S3 and S4. Sex was 
always specified as a covariate of no interest (nuisance 
covariate) to control for differences between males and 
females. Finally, the SPM12 tissue probability maps of 
GM and WM were thresholded at 50% probability and 
the resulting binary masks were used in the analyses of 
the relevant tissue ( Ceccarelli  et al.,  2012).

2.7.5. Results presentation

Plots displaying behavioural results, pairwise compari-
sons, and relationships between two variables were gen-
erated using ggplot2 (version 3.3.0) ( Wickham,  2009) in 

R. Figure 3a was generated using ft_topoplotER func-
tion in FieldTrip Toolbox ( Buysse  et al.,  1989). Figure 1 
was created in Microsoft PowerPoint v16.53. MRI results 
are presented using MRIcroGL, displayed on the MNI152 
standard brain (University of South Carolina, Columbia, 
SC), except Figures S2 and S3 which were generated  
by SPM12 (Wellcome Trust Centre for Neuroimaging, 
London, UK).

3. RESULTS

3.1. SRTT

3.1.1. Reaction time and sequence specific skill

Analysis of baseline SRTT performance indicated that 
participants learned both sequences before sleep and 
confirmed that any post- sleep differences between the 
sequences can be regarded as the effect of TMR (see 
Supplementary Notes: Baseline SRTT Performance and 
Table  S1). Figure  2a shows the mean reaction time 
(± SEM) for all trials of each SRTT block over the whole 
length of the study.

Post- sleep SRTT re- test sessions occurred 24.67  h 
(SD: 0.70) (S2), 10.48 days (SD: 0.92) (S3), and 20.08 days 
(SD: 0.97) (S4) after session 1 (S1). In line with the meth-
ods described in ( Cousins  et al.,  2014,  2016), SRTT per-
formance was measured by subtracting the mean 
reaction time on the last or first four blocks of each 
sequence from that of the random blocks, thereby pro-
viding a measure of sequence specific skill for both early 
and late timepoints. We can then compare these mea-
sures to calculate effects of TMR on both early perfor-
mance (e.g., SRTT performed immediately post- sleep 
without further practice, thus not requiring post- 
manipulation practice) and late performance (SRTT mea-
sured at the end of post- manipulation practice session, 
thus including effect of TMR which unfold across subse-
quent practice), which we refer to as early and late 
sequence specific skill (SeqSpecS), respectively. To test 
the effect of cueing on the SeqSpecS (either early or late) 
over time, we fitted a linear mixed effects model to our 
behavioural dataset, with TMR and session entered as 
fixed effects, and participant entered as a random effect. 
Results of all the likelihood ratio tests comparing the full 
model against the model without the fixed effect of inter-
est are shown in Table S2.

The linear mixed- effect analysis revealed a main effect 
of session on both early (X2(2)  =  175.77, p  <  0.001; 
Table S2Ai) and late SeqSpecS (X2(2) = 93.04, p < 0.001; 
Table S2Aii). Post- hoc comparisons showed a difference 
between subsequent sessions (S2 vs. S3, S3 vs. S4) 

https://www.nitrc.org/projects/mricrogl/
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(padj < 0.002; Table S3A), suggesting continuous learning 
over time. All padj values are Holm- corrected.

Inclusion of TMR as a fixed effect improved model fit 
across all post- stimulation sessions (S2– S4) for late 
SeqSpecS (X2(1) = 11.01, p = 0.001; Table S2Aii), but not 
early SeqSpecS (X2(1)  =  1.55, p  =  0.214; Table  S2Ai). 
Thus, the linear mixed- effects analysis points to a main 
effect of TMR on the late SeqSpecS across all post- 
stimulation sessions. Next, we performed post- hoc com-
parisons to reveal the session(s) during which late 
SeqSpecS differed between the two sequences. We 

found a significant difference between the cued and 
uncued sequence performance at S4 (20  days post- 
stimulation, padj  =  0.004) but not at S2 (24  h post- 
stimulation, padj = 0.282) or S3 (10 days post- stimulation, 
padj = 0.282) (Table S4A; Fig. 2b). Together, these findings 
point to a main effect of TMR across all post- stimulation 
sessions, with the difference between the cued and 
uncued sequence strongest 20 days post- TMR.

Our previous findings on the same task suggest differ-
ential consolidation processes for the two hands ( Koopman 
 et al.,  2020;  Rakowska  et al.,  2021). Thus, we also sought 

Fig. 2. Behavioural benefit of cueing emerges 20 days after the stimulation night. (a) Mean reaction time for the cued 
sequence (blue), uncued sequence (red), and random blocks (green and orange) of the SRTT performed before sleep (S1), 
24 h post- TMR (S2), 10 days post- TMR (S3), and 20 days post- TMR (S4). Error bars depict SEM. Blue dashed rectangle 
frames mark the SRTT blocks performed during fMRI acquisition. For summary statistics see Table S1. (b) Mean late 
SeqSpecS for the cued (blue dots) and uncued (red dots) sequence plotted against experimental sessions (S1– S4). Error 
bars depict SEM. Grey lines represent individual participants. For statistical analysis results see Tables S2– S4. (c) Mean 
late SeqSpecS on the uncued sequence subtracted from the cued sequence and plotted over time (number of days 
post- TMR). The effect of time was significant (see Table S5). Blue dots represent mean ± SEM calculated for S2, S3, and 
S4. Grey lines represent cueing benefit for each subject. For (a– c): n = 30 for S1– S2, n = 25 for S3, n = 24 for S4. S1– S4: 
Session 1– Session 4; RT: reaction time; SeqSpecS: Sequence Specific Skill. *p < 0.05; ns: non- significant. For the effects 
of TMR and session on each hand see Figure S1.
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to unpack the effects of TMR and session on each hand 
separately (see Supplementary Notes: Individual Hands 
Performance). Although our results suggest greater bene-
fits of TMR on the dominant hand performance at S4 
(Fig. S1; Table S2B, C), we found no interaction between 
hand and TMR (Table S2D). This suggests no difference in 
how TMR affects the dominant and non- dominant hand 
consolidation and thus any further analyses testing the 
relationship between behavioural effects of TMR and other 
factors involve the both hands dataset only.

3.1.2. Cueing benefit across time

To explore how the TMR effect evolves over time, we 
used late SeqSpecS, as in prior studies ( Cousins  et al., 
 2014;  Rakowska  et al.,  2021). Specifically, we calculated 
the difference between late SeqSpecS of the cued and 
uncued sequence for each session, and refer to this as 
the (late) cueing benefit. Next, we used a linear mixed- 
effects analysis to determine if cueing benefit changes 
across post- stimulation time. Inclusion of the number of 
days post- TMR as the fixed effect improved model fit on 
the extent of cueing benefit (X2(2)  =  3.97, p  =  0.046; 
Fig. 2c; Table S5A), suggesting that the effects of TMR 
may develop in a gradual time- dependent manner.

3.2. Correlations with sleep stages

To determine the relationship between sleep parameters 
derived from sleep stage scoring (Table  S6) and the 
behavioural effect of our manipulation, we correlated the 
percentage of time spent in stage 2 (N2) and stage 3 (N3) 
of NREM sleep (the two target stages for our stimulation) 

with the cueing benefit at each session (S2, S3, S4). 
Results are presented in Table  S7, with no correlation 
surviving FDR correction (padj > 0.05).

3.3. Sleep spindles

Given the well- known involvement of sleep spindles in 
motor sequence memory consolidation ( Boutin  &  Doyon, 
 2020), we set out to describe electrophysiological 
changes within the spindle frequency in relation to the 
cueing procedure. The average spindle density over the 
task related regions was higher in N2 than in N3 during 
both the cue period (0– 3.5 s after cue onset; t(28) = 4.48, 
p < 0.001) and the no- cue period (3.5– 20 s after the onset 
of the last cue in the sequence; t(28) = 4.23, p < 0.0001) 
(paired- samples t- test). Next, we compared spindle den-
sity during the cue and the no- cue period for N2 and N3 
combined. As in our previous study ( Rakowska  et  al., 
 2021), we found that the average spindle density during 
the cue period was higher than during the no- cue period 
(t(28) = 4.37, p < 0.001; paired- samples t- test; Fig. 3a, b), 
suggesting that cueing may elicit sleep spindles. The 
analysis also revealed higher spindle density over the left 
versus right motor areas for the cue period (t(28) = 2.59, 
p  =  0.015) but not for the no- cue period (t(28)  =  1.98, 
p  =  0.057) (paired- samples t- test). Spindle density and 
the number of spindle events during each period and 
sleep stage are summarised in Table S8.

Spindle- related changes over brain regions involved in 
learning ( Cox  et al.,  2014) often predict behavioural perfor-
mance ( Barakat  et al.,  2013). However, we found no cor-
relation between spindle density averaged over bilateral 
motor regions and cueing benefit (padj > 0.05; Table S9).

Fig. 3. Spindle density increases immediately upon cue onset. (a) Topographic distribution of spindle density (spindles 
per min) in the cue (left) and no- cue (right) period of NREM sleep (N2 and N3 combined). Motor channels in white. (b) 
Spindle density averaged over motor channels during the cue period was higher than during the no- cue period. Blue dots 
represent mean ± SEM. Grey lines represent individual subjects. ***p = 0.001. N2- N3: stage 2– stage 3 of NREM sleep. 
n = 29. See Table S8 for summary statistics and Table S9 for the relationship between spindle density and cueing benefit.
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3.4. TMR- related changes in fMRI response

To test our hypothesis that memory cueing during sleep 
would engender learning- related changes within precu-
neus, we performed a TMR- by- Session ANOVA on the 
fMRI data acquired during sequence performance at S2 
(24 h post- TMR) and S3 (10 days post- TMR). In line with 
our hypothesis, the analysis revealed increased activity in 
the precuneus (right precuneus, 8, - 72, 58) for the main 
effect of TMR (cued vs. uncued sequence across both S2 
and S3) (peak F = 22.67, p = 0.032; Table S10A), but no 
effect of session or interaction (p > 0.05 ROI corrected). 
Because we have previously shown cueing- related func-
tional activity the morning after TMR ( Cousins  et  al., 
 2016) and because both microstructural plasticity and 
functional engagement of posterior parietal cortex (PPC) 
have been detected relatively soon after learning ( Brodt 
 et  al.,  2018), we expected to find functional activity 
changes already at S2. Indeed, a one- way t- test on the 

[cued > uncued] contrast revealed increased activity in 
the dorsal- anterior subregion of left precuneus (- 9, - 62, 
66) just 24 h post- TMR (peak T = 4.79, p = 0.020; Fig. 4a, 
b; Table S10B; Fig. S2A), but no difference between cued 
and uncued activity at S3 (p > 0.05). These results show 
that TMR alters functional activity in precuneus, with the 
TMR- related increase in functional response apparent 
relatively quickly (i.e., 24 h) post- stimulation.

Next, following the lead of prior authors ( Albouy  et al., 
 2013;  Debas  et  al.,  2010;  Shanahan  et  al.,  2018), we 
looked for a relationship between post- sleep perfor-
mance improvements and brain activity differences 
between the cued and uncued conditions. First, we cor-
related fMRI responses to the cued > uncued contrast at 
each post- manipulation session with behavioural regres-
sors collected in that same session. At S2, this revealed 
that TMR- related functional increase in left dorsal- 
posterior precuneus was significantly correlated with 

Fig. 4. TMR- related functional activity in precuneus. (a, b) TMR- dependent increase in left precuneus activity 24 h post- 
stimulation. (c, d) Activity for the [cued > uncued] contrast in left precuneus at S2 is positively associated with behavioural 
cueing benefit at the same time point. (a, c) Group level analysis. In red, colour- coded t- values for each contrast 
thresholded at a significance level of pFWE < 0.05, corrected for multiple voxel- wise comparisons within a pre- defined ROI 
for bilateral precuneus (Table S10) (for voxel- wise correction within all four ROIs see Table S13A, B). In gold, colour- coded 
t- values for each contrast thresholded at a significance level of p < 0.001, uncorrected and without masking. Results are 
overlaid on a Montreal Neurological Institute (MNI) brain. Note that although the clusters significant at pFWE < 0.05 in (a) 
and (c) fall within the Automated Anatomical Labeling (AAL) definition of precuneus, they do not overlap and their peak 
coordinates are different (see Table S10, Bi, Ci, Di). (b, d) Mean functional activity extracted from clusters significant at 
pFWE < 0.05 shown in (a, c). The scatterplots are presented for visualisation purpose only and should not be used for 
statistical inference. (b) Red dots represent group mean ± SEM. Grey lines represent individual subjects. (d) Each data 
point represents a single participant. arb. u.: arbitrary units; S2– 4: Session 2– 4; n = 28 for (a– d). For glass brain fMRI 
results see Figure S2.
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Fig. 5. Functional activity and structural brain changes are associated with long- term cueing benefit. (a, b) Activity for 
the cued > uncued contrast in the right postcentral gyrus at S3 is positively associated with behavioural cueing benefit 
at S4. (c, d) Grey matter volume in the right precentral gyrus at S3 relative to S1 is positively associated with behavioural 
cueing benefit at S4. (a, c) Group level analysis. In red, colour- coded t- values for increased fMRI activity (a) and grey 
matter volume (c), both thresholded at a significance level of pFWE < 0.05, corrected for multiple voxel- wise comparisons 
within a pre- defined ROI for bilateral sensorimotor cortex (Table S12) (for voxel- wise correction within all four ROIs see 
Table S13C, D). In gold, colour- coded t- values for increased fMRI activity (a) and grey matter volume (c), both thresholded 
at a significance level of p < 0.001, uncorrected and without masking. Results are overlaid on a Montreal Neurological 
Institute (MNI) brain. Colour bars indicate t- values. (b, d) Mean functional activity (b) and grey matter volume (d) extracted 
from clusters significant at pFWE < 0.05 shown in (a, c). The scatterplots are presented for visualisation purpose only and 
should not be used for statistical inference. Each data point represents a single participant. arb. u.: arbitrary units; GM: 
grey matter; S1– 4: Session 1– 4; n = 23. For glass brain fMRI and VBM results see Figures S2 and S3, respectively.

behavioural cueing benefit, (- 4, - 78, 46; peak T = 5.18, 
p = 0.009; Fig. 4c, d; Table S10Ci; Fig. S2B), a finding 
which survived correction for multiple ROIs (Table S13). 
Next, to determine how functional responses may predict 
future behavioural improvements, we correlated the 
cued > uncued response at each post- manipulation ses-
sion with behavioural responses from future sessions. 
This revealed that TMR related responses in the postcen-
tral gyrus at S3 were positively predicting behavioural 
cueing benefit at S4, around 10 days later (58, - 18, 38; 

peak T = 5.50, p = 0.022; Fig. 5a, b; Tables S10Di and 
S13; Fig. S2C). Taken together, these two results suggest 
that activity in dorsal precuneus 24 h post- encoding pre-
dicts behavioural effects of cueing in the short- term, 
while TMR impacts on activation of primary somatosen-
sory cortex 10 days post- encoding may underpin long- 
term behavioural effects of such cueing.

Further, both results survived correction for the multi-
ple ROIs we examined, although the size of the latter did 
not exceed 5 voxels and therefore this result should be 
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treated with caution. No significant clusters exceeding 5 
voxels were apparent in any of the other ROIs, nor was 
there any other significant relationship between func-
tional changes and behavioural cueing benefit (Tables S10 
and S11).

3.5. TMR- related structural plasticity

To determine whether the behavioural effects of TMR 
were associated with volumetric changes, we performed 
voxel- based morphometry (VBM) analysis of the T1w 
scans while taking such changes into account as covari-
ates. Structural changes take time to develop ( Draganski 
 et al.,  2004;  Sagi  et al.,  2012), and because TMR manip-
ulation was performed within, rather than between, par-
ticipants we could not use the cued versus uncued 
comparison when examining brain structure. We there-
fore examined the relationship between TMR benefits 
and long- term structural plasticity. Examining changes 
from S1 to S2 and S2 to S3 in addition to this would have 
increased the number of comparisons unnecessarily. We 
first determined the difference between baseline grey 
and white matter images and equivalent images from the 
final MRI session collected ~10 days later, (S1 > S3), and 
conducted a series of analyses in which the behavioural 
cueing benefit at each post- sleep session was regressed 
against this (Table S11B). Since we were unsure about 
the direction of the change, we conducted a two- tailed 
t- test. This revealed a positive correlation between grey 
matter (GM) volume change in the right precentral gyrus 
and cueing benefit at S4 (42, - 2, 45; peak T  =  6.21, 
p = 0.020; Fig. 5c, d; Table S12A; Fig. S3A), which sur-
vived voxel- wise correction for multiple ROIs (Table S13C). 
This finding suggests that the TMR related change in GM 
volume within a sensorimotor structure can predict the 
long- term behavioural effects of cueing. No correlation 
with volumetric changes was revealed in either white 
matter or within other ROIs, and there was no correlation 
with behavioural cueing benefit at S3, nor when examin-
ing shorter- term effects.

4. DISCUSSION

In this study, we aimed to determine if repeated reactiva-
tion of a memory trace during sleep engenders learning- 
related changes within the PPC and sensorimotor areas. 
To this end, we tested the temporal dynamics of the 
TMR- related changes across structural, functional, elec-
trophysiological, and behavioural measures. Firstly, we 
showed a main effect of TMR on the SRTT performance 
across all post- stimulation sessions, with the biggest 
difference between cued and uncued sequences emerg-
ing 20 days post- stimulation. In line with our hypothesis, 

dorsal precuneus showed a functional response that 
was related to the manipulation and predicted its 
behavioural effects the next day. However, over time, 
this was replaced by an increase in functional activity 
and volumetric grey matter in somatosensory and motor 
regions which predicted the longer- term behavioural 
benefit of our manipulation.

4.1. TMR benefits SRTT memories up to 20 days 
post- manipulation

The strongest behavioural difference between our cued 
and uncued sequences occurred 20  days post- 
manipulation, suggesting that the benefits of cueing may 
last longer than previously believed. This is especially 
interesting given that neither object- location ( Shanahan 
 et al.,  2018) nor emotional memory ( Groch  et al.,  2017) 
seems to benefit from the manipulation even a week later. 
One- week- later effects of TMR have been reported for 
implicit biases ( Hu  et al.,  2015), but this failed to replicate 
( Humiston  &  Wamsley,  2019). Our prior work showed 
behavioural effects of TMR 10  days post- manipulation 
but not 6 weeks later ( Rakowska  et al.,  2021). Hence, the 
effect of TMR 20 days post- stimulation that we observe 
here appears to be the longest- term effect reported in the 
literature so far. This finding suggests that the TMR 
manipulation starts a process which then unfolds over 
several weeks, gradually leading to the emergence of 
behavioural benefits over time. Nevertheless, given the 
limited availability of independent evidence corroborating 
the observed pattern in long- term TMR studies, we cau-
tion against making broad generalizations based on 
these findings.

4.2. Cueing alters precuneus activation

Dorsal precuneus showed a TMR- dependent (cued  > 
uncued) BOLD increase 24  h post- stimulation. Impor-
tantly, this functional response predicted the extent to 
which TMR impacted on behavioural performance at 
that same time point, suggesting that repeated reactiva-
tion of memory traces during sleep may increase activity 
in parts of the PPC (such as precuneus) in a behaviourally 
relevant manner, although the cueing benefit was not yet 
significant at 24 h. Given that dorsal precuneus is spe-
cialised for somato- motor and visual- spatial processing 
( Zhang  &  Li,  2012), this finding raises the possibility that 
visuomotor integration of the reactivated memories may 
underpin short- term cueing benefits, even if this is not 
enough to drive the behavioural plasticity. However, the 
plausibility of such a scenario remains uncertain, empha-
sizing the need to exercise caution when interpreting  
our results. Furthermore, PPC has been identified as a 
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hippocampus- independent memory store, whereby 
both hippocampal activity and connectivity with PPC 
decrease soon after encoding, but (conversely) PPC 
activity increases over the next 24 h, as an independent 
memory representation builds up ( Brodt  et al.,  2016). We 
believe that sleep plays a crucial role in this process and 
that the reactivation- mediated reorganisation of memories 
between the hippocampal- dependent short- term store 
and neocortex- dependent long- term store ( Born  et  al., 
 2006;  Diekelmann  &  Born,  2010) fosters engram devel-
opment in the precuneus. We speculate that memory 
reactivation could be taking place in precuneus ( Himmer 
 et al.,  2021), such that SRTT memories are stored and 
processed in the same location. Indeed, precuneus has 
repeatedly been implicated in memory formation, retrieval, 
and storage ( Gilmore  et al.,  2015;  Myskiw  &  Izquierdo, 
 2012;  Wagner  et  al.,  2005). Multiple studies have also 
linked precuneus with episodic memory, both when 
imagery is required ( Buckner  et al.,  1995;  Fletcher  et al., 
 1996;  Halsband  et  al.,  1998;  Henson  et  al.,  1999) and 
when it is not ( Krause  et  al.,  1999;  Platel  et  al.,  2003; 
 Schmidt  et al.,  2002), see  Cavanna  and  Trimble  (2006) 
for a review. This structure is traditionally associated with 
the motor system ( Cohen  &  Andersen,  2002;  Shadmehr  & 
 Holcomb,  1997), with several studies showing a role for 
precuneus in finger tapping ( Hanakawa  et al.,  2003) and 
bimanual motor tasks ( Fattinger  et al.,  2017;  Wenderoth 
 et al.,  2005). Further, precuneus has also recently been 
implicated in declarative memory processing ( Brodt  et al., 
 2016,  2018). This is particularly relevant here, as the 
SRTT is not purely procedural, but is thought to have a 
declarative component ( Albouy  et al.,  2013,  2008). Our 
results build on all of this to suggest that  precuneus may 
be involved in early (across 24 h) consolidation of mem-
ories that are reactivated during sleep.

Although we showed that TMR- related functional 
activity in precuneus is associated with behavioural cue-
ing benefit 24 h post- manipulation, it is important to note 
that cueing benefit was not significant at this time point 
when considered in isolation. Our prior studies of the 
SRTT have shown a cueing benefit from TMR immedi-
ately after the manipulation ( Cousins  et al.,  2014,  2016; 
 Koopman  et  al.,  2020); however, we have previously 
argued that jittering of our TMR cues as we did in the 
current paradigm could detract from this ( Rakowska 
 et  al.,  2021). Thus, randomising the inter- trial- interval 
between the TMR sounds during sleep could disrupt the 
temporal dynamics of sequence replay, decreasing the 
predictability of sequence elements. This may have 
delayed the impact of this manipulation on behaviour, 
such that behavioural impacts of TMR were not signifi-
cant until 20  days post- manipulation. Even so, the 
absence of a TMR- related behavioural plasticity 10 days 

after cueing was unexpected given that cueing benefit 
was apparent at this time point in our prior study using 
jittered TMR ( Rakowska  et  al.,  2021). Interestingly, the 
only session during which we observed a significant cue-
ing benefit was the one which was performed online and 
in participants’ own homes using a computer keyboard, 
so one possibility is that doing the task while lying down 
in the MRI scanner, and with somewhat clunky MR- safe 
button boxes, impacted on the behavioural effects of 
TMR which would otherwise have been apparent. How-
ever, a between- session comparison of reaction times 
argues against this, since it revealed that the participants 
were faster in the MRI environment (S3) than when per-
forming the task on a PC (S4), with variance equal in the 
two sessions (Fig. S5). The MRI environment could still 
have influenced our behavioural results, but there is no 
reason to expect that it would impact differentially on the 
two sequences and thus the difference between them 
(i.e., cueing benefit).

4.3. Plasticity within sensorimotor regions predicts 
long- term cueing benefits

Our data show that both the functional activation and 
the volumetric grey matter increase in the sensorimotor 
cortex at 10  days post- TMR predict long- term 
behavioural cueing benefits. Thus, TMR- related func-
tional activity in the right postcentral gyrus 10  days 
post- stimulation predicts behavioural benefits 20 days 
post- stimulation. Furthermore, an increase in grey mat-
ter volume in the right precentral gyrus over the first 
10 days post- stimulation predicts the same behavioural 
benefits. The temporal lag between changes in the brain 
and the delayed changes we observed in behaviour may 
seem surprising at first glance, but we feel that these 
results make sense in that they suggest that a slowly 
evolving reorganisation of sensorimotor representations 
may underpin consolidation of TMR benefit to the SRTT 
over a 20- day timescale. It takes time for this change to 
become sufficiently large to be reflected in a significant 
behavioural benefit. In fact, the timescale at which this 
behavioural benefit emerges differs between studies, as 
it only becomes apparent at day 20 in the current report, 
while it was already apparent 24 h post- manipulation in 
our prior examination of this task ( Rakowska  et  al., 
 2021). We speculate that such differences in the time 
needed for this effect to unfold are governed by aspects 
of our design and the circumstances in which partici-
pants performed the task (e.g., being in the scanner vs. 
at home, see our discussion in section 3.2 Cueing Alters 
Precuneus Activation), but individual differences in 
learning strength, sleep patterns, and even brain mor-
phology could also play a role ( Abdellahi  et  al.,  2023; 
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 Buch  et al.,  2021;  Ebrahimi  &  Ostry,  2024;  Kumar  et al., 
 2019;  Rakowska  et al.,  2022). The somatosensory cor-
tex has been shown to be essential for motor memory 
consolidation, since disruption of this region after learn-
ing dramatically impairs subsequent retention of a motor 
task. Notably, disruption of the primary motor cortex at 
the same timepoint has no impact on retention ( Ebrahimi 
 &  Ostry,  2024;  Kumar  et al.,  2019). The first excitability 
changes during motor skill learning have been shown to 
occur in the somatosensory cortex and these predicted 
extent of subsequent learning, while changes in motor 
cortex excitability did not ( Hanakawa  et al.,  2003). Fur-
thermore, wakeful replay of motor sequences has been 
shown to involve somatosensory cortex ( Buch  et  al., 
 2021). Our results build on this prior literature to suggest 
that our TMR manipulation leads to both structural and 
functional changes in the sensorimotor cortex that 
evolve over time and predict TMR- related performance 
benefit. However, they should be treated with caution 
due to the small sample size and the fact that behavioural 
data at day 20 were collected remotely and showed a 
large standard deviation.

4.4. The role of N2 and sleep spindles

There is a fundamental similarity between the reactiva-
tion of memory traces via TMR and repeated encoding- 
retrieval episodes during wake, both of which have 
been shown to engender rapid memory engram forma-
tion within the precuneus ( Antony  et  al.,  2017;  Brodt 
 et  al.,  2018). Indeed, repeated retrieval is a powerful 
way to consolidate memories and shares a lot of paral-
lels with offline reactivation ( Antony  et al.,  2017). How-
ever, in line with other studies ( Himmer  et al.,  2019), we 
argue that the role of sleep goes beyond simply allow-
ing an opportunity for more rehearsal. Both N2 
( Laventure  et  al.,  2016;  Nishida  &  Walker,  2007) and 
sleep spindles ( Boutin  &  Doyon,  2020) have been con-
sistently implicated in motor sequence memory consol-
idation. Although we found no relationship between 
behavioural cueing benefit and either the time spent in 
N2 or spindle density, we did find a surge in spindle 
density during the cue period relative to the no- cue 
period. This is in line with our prior report ( Rakowska 
 et  al.,  2021) and suggests that auditory cueing may 
elicit sleep spindles. Even though this could also indi-
cate an immediate processing of memory traces 
( Antony  et al.,  2018;  Cairney  et al.,  2018), a comparison 
between the electrophysiological response to cues ver-
sus control sounds would be necessary to confirm the 
relationship between spindles and memory cueing. 
Such work is unfortunately outside the scope of this 
report, as we did not apply control sounds.

4.5. The search for an engram

A neuronal ensemble that holds a representation of a sta-
ble memory is known as an engram ( Tonegawa  et  al., 
 2018). The term “engram” also refers to the physical brain 
changes that are induced by learning and that enable 
memory recall ( Josselyn  et al.,  2015). Due to their widely 
distributed and dynamic nature, engrams have long 
remained elusive. However, recent technological 
advances allow us to study memory engrams in humans 
( Josselyn  et al.,  2015). PPC, for instance, has received 
increasing attention in memory research ( Gilmore  et al., 
 2015), and the precuneus is a subregion of PPC that has 
been shown to undergo learning- dependent plasticity, 
fulfilling all criteria for a memory engram ( Brodt  et  al., 
 2018). These defining criteria require an engram to 1) 
emerge as a result of encoding and reflect the content of 
the encoded information, 2) engender a persistent, phys-
ical change in the underlying substrate that 3) enable 
memory retrieval, and 4) exist in a dormant or inactive 
state, that is, between encoding and retrieval processes 
( Josselyn  et  al.,  2015). Evidence for a relationship 
between engram formation and memory reactivation 
during sleep has so far been lacking. While previous liter-
ature suggests that changes in the precuneus alone fulfil 
all proposed criteria for an engram ( Brodt  et al.,  2018), 
our data show no TMR- related structural changes in this 
region, and thus fail to fulfil criterion 2. This could be due 
to our use of different MRI modalities (i.e., structural 
rather than microstructural MRI as in  Brodt  et al.  (2018)). 
Nevertheless, if our results are considered collectively 
across regions, we can argue that they do fulfil the criteria 
for an engram. Specifically, we observed that TMR- 
related activity in the precuneus and postcentral gyrus 
predicted behavioural benefit of TMR at S2 and S4, 
respectively. These responses could therefore reflect the 
encoded information (criterion 1), and enable memory 
recall (criterion 3), and that the precentral gyrus under-
goes structural changes (criterion 2) which develop over 
a relatively long period of time (criterion 4). Taken in this 
way, our results would suggest that memory reactivation 
during sleep could support the development and evolu-
tion of an engram that encompasses several cortical 
areas, but we acknowledge this is speculative.

5. CONCLUSION

We show that the behavioural benefits of memory cueing 
in NREM sleep develop over time and can be significant 
20  days post- encoding. Increased TMR- related activity 
of dorsal precuneus underpins the short- term effects of 
stimulation (over 24  h), whereas sensorimotor regions 
support the long- term effects (over 20  days). These 
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results advance our understanding of the neural changes 
associated with long- term offline skill consolidation. They 
also shed new light on the TMR- induced processes that 
unfold over several nights after auditory cueing.
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