
1

Graph Embeddings-based Link Prediction for Bridge Maintenance

Knowledge

Guanyu Xiong1, Yan Gao1, Haijiang Li*

BIM for Smart Engineering Centre, School of Engineering, Cardiff University, United Kingdom

1The authors contributed equally to this work.

xiongg@cardiff.ac.uk

Abstract. Infrastructure owners and operators around the world are facing escalated maintenance

requirements of large number of bridge assets. The bridge maintenance decision-making requires

reviewing numerous bridge inspection data while these data sets are fragmented in different systems

or formats, and their value in bridge management are not fully explored. This study presents a

solution for bridge defect data storage in graph database supported by graph-based bridge element

model and maintenance method recommendation informed by historical data using binary

classification-based link prediction model. The supervised machine learning pipeline in Neo4j is

utilised and features are engineered with GraphSAGE to suit the bridge engineering practices. The

solution is validated via real-world bridge maintenance dataset, demonstrating that the proposed

method is capable of recommending potential repair methods based on historical maintenance

decision-making records.

1 Introduction

Decision-making in bridge maintenance requires the thorough review of extensive bridge in-

spection data, combining with specialised domain knowledge of bridge practitioners. The pro-

cess can be labour extensive and cognitively demanding, while less rewarding due to its repet-

itive nature. So there exists both demand and potential to automate the process with software

tools and machine learning.

To represent the domain knowledge of bridge practitioners, some efforts pivoted in ontology

for knowledge representation (Zangeneh and McCabe, 2020) and extraction of links among

knowledge entities (Xu et al., 2023). While the ontology-based knowledge graph (KG) frame-

works are not designed for effective integration of large number of inspection data and subse-

quential data-driven machine learning tasks. Meanwhile, Neo4j as a graph database manage-

ment software tool, has been utilised to store bridge inspection data and fabricate bridge man-

agement systems on the basis of bridge maintenance KG. Two recent studies using Neo4j are

maintenance cost estimation (Lee and Chi, 2023) and data mining of bridge networks and en-

vironmental information (Lin, 2020), but both lack in discussing capturing features from the

dataset and learning a model from extracted features.

Notably, a study with similar vision presented by Tiwary, Patro and Sahoo (2022) leveraged

DeepWalk (Perozzi, Al-Rfou and Skiena, 2014) embedding technique for variables and relative

features on the high-level summarisation of bridge structural performance. This approach can

be effective for relatively static database where the nodes and their attributes have been fixed.

mailto:xiongg@cardiff.ac.uk

2

For a dynamic and evolving graph database, the transudative learning algorithm exposes short-

coming as it needs re-run when new nodes are added to obtain embeddings of all nodes. There-

fore, the potentials and practicability of building a bridge maintenance database with connected

machine learning pipelines has not been fully investigated.

While the scenario of combing graph-based modeling of bridge and bridge inspection data has

not been much explored. Hence, this study proposes a schema for integrating bridge graph-

based modeling, bridge defect data storage and link prediction from defects instances to repair

methods. Neo4j is selected as the graph database implementation tool as it supports various

graph analytics in the built-in machine learning pipelines.

2 Formation of Graph-based Bridge Element Model

The conceptual development of bridge maintenance KG is a combination of industrial practices

and functions of knowledge graph. The Network Rail standards NR/L2/CIV/035 (Network Rail,

2022a) and NR/L3/CIV/006 (Network Rail, 2022b) together describe a methodology for bridge

structural assessment - each bridge is composed of hierarchical levels of elements (e.g. major

elements and minor elements) which are assessed individually and then the repair method is

determined respectively according to the inspection results. This engineering practice moti-

vates the building of an element-wise bridge KG with incorporated defect and repair infor-

mation.

Various types of KGs are available for this task. A hierarchical KG present components in hi-

erarchical relationships while a labelled property KG can be used to query basic information,

such as latest maintenance log and corresponding status, stored in each node (Xia et al., 2022).

Hence, a combined hierarchical and property KG is considered as an ideal solution to represent

the bridge structure model and stored bridge inspection data.

Figure 1: Implementation of Graph-based Bridge Element Model in Neo4j

3

Several options exist for incorporating defects information on the graph-based bridge element

model:

• As descriptions in the attribute of the bridge element node where the defect is identified.
• Each defect type as a node while every defect instance as a link/edge between the ele-

ment node and the defect node.

• Each defect instance as a node connecting to the bridge element node where the defect

is identified.

The first option introduces negligible featuers into the graph as neither nodes/edges nor the

layout of the graph is affected. The second and the third options, based on the two graph mod-

eling approaches - TimeTree Model (Graphaware, 2014) and Entity-State Model (Neo4j, 2017),

consider defects as states of the bridge element. The two options can largely manipulate graph

features so that graph learning can be enabled. Unlike a trouble-shooting proposed KG pro-

posed by Xia et al. (2023) where a specific type of defect is indicated as one node, in this study

the KG is implemented as graph database to store defect information, so the third option is

considered optimal to encompass the benefits of the other two alternatives. As the final step of

the graph creation, repair techniques are added as a separate layer of nodes in the graph and

each of them is linked to the corresponding node of defect instance.

To digest the conceptual design explained above, the desired graph shall be partitioned into

three layers: 1) bridge structure layer which represents graph-based bridge model; 2) defect

information layer describing the type, extent and severity of the defect and 3) maintenance

layer which reflects repair methods. With the bridge maintenance dataset (samples shown in

Table 1), where there are 178 ‘Defect’ nodes and 21 ‘Proposal’ nodes, a Graph-based and

Maintenance-oriented Bridge Element Model is created in Neo4j as per the illustration in Fig-

ure 2.

Table 1: Samples of Bridge Maintenance Dataset

Major

Element

Sub

Element

Component Location Defect Proposal

Span 1 Main Girder 2 MGE2 (Ex-

ternal Face)

Stiffener

Crank

(MGE2 - EF)

Section Loss -

Over 50%

Cut out corroded section and

weld a new plate in its place like

for like.

Span 1 Cross Girder 1 Cross Girder

1

Bottom

Flange

(XG1)

Section Loss

& Rivet Head

Loss and Thin-

ning

Carry out a flange repair Full

width of the bottom flange to

NR/CIV/SD/828 AFC Repair

type B.

Span 1 Deck 2 DCK2 (Be-

tween Cross

Girder 3 & 4)

Deck Plate

(DK2 -

XG3/XG4)

Holes - New Weld a new plate to the under-

side of the steel deck using a

6mm CFW; new plate to extend

a minimum of 100mm past the

defect area.

4

Figure 2: Implementation of Graph-based and Maintenance-oriented Bridge Element Model in Neo4j

3 Graph Learning for Link Prediction

The business logics of the original dataset is to document all the defects identified in a bridge

inspection and recommend repair method for each of the defect, preparing for review of other

stakeholders. With the Graph-based and Maintenance-oriented Bridge Model, the second stage

of the study is to automate the process of generating recommendation with graph machine

learning.

From the original dataset and the established graph-based bridge model, the following patterns

can be observed: 1) The appearance of defects follow some simple patterns (e.g. same type of

defect tend to appear on certain types of bridge element); 2) There are only a limited number

5

of potential defect repair techniques and 3) the selection of repair techniques depends on the

bridge element where the defect is identified and the type (including severity and extent) of the

defect. Based on the reasons described above, the recommendation procedure can be formu-

lated as a link prediction based supervised machine learning task - training a model to learn the

features of the targeted node-pairs in the graph, where relationships should exist. Thus, the

trained model could match the newly added ‘Defect’ node to the most likely ‘Proposal’ node.

Figure 3: Illustration of Graph Embeddings and Link Prediction Pipeline

As identified from the original dataset, maintenance method decision-making is determined by

two types of features: 1) defect location – which bridge component that the defect is developed

upon, and 2) defect evaluation in terms of extent and severity. Therefore, the proposed approach

of feature engineering is to capture the above two characteristics by obtaining the topological

representation of the defective component (i.e. ‘Location’ node for the defect instance) and the

defect type. The procedures of obtaining the graph features and conducting binary classifica-

tion are illustrated in Figure 4 and explained in Sections 3.1 and Section 3.2.

3.1 Graph Embeddings of Nodes

As a pre-processing step, graph data shall be engineered to produce features that are amenable

to machine learning algorithms. In this case, the location information and the defect evaluation

are considered as categorical variables, so encoding technique for categorical data shall be ap-

plied to convert them into numerical form for downstream machine learning tasks.

One-hot encoding is selected to convert string properties to numeric arrays. Though this con-

version increases dimensionality of data, it is effective in preventing unintended biases based

on the order of categories (Oyebamiji Micheal, 2023). This advantage is a more important fac-

tor compared with the possible growth in computational complexity introduced by encoding.

After the encoding of types of bridge elements and defects, there are a few algorithms available

to obtain the embeddings of the node, such as Fast Random Projection (Chen et al., 2019),

node2vec (Grover and Leskovec, 2016), HG-GNN (Chen et al., 2023), etc. However, most of

6

the node embedding generation frameworks are transudative and do not efficiently generalise

to unseen nodes or across different graphs. To meet the requirement of this application where

new nodes and relationships are constantly added in the graph, GraphSAGE algorithm (Ham-

ilton, Ying and Leskovec, 2017) is utilised. As an inductive learning algorithm, it can generate

embeddings for unseen nodes without re-producing embeddings of the existing nodes. In addi-

tion, it is able to convert not only the topology of the neighbourhood of the node, but also the

properties of the node and its neighbouring nodes (i.e. defect information), into embedding

vectors.

The basic principle of GaphSAGE is to initiate the nodes aggregate information of their neigh-

bouring nodes layer by layer and reach further parts of the graph with iteration of this process

and finally generate node representation for the whole graph. The number of layers for infor-

mation aggregation is referred to as Search Depth k, the aggregating architecture can be imple-

mented by various architectures including mean, pool, etc.

3.2 Model Training for Link Prediction

The bridge maintenance knowledge graph is heterogeneous therefore the link to be predicted

is between nodes of different types (e.g. bridge element, defect instance, maintenance proposal,

etc.), this is where traditional graph algorithms (e.g. graph traversal, topological sort, etc.) can

expose limited capability. Whereas supervised machine learning algorithm can be directed to

learn only a specific relationship type between specific source and target nodes.

In the link prediction model training pipeline, the existing links in the graph are labelled as

positive samples and some non-existent links are created as negative samples. Then the positive

and the negative samples are separated into training and test sets. After that, link features are

derived by combining node properties of the node-pair. Three feature combining techniques

are trialed to evaluate the predication performance: Cosine, L2 and Hadamard product.

In this study, link prediction is transformed to a binary classification problem:

𝑌 = 𝐶𝐸(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑥 + 𝑏)) (1)

where Y is possibility of the existence of the link, X is the combined feature of the node-pair,

W is the coefficients for the features of the link and b is bias. The classification model is trained

by minimizing a loss function which depends on a weight matrix and on the training data. The

loss function of the Adam optimiser, a gradient descent type algorithm, can be defined as:

𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐶𝐸(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑥 + 𝑏)) (2)

where CE is the cross-entropy loss and x is a feature vector training sample. As a gradient

descent-based training, the best weights for the model is sought after, through processing train-

ing dataset to compute the loss and the gradient of the weights in each epoch. These gradients

are then used to update the weights.

This model shall be trained for “Defect - Proposal” node pairs. The trained model can then be

applied to the graph to create new relationships containing the predicted links. These potential

links shall have an attribute to store the predicted probability of the link, which can be seen as

a relative measure of the model’s prediction performance. A threshold can be defined to include

only predictions with probability greater than certain value (i.e. 50%) and those with high prob-

ability are recommended as proposed maintenance methods.

7

4 Experiment and Results

The experiment was conducted with different settings of the pipeline, including hyperparame-

ters of the GraphSAGE model (shown in the Table 2) and feature combining algorithms (Co-

sine, L2 and Hadamard) to provide quantitative insight of the proposed approach as trials and

errors. The objective is to identify how the proposed schema performs and which set of mod-

eling settings is optimal.

GraphSAGE Logistic Regression

Hyperparameters Values Hyperparameters Values

Embedding Dimension 128 Penalty [0.001, 10000]

Learning Rate 0.1 Patience 2

Batch Size 100 Negative Class Weight 1

Maximum Epochs 1000 Maximum Epochs 5000

 Table 2: Configuration of GraphSAGE Model and Logistic Regression Model

The performance of link prediction pipeline, consisting of embeddings generated by

GraphSAGE, feature combing algorithms and logistic regression based binary classification,

was evaluated with the Receiver Operating Characteristic (ROC) and the Area Under the ROC

Curve (AUC). Starting with the four possible outcomes of binary classification: true positive

(TP), false positive (FP), true negative (TN) and false negative (FN), ROC is plotted on x-y

coordinates where x-axis is false positive rate (FPR) and y-axis is the true positive rate (TPR).

FPR and TPR are defined as below:

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 (3)

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4)

Then AUC can be calculated by:

𝐴𝑈𝐶 =
∑(𝑝𝑖, 𝑛𝑗)

𝑃 × 𝑁
 (5)

Where 𝑃 is the number of positive examples, 𝑁 is the number of negative examples, 𝑝𝑖 is the

prediction score of a positive example and 𝑛𝑗 is the prediction score of a negative example. It

can be interpreted as the probability that a positive example score is greater than a negative

example score when they are both sampled randomly. A value of AUC closer to 1 indicates

better performance while a value around 0.5 suggests a random classifier.

The link prediction performance of different pipeline settings are summarised in Figure 4 and

Figure 5. Other parameters were taken as default values as shown in Table 2.

8

Figure 4: Link Prediction Performance of Different Pipeline Settings Part 1

Figure 5: Link Prediction Performance of Different Pipeline Settings Part 2

It is interpreted that Search Depth 4 is optimal and L2 or Cosine feature combing algorithms

are better than Hardmard. In addition, on the current dataset using GraphSAGE embeddings,

Mean Aggregator outperforms in comparison with Pool Aggregator. Variation of Activation

Function was also tested where Sigmoid outperforms ReLU. It is considered that the search

depth K is largely graph dependant (as illustrated in Figure 3) while the feature combiner and

the aggregator architecture is more likely to generalise.

5 Conclusion

This paper presented a workflow for storage of bridge maintenance data on a graph database

enabled bridge model and predict the link of the ‘Defect - Proposal’ node-pair via graph learn-

ing of embeddings generated by GraphSAGE.

The proposed approach was tested with the following variations to find the optimal perfor-

mance of the machine learning model: 1) Tuning of GraphSAGE model and 2) Node pair fea-

ture combining algorithms. This holistic schema allows for efficient management of the iden-

tified defects and development of remediation plans, as well as the automation of bridge as-

sessment procedures defined in the bridge maintenance standards.

9

The major limitation of the presented solution is that predictions are derived from statistical

principles and probabilistic reasoning without incorporating validation of the actual success of

the predicted repair method. To mitigate this issue, feedback from bridge practitioners can be

collected after each prediction to update the graph model accordingly.

For the future work, the encoding technique applied for categorical data (i.e. bridge component

and defect type) can be upgraded to more advanced encoding techniques to capture semantics

of different bridge element and defect information. On the other hand, the same pipeline and

learnings can be experimented with dataset from another bridge, then the reasons for perfor-

mance variation of different model hyperparameters can be further investigated. Providing the

bridge with the same structural arrangement (e.g. steel girder bridge), the pattern of appearance

of defects captured in embeddings could be migrated so that the knowledge can be accumulated

and transferred.

6 Acknowledgements

This work was supported by the DigiBridge KTP (Grant Reference Number 10003208) and the dataset

was contributed by Jarrod Richards, Centregreat Rail Ltd.

7 Reference

Chen, H. et al. (2019) ‘Fast and Accurate Network Embeddings via Very Sparse Random Projection’,
International Conference on Information and Knowledge Management, Proceedings, pp. 399–408.
doi: 10.1145/3357384.3357879.

Chen, H. et al. (2023) ‘Hessian-aware Quantized Node Embeddings for Recommendation’, arXiv, (23).
doi: 10.1145/3604915.3608826.

Graphaware (2014) GitHub - graphaware/neo4j-timetree: Java and REST APIs for working with time-
representing tree in Neo4j, Github. Available at: https://github.com/graphaware/neo4j-timetree (Ac-
cessed: 10 April 2024).

Grover, A. and Leskovec, J. (2016) ‘node2vec: Scalable Feature Learning for Networks’, Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. doi:
10.1145/2939672.2939754.

Hamilton, W. L., Ying, R. and Leskovec, J. (2017) ‘Inductive Representation Learning on Large
Graphs’, Advances in Neural Information Processing Systems, 2017-December, pp. 1025–1035. Avail-
able at: https://arxiv.org/abs/1706.02216v4 (Accessed: 18 March 2024).

Lee, G. and Chi, S. (2023) ‘Graph-based Clustering of Bridge Management System Data for Bridge
Maintenance Cost Estimation’, in EG-ICE 2023 Conference.

Lin, J. R. (2020) ‘Openbridgegraph: Integrating open government data for bridge management’, in
Proceedings of the 37th International Symposium on Automation and Robotics in Construction, ISARC
2020: From Demonstration to Practical Use - To New Stage of Construction Robot, pp. 1255–1262.
doi: 10.22260/isarc2020/0172.

Neo4j (2017) GitHub Entity-State model managed by Neo4j Procedures, Githuib. Available at:
https://github.com/h-omer/neo4j-versioner-core (Accessed: 10 April 2024).

Network Rail (2022a) Level2 Business Process Management of Structures.

10

Network Rail (2022b) Level3 Manual Structures, Tunnels and Operational Property Examinations Ap-
provals.

Oyebamiji Micheal (2023) A Comprehensive Comparison between One-Hot and Ordinal Encoding | by
Oyebamiji Micheal | Medium, Medium. Available at: https://medium.com/@oyebamijimicheal10/a-
comprehensive-comparison-between-one-hot-and-ordinal-encoding-6f899c4f08b3 (Accessed: 26
March 2024).

Perozzi, B., Al-Rfou, R. and Skiena, S. (2014) ‘DeepWalk: Online Learning of Social Representations’,
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 701–710. doi: 10.1145/2623330.2623732.

Tiwary, K., Patro, S. K. and Sahoo, B. (2022) ‘Bridgebase: A Knowledge Graph Framework for Moni-
toring and Analysis of Bridges’, Lecture Notes in Civil Engineering, 244, pp. 409–420. doi:
10.1007/978-981-19-0656-5_34/FIGURES/5.

Xia, L. et al. (2022) ‘Toward cognitive predictive maintenance: A survey of graph-based approaches’,
Journal of Manufacturing Systems, 64, pp. 107–120. doi: 10.1016/J.JMSY.2022.06.002.

Xia, L. et al. (2023) ‘Maintenance planning recommendation of complex industrial equipment based
on knowledge graph and graph neural network’, Reliability Engineering & System Safety, 232, p.
109068. doi: 10.1016/J.RESS.2022.109068.

Xu, H. et al. (2023) ‘Knowledge graph and CBR-based approach for automated analysis of bridge op-
erational accidents: Case representation and retrieval’, PLOS ONE, 18(11), p. e0294130. doi:
10.1371/JOURNAL.PONE.0294130.

Zangeneh, P. and McCabe, B. (2020) ‘Ontology-based knowledge representation for industrial mega-
projects analytics using linked data and the semantic web’, Advanced Engineering Informatics, 46, p.
101164. doi: 10.1016/J.AEI.2020.101164.

