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Abstract

Quantum technologies have the potential to revolutionize many classi-

cal tasks, particularly including sensing and simulation applications. Yet

their full potential is limited by the presence of noise, amongst other is-

sues. This thesis addresses the problem of quantum optimal control of

a controllable system with noisy dynamics and an uncertain theoretical

description.

Towards this goal, this thesis makes two contributions. Firstly, it devel-

ops a novel robustness measure called the Robustness Infidelity Measure

(RIM) for certification of robustness of optimal control schemes, agnostic

of the acquisition method. The RIM is a statistical measure and it can be

used to compare the robustness of different schemes. Secondly, this thesis

develops novel optimization techniques based on Reinforcement Learning

(RL) for robust optimization of noisy quantum dynamics with model un-

certainties. In particular, a model-based RL algorithm is proposed that

is able to improve over direct applications of model-free RL algorithms

in terms of experimental resource consumption. This is done via incor-

poration of partial knowledge of the uncertain model whilst the rest is

learned using experimental data. Our approach highlights the potential

of extending pure model-free methods towards model-based approaches,

with a learnable model, for noisy optimization tasks and brings RL algo-

rithms closer to deployment on near-term quantum devices. We evaluate

the RIM and various model-free RL algorithms on a number of benchmark

problems. Our results show that the RIM is a valuable tool for assessing

the robustness of quantum control schemes. Moreover, we demonstrate

that RL algorithms are able to generate robust control schemes which

outperform schemes generated using other methods. We also show how

learned models of noisy quantum dynamics can be leveraged to increase

the optimality of quantum control schemes found by RL algorithms whilst

retaining their robustness performance.
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Chapter 1

Introduction

1.1 Motivation

Quantum technologies and computing hold immense promise for delivering on many

scientific and technological fronts. There has been steady progress over the past

years on many fruitful frontiers including more accurate sensing and imaging devices

in the field of quantum metrology [GLM11], higher precision atomic clocks [Lud+15],

and secure communication networks powered by quantum key distribution proto-

cols [Wan+19; SP00].

Recently, the milestone of a modest experimentally scalable quantum error correcting

surface code was achieved [Ach+23] – only a few years after the first quantum advan-

tage milestone involving Gaussian Boson Sampling [Aru+19]. The path to fully fault

tolerant quantum computers is expected to be long [Pre18] but the promise of practical

quantum advantage over existing classical computation based approaches in a vari-

ety of problems like learning from quantum physical experiments [Hua+22b], prime

number factorization [Sho94], optimization [FGG14] and quantum simulation [Fey18]

beckons us.

We are currently in the Noisy Intermediate Scale Quantum (NISQ) era [Pre18] of

quantum computing. Current NISQ quantum devices, though being readily accessi-

ble on the cloud [Ani+21], are limited and prone to significant sources of errors which

limits the capabilities of quantum technologies especially in regard to their compu-

tational applications [Che+22; Lyk+22]. Unlocking the full potential of quantum

computers in terms of their computational complexity will require the design and

manipulation of fully fault tolerant logical qubits, comprised of many physical qubits,
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1.1. MOTIVATION

using techniques from quantum error correction (QEC) [Got97]. Being similar to

classical error correction, these techniques essentially encode all possible errors into

redundancies, per qubit of information, to allow detection and correction. QEC is a

significant challenge and will likely take many years. Moreover, the path to QEC, e.g.

the milestone of creating the first logical qubit, will require lower operational errors

of standard operations in quantum computation to reduce the size of the QEC codes

needed for fault-tolerance.

Quantum errors or noise can roughly be characterized into three forms:

1. Environmental noise: interactions with the environment that lead to non-

unitary dynamics, further categorizable into:

� Markovian noise: environmental noise that is memoryless and can be

described by a Lindblad master equation;

� Non-Markovian noise: environmental noise that has memory and needs

to be accounted for by something more general;

2. Parametric noise: inaccuracies in the control model and/or signal represent-

ing a specific physical implementation which leads to unitary evolution errors,

which are:

� Time-dependent changes: model parameters fluctuate or drift as a

function of time

� Static changes: model parameters are fixed in time but are not known

exactly

3. External noise: measurement errors as a result of finite sampling statistics,

due to interaction with an external probe, a manifestation of the probabilistic

nature of observables.

Broadly speaking, three ways have been proposed to deal with errors in order to

realize various quantum technologies including fault-tolerance:

1. via QEC protocols [CS96; Ste96a; Ste96b; Got09];

2. using error mitigation schemes, e.g. reversing noisy dynamics [BK02; TBG17;

Bea+18; EBL18; LB17; Cet+20; Ega21], active variational noise minimiza-

tion [LB17], or parametric modelling of architecture defects in trapped qubits [Cet+20;

Ega21];

2



1.1. MOTIVATION

3. Robust Quantum Optimal Control (RQOC) engineering, e.g. landscape shap-

ing of the quantum control optimization problem in search of noise-free re-

gions [Hoc+14; VKL99; SZZ04], decoherence-free subspaces [LCW98; JSR14],

or noise spectral density based filter functions [Kab+14; Gre+13].

We focus on the challenges and opportunities presented by the relatively nascent

field of RQOC in this thesis. In a nutshell, RQOC is concerned with the design

and development of controls necessary to realize a broad range of quantum dynamics

accurately with emphasis on the controls being immune to variations and fluctuations

introduced by various noise sources in the physical environment. We can approach

the RQOC control problem in two ways: (1) leverage our knowledge of the nature of

noise directly in the design of robust controllers (2) obtain controllers in ideal settings

and then study their performance under experimental/theoretical noise to post-select

a robust controller. Both methods are explored in this thesis.

Typically, standard Quantum Optimal Control (QOC) protocols assume that a the-

oretical model of the quantum system is available e.g. via spectroscopic character-

ization and focus solely on optimizing quantum dynamics in ideal no-noise condi-

tions [Kha+05a; RNK12; Mac+11a; Koc+22]. Thus, these model-based methods1

which use an analytical model can be employed and have have been the focus of

over half a century of fruitful contribution to QOC, including algorithms such as

GRAPE [Kha+05b] and Krotov [RNK12] which utilise gradient-based optimisation

of a model-based target functional.

As mentioned before, noise unsurprisingly reduces the performance of standard con-

trol protocols on NISQ devices. Also, theoretical models of quantum devices are not

always available at large scales and are also expensive to obtain and/or verify [EHF19].

This means that errors in the model are more likely to arise which also reduce the

performance of model-based control protocols. RQOC attempts to address these

problems faced by standard QOC where the final goal is to increase the reliability of

control protocols in the wild, in experiments, outside the theoretical/computational

settings where they are created. For example, a model-based RQOC method is non-

adiabatic inverse eigenvalue engineering that derives time-dependent control Hamil-

tonians from an undetermined propagator that generates a transitionless evolution

of an eigenstate of a dynamical invariant of the Schrödinger equation. Protocols for

1some based on Pontyragin’s maximum principle [Pon87] for optimal control amongst
many others
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robust state preparation using this approach where the invariant is a pure generally

parametrized density matrix have been proposed for closed and open systems for some

theoretical noise models such as decoherence and amplitude or systematic errors in

the Hamiltonian [Jin+13; Rus+12] as well robust gate control [DLG20].

As an alternative to model-based control, model-free RQOC involves looking at op-

timal control in the absence of a model i.e. the model-free setting. The modern

interpretation of model-free control is usually synonymous with machine learning or

black-box optimization for control, particularly Reinforcement Learning (RL) for op-

timal control [Ber19]. However, the idea is not new and goes back to dual control

theory initiated by A.A. Feldbaum in the 1960s [Fel60]. Both coalesce the control

problem to approximate dynamic programming solved using Bellman’s principle of

optimality [Bel52]. Solvers follow the principle of initially exploring and learning the

unknown model by probing the system, and, later, exploiting this information for

control. Initially the control actions taken by the controlling agent are sub-optimal

as it works with a highly uncertain model although they can still be seen as opti-

mal in the sense of solving the Bellman equation step-wise based on the acquired

information. Iterated composition of the solutions achieves near optimal solutions,

eventually. Prior work has demonstrated the usefulness of RL for quantum optimal

control [Che+13] in its application to synthesis of transmon gates [Dal+20a], coherent

transport by adiabatic passage through semi-conductor quantum dots [Por+19], and

robust two-qubit gmon gate synthesis [Niu+19a].

Finally, we note that the theoretical potential, existence and cost of robust control

solutions is unclear for the general case [Koc+22]. This is partly linked to the absence

of general analytical solutions to all types of quantum dynamics governed by the

Schrödinger equation [Ahm+18]. The questions underlying existence and cost of

robustness are explored numerically and analytically in the literature. For example,

for state preparation, robustness is akin to ensemble control with Bloch vector control

equations. Here, the algebra of the polynomials of the non-commuting vector fields

that generate the system dynamics provide requirements for controllability of the

ensemble system and therefore robustness [LK09]. In this thesis, we explore why

certain algorithms can create robust controllers and show that this is likeley due to

optimization of certain robustness metrics indirectly.

4
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1.2 Thesis contributions

The main contributions of this thesis are to advance RQOC on two frontiers: robust-

ness certification and robust optimization of quantum dynamics. These are expanded

upon in detail below:

1. Towards the first aim, in Chapter 5 that is derived from publications [Kha+23b;

ONe+23], a measure of reliability of a control scheme that extends the tradi-

tional measure of accuracy, i.e. fidelity of the realized scheme, is developed.

In the presence of noise, high fidelity itself is insufficient to gauge reliability

of a control scheme, and extra effort is required to systematically search for

solutions that are, both, robust against noise and have high fidelity [AGS21;

JSL18]. This requires a notion of robustness and ideally a single measure that

can capture robustness and fidelity, enabling the identification and construc-

tion of more efficient methods to find controls that satisfy both properties. The

measure is general with respect to assumptions about the quantum noise and

can be applied for a variety of QOC problems. More specifically, we make the

following theoretical contributions:

� We propose a novel statistical robustness measure called the Robustness

Infidelity Measure (RIM) based on the pth-order Wasserstein distance to

quantify robustness and fidelity of a control scheme.

� We develop bounds on the RIM in terms of RIMs at higher order ps to

motivate the practicality of using p = 1 for the RIM.

� We provide some connections between our measure and other measures

of robustness in quantum and classical control, namely the log-sensitivity

and the differential sensitivity for the latter, and highlight its ability to be

extended as a measure to compare control acquisition algorithms in the

form of the algorithmic RIM (ARIM).

� We demonstrate that a reason why RL control schemes are robust (and

good RIM-wise) is because RL effectively optimizes the RIM as its objec-

tive function.

And the following computational contributions:

5
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� We develop a systematic method and a consistency statistic to compare the

robustness and fidelity performance of different quantum control schemes

for the same control problem.

� We conduct a computational analysis of the performance of different popu-

lar control acquision algorithms and the control schemes that they produce

in terms of the RIM and ARIM.

� We demonstrate the cost utility, in terms of optimization objective calls,

of using RL to find robust control schemes for noisy control problems.

2. Towards the second aim, we consider the problem of RQOC in a model-free

setting with the optimization of a stochastic/noisy target function – a particu-

larly challenging setting where most standard QOC methods break down. We

reformulate existing model-free RL methods [Lil+15; FHM18; Sch+17; Sch+15;

Haa+18] and demonstrate their ability to find robust and high fidelity solutions

in this setting. However, most machine learning methods [MRT18], including

RL, require a lot of data or samples in the form of quantum measurements

and are relatively difficult to deploy on NISQ devices where these might be pro-

hibitively expensive to obtain. To reduce this cost, inspired by model predictive

control [Gol+22], we develop a novel model-based RL algorithm that incorpo-

rates partial information of the controllable system and learns the rest of the

model during the RL loop. The correct choice of the model ansatz places a

strong prior on the space of all possible models that can be learned and reduces

the number of samples needed for system identification considerably. More

specifically, in Chapter 4 derived from the publication [Kha+21], we make the

following contributions:

� The problem of quantum state control is reformulated into a novel and

scalable partially observed Markov decision problem for an RL agent to

address.

� Policy gradient RL algorithms are benchmarked against each other and

gradient based control methods on noisy state control problems where it

is shown that RL is able to produce high quality (robust and high fidelity)

control schemes when gradient-based methods break in the presence of

large amounts of noise.

6
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� We study the effect of noise on the quantum control landscape and the

associated problems like traps or volatile peaks. These findings become

the fuel and the backdrop for the later findings in the thesis.

And in Chapter 6 based on the paper [Kha+23a], we make the following con-

tributions:

� We develop a novel model-based RL algorithm LH-MBSAC (Learnable

Hamiltonian Model-Based Soft Actor-Critic) that incorporates partial in-

formation of the controllable system and learns the rest of the model in

depolyment. This is a step towards addressing the high sample complexity

of model-free RL methods.

� We computationally demonstrate the sample efficieny of LH-MBSAC over

model-free RL for noisy quantum gate control problems.

� We theoretically and computationally analyse the relationship between

propagator or dynamics’ error and Hamiltonian/model error and motivate

the idea that successful quantum control is possible even with the wrong

model, provided that the model’s dynamical predictions are accurate.

� We demonstrate that the model learned by LH-MBSAC can be leveraged

using gradient based control methods to improve the fidelity of control

schemes found by RL methods.

1.3 Breakdown of thesis contributions

The author is the primary contributor to the idea development and implementation

(theoretical, computational and writing) of Refs. [Kha+21; Kha+23b; Kha+23a] with

the rest of the co-authors providing feedback and guidance.

Ref. [ONe+23] is joint work between the author and Sean O’Neil as the primary

contributors with the rest of the co-authors providing supervisory guidance. Part of

this work that is presented in Chapter 5, i.e., the proof connecting the RIM and the

log-sensitivity, is the author’s contribution.

7
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1.4 Thesis outline

Chapters 2 and 3 presents the necessary background material for the thesis. We

present the problem of QOC and RQOC and the general methods to solve these

problems via variational methods or Bellman’s principle of optimality in RL in Chap-

ter 2. The idea of robustness of quantum control schemes is concretized. A review

of different approaches for RQOC and QOC is presented including gradient-based

optimal control methods leveraging a theoretical model, at one end, and model-free

RL or black-box optimal control methods at the other. Due to the expansive nature

of the techniques, we focus deeply only on RL for the latter category and build it up

from a rudimentary level. Chapter 3 dives into robustness certification methods of

quantum control schemes including techniques from classical control theory to moti-

vate the development of statistical robustness quantification methods presented later

in the thesis.

In Chapter 4, we compare the performance of different model-free policy gradient

methods in RL for RQOC. We focus on the problem of energy landscape shaping of

XX-Heisenberg spin chains with model noise and coarse-graining of fidelity measure-

ments. RL performance for finding controllers is compared to a standard second order

gradient-based QOC method (L-BFGS), with full access to an analytical model. We

demonstrate that RL is able to tackle challenging, noisy quantum control problems

where L-BFGS optimization algorithms struggle to perform well. We further perform

a Monte Carlo robustness analysis under different levels of model noise to conduct a

qualitative distributional comparison of fidelities for all controllers found by a partic-

ular control algorithm. We find that the controllers found by RL appear to be less

affected by noise than those found with the standard gradient-based QOC method.

In Chapter 5, we present the Robustness Infidelity Measure (RIM) to quantify the

statistical robustness and fidelity of quantum control schemes. The idea stems from a

need to summarize and quantify the qualitative robustness performance of controllers

in Chapter 4 into a single scalar measure. This could either be at an individual level

thereby capturing the randomness in the performance of a single controller under

model noise or a family of controllers belonging to a particular control algorithm

class.

Treating quantum noise as a source of randomness, we transform the fidelity into

a random variable that has a probability distribution. We then use a probabilistic

distance from the ideal fidelity probability distribution to obtain the RIM. We use

8
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the RIM to demonstrate that not all high fidelity individual control schemes are

robust w.r.t. RIM for a number of spin network transfer control problems. Further

generalizing the RIM to the algorithmic RIM (ARIM), we show how it can be used

to quantify the robustness of control acquision algorithms. Here we compare various

QOC and RQOC techniques including RL and show that RL roughly optimizes the

RIM which explains the comparatively high robustness of the control schemes found

via RL. More generally, these measures should prove more useful in certifying the real-

world performance of control schemes compared to just using the fidelity measure. We

further connect the RIM to the time-domain log-sensitivity – a robustness measure

from classical control.

In Chapter 6, we address the problem of high data requirements of model-free RL

techniques for RQOC. Towards this end, we propose a novel physics-inspired model-

based RL algorithm built on top of the standard soft actor-critic method that incor-

porates some knowledge of the controllable system (time-dependent components) into

a learnable model. Further data then allows the rest of the system that is unknown

to be characterized. The model is a simple ordinary differentiable equation (ODE)

written using automatic-differentiation software so that stochastic gradient descent

can update the generic ansatz of the system towards the true model. The model

learning scheme is naturally constrained to produce physical predictions without any

extra modifications and we highlight its ability to characterize completely unkown

quantum systems. We demonstrate its RQOC potential by applying it on noisy open

and closed system settings.

To summarize, in this thesis, we present novel ideas about quantifying robustness

of quantum control schemes and model-free learning based methods to control and

characterize quantum systems using realistic noise simulations. Due to the nature of

the algorithms and problem we studied, it was out of scope for this thesis to apply

the newly developed algorithms on a real NISQ device. However, at every step, we

were very careful in making sure our simulations took the various forms of NISQ

noise into account. Our ideas and methods were developed with the intention of

being general without extra emphasis on the particular settings in which they are

showcased. Where possible, we try to push them to probe their limitations on larger

systems and more noise. We hope that they can prove fruitful in a variety of problems

faced by the NISQ era quantum technologies’ practitioner. Currently, the quantum

industry landscape has matured to the level that commercial companies are also

offering bespoke lower (pulse) level optimisations of quantum operations for specific

9
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architectures [Bal+21] which are being utilised in various settings by practitioners to

engineer robust control schemes [Kud+22]. The techniques proposed in this thesis

complement these commercial methods and are applicable at a higher level and for

more general systems and therefore relevant in the same settings.
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Part I

Background
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The first part of this thesis reviews literature on topics in robust quantum optimal

control at a high level to provide a better perspective on the contributions of this

thesis. We also aim to equip the reader with an elementary background on concepts

and techniques that will be used in subsequent chapters. We will expatiate more

on topics that are closely related to the thesis contributions: specifically, the quan-

tification of robustness for figures of merit used in quantum control problems and

reinforcement learning based methods for control. For subsequent chapters, further

mini-reviews will be provided on specialist topics that are more aligned with the core

ideas in those chapters.
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Chapter 2

Formulation and Control Methods

In this chapter, we formally introduce quantum control and highlight the various

applications in quantum technologies and beyond that are enabled by it. Furthermore,

we review various techniques for quantum control and, in particular, methods that

enable control when the theoretical model of the quantum system is uncertain.

2.1 What is Robust Quantum Optimal Control?

The field of quantum optimal control (QOC) originated in the 1980s as a means to

enable realization of various chemical reactions at the molecular level. On one hand,

improvements in laser pulse shaping and pulse modulation enabled the construction of

ultrashort minimal-time width pulses which made fine tunability of laser amplitudes

possible [RRZ88; Zew88]. On the other hand, advances in non-linear laser spec-

troscopy allowed relative phases1 between the frequency components of laser pulses

to be modified to realize arbitrarily complex pulse shapes [Wei+86; SHW87]. One of

the very first instances of QOC was made using a variational formulation of a two-

photon state-transfer problem to optimally steer the reaction pathway towards the

creation of a particular chemical species [TR85]. This was achieved by varying the

laser pulse waveform and numerically solving for the ensuing dynamics until the wave-

form optimized a mathematical cost function encapsulating the desired final state.

However, specifically for large molecules these methods did not translate well to the

experimental setting due to inaccuracies in the dynamical simulation and real-world

1aimed at manipulating coherence or inherently non-classical properties of the
atom/molecule and coherent laser control manipulates non-classical interference properties
of wavefunctions of sub-atomic particles to drive desired behaviors

13



2.1. WHAT IS ROBUST QUANTUM OPTIMAL CONTROL?

imperfections [Ass+98]. To bridge the gap between theory and experiment, an adap-

tive learning strategy to iteratively tune the laser pulse parameters was introduced

in Ref. [JR92] that only required access to experimental data without any numerical

simulation of the underlying dynamics. It was later used successfully for the control

of chemical reactions [Ass+98; Bar+98].

A significant amount of development of the QOC field took place in the 1990s, first

chiefly in terms of theoretical principles, but later increasingly also taking into account

some unique problems with QOC when applied to the experimental setting, namely:

loss of quantum properties over time due to environmental interactions; statistical

noise due to estimation of inherently probabilistic quantum observables; and errors in

the dynamics’ model [Gla+15; Koc+22]. This led to the consideration of robustness

in QOC strategies to these various noise sources. And, thus, began the field of robust

quantum optimal control (RQOC).

For instance, standard QOC assumes that the quantum system essentially exists in

an ideal vacuum with zero environmental interaction – which is often invalid in a

real-world setting. To that end, an RQOC technique was developed where external

controllable interactions can be used to reduce degradation dynamics due to environ-

mental interaction and decouple the system from it [VKL99].

On the whole, both QOC and RQOC techniques are instrumental to enable quan-

tum technologies in the fields of sensors, computation, simulation and optimization

[Aci+18] but RQOC is more aligned to address the potential challenges posed by

noisy quantum devices of our present time. RQOC is designed to extend or com-

pletely reformulate QOC to more directly address performance issues under various

noise sources. In the literature and in this thesis, this distinction is an extra quali-

fication (that is sometimes omitted) to highlight the overarching motivation behind

the construction of a specific method or its operational performance in noisy settings.

This distinction also more clearly earmarks QOC methods that are not designed to

be robust and consequently break down in noisy settings.

2.1.1 Motivating Applications

In the following, as motivation, we focus specifically on some of these interesting

applications that are enabled by RQOC and QOC. This section serves as a backdrop

to contextualize the methods and techniques proposed in this thesis.
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2.1.1.1 Quantum Metrology

Quantum sensing or metrology is the utilization of quantum systems to estimate un-

known parameters with more precision than what is classically possible [GLM11].

Fundamental limitations on the uncertainty of the estimate are imposed by physi-

cal laws, e.g., Heisenberg uncertainty relations. Quantum sensing aims to measure

physical observables with precision that reaches these limits. More concretely, given

an unknown estimatable parameter θ and n single-shot probes2, the central limit

theorem necessitates that the estimation error scales as |θ̂ − θ| ∼ n− 1
2 if the probe

is classical. Quantum probes, enhanced via quantum entanglement, reach the more

elusive Heisenberg scaling of ∼ n−1 in the estimation error – the ultimate precision

limit dictated by the laws of quantum mechanics [Cav81; Bra92; LKD02; BC94]. The

many technological applications include sensors for various scientific or commercial

settings: biological, gravitational, clocks, plasma, magnetic [TB16; Col11; Lud+15;

Lee+18; Jon+09]. However, recently, it was shown in Ref. [Len+22] that measure-

ment errors can cause the Heisenberg scaling to be washed out and be constrained

to the classical asymptotic limit in the number of probes. But using QOC methods,

specifically the variational constuction of global unitary control operators that allow

better distinguishibility of states after measurement, the optimum scaling can be re-

covered. QOC is also useful to prepare entangled squeezed states that can serve as

probe states in the presence of state preparation errors [Kau+19].

2.1.1.2 Quantum Simulation

Quantum simulation can be described as using a quantum computer or some cus-

tomizable quantum system to mimick or compute the dynamics of some target phys-

ical many-body quantum system [Dal+22] and is the most promising application

within all the NISQ era quantum technologies to demonstrate a practical quantum

advantage.

Promising applications include simulating: topological phases of matter [Sem+21]

and quantum many-body scars [Blu+21b]; the physics that might result in high-

temperature superconductors [Chi+19]; long/short-range dynamics of spin systems

[Blu+21c; Zha+17]. Informally, for classical computers, such a task is expected to be

exponentially more difficult in memory and compute resources when the number of

2single-shot implies that the probe can only be used once
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particles in the physical system increases due to the exponentially growing number

of the superposed system configurations that need to be tracked.

Note that there is no complexity proof for the non-existence of classical methods

achieving the same efficiency [Dal+22]. QOC techniques have been also applied for

robust preparation of Bose-Einstein condensate motional states and robust dynamical

driving/simulation of a phase transition in a Mott-insulator made up of ultracold

atoms in optical lattices [Fra+16]. The produced control schema are robust w.r.t.

fluctuations of the system parameters whilst being realistically fast3. QOC has also

been used to automatically calibrate single qubit operations for simulation and to

simulate neutron-neutron dynamics on qudit (multilevel) systems [Fra+17a; Hol+20].

2.1.1.3 Quantum Computation

Quantum computation, which is more digital than quantum simulation, has the goal

of manipulating a collection of quantum bits (qubits) using a universal set of quantum

logic gates to perform novel computations – similar to what is currently possible to do

using a classical computer. A universal set of gates is composed of three single-qubit

gates and a two qubit controlled-NOT (CNOT) gate [Deu85].

Loosely speaking, quantum computation enables new types of algorithms for solving

certain problems to be implemented that are superior to their classical counterparts.

These algorithms essentially harness the constructive and destructive interference of

qubits due to superposition to achieve their respective quantum advantage. Notable

examples include: (a) Shor’s algorithm for prime number factorization of some integer

N that can run in O(poly(logN)) time versus its classical equivalent that runs with

O(exp(logN)) time complexity. This is essentially possible by speeding up the period

finding problem using quantum Fourier transform enabled efficient discrete logarithm

function [Sho94]; and (b) Grover’s algorithm for search through an unstructured

database with a promise of at least a quadratic time-complexity advantage over its

classical counterpart. Although these algorithms are out of the reach of current NISQ

era quantum devices, steady progress is being made to make them a reality. To that

end, many QOC and RQOC techniques have been utilized for accurate and robust

realization of single-qubit and two-qubit quantum gates (in the presence of state

3respecting the quantum speed limit – imposed by the Heisenberg energy-time uncer-
tainty relation
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preparation and measurement errors) on a variety of near-term noisy quantum com-

puting architectures including nitrogen-vacancy centers [HZS20; Fra+17b], trapped

ions [CZ95], Rydberg atoms [Blu+21c] and superconducting qubits [MG20]. QOC

and RQOC methods have also been used to prepare initial or special non-classical

or entangled states that are resources for various quantum computation subroutines

[Siv+22a; Por+19; Chr+04].

Moreover, QOC techniques have also been used to optimize noisy quantum circuits

composed of many quantum gates [Per+14]. Current noisy quantum computers can

be greatly enhanced in their compute ability through the provision of Quantum Error

Correction Codes (QECC) that enable fault-tolerant logical computing – just like

classical error correction. Recently, with the help of RQOC and QOC methods,

improvements in base single-qubit and two-qubit gate operations and suppression of

environmental degradation effects allowed the very first practical demonstration of

QECC on superconducting qubits [Ach+23].

2.1.1.4 Quantum Communications

Provably secure communication can be enabled by non-fallible Quantum Key Dis-

tribution (QKD) protocols [SP00; Wan+19] that are powered by the principles of

quantum mechanics. QKD protocols can detect eavesdropping attempts by poten-

tial adversaries as errors in the transmitted signal. Secure communication can take

place once the secret key has been successfully transmitted via QKD. It is predicted

that Shor’s algorithm will be capable of breaking cryptographic workhorses like the

Rivest-Shamir-Adleman (RSA) protocol [RSA78] that power our present day com-

munication networks using fault-tolerant quantum computers beyond the NISQ era.

Thus, much work is underway to create truly secure post-quantum networks based on

QKD, amongst other (theoretically less secure but practical) classical ideas [Pir+20].

However, there exist tangible challenges before QKD based communication can be

deployed to replace the current global communications infrastructure. Most impor-

tantly, amongst other technical issues, QKD suffers from lossy transmission with

distance. The error in signal transmission grows exponentially with distance of the

fiber along which it is transmitted. To tackle this loss, a repeater that allows the

creation of entanglement and its passage through intermediate particles over arbi-

trary distances (called quantum memories) is used to boost the transmission signal

need to be employed [Bri+98; ATL15]. Phase control techniques have been applied
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to improve the contrast between a reference and a quantum signal in the optical fiber

[Wan+19].

This concludes our survey of promising near and far term applications of quantum

technologies. Quantum control is essential to many if not all of these. We now

formalize the quantum control problem and review various techniques to solve it.

2.1.2 Problem formulation

We formally (and generally) introduce the QOC problem and a few related flavours

that are studied for the remainder of this thesis. In a nutshell, QOC deals with the

construction of some optimizable objective or cost function Fu, a functional that

maps to [0, 1], w.r.t. some control parameters u that numerically represents the

goal or objective of the control problem which is then maximized (minimized) by an

optimization strategy w.r.t. u subject to some constraints.

We represent the unitary dynamics of the n-qubit quantum system we wish to control

by its Hamiltonian H that exists in the space of complex Hermitian 2n× 2n matrices

H(u(t), t) = H0 +Hc(u(t), t), (2.1)

where H0 is the time-independent system Hamiltonian and Hc is the control Hamil-

tonian parametrized by time-dependent controls u(t). The qubit is a two energy level

system and can be generalised to d energy levels as the qud it that is represented by

dn × dn matrices. The system Hamiltonian represents the physical dynamics that we

do not control and is usually assumed to be time-independent. We also adopt this

modelling assumption throughout the course of this thesis unless stated otherwise.

There are fundamentally two types of quantum control problems: state preparation

and gate preparation problems. Gate problems can be thought of as a generalization

of state preparation problems in that we consider the task of finding a unitary process

that maps all possible states in a given basis to some target states. In other words,

the initial state which was fixed for the state preparation case is now made arbitrary.

We deal with both cases in this thesis and now formalize them separately.

2.1.2.1 State preparation

Consider a closed n-qubit quantum system represented by the state |ψ(t)⟩ in a Hilbert

space H with dimension 2n. Its dynamical generator H is given by Eq. (2.1) and its
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time evolution is governed by the linear ordinary differential equation (ODE) known

as the Schrödinger equation,

d

dt
|ψ(t)⟩ = − i

ℏ
H(u(t), t) |ψ(t)⟩ (2.2)

where ℏ is the reduced Planck’s constant.

Informally, the control problem is generally the following: starting from an initial

state |ψ0⟩ at time t = t0, we wish to reach some target state |ψtarget⟩ at some final

time t = t1 by varying |ψ(t)⟩ through some controllable parameters in its dynamics.

An equivalent but mathematically more compact representation of the ODE dynamics

is given by the unitary propagator U that solves Eq. (2.2),

U(t0, t1,u(t)) = T exp

(
− i
ℏ

∫ t1

t0

H(u(t), t) dt

)
(2.3)

where T denotes time ordering operator. Note that the closed system dynamics

governed by the Schrödinger equation are time-reversible. This is represented by

the unitary property of the propagator: U †U = UU † = 1 where 1 is the identity

operator.

In general, the goal of the control problem is quantified by a metric called fidelity,

F , over some physically admissible controllable parameters. In this case, the fidelity

between the propagated controlled state |ψ(u(t), t)⟩ = U(t0, t1,u(t)) |ψ0⟩ and the

target state is given by

F(|ψ(u(t), t)⟩ , |ψtarget⟩) := |⟨ψtarget|U(t0, t1,u(t)) |ψ0⟩⟩|2 . (2.4)

This measures the similarity between the two states. In general, the fidelity is

bounded, and without loss of generality we assume it lies in [0, 1], where F = 1

if and only if we have |ψ(u(t), t)⟩ = eiϕ|ψtarget⟩, up to a global phase ϕ.

More precisely, the state preparation control problem can be formulated as the fol-

lowing fidelity optimization problem,

topt,uopt(t) = argmax
(t1,u(t))∈X

F(|ψ(u(t), t)⟩ , |ψtarget⟩). (2.5)

In this problem, the final time is also considered a control parameter and can be

optimized, where X represents the set of physical constraints or bounds on the control

function u(t) and final time values, e.g., maximum or minimum topt.
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Similarly, the open system control optimization problem is analogous to Eq. (2.5).

To model the system’s dynamics when it is no longer closed off or isolated from the

surrounding environment we need to consider the state in the density matrix repre-

sentation ρ. The open system dynamics, which are no longer unitary or reversible,

evolve according to the master equation [BP+02; FDS12]

d

dt
ρ(t) = − i

ℏ
[H(u(t), t), ρ(t)] + L(ρ(t)), (2.6)

where L(·) describes the Markovian decoherence and dephasing dynamics (i.e., the

environment),

L(ρ(t)) =
∑
d

γd

(
ldρl

†
d −

1

2
{ldl†d, ρ}

)
ρ(t = t0) = ρ0, (2.7)

ld is a decoherence operator that crucially is not necessarily a unitary and [·, ·] and
{·, ·} are the commutator and anti-commutator respectively. The density matrix

fidelity is analogously given by F(ρ(t), ρtarget) = Tr
[
ρ(t)†ρtarget

]
.

2.1.2.2 Gate preparation

A quantum logic gate is essentially a unitary evolution propagator U and its acqui-

sition is the gate preparation control problem. Since the Schrödinger equation is a

linear ODE, the propagator U also obeys an identical closed-system ODE given by

d

dt
U(u(t), t) = − i

ℏ
H(u(t), t)U(u(t), t), U(t = t0) = 1, (2.8)

where U(u(t), t) is the unitary propagator representing the arbitrary state evolu-

tion starting from an initial time t0. The evolved propagator at t = t1 is given by

U(t0, t1,u(t)) in Eq. (2.3). Its fidelity to realize a target gate Utarget is

F(Utarget, U(t0, t1,u(t))) =
1

22n

∣∣∣Tr[U †
targetU(t0, t1,u(t))

]∣∣∣2 . (2.9)

The closed-system control optimization problem to implement Utarget is

uopt(t), topt = argmax
(t1,u(t))∈X

F(Utarget, U(t0, t1,u(t))), (2.10)

where uopt(t) is the optimal control function for an optimal final time topt as before.

For the open system dynamics, we follow the master equation prescription for the

density matrix in Eq. (2.6) and obtain an analogous propagator prescription. To

characterize the gate implemented by u(t) in the density matrix prescription, we
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need to consider the evolution of a complete basis of states, {ρk}22nk=1. For this we

introduce the Liouville superoperator matrix X that acts on an arbitrary vectorized

state ρ (e.g., we stack the matrix columns but row stacking also works) to produce

the evolution

ρ(t) = X(t)ρ(t = 0). (2.11)

This is equivalent to the tensor-matrix evolution [WBC11]

ρ(t)mn =
∑
µ,ν

Xnm,νµ(t)ρµν(t = 0). (2.12)

Xnm,νµ(t) is a fourth order tensor form of X(t) that encodes the evolution of the state

element ρµν .

Thus, similar to Eq. (2.8), we define a superoperator X(u(t), t) which encodes the

evolution of {ρk}22nk=1 and follows the linear ODE

dX(u(t), t)

dt
= − i

ℏ
(L0 + iL1)X(u(t), t), X(t = 0) = 1 (2.13)

where L0,L1 represent the superoperator version of the commutator map [H(u(t), t), ·]
and L(·) the Markovian decoherence and dephasing dynamics, respectively.

Note that we factorize out an imaginary prefactor i to the left in Eq. (2.13) to unify the

ODE for open and closed system dynamics. For L ≡ 0, the above reduces to the closed

system dynamics of Eq. (2.10). Finally, we can transform the superoperator Xnm,νµ

to the Choi matrix Φ/Tr[Φ] that is given by index reshuffling or partial transpose

(and more formally a contravariant-covariant change of coordinates) [WBC11; Lic16],

Φnm,µν = Xνm,µn. (2.14)

Using Φ, the matrix version of Φnm,µν with trace normalisation, we obtain the gener-

alized trace fidelity [FL11a] between the open system target and evolved propagator

in Choi operator representation,

F(Φtarget,Φ(t0, t1,u(t))) = Tr [ΦtargetΦ(t0, t1,u(t))] . (2.15)

It can now be seen that the open system control optimization problem is analogous to

Eq. (2.10) using the generalized trace fidelity and can be solved in a similar manner.

In Chapter 6, we use this for open and closed dynamics. In reality, we need to

estimate the gate operation by Φ since the unitary is not observable. Estimating

Φ is possible using ancilla-assisted quantum process tomography (AAPT) and the
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Choi-Jamiolkowski isomorphism [Cho75; Jam72; Alt+03] for 2 logd n-qudit states and

logd n-qudit gates.

Analogously to the above, Φ has a matrix version Φ. We decompose Φ over a gener-

alised su(n2)’s basis {Pk}n4

k=1, e.g., Gell-Mann matrices [BK08],

Φ

Tr[Φ]
=
1

n2
+

n4−1∑
k=2

qkPk (2.16)

whose coefficients are

qk =
Tr[PkΦ]

Tr[Φ]
∈ [−1, 1]. (2.17)

qk can be modelled as a binomial random variable Bin(M, pk) with probability pk =
1
2
(1 + qk) where M is the number of single-shot (Bernoulli) measurements [SM20].

We measure the faithfulness of the implemented gate Φ(u(t), t) w.r.t. the target gate

(as another Choi state) Φtarget using the generalised state-fidelity [FL11a],

F (Φ(u(t), t),Φtarget) = Tr[Φ(u(t), t)Φtarget] (2.18)

=
1

n4
+

n4−1∑
k=2

qtargetk qk.

Analogously to the closed case, the open control problem is to find an optimal control

u∗(t∗) for an optimal final time t∗ ⩽ T (with T being the fixed upper bound), such

that

u∗(t∗) = argmax
u(t), t⩽T

F (Φ(u(t), t),Φtarget). (2.19)

2.1.2.3 Discretization

The exact solution of the time-dependent general dynamics discussed in Eq. (2.19) is

given by the time-ordered operator

E(t∗,u∗(t∗)) = T exp

(
− i
ℏ

∫ t∗

0

dt′ G(t′,u∗(t′))

)
for a unitary/Lindbladian generator G. In practice, we solve for a piece-wise constant

version of the dynamics represented by N fixed steps of ∆t = T/N of the fixed final

time T .

Thus, E(u(t), t) is discretized, which amounts to fixing u(t) = um to be constant

for each timestep such that um ∈ Cm×C is a finite dimensional array where C is the
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number of controls per timestep in the vector ul parametrizing Hc(ul, tl) and m is the

number of total timesteps in the pulse, with m ⩽ N for a maximum number of pulse

segments N . The propagator is

E(t,u(t)) := E(um) =
m∏
l=1

El =
m∏
l=1

exp

(
− i
ℏ
∆tG(tl,u(tl))

)
(2.20)

and the control problems in Eq. (2.10) and Eq. (2.19) are equivalent to

u∗
m = argmax

um=[u1,...,um]∈X,m⩽N

F(Φ(E(um)),Φ(Etarget)) (2.21)

for a fidelity F and the time. Note that um is constrained to some maximum and

minimum values given by X = {um : ∀c, l umin ⩽ ucl ⩽ umax ∈ C}. The constraints

are applied separately to the real and and imaginary parts of the components of um.

To summarize, we have formulated two types of quantum control problems pertaining

to gate and state preparation as optimization problems where the objective is to

realize some target state or gates on a quantum system by steering its dynamical

evolution using some control functions. The objective is quantified by a fidelity metric

which can be maximized by some optimization algorithm. For each problem, we have

shown how to model the ideal unitary and environmental interaction versions of the

dynamics. Next, we conduct a review of various algorithms that can be used to solve

these optimization problems.

2.2 Control methods

We now review various RQOC and QOC techniques and highlight their various

strengths and weaknesses. On a high level, they can be partitioned into two groups:

(a) model-based methods that assume a theoretical model of the system H(u(t), t)

one wishes to control which can therefore expedite some computational effort in max-

imizing the fidelity via the use of an analytical gradient or achieving robustness w.r.t.

model uncertainties or environmental interactions via analytical Hamiltonian engi-

neering; (b) model-free methods that do not assume any model and solve the control

problem either completely independently of any model of the system or learn an

effective model of the system during the control protocol.

Both types of methods are important in their own regimes. When equipped with a

theoretical model that has very high probability of being correct, methods of type
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(a) should be naturally preferrable. However, that is not always the case and a

central theme of this thesis is to tackle the problem of control when confidence in the

correctness of a theoretial model is low. This calls for the problem to be tackled using

methods of type (b) which is done through the application of model-free methods

to noisy control problems in Chapters 4 and 5 respectively. However, this too has

its own disadvantages in that the model-free methods might not converge, could be

unstable or consume too many resources such as physical queries of a quantum system

that we wish to control or could be prohibitive in the nature of the queries such as

full tomography that is likely not scalable with the system’s size. This issue can

be addressed by leveraging partial knowledge of the true model with the rest being

learned using data acquired from sampling the controllable system and is explored in

Chapter 6.

2.2.1 Model-based methods

2.2.1.1 Analytical methods

One of the earliest examples of analytical pulse shaping is the STImulated Rapid

adiabatic passage (STIRAP) technique for efficient state transfer between two levels

|0⟩ −→ |2⟩ in an atom or molecule via an intermediary connecting state |1⟩ that
remains unoccupied after the transfer is complete [Kuk+89]. In other words, during

the transfer, no loss in the state population due to spontaneous emssion in |1⟩ occurs.
The method was demonstrated for exciting a multilevel system in sodium using a

Stokes’ laser to drive the |1⟩ −→ |2⟩ transition and the pump laser to drive the |0⟩ −→ |1⟩
transition [Gau+88]. It was found to be robust to laser frequency modulation, pulse

shape and intensity errors compared to previous methods [CH88]. STIRAP seeks

to realize the zero energy steady eigenstate of the Hamiltonian given by |u(t)⟩ =
cos θ(t) |0⟩ + sin θ(t) |2⟩ by counterintuitively applying a Stokes’ pulse first and then

a bigger pump pulse. Since its discovery, STIRAP has been used to realize coherent

superpositions of states, beam splitters in atomic interferometers, manipulation of

laser-cooled trapped atoms and single photon generations [Vit+17].

Another popular analytical technique in trapped ions makes use of the Mølmer-

Sørenson interaction [SM99; SM00]. It couples ion quantum states with vibrational

modes or phonons to achieve many-body entanglement states. The typical state is

given by |g, n⟩ where the g denotes the two-level ion ground state and n denotes the
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vibrational mode. Typical transitions are driven by red-sideband, carrier and blue-

sideband lasers driving |g, n⟩ red−→ |g, n− 1⟩, |g, n⟩ blue−−→ |g, n+ 1⟩, |g, n⟩ carrier−−−→ |e, n⟩.
The transitions (in the Lamb-Dicke regime4) are robust to changes in the other vibra-

tional modes due to constructive and destructive interference effects of the transition

pathways taken to achieve the many-body entangled states. Methods built on top of

this interaction essentially power current trapped ion quantum computing architec-

tures with a scalable number of qubits and quantum sensors that require preparation

of nonclassical states [Pog+21; Pez+18].

Loss of quantum coherence due to interactions with environmental degrees of freedom

can be addressed by applying analytical corrections to the system via the means

of dynamical decoupling [VKL99]. This method effectively eliminates the effect of

the environment on quantum dynamics, projecting the latter onto a subgroup of all

possible coherent dynamics, thereby allowing for fault-tolerant control. Suppose the

Hilbert space of the system coupled to an arbitrary environmental bath is given by

H = HS ⊗HB. The system Hamiltonian H0 with a control term H1 is given by,

H = H0 +H1(t)⊗ 1B =
∑
α

Wα ⊗ Bα +H1(t)⊗ 1 (2.22)

where Wα and Bα are arbitrary linearly independent system and bath operators re-

spectively.

Now, the idea behind dynamical decoupling is to exploit the decoupling control inter-

action H1(t) ⊂ CS that generates the control algebra CS to cancel out system and bath

mixing contributions to dynamics of H0 ⊂ IS where IS is the interaction subspace

and CS ̸= IS. To first order, this is effectively done by removing the mixing terms in

the average Hamiltonian H̄(0). The first Magnus expansion term in the system-bath

dynamical propagator, given by,

H̄(0) =
1

Tc

∫ Tc

0

du U1(t)
†H0U1(t) (2.23)

where U1(t) is the propagator induced by H1(t) and Tc is its cycle time, i.e., when

U1(t) = U1(t+ Tc).

The corrections appear in H̄(1) which is the second Magnus term. If these corrections

are applied on a timescale faster than the timescale of decoherence, the higher order

Magnus terms are neglible and just correcting H̄(0) effectively stops the decoherence

accumulation in the system. These corrections can be applied using a group-theoretic

4vibrations are small compared to the laser wavelength
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decoupling operator averaging where the decoupling operators are piece-wise constant

U1(t) = gj and form a finite group G = {gj} that generate CS. This effectively

produces an averaging of the system Hamiltonian given by,

H̄(0) =
1

|G|
∑
α

∑
j

g†jWαgj ⊗ Bα (2.24)

and requires the application of a complete basis of gj for a time Tc/|G| to achieve

maximal averaging – completely cancelling the dissipatory dynamics. This technique

has been applied on 5-qubit IBM and 19-qubit Rigetti transmon chips to demonstrate

a high gate fidelity relative to free evolution of the system [Pok+18]. It can also be

extended, using a similar argument as above by incorporating some analytical pulse

shaping to achieve dynamically corrected gates [KV09].

Another method to dynamically correct gates is to derive pulse constraints to account

for small arbitrary first order perturbations in a two level Hamiltonian. This makes

use of the analytical solution to the Schrödinger equation for simple two-level systems

[BD12] to derive an analytical relation between the dynamics of time-dependent noise

fluctuations in the Hamiltonian and the propagator. Then, by requiring that these

fluctuations vanish at a final time, corresponding constraints are obtained on the

driving pulse that is also a function of these fluctuations.

A challenge in the above approach is the nonlinear phase in the fluctuations that

makes fixing the propagator at final time difficult. By treating the phase as a topo-

logical winding number, the fluctuations can be deformed as a contour on the complex

plane while preserving the phase, given that the origin is not crossed. This allows

the final time propagator to be fixed and makes it possible to engineer a two-level

analytic driver with noise-cancellation capability [BWS15].

Furthermore, a geometric framework for generally expressing dynamical decoupling

and dynamic gate correction protocols is the so-called space curve quantum con-

trol (SCQC). Applications include, accounting for perturbative unitary errors, ge-

ometric cumulative error curves related to control parameters which can allow for

post-selection of time-dependent robust controllers [BDB21; Don+21]. This idea also

extends the limitation of dynamical decoupling and gate correction techniques that

assume that the errors are static during gate operations. In SCQC, the evolution

error is modelled as a geometric space curve in the space of control Hamiltonians.

The curve’s displacement between its initial and final time points quantify the error
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and closing the curve, i.e., making sure that both initial and final positions are the

same ensures ideal system evolution.

We present a simple illustration of SCQC for a single qubit HamiltonianHrabi [Bar+22]

Hrabi =
Ω(t)

2
σx + ϵσz (2.25)

with a Rabi drive Ω(t) and a single axis quasistatic noise term σz with strength ϵ. To

remove the contribution of noise in the propagator dynamics, we start by expanding

the unitary propagator, U , in powers of ϵ. We obtain U(t) =
∑

n ϵ
nUn(t) where the

term Un depends only on a term,

gn(t) =

∫ t

0

dt′ exp

{
i

∫
dt′′Ω(t′′)g∗n−1

}
(2.26)

with g0(t) = 1. The error correction constraint on the Rabi drive Ω(t) is Un(T ) =

0 ↔ gn(T ) = 0 for some final time T . The condition gn(T ) = 0 can be recast

geometrically as a space curve. Specifically, to first order, g1 induces a space curve

r(t) = Re(g1) ˆRe(g1)+Im(g1) ˆIm(g1) where the hats denote unit vectors. The curvature

of r(t) is the Rabi pulse shape,

Ω(t) =
dRe(g1)

dt

d2Im(g1)

dt2
+

d2Re(g1)

dt2
dIm(g1)

dt
(2.27)

and the length of the space curve is the evolution. The curvature and the length of

the space curve can be optimized to realize robust time-optimal short pulses. The

extension to larger number of qubits is possible by identifying space curves of the

system’s Schrödinger equation and casting them in an orthonormal Fresnet-Serret

basis {en} that satisfy the relations en = −κn−1en−1+κn+1en+1 where κn = den
dt
·en+1

are the generalized curvature coefficients. These generalized curvatures then provide

constraints on the control Hamiltonian terms that allow the realization of robust

dynamically correcting pulses.

In addition to decoherence decoupling, SCQC can be used to correct for cross-talk

or coherent errors due to a residual σz ⊗ σz type interaction in multi-qubit transmon

systems [BDB21]. Also for a similar setting, a Pontryagin maximum principle for

optimizing generalized leading order Taylor moments of control objectives subject to

parametric uncertainties has been also proposed in Ref. [KBC21].
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2.2.1.2 Gradient-based methods

It is often not possible to analytically solve for the general QOC problem for gate

or state preparation. Instead, a numerical treatment is necessary. This is essentially

the first relaxation of the control problem from the analytical case presented in the

previous section where some control vector u as a solution to the QOC problem

is updated iteratively via a numerical computation to maximize the target fidelity

objective function F . This is usually done by performing a gradient ascent update5,

u← u+ α∇uF (2.28)

where ∇uF = dF
du

=
[
dF
du1
, . . . , dF

duk

]
is the gradient vector of the fidelity w.r.t. the

control parameters uk and α is an appropriate step-size parameter. Note that each

control parameter uk is a vector of length C which we further index as ukc for the

arguments that follow below.

A second-order6 variant of the gradient ascent update is,

u← u+ α (H)−1∇uF (2.29)

where H = ∇2
uF is the Hessian matrix where Hij = d2H

duiduj
. The Hessian incorpo-

rates nonlocal information into the optimization procedure by preconditioning the

gradient with curvature information thereby accelerating the procedure. In practice,

since the inverse Hessian is expensive to compute and requires O(k3) operations, the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) relation and its limited memory low-rank

adaptation (L-BFGS) allow a faster iterative approximation of the inverse Hessian

without computing any inverse that only requires O(k2) operations [Zhu+97]. Let

δk(.) := (.)k+1 − (.)k, we get the inverse Hessian Hk+1 at the k + 1 iteration via the

BFGS recursion relation,

Yk = (δk(∇uF)T δk(u))
Zk = δk(u)δk(∇uF)T

Hk+1 = (I − Y −1
k Zk)Hk(I − Y −1

k ZT
k ) + Y −1

k δk(u)δk(u)
T . (2.30)

5derived using a linear Taylor approximation to the fidelity: F(u + ∆u) ≈ F(u) +
∆uT∇uF .

6derived using a quadratic taylor approximation to the fidelity: F(u + ∆u) ≈ F(u) +
∆uT∇uF +∆uTH∆u and then requiring that the gradient of the approximation ∇uF(u+
∆u) be 0.
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Moreover, another degree of freedom is the choice of either: (a) updating all control

vector parameters concurrently or (b) updating them sequentially, e.g., either in the

time dimension if k indexes time slices or across different control Hamiltonian terms

[RNK12]. In the case of (b), only first order ascent updates are possible due to a

large overhead imposed by sequential Hessian evaluations, however, it can be more

computationally cheaper with similar guarantees7 as the second-order method with

some relevant application of step-size α control [Mac+11a].

L-BFGS is a very popular second-order gradient ascent algorithm that becomes a sub-

routine in many gradient-based quantum control algorithms after an accurate method

to compute the gradient ∇uF is known. Although L-BFGS has not been designed

for noisy optimization there exist smoothing modifications that attempt to address

this [AO20; Mac+11b; Shi+21] problem with limited success, the chief problem being

that the noise scale is too large compared to the gradient.

We discuss different ways to obtain the gradient function ∇uF which is possible

when the Hamiltonian of the system is assumed to be fully known. We start with the

popular GRadient Ascent Pulse Engineering (GRAPE) algorithm [Kha+05a; Fou+11;

Mac+11a] which allows for an efficient computation of the gradient function using

the Piece Wise Constant (PWC) ansatz of the control pulse discussed in Sec. 2.1.2.3.

To illustrate an example, let us consider the gradient of the generalized state fidelity

function in Eq. (2.15)

∇uF(Φtarget,Φ(t0, t1,u(t))) = Tr
[
Φ†

target∇uΦ(t0, t1,u(t))
]

(2.31)

= Tr
[
Φ†

target (∇uX(t0, t1,u(t)))
pT
]

where pT is the partial transpose operation to convert from Choi to superoperator

representation. Now consider the closed system gate control problem where we can

compute the gradient of the gate fidelity given in Eq. (2.9),

∇uF(Utarget, U(u(t))) =
2

22n
Tr
[
U †
target∇uU(u(t))

]
. (2.32)

All that remains is to find the gradient of the propagators. We illustrate how this

gradient is built iteratively for the superoperator X by computing the gradient of

each PWC term in the propagator. Firstly, recall that the superoperator in time-

discretized form is composed of a train of time-independent superoperators,

X(t0, t1,u) =
k∏

l=1

Xl =
k∏

l=1

exp

(
− i
ℏ
∆t(L0(tl, ul) + L1)

)
. (2.33)

7or better due to the variational derivation [RNK12]
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So the gradient of the individual PWC term is well approximated8 by

dXl

dulc
≈ − i

ℏ
∆t

(
(L0(tl, ul))lc +

dL1

dulc

)
Xl. (2.34)

which when plugged into the gradient equation in Eq. (2.31) lets the gradient ∇uF
be built as a chain of computations. Here, each PWC gradient is independent of the

head (forward) and tail (backward) propagator terms that can be precomputed and

efficiently stored after matrix multiplication.

The case for the unitary propagator is the same but can be further improved using

some further analysis 9 [Mac+11a].

Note that this version of GRAPE involves a lot of manual hardcoding of the gradients

for different types of target objective functions but with a potentially restricting

assumption that the controls are piece-wise constant. This can be relaxed next using a

technique to compute the gradients accurately or analytically correctly via the adjoint

method [Mac+18] without any restriction on the functional form of the control pulses.

Consider the unitary gate control problem (again the argument generalizes to open

systems). The idea is to notice that the difficult step in the computation of ∇uF is

the computation of∇uU which can be sidestepped by augmenting the ODE state with

its gradient w.r.t. the control vector U −→ [U,∇uU ] and solving for the augmented

dynamics of the coupled system. The following augmented coupled dynamics ODE

can be derived [KR09],

d

dt

(
U(u(t), t)
∇uU(u(t), t)

)
= − i

ℏ

(
H(u(t), t) 0
∇uH(u(t), t) H(u(t), t)

)(
U(u(t), t)
∇uU(u(t), t)

)
(2.35)

and can be fed into L-BFGS which calls the gradient function and the state that are

obtained using numerical forward integration. The gradients obtained using this trick

are more accurate compared to other strategies like brute-force finite differencing. We

use this idea to obtain the gradient function that forms part of the L-BFGS quasi-

Newton algorithm that is used in Chapters 4 and 5.

Increasingly, it is possible to automate even more gradient computation steps us-

ing efficient computational techniques to perform automatic or auto-differentiation.

In a nutshell, auto-differentiation allows highly precise automatic computation of

8if ∆t and the operator norms are small
9The new gradient expression is in the eigenbasis of the control Hamiltonian. Careful

analysis yields more refined gradient expressions in terms of eigenvalue difference relations
of the control Hamiltonian.
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derivatives of complicated functions by composing known derivatives of elementary

operations that make up these functions via the chain rule [Pas+19]. For example,

suppose we have two functions f, g whose gradients are separately known to be f ′, g′.

Then an elementary application of the chain rule yields the gradient of the composite

function f(g(·)) as f ′ · g′. This simple idea is scaled up arbitrarily to compute gradi-

ents of complicated functions, e.g., those represented by neural networks, as long as

they are compositions of smaller building-block differentiable functions.

Many methods involving automatic differentiation for model-based control have also

been proposed [Sch+20; Sch+21a; GCM22; SM22]. It is possible to combine GRAPE

with auto-differentiation methods to improve the efficiency of auto-differentiable gra-

dient functions, allow computation of gradients with arbitrary control functionals and

get gradients of non-analytic figures-of-merits such as the open system Fisher infor-

mation in quantum metrology [GCM22]. Optimizations to the automatic gradient

calculation are possible by analytically evaluating the chain rule using a GRAPE

ansatz.

Also, a neural network controller that is optimized by making the propagator dy-

namics differentiable for robust state preparation has been proposed by utilizing

auto-differentiable infrastructure to define the quantum control problem [Sch+20].

A differentiable stochastic differential evolution of the state during state preparation

and stabilization subject to homodyne detection has also been proposed in a similar

vein [Sch+21a]. Differentiable neural ordinary differential equations have been used

to optimize neural control functions that map many gate parameters such as rotation

angles to many high fidelity control parameters [SM22; PCM22].

The problem with GRAPE or gradient based methods is that stochastic noise in

the Hamiltonian of the system in the real-world or in the a priori model used in

GRAPE or measurement errors in estimation of the objective function can cause the

method to fail to produce any high fidelity solution or cause the produced solution to

significantly underperform at test-time since the model and system uncertainties were

not taken into account. This can be addressed by batch optimization strategies of the

average fidelity either uniformly [Wu+19a] or with respect to a utility function, i.e.,

risk function [GW21], which improves performance of the GRAPE control schemes.

We highlight a mathematical reason why this makes sense in Chapter 5 by showing

that the average fidelity is actually a probabilistic robustness measure. We also use

a variant of GRAPE or L-BFGS presented here as a benchmark method or base-

line for comparison for other model-free algorithms on the time-independent state
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transfer problem in Chapter 4 and for leveraging the learned Hamiltonian model in

Chapter 6 for the time-dependent gate control problem. Furthermore, since L-BFGS

has performed well on finding high-fidelity energy landscape controllers [LSJ15a], its

controllers are used in Chapter 5 as a relevant benchmark for individual controller

comparisons.

Still, the inability to procure a model fundamentally limits the gradient based ap-

proaches discussed above. This is addressed by model-free methods, which in some

sense are a further relaxation of the methods presented in this section.

2.2.2 Model-free methods

Model-free control methods do not require any Hamiltonian model of the system that

needs to be controlled. Instead, either an approximate model is learned ab initio in

the case of reinforcement learning and Bayesian Optimization or no model is learned

and gradients are estimated using heuristics or sampling techniques in the case of

genetic algorithms [Yan+20] or direct search methods like Nelder-Mead [NM65]. The

usual price to pay with these techniques as opposed to the ones presented in prior

sections is that the number of queries of the controllable system need to be necessarily

larger since more information is now required to infer the direction of ascent in the

abscence of a gradient field.

2.2.2.1 Conventional Gradient free methods

Nelder-Mead is a popular simplex-based control algorithm using direct search. Es-

sentially, for a D-dimensional optimization problem, it creates and updates a D + 1

dimensional polytope (simplex) {F(ui)}D+1
i whose vertices are function evaluations

that are updated towards an optimum direction. The main idea behind Nelder-Mead’s

heuristic update is to replace the worst vertex F(uD+1) with a new point based on

how good the reflection point F(ur) through the centroid of the remaining D points

is compared to the rest of the points. The reflection point is computed as follows,

ur = uo + α(uo − un+1) (2.36)

where uo is the centroid of the top D points and α is a step size parameter in [0, 1].

The simplex is either expanded or contracted based on whether the reflection point is

the best, worst or middle of the rank order of theD+2 points. Because Nelder-Mead is

a model-free method and does not compute the gradients (recall that a Hamiltonian
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model is absent in model-free control), it is more robust to noise in the objective

function evaluations. Moreover, Nelder-Mead performs a heuristic gradient descent

(“the simplex rolls down the hill”) via the direct search method outlined above which

converges quickly without many function evaluations per descent iteration (i.e. 1-2

evaluations per simplex contraction or expansion).

It has successfully been used in noisy experimental settings [WA18] due to its non-

reliance on gradient information [Kel+14a; DCM11], especially when obtaining such

information is resource-intensive. A popular augmentation of this approach is the

Chopped RAndom Basis (CRAB) method to parametrize the control function u(t)

in a random Fourier basis (sampling the harmonics from a uniform distribution) and

then use Nelder-Mead to optimize the coefficients of the basis using black-box fidelity

function evaluations without extra computational overhead of gradient construction

in model-based optimization [DCM11]. Due to the simplicity and parsimoniousness of

the CRAB method, it has been used in many experimental quantum control settings

including state and preparation for quantum computation, single-photon generation

and manipulation of quantum dynamics in quantum simulation [Mue+22]. It is also

used in the adaptive hybrid quantum optimal control protocol which combines Nelder-

Mead with model-based methods as a post-refiner of pulses obtained after gradient-

based control is performed using the model learned through system characterization

[EW14]. Hence, we use Nelder-Mead as a benchmark RQOC method to measure its

ability to produce robust controllers in Chapter 5 in contrast with other comparatively

sophisticated model-free strategies.

Stable Noisy Optimization by Branch and Fit (SNOBFit) has been designed to filter

out quite large scale noise in objective functionals [HN08] and is designed for opti-

mization of noisy and expensive objective functions. The idea behind SNOBFit is to

iteratively select new evaluation points of the objective function while maintaining

a balance between the search for global and local optima. Each optimization call

involves SNOBFit consuming input evaluation points {Fi} and then proposing new

points {ui} to be evaluated. It fits local models using objective function evaluations

and implements a branching algorithm to partition the parameter space into smaller

boxes with one function evaluation per box. The latter is a non-local search scheme

that orders promising sub-boxes by the number of bisections required to get from the

base box to that box. Sub-boxes with smaller bisections are worth exploring more. It

does not rely on explicit gradient information and builds models of the optimization

landscape. Thus, it should be able to cope with large amounts of noise in the form
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of controller and model uncertainties, environmental effects and singularities during

optimization. SNOBFit, however, differs importantly from RL in the assumption that

those models are linear. Moreover, its non-local optimization landscape exploration

is not random and thus has comparatively a lot less variance in performance (that

may or may not be poor).

Due to the simplicity of the models fit by SNOBFit for its acquisition of new evaluation

points, we use it as a benchmark against methods that fit non-linear models like RL

in Chapter 5.

2.2.2.2 Genetic Algorithms

Genetic or evolutionary algorithms are stochastic optimization techniques inspired by

the biological idea of natural selection and are among the first numerical techniques

employed for QOC purposes [JR92]. Here, the objective function is treated as a fitness

function and a set of candidate parameters {ui}, called chromosomes, are evolved in

a three-step iterative protocol:

1. Selection: A set of parent candidates are selected probabilistically w.r.t. their

fitness function values Fi with probability,

pi =
Fi∑
iFi

(2.37)

2. Crossover: Offspring candidates are generated by mixing parts of the chromo-

somal candidates at random locations.

3. Mutation: Finally, a small portion of the offspring candidate’s parameters are

replaced with random entries drawn from a uniform distribution to introduce

mutations in the candidate population and encourage more fitness.

The steps are repeated, until convergence, with the children becoming the parents

of the next generation. The appeal behind genetic algorithms is that, empirically,

their probability of success in reaching a global optimum, in a control landscape with

a lot of local sub-optima or traps, is higher since there is more exploration of the

parameter space by the candidate set of parameters and the algorithm converges

slowly to an optimum [ZSS14]. It has been shown that evolutionary algorithms and

specifically differential evolution, a type of genetic algorithm that follows the same
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three-step protocol for iterative refinement of the candidate solution set10, avoid local

optima or traps in the landscape (discussed in more detail later in Sec. 3.1) better

than quasi-Newton gradient-based method and Nelder-Mead [ZSS14]. They are able

to find global optima in the presence of noise for molecular state prepartion [JR92]

and adaptive enhanced phase estimation for quantum metrology [Lov+13].

Thus, these algorithms could be suitable for control problems with a lot of traps.

In this thesis, since we do not study these types of hard quantum control problems,

these methods are out of scope and will not be discussed further.

2.2.2.3 Bayesian Optimization

Bayesian optimization is a popular technique for optimizing black-box functions whose

queries are expensive and noisy and the parameter dimension is less than 20 [Fra18].

Despite not directly exploring Bayesian optimization in this thesis, we provide an

overview to draw out the similarities between its components and those of reinforce-

ment learning (discussed next). Most of the terminology regarding the components

can be well-understood in a Bayesian context and translates to the reinforcement

learning setting. The fact that it is a lot simpler in principle than RL could also be

advantageous, in particular few parameter settings.

Given a target objective function F to optimize, the technique proceeds by construct-

ing its surrogate function F̂ that is maximized and also quantifies its uncertainty using

process regression, that can be Gaussian or any parametric distribution, by assum-

ing that the evaluations of the function F follow this distribution drawn from the

corresponding process. Henceforth, we focus our description on the Gaussian process

for simplicity but we also point out that the technique is not restricted to Gaussian

processes. In probability theory, a Gaussian process is an infinite collection of ran-

dom variables whose every finite subset (here, observations of the objective function

{Fi}) follows a multivariate Gaussian distribution. There are two main components

in Bayesian optimization: a Bayesian surrogate F̂ for modelling the objective func-

tion F (exploitation of data) and an acquisition function for deciding which control

parameters uD+1 to sample next (exploration to acquire new data). The essence of

Bayesian optimization is to solve a decision problem (“what is the best control param-

eter based on data I have acquired thus far?’) in the face of uncertainty (“spread in

the surrogate probability distribution of the values the objective function will take”).

10each candidate solution follows a trajectory in control parameter space
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We describe the exploitation part first. The protocol starts by points {uo} chosen

uniformly at random in an initial space-filling experimental design. By assuming

a prior Gaussian process distribution on the space of surrogate functions P(F̂), the
protocol involves updating this prior using Bayesian inference by connecting observed

evalutions of the objective function {F(ui)} at the points {ui} with that of the

surrogate function {F̂(ui)}. Suppose that we have made D evaluations and denote

the sequence as a vector for the objective function as F(u:D) = [F(u1), . . . ,F(uD)].

Following Bayes’ rule, the posterior distribution P( ˆF(u:D)|u:D) is given by,

P(F̂(u:D)|u:D) =
P(u:D|F̂(u:D))P(F̂(u:D))

P(u:D)
(2.38)

where P(u:D|F̂(u:D)) is the multivariate likelihood, and

P(u:D|F̂(u:D)) =
1

(2π)D/2det(Σ)
1
2

exp

{
−1

2
(F̂(u:D)− µµµ)TΣ−1(F̂(u:D)− µµµ)

}
,

(2.39)

where Σ = Σ(u:D) is the prior covariance matrix and µµµ = µµµ(u:D) is the prior mean

vector. The power of the Gaussian assumption now pays off in that the posterior

(predictive) distribution in Eq. (2.38) is also Gaussian and is simply

P(F̂(u:D)|u:D) = N (µµµ′, σ2
D) (2.40)

for any arbitrary control parameter u′ with the posterior mean vector and variance

given by

µµµ′(u′) = Σ(u′,u:D)Σ(u:D,u:D)
−1
(
F̂(u:D)− µµµ

)
+ µµµ (2.41)

σ2
D((u)

′) = Σ(u′,u′)−Σ(u′,u:D)Σ(u:D,u:D)
−1Σ(u:D,u

′)

where Σ(u′,u:D) is a D dimensional row vector indicating the covariance between

u′ and ui for D evaluation points. Likewise, Σ(u:D,u:D) is the covariance matrix.

Usually, the mean function µµµ is standardized to be a constant or is some lower order

polynomial and the covariance function Σ is chosen from a breadth of kernel choices

with some hyperparameters η that are optimized via maximizing the likelihood func-

tion.

The second part in the Bayesian optimization protocol is exploration: choosing or

sampling the next control parameter uD+1 which is similar to the exploration problem

for RL discussed in the next section. To that end, there are many acquisition functions
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and we list one simple acquisition function, called the Upper Confidence Bound (UCB)

αUCB,

αUCB(u
′) = µµµ′(u′) + λσD(u

′) (2.42)

where λ is a hyperparameter controlling the strength of exploration. The UCB cap-

tures the principle of optimism in the face of uncertainty that has theoretical connec-

tions with RL interpretations as optimistic dynamic programming [NP20]. The next

point to sample is then simply

uD+1 = argmax
u′

αUCB(u
′). (2.43)

Bayesian optimization has been used in quantum control settings with single shot

fidelity estimation and Gaussian noise for state preparation problems including the

realization of GHZ states and the Mott-insulating phase transition from a superfluid

ground state [SM20]. The performance is improved if instead of a Gaussian process

a binomial process is used to model single shot measurement data obtained from the

fidelity which can thus be leveraged as an inductive bias by the algorithm to work

in the limit when the number of shots tends to just one [SM20]. It has also been

benchmarked for ultra-cold ordered state preparation tasks to be competetively bet-

ter against Nelder-Mead and genetic algorithms [Muk+20]. The strength of Bayesian

optimization is that the simplifying modelling assumptions in the exploitation part

allow it to require much less data compared to more expressive function approx-

imation based approaches used in RL. Furthermore, for the exploration part, the

probabilistic modelling of the surrogate function allows one to incorporate planning

in the sampling methodology which is usually absent in RL and further allows one to

reduce the number of evaluation points needed for convergence. A weakness of the

approach is that it is not scalable when the control parameter dimension is very large

and solving more demanding decision problems is required with larger combinatorial

loads where RL usually excels, including mastering gameplay [Sil+18] and problems

including decision making with partial observations/information. Improving the abil-

ity of Bayesian optimization methods to work well in high-dimensional settings is an

area of active research [Wan+16; Eri+19].

2.2.2.4 Reinforcement Learning

Reinforcement learning (RL) is another framework for blackbox decision making in

the presence of uncertainty that is similar to Bayesian optimization. RL models the

interaction of an agent with an environment with the goal of finding the optimal
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behavior policy of the agent that maximizes a reward signal the agent receives from

the environment. At its heart, RL is comprised of two processes involving a policy

function that models the agent’s behavior and the value function that models the

agent’s quantification of the reward conditional on any of its possible behavioral ac-

tions. RL proceeds then by solving two related problems in a loop: the prediction

problem where the value function is learned given some behavioral policy and an

optimal control problem where the optimal behavioral policy is learned given some

value function. Like Bayesian optimization, RL also tackles the joint problem of ex-

ploration (what’s the best action to try to gather as much information about the

system as possible?) for the prediction stage with exploitation (what’s the best ac-

tion to choose to maximize total reward?). The major difference between the two

approaches is that RL treats the problem using dynamic programming that is de-

scribed shortly as opposed to the Bayes’ rule update described previously. RL has

been successfully used for tackling quantum control in challenging noisy environments,

resulting in similar or better performances compared to standard control methods.

Promising results include the stabilization of a particle via feedback in an unstable

potential [WAU20], optimizing circuit-QED, two-qubit unitary operators under phys-

ical realization constraints [Dal+20b], and optimizing multi-qubit control landscapes

suffering from control leakage and stochastic model errors [Niu+19b], among many

others.

Recall from Chapter 1 that one aim of the thesis is to develop RQOC methods for

robust optimization of quantum dynamics. We will develop novel RL methods to

achieve this goal by modifying existing model-free RL methods in the quantum do-

main and later propose a novel model-based RL method that improves upon the

former methods. Given that the theoretical model of the quantum system in noisy

settings is uncertain, RL is well suited for this domain which we demonstrate by com-

paring it to other benchmark algorithms discussed in this chapter. RL successfully

addresses challenging, noisy quantum control problems with the promise of inherent

robustness [Niu+19c; Kha+21; Kha+23b; Dal+20c; Siv+22b; Buk+18].

The RL problem [SB18a] is formulated as a Markov Decision Process (MDP) rep-

resented by the four-tuple: (S,A,R, P ) signifying the state, action, reward and

Markov11 transition spaces with γ ∈ [0, 1] being the discount factor. The MDP

problem involves discrete transitions. At each timestep j in the MDP framework,

11the Markov property simply imposes the constraint on the transition probability:
P (sj+1, rj |sj , aj) = P (sj+1, rj |sj , aj , sj−1, aj−1, . . . , s1, a1)
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given an initial state sj ∈ S, a next state sj+1 ∈ S can be achieved that carries

with it some reward rj ∈ R that is obtained by performing an action aj ∈ A. State

transitions are assumed to be probabilistic and captured by the Markov transition

dynamics model P (sj+1, rj|sj, aj), indicating the probability of going from sj to sj+1

with the action aj, getting a reward rj. A trainable policy function π(aj|sj) that rep-
resents the agent ’s behavior policy is generally a probability distribution of executing

action aj given state sj. The agent follows π by sampling an action aj, interacts with

an environment E and associates a state transition Y : S × A −→ R with a reward

function R(sj, aj).

The agent’s (π) goal is to maximize the discounted cumulative rewards called the

returns,

η(π) := Eπ,P

[
∞∑
k=0

γk rk

]
, (2.44)

where the sum is over all timesteps12 k. Here, the discounting factor γ prioritizes

immediate rewards over future rewards. More generally, returns for timestep j are

given by,

Rj =
∞∑
k=0

γkrj+k. (2.45)

The agent tries to maximize Eπ,P [Rj], the expected returns given some initial state s,

where we have the discrete expectation operator Eπ,P [(·)] =
∑

s′,r,a π(a|s)P (s′, r|s, a)(·).

The value function Vπ(s) is the expected returns following π starting from some state

s. Mathematically,

Vπ(s) = Eπ,P [Rj|sj = s] =
∑
s′,r,a

π(a|s)P (s′, r|s, a) (r + γVπ(s
′)) . (2.46)

And, likewise, the state-action value function Qπ(s, a) is the expected returns given

some initial state s and action a following policy π,

Qπ(s) = Eπ,P [Rj|sj = s, aj = a] =
∑
s′,r,a′

P (s′, r|s, a)(r + π(a′|s′)Qπ(s
′, a′)). (2.47)

Finally, we note the connection between Q and V : V (s) = maxa′ Q(s, a
′).

In a nutshell, the RL objective of maximizing expected returns is achieved in two steps

as mentioned before which form the core principles of the overarching RL strategy.

Namely,

12a timestep is simply an iteration of the MDP
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1. Policy evaluation (Prediction): Given some policy π, we compute the value

function (Q or V ). These form our prediction of the returns and inform the

decision-making of the behavior policy.

2. Policy improvement (Control): Given a value function, we compute the optimal

policy π, e.g., by acting greedily w.r.t. the value function, where the agent takes

the action with the highest predicted value at each state.

The first step is achieved using the principle of dynamic programming. This is usually

done approximately via sampling in RL since an exhaustive search over all possible

states, actions and rewards is generally not computationally tractable when their cor-

responding spaces are high-dimensional. By noting that the right hand side expansion

of value functions Q, V is recursive and is exactly the application of a Bellman op-

eration that is commonly used in dynamic programming [Bel52], we apply iterative

Bellman updates of the following form,

Vπ(s)
(k+1) =

∑
s′,r,a

π(a|s)P (s′, r|s, a)
(
r + γV (k)

π (s′)
)

(2.48)

to obtain the updated value function at iteration k. The Bellman update is a contrac-

tion in the space of value functions [BT96] and thus in the limit k → ∞, we arrive

at the fixed point, the optimal value function V ∗(s) which is independent of π,

V ∗(s) = max
π

Vπ(s) = max
a

∑
s′,r

P (s′, r|s, a) (r + γV ∗(s′)) . (2.49)

A similar argument holds for Q. Learning Q involves approximately solving the

Bellman optimality equation iteratively at every timestep k,

Q(k+1)
π (s, a) =

∑
s′,r

P (s′, r|s, a)
[
r + γmax

a′
Q(k)

π (s′, a′)
]
. (2.50)

Step two, the policy improvement step, involves updating the policy using the value

function. The policy improvement theorem [SB18a] guarantees that the (new) greedy

policy w.r.t. the value function π′(s) = argmaxa′ Qπ(s, a
′) is better than π. That

is, for two deterministic policies π, π′, if ∀s ∈ S we have that Qπ(s, π
′(s)) ⩾ Vπ(s),

then Vπ′(s) ⩾ Vπ(s). Alternating between policy evaluation and policy improvement

ad infinitum yields the fixed point where the final updated policy π(k+1) = π(k) = π∗

is optimal and likewise the value functions are optimal and any further iteration will

yield the same functions. General theorems for policy and value functions guarantee
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iterated policy improvement [SB18a]. We define the number of agent-environment

interactions needed to find an approximately optimal policy π∗ as the sample com-

plexity. The RL control problem becomes a problem of finding the optimal control

policy π∗ given by

π∗ = argmax
π

η(π). (2.51)

The Markov transition model P can be difficult to learn without completely exploring

the state and action spaces so the aforementioned approach only captures RL in

principle which in practice can look very different. Likewise, the Bellman update

can only really be approximate or a sample/Monte Carlo type update since the full

update requires P and computing the best value function for a given state or action

that requires entirely exploring the corresponding spaces. In reality, P is not needed

for approximately solving the Bellman equation. The updates to the value and polciy

function are made using samples from the four-tuple MDP space {sj, aj, sj+1, rj}
stored in the replay buffer or dataset object D (also called experience) using some

exploration strategy (e.g., agent takes random actions or ϵ-greedy random actions13).

This procedure is also sometimes called bootstrapping. One of the simplest ways

to update the state-action value function is the SARSA (State Action Reward State

Action) update,

Q(k+1)
π (sj, aj) = Q(k)

π (sj, aj) + α
(
rj + γQ(k)

π (sj+1, aj+1)−Q(k)
π (sj, aj)

)
(2.52)

which is a sample-based version of the dynamic programming update shown in Eq. (2.50)

and does not use the transition model. Here, α is the learning rate hyperparameter.

The celebrated Q-learning algorithm [WD92] involves the following policy evaulation

update approximation,

Q(k+1)
π (sj, aj) = Q(k)

π (sj, aj) + α
(
rj + γmax

a′
Q(k)

π (sj+1, a
′)−Q(k)

π (sj, aj)
)
. (2.53)

Furthermore, the SARSA update for the value function V also has an analogous form,

V (k+1)
π (sj) = V (k)

π (sj) + α
(
rj + γV (k)

π (sj+1)− V (k)
π (sj)

)
(2.54)

and is called the temporal difference (TD) update [Sut88].

An alternative to the above value-function based policy evaluation update is to di-

rectly optimize the policy function using a gradient signal. The gradient signal in

question, ∇πη(π), is obtained by differentiating the returns η(π) which is possible to

13switch from determinisitc to random action with probability ϵ
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Algorithm 1: Reinforcement learning loop

Initialize empty dataset D, parametrized random policy πθ, k ← 0
Observe initial state s0
while k < T/∆t do

Execute ak ← πθ (·| sk)
Observe sk+1, rk ← E(sk, ak)
Store D ← D ∪ {(sk, sk+1, ak, rk)}
k ← k + 1

// if require update: perform model-free update of parameters

(e.g. policy πθ )

do due to the policy gradient theorem [SB18a]. There exists a class of RL algorithms

where the gradient ∇πη(π) form varies; these are called policy gradient algorithms.

One example of the policy gradient is

∇πη(π) = EP [∇π log π(s|a)(Qπ(s, a)− b(s))] (2.55)

which forms the core of the family of actor-critic algorithms [SB18a] where b is some

variance reducing baseline function that can be estimated along with the rest of

the functions within the expectation operator. The critic is synonymous with the

value function that critiques the actor or agent, whose behavior is represented by the

policy function. Note that policy gradient algorithms are not restricted by requiring

a value function in ∇πη(π). In essence, the critic or the value function is used to

reduce the high variance in the reward function due to the non-stationary nature of

the MDP. The adjusted value function in the policy gradient informs a more realistic

estimation of the reward function which could instead be directly used in the former’s

place albeit paying the price of high variance rewards – this encapsulates the policy

gradient update in the algorithm called REINFORCE [SB18a].

The policy gradient approach is particularly well-suited for continuous state and ac-

tion spaces where the previous value-based procedures fall short in terms of effectively

exploring the space. For such high-dimensional spaces, policy gradient methods are

quite effective in optimizing the returns η(π) using direct updates to the policy. Since

the quantum control problem is a continuous control problem, we are primarily con-

cerned with policy gradient algorithms – those, directly used in this thesis, is sum-

marized next.

One final thing to note is that in the practical quantum control setting, in order to

be able to represent the continous value and policy functions as statistically learned
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functions, we need to make use of an expressive function approximation that is able

to capture their complex behavior in a generalizable manner. This step is necessary

for the value and policy functions to generalize to larger spaces [Lil+15] and brings us

in the realm of deep reinforcement learning where we use neural networks for function

approximation which do the job well and function approximation scales favourably

with dataset size. We denote the neural network functions representing pieces of the

RL algorithm using a single greek letter subscript. For example, the neural network

policy function becomes πθ with θ nonparametrically denoting its trainable weights

and biases, following RL literature [SB18a]. Likewise, we can also assume a similar

nonparametric neural network form for the value functions Qϕ and Vϕ. Then, using

backpropagation [RR96], i.e., the chain rule, we can update θ in the direction of the

policy gradient

θ ← θ +∇θη(πθ). (2.56)

The policy outputs usually parametrize the mean and covariance µµµ,ΣΣΣ of a learnable

multivariate Gaussian N (µµµ,ΣΣΣ) from which the action is drawn. Both policy and the

value functions (π and Q or V ) are simple multilayer perceptrons throughout the

thesis. A schematic of the general QOC RL loop is illustrated in Algorithm 1 for

some fixed final time T and timestep size ∆t.

The specifics of how to transform the QOC optimal control problem to the MDP for-

malism are technical and are covered in later chapters where the details are relevant:

specifically in Chapter 4 for the state control problem and in Chapter 6 for the gate

control problem.

We next cover policy gradient RL algorithms in more detail.

Policy Gradient RL Algorithms

Here we review a number of popular policy gradient algorithms that have been suc-

cessful in classical RL literature. We empirically evaluate these for benchmarking

reasons in Chapter 4 on some standard static quantum control problems. This em-

pirical comparison helps motivate the choice of whether one should just use one of

these algorithms for generally applying RL techniques on a quantum control prob-

lem or whether different policy gradient algorithms provide stratified advantages for

different subsets of QOC problems.

Due to the wide breadth of policy gradient RL algorithms that can be found in the

current classical RL literature, we only consider a few representative algorithms in
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this thesis: proximal policy optimization (PPO) [Sch+17], deep deterministic policy

gradient optimization (DDPG) [Lil+15], twin delayed DDPG (TD3) [FHM18] and the

soft actor-critic (SAC). They were chosen because of their popularity, performance

and stability in the classical RL literature.

Here, we summarize the core ideas in each algorithm and draw out their connections.

Refer to the original papers for the fully fleshed out details.

DDPG

DDPG [Lil+15] is an actor-critic algorithm that makes use of the deterministic pol-

icy gradient theorem [Sil+14] to iteratively improve a deterministic neural network

policy function µθ(s). The idea behind DDPG is to stably generalize Q-learning to

high-dimensional continuous state/action spaces using neural network function ap-

proximation. A deterministic policy helps in simplyfing the form of Q and the policy

gradient reducing the number of stochastic moving parts in the algorithm thereby

reducing the variance in performance and improving the algorithm’s stability. The

deterministic policy gradient is given by

∇θη(µθ) = Eρβ(s) [∇µθ
Qϕ(s, µθ(s))∇θµθ(s)] , (2.57)

where ρβ(s) represents the probability of visiting some state s ∈ S. This gradient is

used to update the policy parameters using gradient ascent, cf. Eq. (2.56). The state-

action value function Qϕ is updated via fitting the neural network Qϕ using supervised

learning to the bootstrapped SARSA update target in Eq. (2.52). Moreover, DDPG

is an off-policy algorithm in that the deterministic policy function µθ can be updated

using replay experience of other, usually older, policy functions. This means that the

replay buffer dataset D can be very large and each update step can be made, with

high probability, using samples with a significant proportion of uncorrelated MDP

transitions. Exploration of the state and action spaces is done by adding temporally

correlated noise sampled from an Ornstein-Uhlenbeck process ϵ ∼ OUP for improved

exploration efficiency [UO30],

µ′
θ(s)← µθ(s) + ϵ. (2.58)

Another key idea, that is used by most if not all of the deep policy gradient algo-

rithms, is the target function for both the policy and the value function for improving

algorithmic stability during training. The target function is simply another function
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fθ′ whose parameters θ′ are related to the original function fθ parameters θ using the

exponential average update θ ← (1−α)θ+αθ′. Intuitively, we can understand why a

target function can crucially improve algorithmic stability by taking the policy func-

tion target, πθ′ that is used actively in the moving parts of the algorithm, e.g., taking

actions in the environment but only its counterpart πθ undergoes the policy gradient

update. This smoothes out the behavior of the acting policy πθ′ whose parameters

are only gradually moved towards the updated policy’s parameters. The same applies

to value functions whose predictions also undergo more smooth updates and improve

convergence properties of the algorithm.

TD3

TD3 [FHM18] is an improved version of DDPG that corrects for the overestimation

bias found in Qϕ due to SARSA type bootstrapping updates, a problem that is a

well-known property of temporal difference learning [Sut88] since the estimate of the

value function for a given state sj is updated using the value estimate of the next

state sj+1. To address this consistent overestimation propensity, TD3 uses two Q

different functions which form the supervised learning SARSA targets for either Q

function of the form,

yi = ri + γ min
i=1,2

Q
(i)
ϕ′ (sj, µθ′(sj) + ϵ). (2.59)

This idea coupled with delayed policy and value function updates – ensuring updates

happen only when the immediate accumulated error in the learning signal is small

enough – is shown to reduce the overall accumulation of temporal difference errors

due to the consistent overestimation bias of the value function.

PPO

PPO is not an actor-critic algorithm. It is also on-policy, implying that the current

policy can only be updated using replay experience of recent past policies so the

replay buffer is emptied after every few iterations and is typically smaller than for an

off-policy algorithm. PPO is a first order approximation to the Trust Region Policy

Optimization (TRPO) method [Sch+15]. Both methods sample the environment

using the policy equipped with some exploration strategy and then do the policy

improvement step by optimizing a surrogate objective function. The surrogate is

based on the idea of conservative policy iteration [KL02] which provides explicit
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lower bounds on the improvement of returns under some new policy πnew over some

old policy πold. This is encapsulated by the update,

πi+1 = argmax
π

[
η(πi) +

∑
s,a

ρπi
(s)π(a|s)Aπi

(s, a) + 2
Ωγ

(1− γ)2 max
s
DKL(πi, π)

]
(2.60)

with the advantage functionAπi
(s, a) = (Qπi

(s, a)− Vπi
(s)); Ω = maxsmaxa |Aπi

(s, a)|
and ρπ is the state visitation probability distribution of the policy π. TRPO effectively

converts the analytical update Eq. (2.60) into a practical second-order constrained

optimization problem, which we write in the unconstrained manner below,

θi+1 = argmax
θi

Ej

[
πθi(aj|sj)
πθold(aj |sj)

Aπold
(sj, aj)− βDKL(πold, πθi)

]
, (2.61)

for some constraining hyperparameter β. TRPO then uses a trust region method [BGN00]

to compute the Hessian of the KL-divergence with a backtracking line search [NY98]

to update the parameters of the policy. Note that in earlier methods, there is no

objective constraint on the policy that makes sure it does not vary wildly during

parameter updates for different episodes – an episode is one full RL loop shown in

Algorithm 1. TRPO improves upon this by using the KL-divergence constraint DKL

between the new πθi and old policy πold to make sure its variation is constrained

during each update.

The constrained optimization problem in Eq. (2.61) is unnecessarily complicated and

precludes noisy policy and value function architectures or parameter sharing between

value and policy functions. PPO simplifies this objective by proposing simpler clipped

variation bounds on the KL-divergence that can instead be used directly in the pa-

rameter updates of the policy. The first order approximation to Eq. (2.61) is given

by

θi+1 = argmax
θi

Ej

[
Aπold

(sj, aj)min

(
πθi(aj|sj)
πθold(aj|sj)

, clip

(
πθi(aj|sj)
πθold(aj|sj)

, 1± δ
))]

(2.62)

where the clip function truncates the values to stay within [1 − δ, 1 + δ] for some

δ ∈ [0, 1] which is the hyperparameter constraint on the KL-divergence of the new

and old policy.
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SAC

Soft Actor-Critic (SAC) is an off-policy actor-critic algorithm. It is designed to

address two issues with previous policy gradient algorithms: large sample com-

plexity and non-robustness to changes of various hyperparameters. SAC uses the

reparametrization trick to extend the deterministic policy gradient to a version that

can be used by the stochastic policy function πθ. SAC addresses the sample complex-

ity problem of RL algorithms by utilizing the maximum entropy RL framework where

the behavior policy aims to optimize the returns while maximizing the entropy of its

actions. The latter is done due to the observation [Haa+18; Zie+08] that adding an

entropy maximizing term for the policy π(aj | sj) to the optimization objective en-

courages exploration of the state space S, improves the learning rate of the agent, and

reduces the relative number of samples that are needed, compared to other standard

RL algorithms. In other words, the behavior policy tries to attain optimal behavior

by acting as randomly as possible. The maximum entropy objective for N steps is

J(π) =
N∑
j=0

γjEEπ(sj ,rj) [rj + αJ1(sj)] (2.63)

where Eπ(sj, rj) represents the environment’s state-action probability distribution in-

duced by the policy π, α is an optimizable temperature parameter (signifying the

importance of exploration in the objective), and J1(sj) is the entropy of the policy

function π(·| sj) conditional on the kth state sj,

J1(sj) = −Eπ(x| sj) [log(π(x| sj))] . (2.64)

The state-action value function also becomes modified to predict the new entropy

augmented discounted rewards:

Qϕ(sj, aj) = E(sj ,aj)∼Eπ

[
∞∑
j=0

γj(r(sj, aj) + αJ1(sj))

]
(2.65)

with the trainable parameters ϕ. It is trained by having its predictions match the

estimated Q̂ values obtained for sampled replay experience data from D obtained

from a b-length rollout (number of interactions) with the environment E . The actor

is trained by minimizing the loss function

J ′(πθ) = EEπθ (sj ,aj) [α log πθ(aj | sj)−Qϕ(sj, aj)] , (2.66)
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which is equivalent to maximizing J in Eq. (2.63). Finally, the temperature parameter

α is also automatically updated by maximizing the following objective function:

J(α) = Eπ(aj | sj) [−α log π(aj | sj)− αJ1(sj)] . (2.67)

Again, all the trainable parameters are updated using an exponential moving average

w.r.t. target counterparts that partipate in the active part of the algorithm.

Model-based RL

So far, the RL methods that we have described are all model-free, i.e., they do not

involve the incorporation of any premeditation or planning components on the behalf

of the agent. Planning in RL refers to the idea of a model of the environment E that

the agent can use to make predictions of the environment in response to any potential

actions it might take, including the rewards incurred by taking them. In classical RL

literature [SB18a], models for stochastic noisy MDPs are mostly statistical and allow

augmented search (w.r.t. model-free RL) through the state-action space as opposed

to searching through some plan or function space of models. The latter is often

ignored due to their abstract or non-general nature. However, both approaches need

not be treated separately. Indeed, in Chapter 6, we show how both approaches can

be combined in the QOC setting.

State space model-based reinforcement learning is centrally based around the idea of

learning the environment E using collected experience D in the form of MDP transi-

tions – in addition to learning the value and policy functions that can be done using

the same methods described earlier. The motivation is that the number of environ-

mental interactions or sample complexity to solve the policy optimization problem

Eq. (2.51) can be significantly reduced by planning. The procedure is completely sta-

tistical. The model that we learn is assumed to be Markovian like the environment fol-

lowing the MDP definition. We denote the estimator of the the environmental Markov

transition model P as a non-parametric function given byMζζζ(sk+1 | sk, ak) ≡ Êζζζ . This
estimated model Mζζζ can generate probabilities of state outcomes conditional on an

initial state and action in order to generate a single sample of the next state.

The description below is kept general to discuss the fundamental issues and advan-

tages of model-based RL.

One of the earliest methods that captures the heart of the statistical model-based

RL strategy is Dyna [Sut91]. Dyna samples a state sk randomly from the collected

48



2.2. CONTROL METHODS

experience D of the policy after some exploration. It then takes any number of

MDP step using the learned model Mζζζ(sk+1 | sk, ak) and generates model data DMζζζ

that is used to train the policy πθ. The model is estimated by using supervised

learning by function fitting state transitions and/or rewards if a continuous function

approximator is used. Instead, in the olden days, just a lookup table also works that

caches the transitions sj, aj → sj+1, rj, which can then be used instead of querying

the environment if the same sj, aj pair is encountered.

There are two further meta-strategies when it comes to learning the model based

on the question of whether it is better to learn a better model now or optimize

the current policy using environment data: (1) Backwards : Bellman updates of the

value function using simulated experience DMζζζ
where the policy just explores the

environment with the original model-free goal; (2) Forwards : decision-time planning,

e.g., Monte-Carlo Tree Search (MCTS) [SB18a], where selective exploration of the

environment is additonally taken by a planning policy in order to improve the existing

model through the construction and traversal of a simulation experience tree. This

is in addition to the behavior or rollout policy that interacts with the environment

after a state not in the model tree is encountered.

Dyna takes the first approach. Experience of the policy collected with the original

model-free goal is used to train the model. And some M times for every step taken

by πθ in the real environment E , the policy also simulates its experience using the

model. These model interactions are also added to the total experience D that is

used to train the policy.

The biggest problem with model-based RL is that the faithfulness and quality of the

learned model degrades as the simulated experience DMζζζ
generated by it is fed into

the value and policy updates during policy iteration. Model-based RL methods might

be unable to capture a faithful prescription of all environments and thus produce sub-

optimal policies. This can become difficult to diagnose if a strong universal function

approximator is used. The central issue one faces when using function approximators

as opposed to tables for the model is overfitting during the data-limiting stage and

underfitting in the data-abundance stage.

Steps towards addressing this problem were made by Ref. [Chu+18] who propose

bootstrapping multiple models {Mζζζ
(i)(sk+1 | sk, ak)}Bi=1 and keeping track of epis-

temic (systematic bias) and aleatoric (stochasticity) uncertainties using Var
(
EP̂(Mζζζ)

)
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and EP̂(Mζζζ)

[
Var

(
Mζζζ

(i)
)]

. This approach is further refined using ensembling meth-

ods [Buc+18]. Furthermore, Ref. [Jan+19] goes even further by proposing a novel

model-based augmentation of SAC called model-based policy optimization (MBPO).

It uses PAC (Probably Approximately Correct) generalization bounds on the model

and an error bound on the policy’s distributional shift during training to propose

a generalized k-step Dyna method incorporating the above probabilistic approach

in the model construction to make sure the model remains quantifiably faithful to

the environment and the quality of the sample it generates are adequate for policy

optimization. This approach improves sample complexity compared to past model-

based and model-free methods, e.g., PPO [Sch+17; Kha+21; Kha+23b], for certain

benchmark problems.

In Chapter 6, we present a modification of MBPO to address the sample complexity

problem faced by RL algorithms when specifically solving the QOC problem.

Another problem with model-based RL is the planning resource allocation problem:

How much of the policy’s exploration budget should be dedicated purely to improve

the model? Again, the quantity of interest that needs to be minimized in this case

is the model uncertainty and it is theoretically possible to do so optimally using

Bayesian adaptive exploration [Duf02; GSD12]. Moreover, the price paid by such

methods is that the decision making has high computational complexity and cannot

scale to high-dimensional settings.

Model-based RL also has poorer asymptotic performance than model-free RL in the

setting where the model is learned from scratch [Moe+23]. This problem can be ad-

dressed by incorporating a known model or partially known model which, in contrast,

gives model-based RL the asymptotic upper hand. The issue stems from the problem

of learned model uncertainty which can only be addressed by consuming more sam-

ples from the real environment. Ideally, combining the model-based approach with a

partial model and model-free RL can yield the best of both approaches. Indeed, we

explore and develop this idea in Chapter 6.

Applications

We now highlight some applications of RL algorithms for quantum control problems.
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model-free RL

E(sk, ak)
environment

learn from samples {sk, sk+1, ak, rk}

interact (evolve MDP)
generates data for DE

b-step model rollout
generates data for DMζζζ

algorithm

πθ(ak | sk)
Qϕ(sk, ak)

Mζζζ(sk, ak)
model

Figure 2.1: A schematic of model-based RL. The arrow-head implies direction of affect
of the edge between a source and sink node. The agent or policy function πθ interacts
with the RL environment modelled as an MDP to collect data {sk, sk+1, ak, rk}. This
encompasses model-free RL. The data is then used to train the modelMζζζ(sk, ak). The
model is trained until some quality measure like the validation prediction error on
some untrained-upon data from the environment plateaus indicating that the training
is complete. Then, it is used to generate synthetic data through a b-step rollout in
which the policy interacts with the model b times. The policy parameters θ (and
the state-action value function parameters ϕ) are optimised using the real and model
generated data.

Optimal Control with partial or no observations

Optimal control with partial observability in the absence of an accurate model is a

regime that is particularly challenging for the dominant model-based, open-loop con-

trol approaches. The control problem in this setting is addressed by: (1) dual control

theory initiated by Feldbaum in the 1960s [Fel60], where the idea is to balance control-

ling the system with learning its dynamics; (2) and RL for optimal control [Ber19].

(2) is the modern interpretation of (1). As mentioned in Chapter 1, in both interpre-

tations, the control problem is reduced to approximate dynamic programming that is

solved using Bellman’s principle of optimality [Bel52]. We focus on the latter in this

thesis since (1) is a lot more theoretical/constrained and is well-studied for specific

classical control problems whereas (2) is more generic and data-driven.
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The motivation for RL is to find adaptive model-agnostic ways of performing opti-

mization to solve quantum control problems. These methods, in principle, promise to

have less overhead compared with functional variation or Pontyragin-variation-based

methods for optimal control which use an analytical model and have been the focus of

over half a century of fruitful contribution to quantum control, including algorithms

such as GRAPE [Kha+05b] and Krotov [RNK12] that utilise gradient-based opti-

misation of a model-based target functional. Limited knowledge about the system

and control Hamiltonians, and interactions with the environment, however, have a

strong effect on the performance of such controls. Sampling over uncertain parameters

combined with gradient-based optimisation can find robust controls [Don+13].

RL methods are either model-based or model-free, but all methods can in principle be

fully model-agnostic. Model-based methods involve creation of a model from scratch,

whereas model-free methods skip this step. RL aims to tackle and optimize the trade-

off between exploitation and exploration that is the hallmark of dual control. Prior

work demonstrated the usefulness of deep RL for quantum optimal control [Che+13]

in its application to synthesis of transmon gates [Dal+20a], coherent transport by

adiabatic passage through semi-conductor quantum dots [Por+19], and robust two-

qubit gmon gate synthesis [Niu+19a]. We show in Chapter 4 that policy gradient

RL can successfully solve state preparation QOC problems that are formulated using

an MDP with no state observations and noisy reward signals where gradient-based

methods fail or consume too many samples.

Towards sample efficient Model-free RL

Recently, Ref. [Siv+22a] proposes making the single call to the control objective func-

tion binary for an RL circuit optimization problem of Fock state preparation. The

idea is that, under expectation w.r.t. control actions, the full RL reward objective is

the true value of the control objective function. This is shown to significantly reduce

the sample complexity for the state preparation problem but could be potentially

restrictive if the objective function cannot be binarized. Moreover, unlike the spirit

of Ref. [Wit+21], knowledge of the physical system in the form of a partially correct

model is not leveraged and the RL algorithm solves the optimization problem com-

pletely from scratch without the help of this prior knowledge. Instead, in this thesis,

in Chapter 6, we approach the RL sample complexity problem from this conventional

angle by assuming some partial knowledge about the controllable system where we

learn a more succinct description (as far as control is concerned). In other words, an
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algorithm that lies in between completely model-free RL and complete model-based

methods is provided.

2.2.2.5 Model learning for control

One way of reducing sample complexity or the number of interactions with the con-

trollable system in the control problem is to learn an effective model. Ref. [Wit+21]

proposes an open-loop differentiable optimization model with model-free calibration

to leverage both the physics knowledge in the form of a model and the robustness

against noise afforded by being model-free and then updating the model using new

data generated by applying the changes. This is motivated by the inherent limitation

of pure model based methods in settings where the model is wrong. In Chapter 6,

we introduce a similar approach with respect to model learning using automatic dif-

ferentiation [Pas+19] for time-independent Hamiltonian characterization. However,

we learn the complete structure of the system Hamiltonian H0 instead of scalar co-

efficients parametrizing fixed physical terms in the Hamiltonian. We also perform a

more standard control protocol using complete measurements while their approach

uses randomized benchmarking [Kel+14b] that is discussed in Sec. 3.3.

Moreover, gradient-based (automatic differentiation) optimization can be used close

to an optimum. In the same spirit, Ref. [Gol+22] proposes a lean model predictive

control method using the idea of quantum trajectory optimization using sequential

quadratic programming to alleviate the sample complexity problem. This requires a

collection of reference quantum states and controls to be attained sequentially which

might be problematic in practice if there are too many imposing constraints14 but the

idea is related to classical safe adaptive switching control, where under the overarching

goal of stabilizing a plant, one switches off the current controller after acquiring

experimental evidence that suggests that desired stability or performance objectives

are not being met [SS08]. The relation is in the assumption of feasibility of the next

switching controller.

The latter approach does, however, lead to nice bounds on the stability of the con-

trol scheme. This idea is taken further in Ref. [Pro+22; HJM19], who propose an

efficient solver that optimizes over states and controls while constraining the trajec-

tories to conform to the dynamical evolution equation and various other physical

14This is a choice and there can equally be as few constraints as desired, coinciding with
a base case where there is only an initial and final time constraint on the control problem.
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constraints by projecting the intermediate solutions back on the constraint manifold.

Moreover, inspired by model-free RL, GRAPE with measurement feedback [PPM22]

allows robust state preparation for the Jaynes-Cummings model with the gradient

signal comprised of an ensemble of POVM measurements.

2.3 Summary

In this chapter we have introduced problem of quantum control and the various ap-

plications enabled by it in the realm of computation, communication, simulation and

metrology. We then presented a glimpse of the range of QOC and RQOC methods

used for solving variations of the quantum control problem. We classified these into

two broad categories: model-based methods that rely on a theoretical model of the

controllable system and model-free methods that do not. For model-based methods,

at one end, we have analytical methods such as STIRAP [Kuk+89] and dynamical de-

coupling [VKL99] that do not require any numerical treatment and intuitively provide

the control pulse shape that can be directly translated in an experimental setting.

The strength of these techniques is also their weakness, i.e., they are designed to be

specific and address only a particular type of control problem: state-transfer in the

former and decoherence protection in the latter. Yet, the strong physical motivation

behind the construction of these techniques makes their application comparatively

robust, at least in principle, in current NISQ devices in contrast to the other methods

[Vit+17; Pog+21; Pez+18]. However, as we noted earlier, not all RQOC and QOC

problems can be attacked using these methods which require a lot of physical insight

and manual effort to glean and it is still an open problem of how the strengths of

intuitive approaches can be imparted to the rest of the control methods that we have

discussed.

Moving the arrow of governing the creation of the control methods towards more

automation, we introduced gradient-based methods that manipulate some parameters

of the theoretical model using gradient descent on some optimizable figure-of-merit.

This can either be done by manually deriving the derivatives, using the adjoint method

or auto-differentiation. The central benefit of this strategy is that the automation is

fairly easy to generalize to many RQOC and QOC problems without any dependence

on the underlying specificities of the controllable system as opposed to analytical

methods. Again, the drawback is the fact that these methods are only as scalable as

what classical computation allows and quantum systems of larger Hilbert space sizes
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remain intractable without further reductions on the modelling requirements asked

of the classical machines that are effectively required to simulate quantum dynamics

before they can be numerically solved.

An important problem with model-based control methods is their unflinching reliance

on the theoretical model. As mentioned in the introductory chapter, current quan-

tum devices are expected to be primitive and fraught with noise of various forms that

translates into palpable uncertainties in the theoretical model. Some popular noise

effects that mess with the model’s predictive dynamics include cross-talk [Kra+19],

e.g., the unintended excitation of neighbouring particles during the excitation of the

intended particle via a laser. Loss of the model’s efficacy when deployed on exper-

imental NISQ devices leads the QOC practitioner to consider model-free methods.

We covered methods including simple heuristic gradient descent using Nelder-Mead

or Bayesian optimization or reinforcement learning (RL). The price the practitioner

must now be willing to pay is generally further compute efficiency relative to model-

based methods and, in particular, analytical methods that, otherwise, have stability

or rough convergence guarantees. Typically, these extra costs are consumed in the

ab initio construction of a learned model of the controllable system’s behavior that

is then leveraged by the control algorithm via standard optimization methods. The

model of the system can also just be directly learned first with the control effort only

applied after a suitable model has been found [Gol+22].

Yet the issue of obtaining the sample complexity efficiency of model-based methods

from model-free methods is open especially in the regime where the theoretical model

is only partially wrong – that is not unrealistic given the deliberate efforts of physicists

to create experimental systems in the likeness of predetermined theoretical models.

and also conversely, create effective models that describe a given physical system well.

Furthermore, many of the RL formulations of quantum control problems assume

unrealistically that the entire quantum state is available to the agent which is a

prohibitive assumption due to the associated tomographic costs that are exponential

in system size. This thesis addresses both problems. Firstly, towards a realistic

MDP formulation, by modelling the QOC problem as a partially observed MDP, a

scalable (in system size) method of performing RL control is presented in Chapter 4

that requires no access to quantum observables other than those required to compute

an optimizable figure-of-merit, thereby circumventing the need to make expensive

quantum measurements. Secondly, towards better sample complexity, by proposing

a novel model-based actor-critic RL algorithm in Chapter 6 that incorporate partial
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knowledge of the controllable system in a learned model of the system whose other

parameters are updated using experimental data, we move a step closer towards

bridging the gap between model-free and model-based QOC methods.
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Chapter 3

Robustness certification methods

In this chapter, we review methods for assessing the general nature of optimal control

schemes obtained for the control problems discussed in Sec. 2.1.2. We highlight

techniques that can be used to quantify the performance of these schemes in scenarios

outside the specific objective function settings in which they are found – in particular,

with regards to performance under noise or perturbations from various sources in the

physical environments in which these schemes are deployed which we dub robustness.

Quantifying the robustness of a control solution to uncertainties in the physical con-

trollable system is important when the system is noisy as this allows for an avenue for

us to be able to gauge the performance of a control scheme reliably. The usual figure-

of-merit that is used in quantum control is the fidelity of the control scheme that

gauges performance w.r.t. a theoretical model. But, as this thesis is concerned with

controlling quantum systems that are noisy, fidelity alone is no longer a sufficient

measure of performance. Towards that end, we develop a measure of performance

in Chapter 5 that incorporates the stochasticity of the controllable system in the

figure-of-merit of a control scheme. This chapter covers the ideas that are building

material for these robustness measures. At its heart, the goal is to generalize the

fidelity in the direction of robustness so that it can be a more faithful figure-of-merit

for performance of a control scheme in a noisy quantum system.

3.1 Control landscape topography

In this section, we introduce some methods to roughly visualize the manifold of op-

timal quantum control solutions. This allows us to characterize quantum controllers

57



3.1. CONTROL LANDSCAPE TOPOGRAPHY

based on where they lie on this manifold and further motivate the principle of ex-

ploring the local region around the solutions to understand the effect of parameter

variations on the optimiality of the solutions, i.e., robustness. In Chapter 5, we use

the concept of local fuzzy balls Bσ with radius σ around the solutions as regions

of interest within which a robustness measure can quantify noisy performance of a

quantum system.

From Sec. 2.1.2, the general form of the quantum control problem formulated as an

optimization problem can be abstracted as the problem of maximizing some gen-

eral fidelity cost functional F [·] w.r.t. control functions u(t). Consider the abstract

unconstrained optimization problem,

Fopt = max
u(t)
F [u(t)] (3.1)

where F(u(t)) represents the map from the space of control functions to the space of

real-valued costs or fidelities. This is called the control landscape and its topography

has been studied extensively, both numerically and theoretically [RHR05]. The con-

trol landscape can be used to establish conditions for existence of optimal schemes

and the complexity of finding them which also allows for the concretization of effort

needed by optimization algorithms used to find these schemes. Moreover, analysis

of the control landscape can be decoupled from the specificities of the underlying

generating Hamiltonians [RHR05], under certain ideal assumptions, which allows for

the results to be more broadly generalized across various quantum control settings.

The necessary condition for an extremum (minimum or maximum) is given by the

first-order functional derivative of F [·] w.r.t. to the control function. The manifold

M including these extrema is given by,

M =

{
u(t) | δF [u(t)]

δu(t)
= 0,∀t ∈ [0, T ]

}
. (3.2)

The topology of the control landscape has interesting implications for the nature of

optima: whether they are sub-optimal traps or not and if they are smooth in their

vicinity, i.e., robust w.r.t. small changes in u.

Controls or ‘points’ that lie on the critical manifold M can be sub-optimal or local

optima in the sense that a point u′(t) can yield a fidelity F [u′(t)] ⩽ Fopt. Suffi-

cient conditions of optimality can be determined by examining the eigenvalues of the

Hessian

H(t, t′) = δ2F
δu(t)δu(t′)

. (3.3)
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Trap-free Many traps

Few attractors Many attractors

Smooth Rugged

Figure 3.1: (from [DMS22]) Polar ends of different types of expected optima for a
generic quantum control problem. The height represents F and the planar dimensions
are two axes representing components of u. The characteristics considered are: top:
existence of less vs. many optima; middle: robust/smooth vs. non-robust/rugged;
bottom: few vs. many traps.
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For the unconstrained optimization objective considered in Eq. (3.1), if all the eigen-

values of H are positive, i.e., it is positive-definite, then u is a local minimum. Con-

versely, if H is negative-definite, then u is a local maximum. If H is indefinite, then

u is a saddle-point.

If the controls are constrained or the system has an insufficient number of control

parameters, then the minima or maxima can correspond to local minima or maxima

that not optimal (including saddle-points) which in some cases are also called traps

since a gradient-based optimization algorithm with constrained resources will likely

terminate at this point and will not keep searching for the optimal extremum [MR12;

DS13]. Reducing the controllability1 of the system or increasing the constraints on

the control parameters, leads to the reduction in the size of the critical manifold

with optima until it is disconnected or isolated and finally completely disappears

leading to only traps or saddle-points as the terminating points found by optimization

algorithms. The fact that multiple optimal control solutions exist is important to bear

in mind, since this allows for the selection of secondary characteristics within these

control solutions – in particular we can select for optima that are robust to variation

in the control parameters [Bel+11] and other external sources of variation in the

optimization objective.

An illustration of some example types of extrema is presented in Figure 3.1 along three

characteristic axes: abundance/paucity of optima; abundance/paucity of traps and

smoothness/ruggedness of the landscape surface. The numerical trace approximation

of the Hessian in Eq. (3.3) has been used to diagnose the smoothness of the numerical

control landscape for many-body spin chains [DMS22]: a lower value implies a slower

rate of change of the gradient of F which implies that the landscape does not vary

w.r.t. the control parameters u [Rab+06]. Ideally, for robustness w.r.t. control

parameter variation, it is desirable that for a large variation in the controls u + δu,

we maintain a fidelity close to the optimum: F(u+ δu) ≈ F(u) ≈ Fopt.

3.2 Measures from classical robust control theory

Classical control theory has been around for much longer than quantum control the-

ory. The shift to classical robust control began in the 1960s [Saf12] when the inad-

equacy of optimal control was perceived and stability in optimality, i.e., robustness,

1A system is controllable iff there exists a dynamical trajectory induced by some u(t)
between any two possible initial and final states of the quantum system.
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was sought. Here, we introduce some ideas of robust control that are particularly

interesting from a quantum control point of view but are unable to be directly trans-

ferable to the quantum regime. This is chiefly because the classical setting is more

concerned with asymptotic stability w.r.t. time whereas quantum control is limited

by the coherence time of the controllable system. Nevertheless, in this thesis, where

possible, we try to connect with the classical robust control literature to ensure that

RQOC benefits from the strong rigorous tradition and results discovered in its classi-

cal counterpart’s backyard. In particular, we connect the novel quantum robustness

measure developed in Chapter 5 with classical ideas of robustness.

In a nutshell, classical robust control is mainly concerned with ensuring that the dy-

namical output signal of a controllable system, called the plant, matches that of some

desired signal, called the reference, using a controller to guide the minimimzation

of the error signal between the output w.r.t. the reference by varying some param-

eters of the plant. There are usually some sources of noise in various steps of the

control procedure, e.g., output noise and controller noise. There are essentially two

paradigms of control: open and closed loop. The main distinction between the two is

that in the open loop case, the controller does not have access to a real-time feedback

signal of the error from the plant and needs to construct the entire control signal

that minimizes the error a priori. Usually, this error minimization is done using a

theoretical model of the plant’s behavior. For the closed-loop case, the error signal

minimization occurs in a feedback loop where the controller proposes some changes

in the plant’s input parameters and then is allowed to access the new error signal in

real-time. Feedback is unnecessary if the theoretical model is correct [ZD98]. The

main goal of classical robust control is the analysis and synthesis of controllers that

can ensure that the plant behaves optimally and that the controller is stable under the

presence of model uncertainties, disturbances and sources of admissible noise [ZD98].

Interestingly, most robustness certification tools in classical control have been devel-

oped for simplified linear time-invariant (LTI) systems2 that are feedback controlled

in a closed-loop. Although there has been work done to extend these ideas to more

realistic settings [Dor87], e.g., those involving aircraft/structure vibration control

[CS91], translating these tools, generally, to quantum control settings is still an open

2Linearity implies that the system output f(x, t) is linear w.r.t. the input x i.e. if
x −→ ax′+ bx′′, then f(x, t) = af(x′, t)+ bf(x′′, t). Time-invariance is likewise a property of
the system output being unaffected by time translations, i.e., f(x, t− T ) = f(x, t) for some
time shift T
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problem [Wei+22]. This is chiefly because quantum control is most likely to be for-

mulated as an open-loop problem with a bilinear system since among other feedback

sources [SJL18], general measurement of the quantum system disturbs its underlying

dynamics.

Moreover, as opposed to steady-state or asymptotic (long-time) behavior, quantum

control is generally more interested in transient dynamics of the system due to its

finite coherence times where the system’s quantumness is still operational [DP10a].

The unitary dynamics cannot be stable and so robustness in the classical sense (in the

frequency domain) is hard to define; decoherence to a steady state makes it stable,

but not quantum.

Nonetheless, specific quantum control problems can be recast in the LTI formalism

and can facilitate the application, with some modification, of classical measures of

robustness that can be used to quantify the performance of the controller w.r.t. system

uncertainties [DP10a]. In short, for the time-independent quantum control setting,

the density matrix ρ can be recast as a real vector r using the Bloch formalism

[RBR16]. Likewise, the dynamical generator (for open or closed systems) can be

represented as a superoperator matrix A in the Pauli basis {σk} as follows,

rk(t) = Tr(ρ(t)σk) (3.4a)

Akℓ = Tr

(
i

ℏ
H[σk, σℓ]

)
(3.4b)

with the system following the dynamics of the form

dr

dt
= Ar(t). (3.5)

Using this formalism, the structured singular value µ [Doy82] has been applied to

the problem of entanglement creation between two coupled qubits in a lossy cav-

ity [Sch+22b]. Here the controller’s goal is the stabilization of an entangled two-

qubit steady-state. A stability margin, G w.r.t. structured perturbations δkSk to

A [Wei+22] is given by,

G =

∣∣∣∣max
λn ̸=0

[λn(A+ δkSk)]

∣∣∣∣ (3.6)

where λn(X) is the eigenvalue of X where δk is a noise scale parameter. G quantifies

the region of stability of the system w.r.t. Sk. This is inspired by the classical stabil-

ity margin which essentially involves the idea of upper/lower bounding the domain

of uncertainties within which the plant is stable under some controller. Strong the-

oretical statements, e.g., bounds, such as those imposed by the small-gain theorem
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[Zam63] can be made about the domain of stability of the plant w.r.t. uncertainties

using µ by exploiting the LTI assumptions to make the mathematics tractable.

Another classical feedback-control robustness measure in the LTI picture is the log-

sensitivity, the dimensionless differential sensitivity of the plant’s output w.r.t. un-

certainties3 [DB11]. For the entanglement generation problem as before as well as

the time-independent state-transfer problem, the log-sensitivity s can be defined in

terms of the infidelity error e = 1−F as follows:

s(Sk, T ) =
1

e(T )

∂e(T ;Sk, δ)

∂δ

∣∣∣∣
δ=0

(3.7)

where T is the final time and δ ∈ [0, 1] is a noise scale parameter. This is a measure of

the sensitivity of the system’s performance to perturbations Sk and is ideally small for

robust controllers but it also diverges when e(T )→ 0 [ONe+22a]. The log-sensitivity

or the stability margin versus the steady-state entanglement measure called concur-

rence exhibit a trade-off due to decoherence [Sch+22b] wherein low entanglement

implies higher stability and vice versa. This is expected in classical control where

performance trades off with stability [DB11; SLH81].

3.3 Randomized benchmarking

Measuring the performance of a control scheme in the presence of uncertainties in the

controllable system can be reformulated to the problem of performance under some

randomization of the system’s parameters due to noise. We utilize this idea to quantify

performance or robustness of the control scheme on a noisy system whose model is

uncertain in Chapter 5. However, this idea is not new and is well-captured by the

technique of randomized benchmarking that is popular in the quantum technologies

community as a measure of quantum circuit performance.

Randomized benchmarking [EAŻ05; MGE11; Kni+08] can be used to characterize the

noise or error per gate in a quantum circuit in a manner that is robust to state prepa-

ration and measurement errors and robust to the contextual position of the gate in

the circuit and only polynomial in the size of the gate with costs scaling as O(poly(n))
for an n-qubit gate. It is a scalable stochastic way to estimate the operational error of

a set of quantum gates as opposed to more demanding tomographic procedures that

scale exponentially in n. It works by applying a number of randomized sequences

3for a plant P and the uncertain parameter S, the log sensitivity is ∂P/P
∂S/S
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of Clifford gates4 and then modelling the resulting average fidelity obtained over the

sequence as a depolarizing noise that can be fit with an exponential decay model. If

the gates are perfect, these randomized circuits effectively do nothing. Otherwise, in

the presence of imperfections, there is an exponential decay of the sequence fidelity

with the length or depth of the circuit. We provide a brief overview of the protocol

in Ref. [MGE11] and discuss some applications to QOC.

Randomized benchmarking consists of the following steps:

1. Create a sequence ofm operations chosen uniformly at random from the Clifford

group ⃝m
j=1Cij . Then choose the final operation from the Clifford group that

cancels this sequence of operations such that Cim+1 ◦⃝m
j=1Cij = 1. Assume the

noise in the each Clifford operation is represented by Λij that independently

depends on the timestep j and that the noise correlation timescale is smaller

than the Clifford gate action timescale. The entire randomized gate sequence

is given by,

Sim =⃝m+1
j=1 Λij ◦ Cij (3.8)

where we represent the i-th Clifford gate sequence by the tuple im = (i1, . . . , im).

2. For each Clifford gate sequence im, compute the survival probability given by

the observable Tr [ESim (ρ)] where E is the noisy measurement observable and

ρ is the initial state and ideally E = ρ.

3. Now average over the different im sequences to obtain the sequence fidelity,

Fseq(m) =
1

|{im}|

|{im}|∑
im

Tr [ESim(ρ)] . (3.9)

4. Finally, fit the sequence fidelity to a noise model such as the following,

Fseq(m) = Apm +B + C(m− 1)(q − p2)pm−2 (3.10)

where A,B,C absorb the state preparation and measurement errors, and the

final term involving q − p2 absorbs some weak gate dependence in the noise.

4elements of the Clifford group that map tensored Pauli operators to tensored Pauli
operators with the generators: Hadamard, S and the CNOT [Got97]
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5. Obtain the average error rate given by r = 1 − p − (1 − p)/2n. Note that the

r is also the average gate infidelity given by r = 1 −
∫
dρTr[ρΛ(ρ)] where Λ

encapsulates the noise. The action of the Clifford group essentially converts any

noise into a depolarizing map such that Λ(ρ) = pρ+(1−p)/2n1 and taking the

trace recovers the average error rate stated earlier.

Randomized benchmarking is one of the most commonly used methods for exper-

imentally characterizing gate noise [Xia+15; Bar+14; Che+16] for one-qubit and

two-qubit Clifford gates and/or circuits. However, the correspondence between r and

the average gate infidelity diverges when the errors in the gates are not small and

gate dependent, differing sometimes by orders of magnitude [Pro+17], since the worst

case error bound, independent of noise information, scales as the square root of the

average gate infidelity [WF14]. Randomized benchmarking has been used alongside

QOC in experimental settings to cheaply and quickly infer and thereby reduce one-

and two-qubit gate infidelities, circuit fidelities and gate-bleedthrough – where error

in previous gates propagates to many subsequent operations – in a five-qubit super-

conducting transmon [Kel+14c]. The idea is to to map the randomized benchmarking

errors onto gate control pulse parameters that can be optimized using Nelder-Mead or

manually engineering pulses. A variant of this technique called purity benchmarking

[Wal+15] has also been used to distinguish coherent and incoherent errors in single-

qubit gates which are then, using QOC methods, reduced via hardware optimization

and optimal pulse preparation [Par+16]. Moreover, it has also been used for charac-

terising leakage error rates out of a two dimensional decoherence-free computational

subspace of QEC codes [WBE16].

3.4 Summary

In this chapter, we have introduced three distinct ideas for robustness certification

of quantum controllers. The characterization of optima on the control landscape

provides a visually appealing view of the problem of robustness (‘flat peaks’) that is

viewed through mathematical angles with classical robustness measures such as the

derivative of the fidelity error in the log-sensitivity or the concept of averaging Clifford

gates in the sequence fidelity for error rate extraction in quantum circuits. All these

views are essential in understanding performance and robustness of a quantum control

scheme in the presence of an imperfect model or a noisy controllable system. Yet, the

control landscape only offers a qualitative or analytical perspective on the robustness
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of an optimal control scheme without any direct or easy-to-optimize target to find

robust control solutions or a cheap target to evaluate solutions that have already been

found for their robustness to model uncertainties. Furthermore, classical robustness

measures are not easy to translate to quantum control due to the intrinsic mismatch

in the desired objectives in quantum and classical control: the former desires transient

robustness while the latter desires long-time stability. Lastly, it remains to extend

the averaging treatment in the sequence fidelity computation to assess individual gate

robustness independent of the circuit setting where a large composition of gates needs

to exist at the same time for the gate robustness to be quantified.

A contribution of this thesis is to address each of the shortcomings in the afore-

mentioned individual procedures by proposing a novel robustness infidelity measure

(RIM) for robustness certification in Chapter 5. Using theoretical foundations, we

argue that one instantiation of the RIM, the average infidelity, is a robustness mea-

sure. This measure captures both the typical fidelity or performance figure-of-merit

with a robustness figure-of-merit as one scalar value. Firstly, we quantify robustness

with the local structure of the control landscape (i.e., topographic differences in the

neighbourhood of optima) using a fuzzy ball centered at the optimal solution and by

sampling various points within the ball using Monte Carlo noise. The noise strength

scales with the radius of the ball. This yields a cheap numerical method to assess

robustness of quantum control solutions with the noise representing or being actual

physical uncertainty in the controllable system. Secondly, we connect the RIM with

the log-sensitivity and comment on the utility of the classical interpretation of the

measure which is again favourably viewed in a control landscape perspective. Finally,

our measure, while also based on the idea of randomization and averaging over the

noise terms like randomized benchmarking, is not limited to circuits. We extend the

protocol to the setting where performance of individual gates, state prepartion or any

other figure-of-merit for an RQOC task needs to be generalized, in the robustness

sense, in a simple way.
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Part II

Results and Discussion
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The second part of the thesis dives into detailed technical results and expands the

thesis contributions that were discussed in passing in the first part.
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Chapter 4

Benchmarking control algorithms
on spin chains

As mentioned in Chapter 1 and Chapter 2, although early-stage NISQ devices are

expected to be error-prone and limited in size, they could pave the way to revolution-

ize computation and simulation at a fundamental level. They have already proven to

be effective tools in physically simulating molecular networks [BDN12; GB17; Blo18].

Currently, one of the main challenges for NISQ devices is robustness to known and

unknown uncertainties. Towards that end, in this Chapter, we employ policy gradi-

ent RL algorithms that were covered in Chapter 2 to find robust quantum controls

with a fully model-agnostic approach using single shot measurements, which can be

collected experimentally. Moreover, another challenge faced when controlling NISQ

devices is that model-based control methods scale exponentially in classical com-

putational resources as the size of the quantum system increases. We show that

our approach is scalable and in that sense similar to variational quantum algorithm

(VQA) approaches [Per+14; Buk+18] where the main problem lies in the exploration

of a parameter space growing exponentially in the size of the system. Note that the

model-based simulation requirements of the controllable system are dropped in this

case.

We demonstrate that the RL agent constructs an effective ab initio model of the

noisy unknown controllable system while incorporating inherent stochasticity in the

representation of the system.

Instead of passing unitary operators or density matrices to the RL agent, as con-

sidered in previous work [Buk+18], we only give the agent access to experimentally

observed data and control parameters. This is in line with real world scenarios where
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RL may be deployed in an experimental setting with high levels of uncertainty, com-

monly seen in current setups. In Sec. 4.2.1, we provide a computational resource

comparison between policy-gradient-based RL algorithms and motivate our choice of

PPO (Proximal Policy Optimisation) as a representative on-policy RL algorithm for

quantum control purposes that is used later in Chapter 5. In Sec. 4.2.3, we com-

pare the cost of using PPO with that of L-BFGS in solving a spin transfer problem

with increasing noise and show that the latter’s cost increases considerably in con-

trast to its noise-free cost. This demonstrates the resilience of RL in finding optimal

controllers to measurement and Hamiltonian noise, where analytical methods break

down or consume too many resources. Even though analytical model optimization

has an advantage over RL when the model describes the physical system well, as no

exploration is required, increasing uncertainties in the model, however, require an RL

or exploratory approach. Moreover, although L-BFGS is more likely to find high-

fidelity controllers, preliminary robustness analysis in Sec. 4.2.4 for the controllers

found by RL and L-BFGS suggests that RL controllers may be more robust to noise

than those found by L-BFGS.

4.1 Preliminaries

4.1.1 Information Transfer in the Single Excitation
Subspace of XX Spin Chains

We consider a network of M spins represented by the quantum Heisenberg model

given by the Hamiltonian

Hheis

ℏ
=

∑
a∈{x,y,z}

N∑
j=1

Jaσa
j σ

a
j+1 + η

M∑
j=1

σz
j (4.1)

where σa
j = I⊗j−1 ⊗ σa ⊗ I⊗M−j and σa are the usual Pauli matrices. We set Jz = 0

and Jx = Jy = J for the XX model with uniform couplings. This model has been

studied extensively, starting with Ref. [LSM61] in 1961, and a more recent review

of the system, as it relates to quantum communication, is provided in Ref. [Bos07].

Conditions for perfect state transfer along XX chains were derived in Ref. [Chr+04]

and applied to NMR systems [Zha+05]. Similar experiments have been carried out

in photonic systems [BNT12; Per+13], and proposals for engineering similar systems

with trapped ions [GL14] and cold atoms [BMF21] exist.
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Figure 4.1: An illustration of a spin chain of length M = 5 prescribed by the HXX

Hamiltonian.

The state space naturally decomposes into non-interacting excitation subspaces as the

Hamiltonian commutes with the total excitation operator. Here we consider the first

excitation subspace, the smallest space that enables transfer of one bit of information

between the nodes in the network. Higher excitation subspaces may be needed for

other applications, but it is desirable for information transfer to limit oneself to the

smallest space that is sufficient to achieve the task. This is a much smaller space and

only grows as O(M2) as opposed to O(exp(2M)), which comes from the exponential

operator growth of the Hilbert space in the number of qubits M , which makes the

control problem computationally tractable for large M . The Hamiltonian of the first

excitation subspace is
(HXX)l,m

ℏ
= Jδl,m±1 +∆lδl,m (4.2)

where δl,m is the Kronecker delta. The static controls are local energy biases ∆l on

spin |l⟩ in a diagonal matrix H∆ = diag(∆1, . . . ,∆M). An example of a spin chain of

length M = 5 is shown in Fig. 4.1.

HXX allows for transfer of single bit excitations from an initial spin state |a⟩ to a

final state |b⟩.

Our control problem is of the static state preparation1 kind defined in Section 2.1.2.1.

We specifically consider transitions between one-hot encoding state vectors (canonical

Euclidean basis vectors), consistent with a single bit propagating through the network

by moving an excitation from one spin state to another. Recall that the solution to

Eq. (2.5) is a final time topt and a single vector of M biases ∆opt for the optimal

controls uopt. This is a static or time-independent version of the more general dynamic

control problem where the control function u(t) = ∆(t) is time-dependent.

The most common paradigm for quantum control is dynamic [Gla+15; DP10b]. The

implementation of time-dependent control functions typically requires the ability to

rapidly modulate or switch controllers implemented by physical fields (e.g., lasers or

1or more specifically state transfer
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magnetic fields). An alternative to dynamic control is time-invariant control, i.e.,

time-independent control parameters ∆n [LSJ15b]. This is analogous to shaping the

potential landscape to facilitate the flow of information from an initial state to the

target state. For example, information encoded in electron or nuclear spins in quan-

tum dots whose potential can be controlled by varying voltages applied to surface

control electrodes, creating a potential landscape. The static control problem has

fewer parameters, and so is in some sense simpler. Moreover, previous work has

found evidence concerning good robustness properties of the static controls [SJL17].

They may also be simpler to implement experimentally as we do not need to mod-

ulate control fields, or could be part of a more complex dynamic control scheme.

However, the optimisation landscape is challenging [LSJ15b], and there is no guaran-

tee that the controllers found are robust with respect to uncertainties in the system

and interactions with the environment.

The perturbations are given by,

(Sσ)l,m =
M−1∑
k=1

γJk Jδl,kδl,m±1 +
M∑
c=1

γCc ∆cδc,lδl,m (4.3)

where γJk and γCc are the strengths of the perturbation on the couplings and controls

respectively. We draw these strengths from the same normal distribution N (0, σ2)

with mean 0 and variance σ2. An example of a perturbation Sσsim
with varying noise

scale parameter σsim = 0, 0.03, 0.07 and its effect on the fidelity landscape Eq. (3.1)

for the end-to-end state transfer from for a spin chain with M = 3 is illustrated in

Fig. 4.2.

Depending on the hardware platform, it is possible to consider specific practically

motivated correlated noise models with correlated perturbations or a power law de-

caying electric-field noise (1/s), e.g., in trapped atomic platforms [Cet+20; Bro+15].

We have chosen to implement the simplest option of equal strength random pertur-

bations on all non-zero entries of the Hamiltonian that is also relevant in practical

settings [BMF21; BNT12; Per+13; GL14; Zha+05].

4.1.2 Existence of multiple control solutions

The quantum control problem is known to have multiple optimal control solutions

[BCR10]. This means that, in practice, one has the choice between multiple poten-

tial control solutions to pick for a given control problem and, for example, deploy
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Figure 4.2: An illustration of the effect of perturbations of varying noise strengths
on the fidelity. We use the Hamiltonian HXX in Eq. (4.2) for a spin chain of length
M = 3 with ∆1 = ∆3 with the state transition being end-to-end in the control
problem Eq. (2.5). We show the fidelty F landscape (z-axis) as a function of two
control parameter x,y-axes for ∆1,∆2. One unstructured Hamiltonian perturbation
(Eq. (4.3)) with the simulation noise strength parameter, given by σsim, is applied.
As σsim increases, the landscape is more disordered and smoother in regions where
the spikes of high fidelity are located. Consequently, the narrow high-fidelity peaks
are washed out and no longer effective optima.

only a subset of theoretically obtained solutions on a real physical system. The ex-

istence of extra control solutions also allows us to apply a selection criterion on the

multiple numerically obtained control solutions w.r.t. some other desirable attribute

such as small final times to make short optimal pulses or pulses that are robust to

uncertainties in the parameters of the physical system. It also means that there are

extra dimensions apart from numerical optimality that can and should be explored

to distinguish controllers. This is a direction that is explored throughout this thesis,

especially with regards to robustness.

We illustrate the redundancies in optimal controllers for two state spin transfer prob-

lems in Fig. 4.3. We collect 10, 000 optimal controllers using L-BFGS with different

random seeds and bin each scalar value of the biases ∆n separately in 200 discrete

intervals w.r.t. the numerical values of their magnitude. Each bin is also colored by

the average fidelity obtained by all controllers that fall within it. This highlights the

structure in the control values and notably the sparsity in the time values for which

optimal controls are found. Note that the bins do not preserve order of a single con-

trol parameter vector so this illustration which is an attempt to visualize the control

landscape in higher dimensions is still qualitative.
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(a) (b)

Figure 4.3: (a) Histograms of 10, 000 optimal control parameters {∆opt, topt} for
the end-to-end state transfer problem for a spin chain of length M = 4 (b) Similar
histogram for the end-to-middle state transfer problem for a spin chain of length
M = 5. The histogram bins are colored by the corresponding average fidelity value of
all the controllers that fall within an interval. The first M plots reflect the histogram
of values of the control biases ∆n and the final two plots show the histogram of final
times and the fidelity values obtained. The histograms show that there are multiple
optimal controllers for a given control problem. The sparsity of the time values for
which optimal controllers are found is also evident.

4.1.3 Formulating the model agnostic RL control paradigm

For the state transfer control problem Eq. (2.5), we define the model agnostic MDP

in the following manner. Firstly, we denote the discretization of the MDP in terms of

the iteration timestep2 k. The RL formulation of the control problem is as follows:

ak = {δ∆k−1, δtk−1}, (4.4a)

sk =
k∏

l=1

exp

(
− i
ℏ
∆tG(tl, ul)

)
, (4.4b)

rk = F(|ψk−1⟩ , |ψ∗⟩) (4.4c)

2that is not to be confused by the physical readout time parameter t
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where ak is the action, sk is the state and rk is the reward and δ denotes changes

to the previous respective values. Note particularly that ak is the change in the

control parameters changing sk by the given values and that tk−1 = T is the time

for which the Hamiltonian is evolved. The readout time tk−1 with the ∆k−1 are the

control parameters for π to change such that the reward is improved. Here tk−1 is

the physical readout time, a control parameter. Note that this means π is a control

landscape exploration strategy with the aim to find control parameters that achieve

the physical state transition from |ψ(t0)⟩ to |ψ∗⟩ that maximizes F(∆, T ). So the goal,

rather than the path to get there, is important, even if of course a shorter path makes

finding the goal more efficient. We construct an environment E that a differentiable

policy πθ can interact with to obtain (sk, ak, rk). The state vector satisfies sk = sk

mod slimit and we set the the limit slimit to be ±10 for ∆k−1 and 30 for tk−1 to

ensure that the control parameters are physical and realisable in experiments. A

reward threshold, e.g., 0.99, is set as a convergence criterion yielding a single solution

vector s∗k, effectively reducing the problem to optimal time-independent Hamiltonian

searching. The RL optimization procedure is run for some number of epochs until

the reward threshold is achieved. Each epoch consists of a fixed number of timesteps

of exploring the landscape from an initial random position. The policy parameters θ

and the Q function are updated via backpropagation every epoch.

The utility of the fact that RL assumes nothing about the analytical form of the

model should become apparent if the environment E is stochastic as that analyti-

cal form of the noise is unknown and is approximately learned – without a priori

structural assumptions – via interaction with the noisy system. To test this hypoth-

esis, we consider two noise models: (1) directly augmenting Hss with perturbations

of the form given by Eq. (4.3). This simulates noisy or tunably inaccurate physics,

e.g., due to leakage of spin couplings. (2) coarse-graining the fidelity rk to simulate

single-shot or inaccurate measurements by replacing it with r̃k ∼ Bin(M, rk), drawn

from a binomial distribution where M is the number of measurements made and rk,

the true fidelity, is the binomial probability and r̃k represents the average single shot

measurements to estimate the fidelity probabilities. In this thesis, the choice of the

noise models is motivated purely by generality and simplicity to study control in a

learning framework. In the absence of a concrete physical system, we assume all

parameters are equally uncertain. For both (1) and (2), correlated noise of a ran-

dom functional form that actually takes into account the physical characteristics of

the quantum architecture is also possible and is worth exploring in the context of
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a particular physical system. Dephasing and decoherence errors that are character-

istic of quantum processes are possible to explore under the Sudarshan-Lindbladian

evolution of the density matrix [BP+02] are considered in Chapter 6.

We only consider leakage within the nearest neighbour spins. Another possible source

of noise could be leakage to the next nearest neighbours due to cross-couplings between

spins in transmon systems or finite laser beam sizes in cold atom or ion systems. For

the purposes of this thesis, however, we neglect next-nearest neighbor coupling as it

is negligible or can typically be mitigated in practical systems. We have also made

the implementation of actions ak noisy by perturbing the diagonal of Hss, but we

could have also coarse-grained the actions to account for the finite resolution of the

magnetic or laser field that actually implements the controls in a real experiment.

Both are equivalent in terms of their final effect.

4.2 Benchmarking experiments

In this section, we attempt to quantify the sample complexity cost or environment

calls E of different RL algorithms in comparison with L-BFGS. We also conduct a

qualitative comparison of robustness of controllers found by RL and L-BFGS w.r.t.

Hamiltonian perturbations defined in Eq. (4.3) via a Monte Carlo Robustness Analysis

(MCRA). The scheme is outlined in Fig. 4.4. We collect C = 100 controllers with a

fidelity of at least 0.99 and consider 100 Monte Carlo perturbations per controller.

4.2.1 Cost of Reinforcement Learning Algorithms

We first analyse the cost of the policy gradient algorithms from Chapter 2. The costs

are expressed as the number of environment E calls, corresponding to estimating

the fidelity via single-shot measurements, for a run that successfully terminates at a

fidelity threshold. This links performance to experimental costs and makes different

algorithms comparable without resorting to timing or iteration counts.

We choose to study a noisy transition |0⟩ → |2⟩ for chains of length M = 3, . . . , 7.

We use 100 single-shot fidelity measurements to estimate the fidelity of a controller

and a Hamiltonian perturbation noise of σnoise = 0.05. The “perceived” fidelity is

the stochastically produced by the noisy environment, as observed from noisy mea-

surements. We compare it to the “true” fidelity of the controller without noise. A

perceived fidelity threshold of 0.99 is set as termination criterion. Fig. 4.5 shows the
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Figure 4.4: A general outline of the numerical experiment to collect C controllers and
conduct an MCRA to qualitatively evaluate comparative control algorithm robust-
ness.

median performance of DDPG, PPO and TD3 over 50 runs. In terms of environment

calls, DDPG performs significantly worse compared to PPO and TD3, but it is more

difficult to decide between the latter two.

TRPO and REINFORCE were excluded from the study as sufficient statistics could

not be obtained. Their behaviour was highly variable and inconsistent due to a lack

of successful termination which prevented further analysis. For REINFORCE, we

suspect that this was because of the absence of a replay buffer to sample a sufficient

variation of transitions and a value/Q function that maps actions to expected rewards

to ground policy parameter updates. Similarly, TRPO, while successful in achieving

fidelities > 0.99 on complicated transitions such as |0⟩ → |3⟩ for M = 7, was algo-

rithmically complex (e.g., the Hessian computation for the KL constraint) and took

much longer than the rest.

4.2.2 Robustness of Reinforcement Learning Controllers

The robustness of the controllers found by RL in Section 4.2.1 remains unclear and

serves as a further criterion to choose a suitable RL algorithm. We conduct a quali-

tative Monte Carlo robustness analysis (MCRA) using variable Hamiltonian pertur-

bation noise σnoise of the 50 controllers computed for each chain length for all three

algorithms. For each controller sk found, we perturb the Hamiltonian Hss using noise
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Figure 4.5: Top: Cost comparison between PPO, TD3 and DDPG for |0⟩ to |2⟩
for chains of length N = 3, . . . , 7 with 100 single shot measurements and σnoise =
0.05. The algorithms were run 50 times and the median E calls are plotted with the
interquartile range. A perceived fidelity threshold of 0.99 was set as the termination
criterion. Bottom plot shows true fidelities.

of the same triagonal form with mean 0 and the variance σ
(i)
noise = 0.1k/9, k = 0, . . . , 9.

We then evaluate the true fidelities F of the controller sk for each level of perturbation

without any additional noise. We repeat this ten times for all 50 controllers and com-

bine the results into a single fidelity distribution. We then compare the distributions

visually to ascertain the robustness of a respective control algorithm visually. This

allows us to judge the expected fidelity of the controllers found by the algorithm.

The distributions are represented non-parametrically as 1D box-plots as shown in

Fig. 4.6 for the spin transfer problem of |0⟩ to |2⟩ for chains of length 4 and 5. This

is a representatitve example with the other cases being similar. This figure highlights

that some fidelity distributions are heavy tailed with many outliers, meaning there is

significant variation of fidelity between some controllers under perturbation. DDPG

controllers, despite making more function calls, were the least robust when it came

to preserving the interquartile width of the performance distribution. For PPO vs.

TD3, there are cases where TD3 is better than PPO’s and vice versa. However,

PPO’s performance was more consistent compared with TD3’s. TD3, similar to

REINFORCE and TRPO, showed a high variation in successful termination, getting

stuck indefinitely at local minima for some problems, and there were gaps in the

collected statistics due to timeouts. So we were only able to collect statistics for
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Figure 4.6: Robustness analysis for PPO, TD3 and DDPG for |0⟩ to |2⟩ for the 50
controllers found in Section 4.2.1 for chains of length M = 4 (left) and 5 (right). Ten
levels of perturbation noise σnoise = 0, . . . , 0.1 are considered for each controller which
is evaluated ten times to yield 500 points per box-plotted fidelity distribution.

some M for some of the cases in Section 4.2.1 without rerunning multiple times.

On balance, we find that PPO performs most consistently compared to the other

RL algorithms for multiple repetitions for different spin transitions. Its algorithmic

performance therefore was more stable compared to the rest. In terms of the controller

performances, we found no significant difference between the algorithms.

Even though PPO is not conclusively better from these results, we chose PPO as the

single algorithm to represent the class of policy gradient RL algorithms for comparison

with other types of control algorithms in Chapter 5 and for the comparison with

gradient-based optimisation in the next section as we found: (1) it is faster for data

collection to get enough statistics from multiple training runs, and (2) it is sufficient

to empirically represent the class of policy gradient algorithms for our problem. TD3

and DDPG or any of the other RL algorithms might also be suitable with more

tuning for the study but were not pursued chiefly due to time constraints and their

comparative stability w.r.t. PPO was worse.

4.2.3 Cost of PPO vs. L-BFGS

A first step to compare PPO with gradient-based optimisation is to analyse the costs

in terms of number of E calls (see Section 4.2.1) under the noiseless dynamics of the

ideal model. For gradient-based optimisation, we use L-BFGS with restarts, which

performed well on the studied control problem in earlier work [LSJ15b].
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Figure 4.7: Comparision between L-BFGS, PPO and randomly guessing controllers
for |0⟩ to |2⟩ for chains of length N = 3 to N = 10 without noise. The algorithms
were run 50 times and the median E calls are plotted with the interquartile range. A
threshold of F = 0.99 is set for termination.

Fig. 4.7 shows how function calls scale with the length of the spin chain, M =

3, . . . , 10, for a transition |0⟩ to |2⟩ for PPO, L-BFGS and randomly guessing con-

trollers. The randomly guessed controllers are used to benchmark potential deviations

in the computational difficulty of the problem. We stop once a fidelity threshold of

0.99 is crossed. The spin chain transition is computationally similar for all M as

it depends largely on the relative distance between the spins, the control and time

constraints, which are kept constant for all the problems we study. There is an initial

jump from M = 3 after which all algorithms manifest a quite flat increase in the

number of function calls as the length of the chain increases. This is likely because

transitions in the three-chain are easier to achieve as simple Rabi oscillations which

are generally trap free, and due to the existence of analytical solutions for this case

which are absent for longer chains.

It is not surprising to observe that for an accurate model L-BFGS is mostly two

orders of magnitude better than PPO. PPO has to consume most of the calls to build

up an internal representation of the model before it can start optimizing. Adding

small stochastic noise to the Hamiltonian should degrade the performance of L-BFGS

considerably in terms of the number of function calls. To analyze this, we relax

the termination constraint on the fidelity to 0.98 and consider only perturbations

to Hss, during optimisation, without single shot measurement noise. Single-shot

measurement or perturbation noise renders L-BFGS incapable of estimating fidelities
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Figure 4.8: Number of E calls comparison between L-BFGS and PPO for |0⟩ to |2⟩
for a chain of length M = 4 as a function of Hamiltonian perturbation noise σnoise
with a termination fidelity threshold of 0.98. The algorithms were run 50 times and
median E calls are plotted with interquartile range.

over 0.99 without making many millions of function calls (hence the reduction to

0.98). Fig. 4.8 demonstrates an approximately exponential rise in E calls for L-

BFGS as the strength of the perturbation σnoise is increased from 0 to 0.1. Clearly

Hamiltonian perturbations deteriorate the performance of L-BFGS, while PPO keeps

performing on a similar level than without noise. We conjecture that the noise helps

PPO to explore the landscape more effectively and find optima as it only relies on an

approximate gradient direction in contrast to L-BFGS that relies on the model-based

gradient heaviliy in its protocol.

Large fluctuations for PPO at certain noise levels likely imply that it is unable to

find robust solutions there. The fluctuations may be linked to the noise level and

the existence of an optimal noise level at which highly robust solutions can be found.

More work, however, is needed to test this idea which is pursued further in Chapter 5.

Single shot measurement noise considered in Section 4.2.1 has not been employed

here, as this would have made the problem even harder for L-BFGS as it has not been

designed for noisy optimisation. Overall these results are likely due to high sensitivity

of the optimization descent step of L-BFGS to small perturbations in the low rank

Hessian components. This causes the number of iterations to steeply increase. Note

that E calls go down for PPO from around 105 to around 104 in Fig. 4.7, and we

observe a similar effect in Fig. 4.5.
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Figure 4.9: Comparison of 100 L-BFGS controllers computed without noise and 100
PPO controllers trained under Hamiltonian perturbation noise σnoise for transitions
to the middle and end of chains of length M = 4, 5.

4.2.4 Robustness of PPO and L-BFGS Controllers

We conduct an MCRA (see Section 4.2.2) to compare robustness of 100 controllers

found by L-BFGS under ideal conditions and model-free PPO under low Hamiltonian

perturbation noise. There are two cases worth considering: (1) the robustness of PPO

controllers found at different levels of Hamiltonian perturbation; (2) the robustness

of PPO controllers w.r.t. Hamiltonian perturbation found at a particular noise level.

Both cases are compared to 100 L-BFGS controllers for each transition using the ideal

model without noise. The termination condition, in all cases, is F ⩾ 0.99.

For (1), we consider transitions to the middle and end for M = 4, 5, as shown in

Fig. 4.9. We use PPO controllers trained with Hamiltonian perturbation noise σnoise

that corresponds to the noise level on the x axis from 0.01 to 0.1. We find, as expected,

that the width of the fidelity distribution for L-BFGS controllers slowly increases as

σnoise is increased from 0 to 0.1. The expected fidelity is further dropping from being

concentrated around F = 0.99 to a very flat width and increasingly heavier tail,

down to F = 0. For PPO controllers, however, we observe that at certain noise
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levels, e.g., σnoise = 0.01, 0.04, 0.07, the controllers found for all problems have narrow

distributions compared with L-BFGS. At other noise levels, e.g., σnoise = 0.08, 0.1 for

M = 5, |0⟩ to |2⟩, they have wider distributions for some problems, but also narrow

distributions for others, e.g., σnoise = 0.08, 0.1 for M = 4, |0⟩ to |2⟩. We conjecture

that added perturbations may have a smoothing effect on the optimization landscape

which would result in either filtration or creation of “barriers” near optima in some

cases.

For (2), we consider in addition to the cases of (1), also transitions to the middle for

M = 6, 7. Here the PPO controllers have been computed for low Hamiltonian per-

turbation noise σnoise = 0.01. Both, the L-BFGS controllers and the PPO controllers,

become worse with increasing noise levels. However, the PPO controllers drop off

slower, except in the case of M = 6, |0⟩ to |3⟩. This suggests that overall PPO is

more likely to find robust controllers.

To investigate this further, the performance of a well-performing PPO and L-BFGS

controller for the M = 5, |0⟩ to |4⟩ transition is compared. For each algorithm, we

select the controller with the the highest median fidelity across the ten noise levels to

account for the heavy-tail nature of the performance distribution. The Hamiltonian

is perturbed as Hss + δP where P is the perturbation direction and δ its strength.

P is sampled uniformly on a nine-dimensional Euclidean sphere, created by the five

perturbation for ∆n and a further four for the coupling strengths. The fidelity was

computed along these directions for δ from −0.1 to 0.1. The density of the curves is

estimated at specific perturbation strengths and plotted (see Fig. 4.11). The PPO

controller is clearly not at a fidelity maximum, so some perturbations have a chance

to improve the fidelity. The L-BFGS controller is at a fidelity maximum, which

means that most perturbation directions, including those on the couplings which are

not control parameters, reduce the fidelity. Similar behaviour has been observed for

other controllers.

4.3 Conclusions

In this chapter, we showed how policy gradient RL algorithms can be used for non-

parametric constructions of optimization models for quantum control even under

highly noisy conditions as seen in Section 4.2.1 where pure model-based methods per-

form poorly as seen in Section 4.2.3. This was possible through a novel model-agnostic

MDP formulation of the quantum control problem of state preparation. Importantly,
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our proposed formulation has the advantage of being scalable in that the parameters

of the control algorithm need not scale exponentially with the size of the controllable

system due to the fact that it does not need to simulate the system’s dynamics using

a model and furthermore does not make the unrealistic assumption of having access

to the unitary that is not observable. Moreover, we also demonstrated the utility

of this formulation in the setting where the dynamics are stochastic and the model

might not be very useful. This technique can also be extended to gate optimization or

higher level VQAs [Per+14] whose classical optimization sub-routine can be replaced

by a policy gradient algorithm. The other useful feature of our technique is that it

can be used in a real experimental setting. Here, the tomography costs, needed to

measure the state for feedback control, are exponentially growing with system size

and can be circumvented using our approach.

We also explored the control landscape via probing local regions around optimal

controllers via Monte Carlo perturbations and showcased the variation in optimal

controllers found for a specific control problem that is evident in their values and

also their robustness w.r.t. perturbations. This idea of robustness is connected with

narrowness/flatness of the fidelity peaks in the control landscape and is an important

takeaway of this chapter.

Moreover, by quantifying the cost of operation in terms of the number of function

or environment calls, we systematically benchmarked the performances of different

policy gradient algorithms covered in Chapter 2. We motivate our choice of PPO

for the rest of the comparisons and for Chapter 5 beyond the intra-RL benchmark-

ing due to its consistency in performance, i.e., stability for variations of the energy

landscape control problem. For these reasons, we only use PPO for control algorithm

benchmarking on a much wider class of control algorithms in Chapter 5.

In the absence of noise, RL performance is lower bounded by model-based optimisa-

tion and upper bounded by pure random guessing. This implies that a nonparametric

model is being constructed. The cost of model construction is relatively bounded by

random guessing for RL under noisy conditions. However, the number of calls is still

high. Model-based RL or Bayesian methods could be explored to reduce the reliance

on information acquisition. Towards that end, we show in Chapter 6 how a model-

based RL approach that incorporates partial knowledge of the controllable system

can reduce the number of calls significantly.

In Section 4.2.2, a Monte Carlo robustness analysis is conducted for comparison of RL

controller between each other and PPO controllers with L-BFGS controllers obtained
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with restarts to understand robustness of controllers found in various settings. This

is a qualitative visual comparison that is further refined in Chapter 5 through the

development of a novel Robustness Infidelity measure (RIM). We demonstrate that

RL controllers found under low Hamiltonian perturbation noise levels are typically

more robust compared with those found by L-BFGS, under no perturbation noise, but

there is variation in the quality of their robustness that needs to be explored more as a

function of their clustering and correlation of locations in the optimization landscape.

It appears that in some cases RL finds controllers that may not be optimal for the ideal

model, but perform robustly at high fidelity under noisy conditions. This suggests

that Hamiltonian noise in particular can improve robustness of some controllers. RL

is a promising avenue for feedback adaptive control with less overhead compared

with variational methods and is arguably comparatively better with uncertainties.

However, a careful construction of the control problem in an RL paradigm is needed

before its application.
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Figure 4.10: Comparison of controllers found by L-BFGS without noise and PPO
trained under low Hamiltonian perturbation noise σnoise = 0.01 and perfect measure-
ments. We consider transitions to the middle and end of chains of length M = 4, 5
and to the middle for M = 6, 7.
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Figure 4.11: Robustness comparison of a well performing PPO (top) and L-BFGS
(bottom) controller for M = 5, |0⟩ to |4⟩. (a) and (c) show 1, 000 fidelity curves,
sampled along different Hamiltonian perturbation directions; (b) and (d) show density
distributions of these curves at the perturbation strengths.
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Chapter 5

Robustness certification of
quantum controllers

Standard quantum optimal control (QOC) methods for steering quantum devices

mostly focus on finding controls that have high fidelity using mathematical mod-

els [CX20; Sri+21; Blu+21a]. However, if the operation of quantum devices is subject

to noise, high fidelity itself is insufficient to gauge performance of a control scheme,

and extra effort is required to systematically search for solutions that are both, ro-

bust against noise and have high fidelity [AGS21; JSL18]. This requires a notion

of robustness and ideally a single measure that can capture robustness and fidelity,

enabling the identification and construction of more efficient methods to find controls

that satisfy both properties.

In this Chapter, we introduce a general statistical diagnostic based on the Wasserstein

distance of order p [Vil09] to evaluate the robustness and fidelity of quantum control

solutions and the algorithms used to find them. This is applicable to any quantum

control problem where the fidelity is a random variable with a probability distribution

over [0, 1]. The Wasserstein distance between probability distributions is a measure

of the minimal costs of probability mass transport between two distributions. In

Sec. 5.2, the p-th order Robustness-Infidelity Measure (RIMp) is defined to quantify

the robustness and fidelity of a quantum controller. The RIMp p-th order Wasserstein

distance between the probability distribution for the fidelity induced by noise and the

ideal distribution for a perfectly robust controller, described by a Dirac delta function

at unit fidelity. We show that the RIMp is the p-th root of the p-th raw moment of

the infidelity distribution – a non-parametric measure independent of any particular

assumption for the distribution. This has the advantage of recovering the average
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infidelity as RIM1 which is easy and practical to compute and intuitively makes sense

as a RQOC optimization target. We also showcase the RIM to quantify and improve

the qualitative robustness evaluation of individual controllers and control algorithms

presented in Chapter 4.

5.1 Outline of the study

In Sec. 5.3 we illustrate the RIM and draw useful insights for robust quantum control

by generating controllers for static energy landscape control of the XX Heisenberg

model, introduced in Chapter 4.1.1 and exploiting the degree of freedom afforded by

the existence of multiple optima in quantum control [BCR10]. We analyze their ro-

bustness properties and the performance of algorithms in finding effective controllers

using four optimization algorithms representing different, commonly employed ap-

proaches: (1) L-BFGS: a second-order gradient-based optimization using an ordinary

differential equation model of the quantum system to compute the fidelity under per-

fect conditions [Zhu+97]; (2) Proximal Policy Optimization (PPO): a model-free rein-

forcement learning algorithm, having no prior knowledge of the system [Sch+17]; (3)

Nelder-Mead: a derivative-free simplex-based heuristic search method [NM65]; and

(4) Stable Noisy Optimization by Branch and Fit (SNOBFit): another derivative-free

method that performs model-free learning by using regression to estimate gradients

via a branch and fit method [HN08].

For individual controller comparisons, (1) performs optimization over a noise-free

fidelity objective functional under ideal conditions. To that end, we use standard

L-BFGS with an ordinary differential equation model to compute the fidelity with-

out perturbations during optimization. This serves as a baseline to understand the

performance of optimizing noiseless objective functionals compared to the noisy opti-

mization performed by all other selected algorithms and its impact on the robustness

of the controllers found. We have explored stochastic gradient descent methods (e.g.

ADAM [KB17]) and also tested a noisy version of L-BFGS that has been recently

proposed that modifies the line search and lengthening procedure during the gra-

dient update step [Shi+21] and found that our training noise scales were too large

and washed away gradient information, rendering these algorithms unsuitable for our

study. (2) represents a machine learning approach with minimal knowledge. (3) and

(4) are derivative-free methods to handle stochastic objective functionals. We have
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covered all algorithms in Chapter 2. In particular, we recall that PPO uses a dis-

counted reward signal (e.g. fidelity) accumulated over multiple interactions with the

optimization landscape using non-parametric models: the policy and value functions.

Both are estimated using neural networks in a control problem agnostic fashion. Do-

ing this allows the incorporation of perturbations during training which specifically

has advantages in finding robust controls for energy landscape problems [Kha+21]. In

this chapter, we use a control problem formulation of PPO for Eq. (4.2) as described

in Chapter 4.

The motivation behind the RIM is that it has practical utility in that it allows us to

choose among similar, high-fidelity controllers, as a post-selector or filter for robust

controllers. Moreover, it is agnostic of the algorithm used to find these controllers.

This may be computationally more efficient than optimizing the RIM directly, as we

see in Sec. 5.3.3. Moreover, it can also be adapted to compare the performance of

control algorithms in finding not only high-fidelity but also robust controllers. To

that end, we introduce an Algorithmic RIM (ARIM), averaging RIMs over multiple

controllers, in Sec. 5.2.

The ARIM compares algorithm performance in finding robust controllers. For se-

lecting the algorithms for our numerical study, we used the following motivating

principles:

1. investigate and understand the performance of algorithms commonly used in

quantum control;

2. consider algorithms that do and do not require gradient information; and

3. consider reinforcement learning, more recently also used in quantum control

These choices are not exhaustive but serve as a diverse set of algorithms to which we

apply the RIM and ARIM, illustrating their utility and giving some indication of the

performance of common control algorithms for the specific robust control problem.

Our experimental motivation is four-fold:

(A) By comparing the robustness of controllers without regard to the optimization

algorithm, we wish to answer whether high fidelity implies high robustness using the

RIM of the individual controllers (Sec. 5.3.1).
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(B) By conducting a distributional comparison of controllers we wish to understand

how likely it is that a given algorithm produces controllers in an ideal (no-noise)

setting that are robust in noisy conditions (Sec. 5.3.1.2).

(C) To study the effect of training noise of the same nature as the robustness noise

model applied during optimization on an algorithm’s ability to find robust controllers

using the ARIM (Sec. 5.3.2). For a fair comparison, we conduct (B) and (C) with a

fixed number of objective function calls allotted to each algorithm.

(D) In Sec. 5.3.3, we try to understand an algorithm’s asymptotic ability to find

robust controllers using the ARIM through optimizing the RIM by allowing unlimited

objective function calls. We consider two settings in this scenario: stochastic and

non-stochastic fidelity optimization. In the latter case we optimize over a fixed set of

Hamiltonians sampled once according to a noise model, while in the former case the

Hamiltonians are stochastically chosen at each objective function evaluation using

the same noise model.

5.2 Measuring robustness and fidelity of

quantum controls

5.2.1 Robustness Infidelity Measure

Uncertain dynamics turn the fidelity F into a random variable with a probability

distribution P(F). Intuitively, we call a controller robust if this distribution has a

low spread. While a low spread alone may indicate robustness, low fidelity means

the controller does not realize the target operation well. So we also expect a fidelity

close to 1. That means the perfect distribution under any uncertainties is δ1 – the

Dirac delta distribution at maximum fidelity 1. In particular, we consider the delta

function δx to be defined by an indicator cumulative distribution function (CDF),

C(a) =

{
1 if a ⩾ 0,

0 if a < 0.
(5.1)

This permits the familiar delta function property for integration w.r.t. a basic (rapidly

diminishing) function,∫ ∞

−∞
g(x)δx−a dx =

∫ ∞

−∞
g(x) dC(x− a) = g(a). (5.2)
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Our goal is to define a distance between probability distributions that measures close-

ness between the ideal and the achieved probability distribution in order to combine

high fidelity and its robustness into a single measure.

For this we take the Wasserstein or Earth mover’s distance W [Vil09; ACB17] due

to the facts that: (1) it allows us to compare two probability distributions that do

not share a common support, and, in particular, compare discrete and continuous

distributions; (2) its easy geometric interpretation helps with its optimization; and

(3) a simplification allows it to be calculated easily, as shown next.

The dual formulation of the p-th order Wasserstein distance [RTC17] between two

distributions µ, ν is given by

Wp(µ, ν) = sup
h,g

[∫
h(x) dµ(x)−

∫
g(y) dν(y)

] 1
p

, (5.3)

where h(x) − g(y) ⩽ ∥x − y∥p. Even though this form seems abstract, for one-

dimensional distributions, we can analytically compute the optimal maps h, g with

Theorem 5.1. (Prop. 1 in [RTC17]) The p-th Wasserstein distanceWp(µ, ν) for one-

dimensional probability distributions µ and ν with finite p-moments can be rewritten

as

Wp(µ, ν) =

(∫ 1

0

|Qµ(z)−Qν(z)|p dz
) 1

p

where Qµ(z) = inf{x ∈ R : Cµ(x) ⩾ z} denotes the quantile function and Cµ is the

cumulative probability function of µ and likewise for Qν.

Remarkably, the optimal transport distance between one-dimensional distributions µ,

ν over all possible transportation plans can be computed in terms of their quantile

functions Qµ, Qν . From here, following Thm. 5.1, it is straightforward to define the

p-th Robustness-Infidelity Measure,

RIMp :=Wp(P(F), δ1) =
(∫ 1

0

|QP(F)(z)− 1|p dz
) 1

p

. (5.4)

We now show that RIMp can written in terms of the raw moments. That is, we prove

the following
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Proposition 5.2. RIMp is the p-th root of the p-th raw moment of the infidelity:

RIMp = EP(F=f) [(1− f)p]
1
p (5.5)

where f is a fidelity sample drawn from the distribution P(F) and 1− f is the corre-

sponding infidelity sample. We use the expectation operator defined as EP(F=f)[(·)] :=∫
(·)P(F = f) df .

Proof. In the subsequent argument, recall that the quantile function is the inverse of

the CDF function. Following Thm. 5.1, we can write the RIMp as

RIMp =

(∫ 1

0

|QP(F)(z)−Qδ1(z)|p dz
) 1

p

. (5.6)

Note that both terms in the integrand are 0 at z = 0. Then, for z ∈ (0, 1], by

definition,

Qδ1(z) = inf{x ∈ R : Cδ1(x) ⩾ z > 0}
= inf{x ∈ R : C(x = 1) ⩾ z > 0}
using the CDF of δ1 in Eq. (5.1)

=1. (5.7)

Another way to see this is to use the inverse property Qδ1(·) = C−1
δ1

(·). The CDF

is 0 in the interval [−∞, 1) and 1 in [1,∞]. Next, we perform a change of variable

z = CP(F)(f). The differential is given by, dz =
dCP(F)(f)

df
df = P(F = f)df as

the derivative of the CDF w.r.t. the random variable is the probability distribution

function. Substituting the terms, we get

RIMp =

(∫ 1

0

|QP(F)

(
CP(F)(f)

)
− 1|pP(F = f) df

) 1
p

. (5.8)

Now we use the fact that QP(F)(CP(F)(f)) = f (inverse property) to obtain,

RIMp =

(∫ 1

0

P(F = f)|f − 1|p df
) 1

p

. (5.9)
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Since the domain of integration remains invariant, for fidelity measures with support

in [0, 1], it can be extended to [−∞,∞]. We obtain,

RIMp =

(∫ ∞

−∞
P(F = f)|f − 1|p df

) 1
p

=

(∫ ∞

−∞
P(F = f)(1− f)p df

) 1
p

as f ⩽ 1, switch the order and drop | · |
=EP(F=f) [(1− f)p] . (5.10)

We obtain the last line using the expectation operator defined in the propositon.

For p = 1, using Eq. (5.10), we recover the average infidelity,

RIM1 = EP(F=f) [1− f ] = 1− EP(F=f) [f ] . (5.11)

Further expansions of the RIMp in terms of the scaled moments are presented in Ap-

pendix A.1. Moreover, we note that one can also recover the probability distribution

P(F) from RIMp and we show its theoretical possibility in Appendix A.2.

To compute the RIMp, we estimate P(F) using n fidelity samples f1, f2, . . . , fn. Such

samples may be obtained in practice via Monte Carlo simulation or physical ex-

periments [FL11b]. Hence, barring the computational or experimental expense of

obtaining these samples, the RIMp is easy to compute. In case the dynamics of the

system are certain, i.e., P(F) = δf for some constant fidelity value f , the RIM1 is

equal to the infidelity 1− f . Moreover, the RIM1 is small if and only if the controller

is robust (in the sense of the fidelity distribution having a low spread) and is also

close to the maximum fidelity.

5.2.2 The Average Fidelity is Sufficient for Robustness
Comparisons

We motivate why the RIM1 is sufficient for comparing robustness and fidelity of

controllers by making use of the fact that the RIMs of different orders computed on

the estimated fidelity distribution are in agreement. We obtain bounds between the

lower and higher order RIMs with
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Proposition 5.3. The following bounds hold:

RIMp′ ⩽ n

(
1
p
− 1

p′

)
RIMp, (5.12a)

RIMp ⩽ RIMp′ (5.12b)

for p < p′, where n is the number of samples used to estimate the RIM.

Proof. Using Lyapunov’s inequality, stating that E[|X|q]1/q − E[|X|p]1/p ⩾ 0 for q ⩾

p > 0 for some E[|X|t] <∞, we show that

RIMq − RIMp = EP(F=f) [(1− f)q]
1
q − EP(F=f) [(1− f)p]

1
p

= EP(F=f) [|(1− f)|q]
1
q − EP(F=f) [|(1− f)|p]

1
p ⩾ 0. (5.13)

For any q ⩾ p ⩾ s > 0, it follows that RIMq ⩾ RIMp ⩾ RIMs. The con-

verse is true without the p-th roots. The linearity of expectations implies that

EP(F=f) [(1− f)p − (1− f)q] ⩾ 0 ⇐⇒ 0 < p ⩽ q.

We can also derive a lower bound on RIMp. For some p′ ⩾ p, we have

RIMp′ ⩽ RIM
p
p′
p = EP(F=f) [(1− f)p]

1
p′

=
EP(F=f) [(1− f)p]

1
p

EP(F=f) [(1− f)p]
1
p
− 1

p′

⩽
RIMp

EP(F=f) [(1− f)]1−
p
p′

⩽
RIMp

(minf (1− f))1−
p
p′

(5.14)

where the relation in the second last line is obtained by applying Jensen’s inequality

and the final line is obtained from the observation that minf (1− f) < E[1− f ] ∀f .
Note that this result still depends on the data. Higher orders p and p′ of the RIM

are related to each other in a concave sense and when p, p′ → ∞, the RIMs become

more equivalent. Conversely, near perfect fidelity, all the RIMs are converging to 0,

but the presence of an outlier fidelity sample strongly governs how much discrepancy

there still is between a higher-order RIM and a lower order RIM. This discrepancy

is still concavely dependent on p and p′.

We arrive at the proposed relations for RIMs of different order by noting that

EP(F=f) [(1− f)p] ⩾ m sup
f
(1− f) = m
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for the smallest positive finite measure m > 0 on the domain set on which we define

the probability distribution P(f). This follows from the continuity of f and the

continuity of P(f). If f already has an ideal distribution, then this is trivially true.

Assume there exists some subspace S ∈ F = [0, 1] ∈ R. Now assume that there exists

some ϵ such that 1− f + ϵ > supf (1− f). S is the subspace where this is true. So,∫
F without S

P(f)df(1− f)p +
∫
S

P(f) df(1− f + ϵ)p ⩾
∫
S

P(f) df(1− f + ϵ)p

(5.15)

>

∫
S

P(f) df sup
f
(1− f) (5.16)

⩾ m sup
f
(1− f). (5.17)

Let ϵ→ 0 and we have EP(F=f) [(1− f)p] ⩾ m. Eq. (5.14) yields

RIMp′ ⩽ m

(
1
p′−

1
p

)
RIMp. (5.18)

In practical settings, e.g. when using the ECDF, m ⩾ 1
n
. Intuitively, this follows from

the observation that for any EP(X)[X
p] =

∫
P (X)Xp dX ≈ 1

n

∑n
i=1X

p
i using samples

X1, . . . , Xn. For the estimated1 R̂IMp,

R̂IMp′ ⩽ n

(
1
p
− 1

p′

)
R̂IMp. (5.19)

This implies that RIMs of different orders are similar (in the convergence sense) when

the bound holds.

Note that Eq. (5.12b) is stronger and states that RIMp is less sensitive to outliers

than RIMp′ while Eq. (5.12a) states that for fixed n and p, RIMp′ growth is sublinear

(∝ exp(−1/p′)). This can be made tighter by adding additional assumptions on the

nature of P(F), but these depend on the specific control problem. The upper bound

becomes loose with increasing n, but highlights the constraining nature of deviation

of higher-order RIMs from RIM1.

This means that the higher-order RIMs do not capture more useful robustness in-

formation for comparisons, with the base case in Eq. (5.12b) being decided by the

RIM1. RIM1 has low sensitivity to outliers, which makes it easier to estimate than

1hats are (generally) used to denote estimates
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Figure 5.1: RIMk scaling as a function of RIM1 for 100 controllers for M = 5 and the
transition from |1⟩ to |3⟩ and N = 100 samples per controller for RIM evaluation.
Each subplot (a)-(h) corresponds to a noise level σsim indexing the fidelity probability
distribution Pσsim

(F). There is convergence and thus more agreement in RIMk for
small values.

higher-order RIMs, which, like the worst-case fidelity, are harder to accurately prac-

tically obtain (as more samples are required, which also explains the presence of n in

the inequality).

The bound in Eq. (5.12b) gets tighter for large n but also for decreasing infidelities,

so in this regime, the RIMs are in agreement. Another way to see this is to note that

the Wasserstein distance provides a structure-preserving geodesic between any fidelity

distribution to the ideal δ1: the distributions converge together with their RIMs of

any order. In other words, the convergence in the Wasserstein distance, for fixed n,

RIM1 can effectively constrain any RIMp with p > 1, since growth in p is sublinear.

This implies that the RIMs converge when they tend to 0 as seen in Fig. 5.1. We also

note that the higher order RIMs increase the measure’s sensitivity to outliers greatly,

even though growth in the RIM is sublinear in p. So especially when approaching the

ideal distribution δ1, i.e., in case RIM1 is small for high-fidelity, robust controllers,

there is strong agreement between RIMs of all orders. For example, the variance of

distributions decreases as ∼ (1−minF)2 as minF → 1 in [0, 1].

However, the fact that outliers are more influential for higher RIM orders proves useful

for optimization [GW21] where such behavior is sought after, while our goal here is

robustness/fidelity comparison. For this goal, in general, outliers are obstructive as
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they would hide the general distributional trend. From now on we refer to the RIM1

without the subscript.

5.2.3 Connecting perturbations with the fidelity random
variable

Next, we define the noise in the system as perturbations (defined in Chapter 4.1.1) of

its uncertain dynamics that give rise to P(F). Recall that a perturbation to the full

Hamiltonian in Eq. (2.1) can be expressed as H̃(t,u) = H(t,u) + γS ∈ Cn×n where

γ ∈ R describes the strength of a perturbation and S ∈ Cn×n its structure, usually

normalized using some matrix norm. To induce an uncertainty into the dynamics we

treat γ and S as random variables drawn from some probability distributions. This

give us a general way to represent any physically relevant uncertainties in Hamiltonian

parameters.

The structure S may be fixed, e.g., describing the uncertainty in some coupling pa-

rameter for the Hamiltonian, while γ is drawn from a normal distribution. This

would be consistent with a (linear) structured perturbation in classical robust control

theory [JSL17]. Instead, S may also be drawn from a probability distribution, de-

scribing uncertainties across multiple Hamiltonian parameters. While this generalizes

structured perturbations, note that they do remain linear w.r.t. the strength. If S

is sampled uniformly on the unit-sphere, according to its normalization, we have an

unstructured perturbation, with (uncertain) strength determined by γ. Conceptually,

if γ is drawn from a normal distribution with zero mean and standard deviation σ, γS

describes a “fuzzy” ball Bσ around H(t,u). In this chapter, we consider unstructured

perturbations that are less idealized, in some sense, than the structured perturbations

(usually considered in classical control [Doy82]), allowing the robustness results to be

interpreted generically without the need to consider specific sources of uncertainties

arising from specific quantum device designs. For simplicity, we write Pσ(F) for a

fidelity distribution obtained by unstructured perturbations drawn from Bσ.

Our quantification of robustness is dependent on the choice of γS and the uncer-

tainties in these quantities. Note that neither the choice of the noise model nor

the magnitude of the noise level is restricted, as our approach is not perturbative

around the optimum (topt,uopt), which is how noise is usually modelled in the liter-

ature [Hou+12; Hoc+14; Kab+14; SHR06; BWS15; DR98]. This approach becomes

relevant when confidence in an analytical physical model is low or there are missing
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Figure 5.2: RIM values generated from P0.02(F) with N = 100 samples for 200
controllers are plotted against the yield Y (FTh) at fidelity thresholds FTh = 0.95, 0.98
and the worst case fidelity. Both measures are correlated, as encapsulated by the high
negative Spearman correlation coefficients [Spe04] and p-values < 10−4.

terms that cannot be analytically or perturbatively accounted for, e.g. complicated

noise sources. This is also in accordance with modern robustness theory and the µ

function in classical [ZD98] and quantum [Sch+22a; JSL17; Sch+21b] settings.

To further motivate the RIM, we study how it compares with other statistical mea-

sures of robustness. The RIM generally correlates with worst-case or minimum sample

fidelity, variance or higher moments and the yield function Y (FTh), which is the frac-

tion of fidelities greater than a threshold fidelity FTh. Fig. 5.2 shows a scatter plot

of RIM values versus Y (0.95), Y (0.98) and the worst-case fidelity for an example

problem using Eq. (4.2), discussed in Chapter 4.1.1. The RIM has an advantage over

Y in that it does not depend on an arbitrary choice of FTh.

5.2.4 Connection with classical robustness measures

We can relate the RIM with the differential sensitivity that is essentially the scaled log

sensitivity [ONe+23] (the dimensionless measure of classical robustness introduced in

Chapter 3.2)

ζ(S, T ) =
∂e(T ;Sµ, σ)

∂σ

∣∣∣∣
σ=0

(5.20)
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where recall that e = 1 − F is the infidelity. We shall obtain the connection by

considering the expected differential sensitivity EP(F=f) [ζ]. The dependence of the

function Pσ(F = f) and ζ on σ, the noise strength requires careful attention and

the technical description that follows suit relies on removing the dependence of the

probability distribution function on σ.

The main idea is to shift the randomization from the fidelity F to perturbation S and

fix the noise scale σ as part of the fidelity functional that is now simply a function

F(. . . , σ) with an additional parameter. This is described in more detail below.

For a simple noise model, where the perturbation is simply added to a base Hamilto-

nian, such as the Gaussian perturbations from Chapter 4 that is used throughout this

thesis, this is straightforward and is similar to the reparametrization trick introduced

in for example Ref. [KW19]. Since each entry in the structured perturbation is a

Gaussian sample drawn from N (0, σ2), we can factorize the noise strength and just

draw a scaled sample from σN (0, 1) where the scaling is done after a random sample

is drawn. This way, the dependence on the noise term is isolated deterministically

in the fidelity function which becomes independent of the randomization which is

averaged over in the expectation. We encode that randomness in the perturbation

operators, represented by the random variable S and a sample S ∼ P(S) drawn from

its distribution has its non-zero entries as standard Gaussian samples.

This reparametrization is not always possible, since not all perturbations are linear.

Nevertheless, under the linearity of perturbations assumption, we are able to write an

equivalent expectation operator that isolates the dependence of Pσ(F = f) on σ to

just the fidelity/error sample with a new probability distribution function independent

of σ. Using the definition of the differential sensitivity in Eq. (5.20), we derive the

following result:

Theorem 5.4. Under the linear noise modelling assumption, the expected differ-

ential sensitivity is the differential sensitivity of the RIM, i.e., EP(S=S)[ζ(Sµ, T )] =
∂RIM(σ)

∂σ

∣∣∣
σ=0

.

Proof: We first unpack the differential sensitivity using the definition of the derivative,

∂e(T ;S, σ)

∂σ

∣∣∣∣
σ=0

= lim
ϵ→0+

e(T ;S, σ + ϵ)− e(T ;S, σ)
ϵ

∣∣∣∣
σ=0

= lim
ϵ→0+

e(T ;S, ϵ)− e(T ;S, 0)
ϵ

. (5.21)

100



5.2. MEASURING ROBUSTNESS AND FIDELITY OF QUANTUM CONTROLS

We apply the expectation operator EP(S=S) [·] on Eq. (5.21) and simplify using the

reparametrization trick: EP(S=S)[·]↔ EP(F=f) [·]:

EP(S=S)[ζ(S, T )] = EP(S=S)

[
lim
ϵ→0+

e(T ;S, ϵ)− e(T ;S, 0)
ϵ

]
= lim

ϵ→0+

EP(S=S) [e(T ;S, ϵ)− e(T ;S, 0)]
ϵ

= lim
ϵ→0+

EPϵ [e(T ;S, ϵ)− e(T ;S, 0)]
ϵ

= lim
ϵ→0+

RIM(ϵ)− RIM(0)

ϵ

=
∂RIM(σ)

∂σ

∣∣∣∣
σ=0

.

Swapping the limit and the expectation in the second line is justified as long as the

limit in the mean of the sequence
{

e(T ;S,ϵ)−e(T ;S,0)
ϵ

}
ϵ>0

exists. □

5.2.5 Measuring the Performance of Control Algorithms

We can also apply the previous arguments to derive a measure to compare the abil-

ity of control algorithms to find high-fidelity, robust controllers. Let P(RIM) be a

distribution of RIM values of controllers obtained by a particular algorithm and a

particular control problem with specific uncertainties. This can be estimated by sam-

pling L controllers produced by the algorithm. The ideal of this distribution is δ0, so

that we can define the Algorithmic Robustness Infidelity Measure,

ARIM :=W1(P(RIM), δ0) = Er∼P(RIM) [r] , (5.22)

following the same argument as before. The ARIM is small if and only if the under-

lying RIM distribution P(RIM) has higher density at or near RIM = 0, i.e., is close

to the ideal δ0.

Note that δ0 ideal might not be the best realistically achievable RIM in all settings

and can be tailored with more knowledge/data of the specific system. However, since

we are going to be comparing ARIMs across different control algorithms, its choice

is immaterial if the best achievable RIM for all algorithms is the same. Another

approach could be to use a value that is different for each algorithm (i.e. the achievable

ideal robustness values differ for each algorithm). This would make the ARIM a

relative algorithmic robustnss measure which could be a useful metric of consistency or

reliability of a control algorithm in its ability to produce robust controllers. However,
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this would also make absolute robustness comparisons across the control algorithms

difficult which is indeed our goal in the proceeding sections.

5.3 Numerical experiments

We study the robustness of static control problems, where the controls are time inde-

pendent, instead of the usual time dependent controls. Previous work has shown that

particularly robust controls can be found for these systems [SJL18; AGS21; JSL18;

JSL17]. While these systems are often not fully controllable, solutions for specific

operations can be found via optimization [LSJ15a]. We use the same setup as the

XX Heisenberg Hamiltonian with unstructured perturbations defined in Chapter 4.

Recall that the the static approach is simpler in the sense of having fewer control

parameters to optimize over, which reduces computational and experimental com-

plexity. This makes the problem suitable to demonstrate the practical usage of the

RIM and improve the qualitative robustness analysis conducted in Chapter 4. It

also provides a concrete example to explore the robustness properties of the control

algorithms as well as the controllers they find. A numerical example illustrating the

RIM via the empirical CDF (ECDF) for two controllers for the information transfer

control problem is shown in Fig. 5.3.

To explore the robustness of controllers and corresponding control algorithms whose

experimental motivation is presented in Sec. 5.1, we perform a Monte Carlo robustness

analysis using the RIM on numerical solutions to the same spin chain information

transfer problem covered in Chapter 4 for chains of length M = 4, 5, 6, 7, 8, 9 with

J = 1.

We look at transitions from the start of the chain |1⟩ to the end |M⟩ and from |1⟩ to
the middle |⌈M

2
⌉⟩. The former transition is physically easy to control while the latter

is more challenging [LSJ15a] as transitions to the middle exhibit anti-core behavior –

where the central spin state is the hardest to excite [JLS14].

We collect the best 100 solutions, ranked by their fidelity, obtained by all the control

algorithms. Each algorithm has a budget of 106 fidelity function evaluations. The

budget correlates with the run time for each algorithm. It is imposed to allow for

a fair comparison of the algorithm robustness performance under similar resources,

while being agnostic to specific implementations and speed differences.
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Figure 5.3: To illustrate the RIM robustness measure, two static controllers for an
XX spin chain of length five for transferring an excitation from spin |1⟩ to |3⟩ are
compared. The empirical approximations to the CDFs for the two controllers, l = 1, 2,
were simulated using 100 bootstrapped perturbations with σ = 0.1, giving fidelity
distributions P0.1(Fl) for the fidelity random variables Fl. The fidelity distribution
P0.1(Fδ1) for a perfectly robust controller with Fδ1 is also shown. The ECDFs are
estimated using 500 bootstrap repetitions. The 0.95 confidence bounds on their error
are obtained using the Dvoretsky-Kiefer-Wolfowitz inequality [DKW56]. Closeness
to the perfectly robust controller can be interpreted as having a smaller area under
the curve and is indicated by the RIM values.

We initialize ∆, t with quasi Monte Carlo samples from the Latin Hypercube [Loh96;

Ste87; Owe19] to increase convergence rate and decrease clustering of controllers.

This permits coverage of the parameter domain with O(1/
√
N) samples as opposed to

O(1/N) for random sampling, whereN is the number of initial values. Our constraints

are 0 ≤ tf ≤ 70 and −10 ≤ ∆ ≤ 10. We use 100 bootstrap samples to estimate fidelity

distributions throughout. The perturbation strengths γJj and γCc are scaled by J and

∆ respectively as per Eq. (4.3). Note, for σ = 0, P0(F) = δF is deterministic.

The perturbation strengths are drawn from a normal distribution with standard de-

viation σtrain determining the strength of the noise added for the optimization. σsim is

the noise level used in the simulations to assess the robustness of the controllers found.

Implementation details are in Appendix A.4. The optimization objective is noiseless

F for Sec. 5.3.1, stochastic F with unstructured perturbation Sσ for Sec. 5.3.2, and

the RIM for the non-stochastic problem and a stochastic F with Sσ in Sec. 5.3.3.
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Figure 5.4: (a)-(d) 100 controllers found for the XX spin chain model, Eq. (4.2), using
Nelder-Mead, SNOBFit, PPO, and L-BFGS for M = 5 and the spin transition from
|1⟩ to |3⟩ with σtrain = 0. The controllers are ranked in increasing order of infidelity
at σsim = 0 from left to right. Each column represents a single controller’s RIM at
σsim = 0, 0.01, 0.02, . . . , 0.1 from the bottom to the top on a log scale. Even if the
infidelity or RIM at σsim = 0 is close to 0, some controllers’ RIM values degrade
faster than others and are hence less robust despite starting at very low infidelities.
(e) RIM as a function of σsim for the average and best controller (i.e., most dark over
all σsim levels) out of the 100 shown in (a)-(d) in terms of how much they preserve
their corresponding RIM rank average across all σsim. Each algorithm is indicated
by a marker shape, and the solid and dash-dotted lines denote the best and average
controller lines respectively. All the best controllers have very high initial fidelities
and are very similar across the different control algorithms, with Nelder-Mead being
only moderately worse.

5.3.1 Characterization of All Controllers Found with
Constrained Resources

5.3.1.1 Ranking Individual Controllers

In this section, we address our motivating question (A) in Sec. 5.1, whether high

fidelity implies high robustness for an individual controller. We also numerically

demonstrate the non-linear and non-uniform deterioration of robustness with increas-

ing noise which implies a trade-off between higher fidelity at no noise and robustness

at higher noise levels.

To this end, we employ control algorithms to optimize an objective functional with-

out noise, i.e., setting σtrain = 0 (see Sec. 5.2.3), under the general optimization

conditions outlined at the start of Sec. 5.3. We rank these controllers by their infi-

delity values and then compute the RIM values for various levels of simulation noise,
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σsim = 0.01, 0.02, . . . , 0.1.

For example, Figs. 5.4(a)-(d) show a pseudo-color plot of the RIM values for 100

controllers found for the chosen test control problem (chain of length M = 5, target

spin transfer |1⟩ to |3⟩). The lowest infidelity controllers start from the left and are

indexed by columns 1 to 100 indicating their respective ranks according to their RIM

at σsim = 0. The RIM values, as a function of σsim, for individual controllers grow at

different rates despite starting at quite similar small values for all algorithms. The

main result, that applies also to all transitions (not explicitly shown here), is that

the high fidelity controllers do not, in general, preserve their ranks as σsim increases.

E.g., for SNOBFit (see Fig. 5.4(b)), the RIM for controllers 6, 8, 9, 11–13 grows much

more rapidly than for controllers 24–33, indicated by rapid color changes from dark

(low RIM) to light (high RIM) in the vertical direction. Interestingly, almost all con-

trollers found by PPO have very low RIM across σsim values compared to the other

control algorithms (color remains dark for longer). This is, however, not reflective of

PPO’s general behavior on the extended sample of problems we examined (see Ap-

pendix A.6). It could be limited fundamentally by the existence of robust controllers

and/or the resource budget for a particular problem (see Fig. A.2 in Apendix A.5

showing results for other transitions).

We further evaluate the best performing individual controller. To this end, we seek

the controller that preserves its overall RIM rank average the most across the noise

levels. It is computed using the reshuffled RIM ranks of each controller for all values

of σsim. Likewise, we locate the controller that has the median RIM rank average

across the noise levels as the averagely performing controller. Most of the RIM rank

sum distributions studied were symmetric, and their median was close to their average

value. So we can try to understand average controller RIM rank order consistency

in terms of how the median controller performs. We compare the RIM values of the

median with the best controller in Fig. 5.4(e) for all algorithms, showing the RIM

values for the best and median controller as a function of σsim.

For all algorithms, the best and the average controllers have similar infidelities (initial

RIM value) in Fig. 5.4(e). Their behavior as a function of σsim is different and is

generally non-linear. Thus, the best controllers, despite being distinguishable from

the others at σsim = 0, become indistinguishable for higher σsim and point at a trade-

off between infidelity (at no noise) and robustness that could be leveraged when

selecting a controller to be deployed for a noisy system. Moreover, the RIM curve

of the best controller among all algorithms (here L-BFGS) suggests a fundamental
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limitation on RIM for this problem. It is likely not possible to obtain curves that are

lower, but this remains theoretically unresolved.

5.3.1.2 Ordinal Kendall Tau for RIMσsim
-Rank Consistency

To address the motivating question (B) in Sec. 5.1, how likely a given algorithm is to

produce robust controllers that were obtained in an ideal (no-noise) setting, we are

interested in how consistently a controller acquisition strategy produces controllers

with low RIM.

To that end, we reduce the RIM rank consistency property of the top-k controllers

across two perturbation strengths σ
(i)
sim and σ

(j)
sim to a prediction problem by asking the

following: (Q) How well does the RIM rank of a controller, when ordered at strength

σ
(i)
sim, predict the RIM rank of the controller at strength σ

(j)
sim?

To answer this question, let us denote the controller RIM σ
(i)
sim-rank order by the

vector rσ
(i)
sim , and compute an ordinal (binned/categorical) version of the Kendall-tau-

B statistic τ̃ [Ken62; Agr10], a measure of statistical dependence between rσ
(i)
sim and

rσ
(j)
sim . The ordinals are constructed only for rσ

(i)
sim by binning using a discrepancy

parameter α that indicates the fraction of the maximum RIM value difference within

a single bin. The binned rank order r̃σ
(i)
sim(α) minimizes the effect of small movement

in either rank due to noise. Then τ̃ is computed by

τ̃(σ
(i)
sim, σ

(j)
sim) = τ̃i,j =

∑
l<m I

+
l,m + I−l,m√(

K − t(i)total

)(
K − t(j)total

) (5.23)

where

Il,m = sgn

(
r̃
σ
(i)
sim

l − r̃
σ
(i)
sim

m

)
sgn

(
r
σ
(j)
sim

l − r
σ
(j)
sim

m

)
(5.24)

are the l,m-th sign products of the rank order differences at σ
(i)
sim, σ

(j)
sim with +/−

denoting the positive/negative pair contributions; K = k(k − 1)/2 is the number

of total pairs being compared; t
(i)
total =

∑
l t

σ
(i)
sim

l (t
σ
(i)
sim

l − 1)/2 are the total numbers of

ties where Il,m = 0 for σ
(i)
sim and likewise for t

(j)
total. For complete positive/negative

rank order correlation τ̃ = ±1 and τ̃ = 0 for zero rank order correlation. For our

hypothesis test, we assumed a worst case p-value of 10−4 as an acceptance criterion on

the numerical results that follow and also that the controllers generating these rank

orders are independent of each other. In this case, this constraint is satisfied by the

i.i.d. noise model for a given set of unique controllers corresponding to different points
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Figure 5.5: RIM rank order consistency statistic τ̃ for the 100 controllers found for
the problem M = 5, |1⟩ to |3⟩ between the two levels: no simulation noise, σ

(i)
sim = 0

and σ
(j)
sim from {0.0, 0.01, . . . , 0.1} for (a) Nelder-Mead, (b) SNOBFit, (c) PPO, and

(d) L-BFGS without training noise. In other words, this is the correlation of infidelity
rank order with the general RIM ranks. The τ̃0,j values decline the slowest for PPO

until σ
(j)
sim = 0.04 and then SNOBFit takes over compared to the rest. This shows,

for this case, that the PPO infidelity rank order correlates the most with RIM rank
order for σsim ⩽ 0.03.

in a static optimization landscape. The independence over the choice of controllers is

not necessary as all the consistency comparisons are for this fixed choice of controllers.

For our earlier spin chain example (M = 5 spins, transfer from |1⟩ to |3⟩), we focus

on τ̃ for σ
(i)
sim = 0, σ

(j)
sim pairs that is sufficient to answer (Q). More specifically, we aim

to understand how well the no-noise RIM (i.e., the average infidelity) ranks correlate

with the general RIM ranks. This is shown in Fig. 5.5 for each optimization algorithm

for α = 0.05. For the σ
(i)
sim ⩾ 0.03, the RIM rank order is the most consistent with

τ̃ ≳ 0.6 for PPO excluding other algorithms. But there is larger shuffling of the ranks

of PPO controllers as σsim increases with deteriorating τ̃ and SNOBFit takes over.

This may be due to small numerical differences in RIM (see Fig. 5.4(c)) observed,

and thus a stronger consistency for σsim ⩽ 0.03 is captured.

We highlight next that the reason why PPO infidelities correlate more with RIM

values at higher σsim is because it optimizes a discounted RIM (
∑

i γ
iRIM(i) for 0 ⩽

γ ⩽ 1) as its reward function.
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Figure 5.6: ARIM as a function of σsim forM = 5 where (a)-(c) are the end-to-middle
(|1⟩ to |3⟩) and (d)-(f) are the end-to-end (|1⟩ to |5⟩) transitions (end denoted by O).
The ARIM is computed from a distribution of RIM values for 100 controllers for each
σsim for SNOBFit, Nelder-Mead, PPO and L-BFGS. We identify each algorithm with
a unique marker and/or color. Both, PPO and SNOBFit, are run multiple times
at σtrain = 0, 0.02, 0.05. PPO has higher variance w.r.t. σtrain than SNOBFit and
Nelder-Mead, whose performance curves are more in line with the L-BFGS curve for
σsim ⩾ 0.05 and mostly worse for σsim ⩽ 0.05. 95% confidence intervals (shading)
are computed using non-parametric bootstrap resampling [Efr87] with 100 resamples
or alternatively using PAC bounds derived in A.3. (g)-(i) show individual-controller
comparisons for σtrain = 0.03 ranked by fidelity (leftmost is highest).

We follow the standard finite-horizon MDP formulation for the RL setting (covered

in Chapter 4.1.3) for states, actions and one-step state transition rewards (st, at, rt)

that are sampled in trajectories τ = {(st, at, rt) : t = 1, . . . , T} stored in the buffer D.

Recall that the proximal policy optimization (PPO) algorithm uses a clip objective to

update the policy πθ parameters θ with first-order constraints that minimize policy

distributional divergence. The policy objective is

θk+1 ∝ argmax
θ

∑
τ∈D

T∑
at,st,rt∈τ

Aπθk
(st, at)min

[
πθ(at|st)
πθk(at|st)

clip

(
1± ϵ, πθ(at|st)

πθk(at|st)

)]
,

(5.25)

where π(·) is the policy probability distribution. The advantage estimates are

Aπθk
(st, at) =

T−1∑
i=t

(γλ)i−t(rt + γVϕk
(st+1)− Vϕk

(st)) (5.26)

with value function Vϕ(st) = Eπ

[∑T−1
i=0 γ

irt+i+1|s = st

]
where ϕ are the value func-

tion parameters. The value function is regressed onto discounted rewards sampled

according to π(·). The value function’s optimization objective is

ϕk+1 ∝ argmax
ϕ

∑
τ∈D

T∑
t=0

(
Vϕ(st)−

T∑
i=t

γiri(s
τ
t )

)2

. (5.27)
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The algorithm tries to maximize this expression. In the case of flat rewards and

advantages λ = γ = 1, the advantage estimates are

Aπθk
(st, at) = Vϕk

(st)−
(
Vϕk

(sT ) +
T−1∑
i=t

rt

)
= Vϕk

(st)− V̂ϕk
(st). (5.28)

The value function can be written in terms of an expectation under the policy, as

an average reward: Vϕ(st) = TEπ

[
1
T

∑T
i=t ri|s = st

]
. The optimal value function is

defined by V∗(st) = maxπ Vϕ(st), which is maximized if the policy is optimal, i.e.,

πθ = πθ∗ at θ = θ∗. Near optimality, the advantages are approximately 0 as there

should be no advantages conferred to the optimal policy πθ∗ which also has an optimal

value function. Thus, V̂ϕ∗(st)→ Vϕ∗(st) as Aπθ∗ → 0. The sample rewards minus the

predicted rewards by the value function go to 0 in Eq. (5.25). The same argument

applies with discounts γ, λ < 1 and, hence, it can be shown that the algorithm opti-

mizes a discounted RIM1 estimator as its value function. Most reinforcement learning

algorithms effectively optimize the average or cumulative reward Ĵ ∝ ∑i ri due to

the one-step heuristic application of the Bellman principle of optimality [Tho14].

We can extend this analysis for σtrain > 0 to further corroborate that the infidelity

rank order for PPO correlates most with higher order RIMs. We plot the consistency

statistic τ̃0,j for all algorithms for α = 0.05 for the case M = 5 and the transition |1⟩
to |3⟩ in Fig. 5.7(a)-(f) ((a) is Fig. 5.5) and |1⟩ to |4⟩ in Fig. A.1(a)-(f) for multiple

training noise levels. Note that for each subplot the L-BFGS curve is always the same

at σtrain = 0. The controllers found by PPO at σtrain = 0.05 are less consistent for

some noise levels than others, e.g., σsim ⩾ 0.04 compared with the controllers found

at σtrain = 0.04. This is also true for SNOBFit and Nelder-Mead. Moreover, the

decline in the correlation values is smoothest for PPO compared to the rest for nearly

all twelve instances shown in both figures. With more training noise, Nelder-Mead is

sometimes closer in consistency to the controllers found to L-BFGS, e.g., Fig. 5.7(a,b).

But it produces more consistent controllers with increasing training noise likely due

to diminishing returns of the gradient direction, which makes its behavior more like

SNOBFit and PPO.

For most PPO runs, the consistency statistic is highest for σsim ⩽ 0.04 and thus the

infidelity rank order is a good predictor of RIM rank order for higher σsim, which was

not observed for any of the other algorithms. Also note that this analysis does not

reveal anything about how high the RIM values are for the controllers (a drawback of

the non-parametric test) and should be processed as companion plots to the figures

where these explicit values are shown.
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Figure 5.7: Consistency statistic τ̃0,j for all algorithms at σtrain = 0.0, . . . , 0.05 for
discrepancy parameter α = 0.05 for M = 5 and the transition from |1⟩ to |3⟩. Case
(a) was presented earlier in Fig. 5.5. For (f), σtrain = 0.04, PPO is actually more
robust in terms of ARIM growth compared with (e) as seen from their positions
in Fig. 5.6(b). Characteristically, most low ARIMPPO controllers show high rank
consistency in the region 0 ⩽ σsim ⩽ 0.04. Nelder-Mead is similar to L-BFGS in
all plots except (e) and (f), where it shows slightly more consistency than PPO and
SNOBFit controllers.

The other algorithms typically have a sharper drop at σ
(j)
sim = 0, 0.01 step where the

infidelity rank order for L-BFGS and, to a lesser extent, Nelder-Mead is completely

non-informative (due to very high fidelity values without noise) and is not consistent

with the orders at larger σsim. This is most likely because the controllers found are

the result of second order, gradient-based or similarly successful search methods for

finding optima precisely. Since PPO and SNOBFit are gradient-free, for σsim ⩾ 0.03,

their controllers are more consistent in comparison. In this case, the infidelity rank

order is more informative of the RIM rank order than, e.g., L-BFGS, as fidelities are

not being fully maximized due to the absence of a strong gradient direction. Note that

a viable link between the consistency statistic and a generic gradient-based algorithm

is hard to establish, so this does not preclude the existence of algorithms that are

τ̃ -wise better.

Finally, note that τ̃ should be thought of as a proxy of reliability of an algorithm’s

capability to generate numerical control solutions whose infidelity values are more

consistent and predictive of their RIM values at higher σsim. If strong correlation

is obtained, this circumvents (or at least increases confidence for circumventing the

latter’s) computation.
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However, high RIM rank order consistency does not imply that the RIM values remain

low at higher noise. Rather, it indicates how much the RIM of a controller is predictive

of the controller’s relative robustness performance at a higher noise level. The non-

parametric nature of τ̃ removes information about the fidelity value range and should

be viewed in conjunction with Fig. 5.4(a) − (e). If the correlation signal is strong,

it could be used to sidestep the evaluation of the RIM at non-zero noise in favor of

using the infidelity instead, eliminating the need for expensive sampling.

5.3.2 Comparison of Control Algorithms with Constrained
Resources

We address our motivating question (C) in Sec. 5.1: what is the effect of training

noise on a control algorithm’s ability to find robust controllers? The overall picture

is complex in terms of algorithm rankings. We numerically confirm that there is a

problem-dependent optimal noise level that best smooths the optimization landscape

for algorithms to more consistently find robust controllers.

We collect 100 controllers at training perturbations Sσtrain
with training noise level

σtrain ∈ {0, 0.01, . . . , 0.05} for PPO, SNOBFit and Nelder-Mead. We do not con-

sider any training noise for L-BFGS, since only the former algorithms are designed

to perform optimization with noisy perturbations. This involves using a stochastic

fidelity (objective) function call evaluated under the single structured perturbation

Sσtrain
(exactly analogous to Sσsim

).

We select σsim ∈ {0, 0.01, . . . , 0.1} to evaluate the RIM of the controllers found at

different noise levels with a budget of 106 objective function calls per run. Each run

corresponds to 100 controllers found under this budget constraint. The ARIM is then

used to quantify an algorithm’s performance w.r.t. robustness and fidelity, based on

the 100 controllers that it found during the run.

We only show the representative end-to-middle and end-to-end transition for the

state-preparation problem for M = 5 at σtrain = 0, 0.02, 0.05 in Fig. 5.6. Results for

other spin-transitions and training noises are presented in Appendix A.6.

Recall from Eq. (5.22) that the ARIM is a measure of how far the distribution P(RIM)

is from its ideal δ0. The ARIM curves at different training noises in Fig. 5.6(a-f)

increase at different rates σsim, starting from similar base ARIM values at σsim = 0 for

each algorithm. Note that the base ARIM value coincides with the average infidelity

over controllers, in the absence of training noise.
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A spread in ARIM curves indicates that the probabilistic distance of RIM values w.r.t.

the ideal for all controllers increases at different rates. So, the algorithm represented

by the slowest growing curve is the best to find robust controllers.

Overall, SNOBFit’s and Nelder-Mead’s ARIM curves at various training noises per-

form similarly to L-BFGS across all problems. However, there are distinctions in the

region of σsim ⩽ 0.05 where L-BFGS curves start at lower ARIM values and grow

more quickly compared to SNOBFit curves at various noise levels. In the region of

σsim ⩾ 0.05 the SNOBFit curves comparatively grow more slowly, possibly because

the fidelity has degraded so much that further deterioration is less likely across all 100

controllers. The Nelder-Mead curves exhibit similar behavior to the SNOBFit curves

in that there is less variance w.r.t. the σtrain levels, both, when overall performance

is good and when it is poor.

Compared to other algorithms, there is more variance in the PPO ARIM curves across

training noises for a particular spin transfer problem, with some curves overlapping

each other. The best performing ARIM curve is PPO at σtrain = 0.05 for the end-to-

end transition shown in Fig. 5.6(f) (and for 6 of 8 cases in A.6). This indicates that

PPO is often capable of finding robust solutions, but the optimal value of training

noise varies across the transition problems.

We also present an extended RIM analysis (like in Sec. 5.3.1) for the controllers found

for the same transition problem at training noises for the derivative-free approaches.

The RIMs at σsim ∈ 0, . . . , 0.1 are plotted in Fig. 5.6(g)-(i) for PPO, SNOBFit and

Nelder-Mead at σtrain = 0.03. On an individual level, SNOBFit and Nelder-Mead

controllers share more algorithmic robustness and fidelity characteristics with each

other across σtrain than with PPO controllers, i.e., they have high RIM variance within

distribution per σtrain. This performance is also comparable to the L-BFGS controllers

shown in Fig. 5.4(d). However, individually, the controllers found by PPO differ

significantly across σtrain where notably the RIM and ARIM values stay uniformly

very low for the case σtrain = 0, 0.03 and the controllers are generally distinctly robust

compared to SNOBFit and Nelder-Mead controllers.

Finally, we suggest possible explanations for these differences in behavior between

algorithms. Since SNOBFit constructs local quadratic models to estimate gradients,

it effectively filters out the perturbations Sσtrain
. The manifestation of this effect is

that the controllers at one training noise react similarly w.r.t. the RIM, compared

to controllers at other training noises (including the case of no training noise) as well

as controllers found by L-BFGS. For Nelder-Mead, there are fewer noise-adaptation
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mechanisms compared to PPO and SNOBFit for large noise perturbations that might

affect the quality of the estimated gradient direction and hence the rate of growth of

the ARIM w.r.t. simulation noise at higher training noise levels is unavoidable.

In contrast, PPO does not filter out the perturbations under Sσtrain
and forms its

policy gradient estimates from stochastic fidelity function evaluations, which likely

differentiates it from SNOBFit. PPO also effectively estimates the fidelity landscape

non-linearly using a fixed two-layer linear (100 × 100 dimensional) neural-network,

which may lead to generally better ARIMperformance.

5.3.3 Comparison of Control Algorithms with
Unconstrained Resources

We consider the behavior of the aforementioned control algorithms with an uncon-

strained number of objective function calls to address our motivating question (D)

in Sec. 5.1, that is, we seek to understand an algorithm’s ability to find robust con-

trollers via the ARIM – without the function call constraint. Furthermore, we wish

to ascertain what the effect of the training noise level σtrain is on ARIM optimization.

We consider two objective function settings: (i) stochastic objective: for each evalua-

tion, a new Hamiltonian is drawn according to the noise model, which corresponds to

one Sσtrain
perturbation in F during a single evaluation; (ii) non-stochastic objective:

where the evaluation is over k perturbed, but fixed, Hamiltonians, pre-drawn from the

noise model such that optimization objective is a deterministic RIM computed from

k fixed training perturbations {S(i)
σtrain}k1. In this case, the function calls are counted

as k as they amount to k different fidelity function evaluations per single optimiza-

tion objective call. Furthermore, since we cannot compute the analytical gradient of

both objective functions, in order to use L-BFGS [Zhu+97] in both settings, we use

a version of L-BFGS that approximates the Hessian using forward differences.

For motivation, we can intuitively relate (i) to producing a number of different quan-

tum devices corresponding to different Hamiltonians and choosing one randomly each

time we measure the fidelity of a controller under optimization, while (ii) optimizes

one quantum device with an uncertain Hamiltonian. Scenario (ii) is the more realistic

one in the current quantum device landscape, but the stochastic setting will become

more relevant as quantum devices are mass-produced.

We fix the control problem to be the end-to-middleM = 5 transition. We consider the

change in average ARIM over σsim ∈ {0, 0.01, . . . , 0.1} for the top 100 controllers w.r.t.
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Figure 5.8: Asymptotic ARIM performance when the number of objective function
calls is unconstrained for theM = 5 end-to-middle spin transfer problem. The ARIMs
are averaged over the σsim set {0, 0.01, . . . , 0.1}. The stochastic objective setting
(i) is shown with dashed lines and deterministic RIM objective setting, (ii) with
solid lines; different algorithms correspond to different colors. An L-BFGS no-noise
benchmark is shown with a dotted line. The target RIM is computed using 100 non-
stochastic fidelity evaluations. The ARIM is computed and averaged over a σsim =
0.0, 0.01, . . . , 0.1 set. Plots (a)-(c) correspond to training noise σtrain = 0, 0.05, 0.1,
where the curves are for 100 controllers ranked by the corresponding objective function
evaluation (i/ii) and are updated every 106 function calls. For setting (ii), all control
algorithms asymptotically reduce the average ARIM, but this is not cost competitive
with the stochastic setting (i) where PPO performance reaches the local minimum for
all noise levels with fewer function calls. We see that the training noise level can help
the landscape exploration process; this positively affects PPO in (a), (c) and Nelder-
Mead in (b). For setting (i), L-BFGS, then SNOBFit, then Nelder-Mead, then PPO is
the most prone to performance deterioration w.r.t. σtrain due to the differences in their
reliance on (estimated) gradient information. In these plots, the shading indicates
95% confidence intervals, determined by using bootstrap resampling.

function calls. Three training noises σtrain = 0, 0.05, 0.1 are considered. The controller

rankings are maintained w.r.t. the objective function and are updated in steps of 106

function calls up to 4× 107. For the stochastic setting (i), we maintain the controller

ranking via the stochastic fidelity function evaluation. For the non-stochastic setting

(ii) we maintain the ranking through the deterministic RIM obtained using k = 100

pre-drawn training perturbations {S(i)
σtrain}1001 . The choice of the hyperparameter k was

obtained using cross-validation. Specifically, for a particular training noise and control

algorithm, we picked a k from {10, 100, 10000} to compute a RIM in the objective

function and then compared it to a RIM computed using k′ = 10000 different training

perturbations {S(i)
σtrain}10

4

1 that comprise a large validation set during the optimization

run for all 100 controllers. We found no significant empirical difference in error
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between the objective function RIMs for k = 100 and k = 10000. Note that the

variance in the RIM decreases as O(1/k) by the law of large numbers.

For the non-stochastic setting (ii), it can be seen from Fig. 5.8(a)-(c) (solid lines)

that the average ARIM of all algorithms reduces asymptotically with the number of

function calls. PPO attains the lowest final average ARIM values at 4× 107 function

calls for each σtrain but its final ARIM is not markedly better than the other algorithms

considered here. However, this setting is quite expensive in terms of the total number

of function calls.

For the stochastic setting (i) (dashed lines in Fig. 5.8(a)-(c)), increasing the training

noise reduces the ability of the control algorithm to find robust controllers for all the

σtrain, and the average ARIM is not minimized to the same extent as in setting (ii).

This makes sense, since the stochastic objective (i) is a noisy fidelity with a reduced

focus on robustness. The average ARIM is no longer reliably improved by any control

algorithm in setting (i).

Within setting (i), we note that PPO converges to the lowest average ARIM value

compared to the rest of the algorithms. This highlights the advantage of PPO as

a stochastic optimizer that acquires robust controllers a smaller amount of samples

compared to the rest of the control algorithms. This is theoretically justifiable as

PPO optimizes a discounted RIM by design as mentioned earlier. Another thing to

note is that lowest average ARIM values obtained by PPO in all three settings are

similar, even though they are not attained at the same number of function calls. This

suggests that PPO’s ARIM performance can be made independent of the training

noise levels, given an unconstrained number of objective function calls. However, this

might be difficult to achieve completely since, even for PPO, there is a selection bias

for low infidelity, but not low RIM. This manifests itself in the fact that the average

ARIM starts increasing, albeit slowly, w.r.t. the number of function calls after the

lowest average ARIM value is reached. Furthermore, we note that sharp transitions,

like the stochastic PPO curves depicted in Fig. 5.8(b), are also typically reported in

classical reinforcement learning contexts and are linked to sharp improvements in the

reward by the algorithm [Raf+05].

To compare these results with the more standard noiseless fidelity maximization as

a benchmark, we also plot the average ARIM for L-BFGS with a noiseless fidelity

objective function and analytical gradient information. This version of L-BFGS ac-

cumulates sharp peaks in the fidelity landscape with more function calls since it is

115



5.4. CONCLUSIONS

gradient-based and is effectively climbing to the sharpest peak in the fidelity land-

scape. Hence its average ARIM flatlines quickly w.r.t. function calls to a higher

value compared to the other control algorithms in setting (i), with the exception of

the forward differencing L-BFGS.

Contrasting settings (i) and (ii) for a single control algorithm, the point at which

there is an advantage for non-stochastic optimization via setting (ii) is around 107

function calls for the algorithms, excluding L-BFGS with noise. For the regime below

107 function calls, setting (i) has a clear advantage over (ii) for PPO and SNOBFit.

5.4 Conclusions

In this chapter, we have presented the robustness-infidelity measure (RIMp), a sta-

tistical generalization of the infidelity in the robustness sense, defined w.r.t. pertur-

bations of arbitrary noise level Sσ in the fidelity function. We have used the RIMp

to quantify the robustness and fidelity of quantum controllers obtained from various

control algorithms and have improved upon the qualitative MCRA comparisons in

Chapter 4.

The RIMp is the p-th order Wasserstein distance of the infidelity distribution induced

by Sσ from some ideal distribution that is impervious to Sσ. We showed that the

RIMp is the p-th root of the p-th raw moment of the infidelity distribution and can

be evaluated using perturbed fidelity function evaluations in physical experiments

or Monte Carlo simulations. For p = 1, the infidelity measure RIM1, reduces to

the average infidelity. Further, by using a metrization argument, we justified why

the RIM1 is a practical robustness measure for quantum control problems due to the

convergence of RIMp values, for all p, given highly robust and high fidelity controllers.

As such, it meshes well with the concept of the average infidelity, used as a robustness

target already used in robust [LK09; Wu+19b] and stochastic/adaptive quantum

control settings [Tur19; Che+14] and related to the concepts of the average gate

fidelity and randomized benchmarking to extract circuit error rates per gate that was

covered in Chapter 2.

Moreover, the RIMp is also related to the risk-tunable fidelity measure using a utility

function, as introduced in Ref. [GW21]. The RIM1 also has a nice interpretation

as the area under the curve of the cumulative distribution of the infidelity. Further
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analyses of the utility of the RIMp for, e.g., the optimization of robustness, is an

exciting direction to pursue for future work.

We also noted the connection of the RIMp with classical control. In Sec. 5.2.4, we

demonstrated the connection between the derivative of the RIM and the log-sensitivity

that is a classical robustness measure in the LTI framework where asymptotic dynam-

ics is gauged instead of the transient dyanmics that we are concerned with in quantum

control. The frequency-domain limitations of classical feedback control have limited

applicability in quantifying the performance in the time-domain. This restriction

does not map directly to quantifying fidelity versus robustness in the quantum do-

main [SJL18; JSL18], although it is recovered in some cases [ONe+22b]. Classically,

there is a conflict between minimum error and minimum sensitivity of the error quan-

tified as C(jω) + T (jω) = I, where C is the tracking error and T the sensitivity of

the error relative to unstructured uncertainties [SLH81]. Attempts to embed S and T

in a single criterion have been proposed, e.g., the “mixed-sensitivity” [ZD98]. Thus

the RIMp may be viewed as a mixed-sensitivity approach for uncertainties structured

by their probability distribution function (PDF) where both the error (or infidelity)

and its robustness (the variance of its PDF) are encoded in the Wasserstein distance

of order p.

Later, building on the theoretical foundations of the RIM we further generalized it to

define an algorithmic RIM (ARIM) to compare the performance of control algorithms

in terms of their ability to find robust high-fidelity controllers. Even though the RIM

and ARIM are illustrated for static controls, they can be computed in any situation

that generates a fidelity distribution over [0, 1], including time-dependent controls

and open quantum systems, enabling their use for further study for a wide range of

practical quantum control problems.

We have used the RIM under model and controller noise in this chapter to quantify

the performance, in terms of the robustness and fidelity, of individual controllers

for excitation transfer in spin chains by energy landscape shaping. The controllers

were obtained by four control algorithms (PPO, SNOBFit, Nelder-Mead, L-BFGS)

at simulation noise scales of up to 10%. Using the RIM we found that high-fidelity

controllers can vary widely in robustness to noise across all algorithms that we studied,

although there are notable differences in algorithmic efficacy w.r.t. robustness, as

indicated by the ARIM. We also demonstrate a consistency statistic that can be used

to differentiate control algorithms by how correlated their controller infidelities are
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with the RIM1. This provides a method to predict robustness via the RIM1 without

its explicit evaluation.

To compare the control algorithms, we studied their ARIM performance for multiple

spin transfer problems. Under constrained function calls of a stochastic objective

function (noisy infidelity), PPO performed better than SNOBFit and Nelder-Mead

at certain, problem-specific training noise levels. SNOBFit performance at different

training noise levels was similar, regardless of whether it was good or bad, suggesting

that it is filtering out the noise. Nelder-Mead exhibits similarly consistent behav-

ior across training noise levels with less than optimal performance for all but one

problem. With unconstrained stochastic function calls, PPO showed excellent per-

formance compared to the other algorithms, independent of the training noise level,

since its reward accumulation strategy implicitly optimizes a discounted RIM.

In contrast, when optimizing the RIM1 (average infidelity) over a fixed ensemble of

perturbations, we found that all algorithms were capable of asymptotically finding an

optimum. However, this approach is expensive in terms of the number of function calls

compared to the aforementioned stochastic optimization setting with a noisy fidelity

function as the objective. Our results also show that for stochastic settings, e.g., shot

noise, PPO (or more generally reinforcement learning) is a promising approach to

obtain robust controllers.

We now highlight some promising directions for future work. A limitation thus far has

been that we require the computation of multiple controllers per control problem. In

simulation, this further involves numerous time-consuming matrix exponential evalu-

ations to generate a large number of samples per controller to approximate the RIM

measure. More work is necessary to elucidate the fundamental limitations of the

optimization landscape. Nevertheless, our statistical robustness approach is a useful

tool that can be applied in a wide range of quantum control scenarios where analytic

approximations with small and/or uncorrelated noise are unsuitable. For future work,

it would be interesting to speed up the Monte Carlo sampling or controller sampling.

The former could potentially be tackled by exploiting some structure in the calcu-

lations involving specific models or interesting approximations such as the Laplace

approximation [Rip07]. The latter could involve more careful theoretical analyses of

the control solutions and its manifold.

Furthermore, a limited number of control algorithms were benchmarked due to time

limitations. It would be interesting to explore other algorithms presented in Chap-

ter 2 like genetic algorithms that promise a more global exploration of the control
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landscape or Bayesian optimization that captures the essence of RL via its elegant

Bayesian handling of the exploration-exploitation dilemma. In particular, if similar-

ities between algorithms that share a similar meta-strategy or principle are found,

a systematic isolation of the features of those algorithms e.g. via ablation stud-

ies would strongly highlight their strongly performing components. Once these are

found, a hybrid algorithm can be constructed using these parts to streamline its over-

all performance while compensating for the weaknesses of the individual algorithms.

Finally, it would be interesting to explore the scalability of Bayesian optimization and

RL at controlling increasingly complex quantum systems such as those involved in

VQAs. Since RL excels at mastering highly complex and combinatorially demanding

gameplay and/or search, as evidenced by recent progress in optimizing sorting and

matrix multiplication subroutines [Man+23; Faw+22], we conjecture that RL should

be more successful at complex control tasks than Bayesian optimization based ap-

proaches but this needs to be tested in a falsifiable manner – preferably in a physical

experimental setting.

Lastly, PPO, or model-free RL algorithms in general, have unrealized potential to

be more sample efficient in terms of E calls or experimental resources. In the next

chapter, we look at how to perform model-based RL control with an improved sample

complexity over model-free RL.
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Chapter 6

Sample-efficient reinforcement
learning for control

As discussed in previous chapters, control of quantum devices for practical applica-

tions requires overcoming noise that degrades performance in real-time by finding

robust controls unaffected by this noise. In Chapter 4, we showed that reinforcement

learning (RL) approaches are more likely to find robust controls [Kha+21] at the cost

of requiring large amounts of measurements from the quantum device (samples). In

this chapter, we develop a model-based RL approach to address this problem of high

sample complexity that makes it difficult to allow these model-free algorithms to be

deployed.

Recall from Chapter 2, that typically, a quantum control problem is formulated as

an open-loop optimization problem based on a model [Kha+05a; RNK12; Mac+11a;

Koc+22]. The underlying assumption is that the model represents the system suffi-

ciently accurately. This class of control algorithms has low sample complexity (high

sample efficiency) as generally with an analytical model gradient information can be

leveraged. This is a strong assumption, at least in the noisy intermediate scale quan-

tum era where noise impedes perfect characterization of quantum devices. However,

the approach has merit, since significant thought goes into modelling and engineering

quantum devices [Wit+21]. Alternatively, RL seeks an optimal control scheme via

interaction with the physical system, building learned models to various degrees as

shown in Chapter 4.

RL approaches utilizing only measurements without prior information do not suffer

from model bias. Also, as seen from Chapter 5, RL approaches usually optimize the

average controller performance over the noise in the system, i.e., the RIM and yield
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inherently robust controllers [Kha+23b]. However, this means the number of opti-

mization function calls becomes prohibitively large, and RL’s high sample complexity

is a core problem limiting its practical applicability [SB18b]. This is not surprising as

without a prior model considerably less information is available to the optimization

algorithm that must be obtained via measurements.

From Chapter 2, we know that high sample complexity is typically addressed using

model-based RL. Such methods are successful if the model and the measurements

(samples) obtained during training possess some generalizability [Chu+18; Jan+19]

that is captured by a function approximator (usually a neural network). However,

methods involving universal function approximation of dynamic trajectories are un-

stable. This is because learning can be hindered by the very large space of tra-

jectories, and interpolating from insufficient sample trajectories can be shallow or

incorrect [VHA19]. More importantly, for quantum data, it is known that a time-

independent Hamiltonian can generate infinitely many unitary propagators1, so es-

timating the model may imply learning the entire Hilbert space of propagators for

a particular control problem which is often intractable. This motivates learning the

dynamical generator, i.e., the Hamiltonian, instead of the propagators.

It has recently been shown that inductive biases, i.e. encoding the symmetries of the

problem into the architecture of the model space, such as the translation equivariance

of images in the convolution operation [Bro+21], leads to stronger out-of-distribution

generalization by the learned model. This is because inductive biases impose strong

priors on the space of models such that training involves exploring a smaller sub-

set of the space to find an approximately correct model. In this chapter, we pro-

pose a model-based RL method for time-dependent, noisy gate preparation where

the model is an ordinary differential equation (ODE), differentiable with respect to

model parameters [Che+18]. ODE trajectories do not intersect [CL55; DDT19] which

constrains the space of potential models for learning and makes learning robust to

noise [Yan+19]. We parameterise the Hamiltonian by known time-dependent con-

trols and unknown time-independent system parameters, which, in addition, makes

the model interpretable. We show that combining the inductive bias from this ODE

model with partially correct knowledge (assuming we know the controls, but not the

time-independent system Hamiltonian) reduces the sample complexity compared to

model-free RL by roughly at least an order of magnitude.

1i.e. there is a many-to-one correspondence between unitaries of the form exp{−iHt}
and a time-independent Hamiltonian H (e.g. at different times t)
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6.1. MODEL-BASED REINFORCEMENT LEARNING CONTROL

We demonstrate improvement over the sample efficient soft-actor critic (SAC) model-

free RL algorithm [Haa+18] for performing noisy gate control in three settings that

correspond to leading quantum computing architectures: nitrogen vacancy (NV) cen-

ters (one and two qubits) [HZS20], and transmons (two qubits) [MG20], subject to

dissipation and single-shot measurement noise. We also show that the learned Hamil-

tonian can be leveraged to further optimize the controllers found by our RL method

using GRAPE [Kha+05a; Mac+11a].

We focus on time-dependent (dynamic) gate control in this chapter intead of time-

independent (static) state preparation that was the focus of prior chapters. This

is because of two main reasons. Firstly, the shift from static to dynamic control is

made because dynamic control is fully controllable [SFS01] and necessary for universal

quantum computing [Deu85]. We focussed on gates instead of states since they are

building blocks of larger quantum circuits that the quantum community works with

to make various quantum technologies – some of which were discussed in Chapter 2.

However, dynamic control is not necessary for a solution to exist for a particular

control problem as seen in prior chapters. Even though static control based energy

landscape shaping is a novel and interesting paradigm with scope for robust control

for multiple control problems, gate control using static controls is limited so both

paradigms are important.

This chapter is organised as follows: Sec 6.1 describes the model-based version of the

RL control framework, Sec 6.2 describes how the noise in the control problem was

modelled and Sec. 6.3 presents numerical studies for some example control problems

on the system architectures described above in noisy and ideal settings and how to

leverage the learned system Hamiltonian using GRAPE.

6.1 Model-based reinforcement learning control

6.1.1 The RL’d quantum control problem

The general quantum gate control problem Eq. (2.19) can be represented as an RL

problem by sequentially constructing the control amplitudes as actions, using the

unitary propagator the control implements as the state with the reward as the fidelity:
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6.1. MODEL-BASED REINFORCEMENT LEARNING CONTROL

ak = uk, (6.1a)

sk =
k∏

l=1

exp

(
− i
ℏ
∆tG(tl, ul)

)
, (6.1b)

rk = F(Φ(E(uk)),Φ(Etarget)). (6.1c)

As this is deterministic, the probabilities P are trivial, and we have a simple envi-

ronment function E : S ×A → S ×R, mapping the current state and action (s, a) to

the next state and reward (s′, r).

For QOC, we are usually just concerned with finding an optimal action sequence

u∗ producing the maximum intermediate reward rrrk rather than the optimal policy

function π∗ which can be produced by a sub-optimal policy, too.

6.1.2 Model-Based Reinforcement Learning for QOC

SAC can be augmented to incorporate a model Mζζζ(sk, ak) that approximates the

dynamics of E(sk, ak) using the policy’s interaction data D [Jan+19] where ζ are the

model’s learnable parameters. The model acts as a proxy for the environment and

allows the policy to do MDP rollouts/steps to augment the interaction data. For

this to work, the dynamics obtained from interacting with Mζζζ must be close enough

to the true dynamics of E to allow the policy to maximize J . Fig. 2.1 presents an

illustration of model-based RL which in some sense is a superset of model-free RL.

By improving the returns η̂(π) on the model Mζζζ by at least a tolerance factor that

depends on this dynamical modelling error, the policy’s true returns η(π) on the

environment are guaranteed to improve which we now illustrate next following a

detailed mathematical discussion.

We show that it is possible to improve the environment’s reward under an incorrect

model Mζζζ . For that we need the following result from [Jan+19],

Theorem 6.1. (Monotonic improvement for model-based returns [Jan+19]) Given

k-branch rollout returns ηbranch(π) for a policy π under the model, the true returns

η(π) are lower bounded

η(π) ⩾ ηbranch(π)− 2rmax

(
γk+1ϵπ
(1− γ)2 +

γk + 2

1− γ ϵπ +
k

1− γ (ϵmodel)

)
(6.2)
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6.1. MODEL-BASED REINFORCEMENT LEARNING CONTROL

where the returns η are defined as

η(π) := Eπ

[
∞∑
t=0

γt rt(st, at)

]

= Ert∼E(st−1,aπ
t )

[
∞∑
t=0

γt rt(st, at)

]
. (6.3)

rmax is the maximum reward for an MDP transition; the policy error ϵπ is the upper

bound,

ϵπ ⩾ DTV (πD(s, a)∥π(s, a)) (6.4)

where DTV is the total variation distance and πD is the data generating policy (i.e.,

the policy that generated the MDP data by interacting with the environment E). The
model error ϵmodel is the upper bound

ϵmodel ⩾ max
t

(
E

s∼π
(t)
D
[DTV (PE(s

′ | s, a)∥PM(s′ | s, a))]
)
, (6.5)

where PM(s′ | s, a) is the MDP transition probabiltiy distribution under the model M

that estimates the environment E and likewise for PE . γ is the discount factor and k

is the branch rollout length.

Proof: See proof of Theorem 4.3 in [Jan+19]. □

Informally, the theorem states that as long as the returns under the model ηbranch are

improved by at least the tolerance term 2rmax(· · · ), then the returns under the envi-

ronment η are guaranteed to improve. This also assumes that the policy π generating

the model returns is reasonably close to the policy that interacts with the environ-

ment to generate the MDP data that we use to compute the statistics, including the

returns. The policy error ϵπ can be monitored online and controlled while running the

algorithm by curtailing its training once it exceeds some tolerance threshold. More-

over, Ref. [Jan+19] shows that as long as the dataset size is large enough, the model

error ϵm can de decoupled from the policy error ϵπ. The optimal branch rollout length

k∗ is given by the minimizer of the tolerance. In practice, there are other considera-

tions (e.g., the interplay between various hyperparameters) that need to be accounted

for to determine k∗, so it is usually obtained numerically via hyperparameter tuning.

Using Thm. 6.1 for the ODE model, we can indirectly connect the Hamiltonian error

using the validation loss Lmodel(Dval)) with ϵmodel. If the Hamiltonian error is small,

then ϵmodel is small and the returns from the model and the environment are similar
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for any interacting policy πθ. However, the returns need not be exactly the same

and just need to be better than the tolerance provided by the term −2rmax(· · · ) in

Eq. (6.2) which is a function of ϵmodel. The tolerance is smaller for a more accurate

model and so less of an improvement of the model returns ηbranch is necessary. The

following lemma concretizes this idea by applying Thm. 6.1 to our RL control problem

setup.

Lemma 6.2. (Model error upper bound for the ODE model) If the model error ϵmodel

upper bounds the risk,

ϵmodel ⩾ max
t

(
E

s∼π
(t)
D
[I(Mζζζ(s, a) ̸= E(s, a))]

)
(6.6)

then it also upper bounds the unitary prediction error

ϵmodel ⩾ max
t

(
E

s∼π
(t)
D

[∥∥UE(s,a) − UMζζζ(s,a)

∥∥
∞,t

])
(6.7)

and the total variation distance between the model and environment probabilistic dis-

tributions,

ϵmodel ⩾ max
t

(
E

s∼π
(t)
D

[
DTV

(
PE(s

′ | s, a)∥PMζζζ
(s′ | s, a)

)])
. (6.8)

Proof: Since the model Mζζζ and the environment are both deterministic by assump-

tion, we need to modify the lower bound on the model error ϵmodel in Thm. 6.1.

We can replace the total variation distance between the two supposed distributions

PE , PMζζζ
by an indicator variable I(Mζζζ(s, a) ̸= E(s, a)) if s′Mζζζ

̸= s′E , which is 1 if the

transitioned states do not match and 0 if they do. We can upper bound the total

variation distance like this since DTV(PE , PMζζζ
) = supA |PE(A)− PMζζζ

(A)| ⩽ 1 in case

the probabilities do not match and DTV(PE , PMζζζ
) = 0 when they match perfectly.

Hence, there exists some ϵmodel such that

ϵmodel ⩾ max
t

(
E

s∼π
(t)
D
[I(Mζζζ(s, a) ̸= E(s, a))]

)
(6.9)

⩾ max
t

(
E

s∼π
(t)
D
[DTV (PE(s

′ | s, a)∥PM(s′ | s, a))]
)
.

The risk E
s∼π

(t)
D
[I(Mζζζ(s, a) ̸= E(s, a))] is essentially the fraction of unitaries that the

model predicts incorrectly and is related to the unitary error in Prop. 6.6 by the fact

that ∥∥UE − UMζζζ

∥∥
∞,t

⩽ I(Mζζζ(s, a) ̸= E(s, a)), (6.10)

125



6.1. MODEL-BASED REINFORCEMENT LEARNING CONTROL

provided that
∥∥UE − UMζζζ

∥∥
∞,t

is normalised to be in [0, 1]. So we have

E
s∼π

(t)
D

[∥∥UE(s,a) − UMζζζ(s,a)

∥∥
∞,t

]
⩽ E

s∼π
(t)
D
[I(Mζζζ(s, a) ̸= E(s, a))] . (6.11)

So ϵmodel upper bounds the expected unitary error if and only if ϵmodel upper bounds

the expected risk in the unitary prediction error. □

Notice again that a good choice of the model function class, therefore, can impose

strong and beneficial constraints on the space of possible predicted dynamics and thus

lead to a smaller modelling error and returns’ tolerance factor or allow the model to

reduce the tolerance factor greatly after consuming an appropriate amount of training

data.

Our choice of the model’s functional form is motivated by the two ideas presented

in the introduction: (a) incorporating correct partial knowledge about the physical

system in the model ansatz parameters; (b) encoding the problem’s symmetries and

structure into model predictions as function space constraints. For the system in

Eq. (2.1) we assume that the controls are partially characterized to address (a).

Specifically, its time-dependent control structure Hc is known. We achieve (b) by

parametrizing the system Hamiltonian H
(L)
0 (ζζζ) with learnable parameters ζζζ, where

L is the number of qubits. We make the model Mζζζ a differentiable ODE whose

generator is interpretable and has the form

Hζζζ(u(t), t) = H
(L)
0 (ζζζ) +Hc(u(t), t)

=
n2∑
l=1

ζlPl +Hc(u(t), t) (6.12)

where ζl = Tr[PlH0(t)] ∈ [−1, 1] are real. Generally, like the Choi state, H0/Tr[H0]

admits an arbitrary decomposition in terms of a basis {1}∪{Pl}n
2−1

l=1 of SU(n) algebra.

Analogously, for an open system, we parametrize the time-independent part of any

dissipation dynamics in addition to the system Hamiltonian using an SU(n2) algebra

parametrization: G
(L)
0 (ζζζdiss) =

∑
l ζ

diss
l Pl in the full generator Gζζζ .

The model is trained by minimizing the regression loss for single timestep predictions

using data uniformly sampled, D ∼ D, where D represents the entire dataset,

Lmodel(D) =
∑
D

(Mζζζ (sk, ak)− sk+1)
2. (6.13)

To understand why a differentiable ODE ansatz is a good choice for the model, we

need to define an ODE path that is given by ϕt : E(0)
Hζζζ−→ E(T ) generated by Hζζζ
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Algorithm 2: Learnable Hamiltonian model-based soft actor critic (LH-
MBSAC)

Input :

Hc control Hamiltonian (time-dependent part of H(t) in Eq. (2.1))
T,∆t,M max time, timestep size, number of shots (if open system to estimate ΦΦΦ

using Eq. (2.17))
Etarget target gate
W,C, b, tol Epochs, timesteps, rollout length, validation loss tolerance

(which is a problem-specific hyperparameter)
Output:

u∗ Approximately optimal 2D array of controls that solves Eq. (2.21)
θ, ϕ, ζζζ Optimised parameters of the policy, critic and learned model

Initialize empty environment dataset DE , model dataset DMζζζ
, random policy

πθ
// collect random model training data

Populate DE using random policy πθ with Algorithm 1 without updates
▷ randomly explore the environment E state space

for W epochs do
// Train model

Sample a batch of training and validation data Dtrain, Dval ∼ DE and
minimize Lmodel(Dtrain) in Eq. (6.13)
for C timesteps do

// agent-environment interaction

Execute ak ← πθ(·| sk), observe sk+1, rk ← E(sk, ak) and store data
DE ∪ {(sk, sk+1, ak, rk)}
if Lmodel(Dval) < tol then

// agent-model interaction

Sample uniformly a batch of initial states {sk} ∼ DE , k ← 0
for k′ in {1, · · · , b} do

Execute ak′ ← πθ(·| sk′) and observe sk′+1, rk′ ←Mζζζ(sk′ , ak′)
▷ b-length model rollout

Store DMζζζ
← DMζζζ

∪ {(sk′ , sk′+1, ak′ , rk′)}
k′ ← k′ + 1,

Train policy by minimizing J ′(πθ) in Eq. (2.66) using DMζζζ
∪ DE
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O1

O2

O3

Op

...

...

µµµi

Σij

...

Observables
Oi = TrPiΦ

Control
actions

ui ∼ N (µµµ,Σ)

Figure 6.1: Policy function πθ(ak | sk): we visualize the policy inputs as the gate
(unitary or Lindblad) characterizing observables about the Choi matrix Φ given by
Eq. (2.17) and the tunable outputs are the parameters of a multivariate Gaussian
distribution, i.e., the mean µµµ and covariance Σ. The controls ui are drawn from
N (µµµ,ΣΣΣ).

for some time t ∈ [0, T ] and propagator E. The ansatz is a good choice because

of the following two properties of ODE paths: (a) they do not intersect and (b) if

paths ϕ
(A)
0 , ϕ

(B)
0 start close compared to path ϕ

(C)
0 , then paths ϕ

(A)
t , ϕ

(B)
t remain close

compared to path ϕ
(C)
t . We now present both facts more rigorously to better motivate

the ansatz.

First, we present a simple proof (see for example [CL55; DDT19]) for why ODE

trajectories do not intersect.

To start off, we define the ordinary differential equation as follows:

Definition 6.3.

dz(t)

dt
= fθ(z(t), t) z(0) = z0, z(T ) = zT (6.14)

where fθ : R × Rd → Rd is the vector field map parametrized by some learnable

parameter vector θ. And z : [0, T ] → Rd is the solution. The initial and final

conditions on the state z are given by z0 and zT .

An ODE path or trajectory is, formally, defined by the path ϕt : z(0)
fθ−→ z(T ) or

ϕt(z0) = z(t) for some t ∈ [0, T ]. This is the differential evolutionary path taken by

the state z(t) prescribed by fθ.
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Theorem 6.4. (ODE trajectories do not intersect) Let z
(1)
t , z

(2)
t be two solutions to

the ODE problem in Eq. (6.14) with different initial conditions z
(1)
0 ̸= z

(2)
0 . Then,

∀t ∈ (0, T ], we have that z
(1)
t ̸= z

(2)
t

Proof: The proof follows by Picard’s existence theorem [CL55]. Essentially, it states

that there exists a unique differentiable zt that solves in Eq. (6.14). Suppose there is

some t′ ∈ (0, T ] where z
(1)
t′ = z

(2)
t′ . Solve it backwards in time to obtain z

(1)
0 = z

(2)
0 at

t = 0 which is a contradiction. □

This formalizes property (a) straightforwardly. Next we present a technical fact from

which property (b) becomes more apparent.

Theorem 6.5. (Gronwall’s inequality [You10; How98]) Let fθ : R × Rd → Rd be a

continuous function and let z(1), z(2) obey the ODEs:

dz(1)(t)

dt
= fθ(z

(1)(t), t) z(1)(0) = z
(1)
0 , z(1)(T ) = z

(1)
T

dz(2)(t)

dt
= fθ(z

(2)(t), t) z(2)(0) = z
(2)
0 , z(2)(T ) = z

(2)
T

Assume that there exists a constant C ⩾ 0 such that

∥fθ(z(2)(t), t)− fθ(z(1)(t), t)∥ ⩽ C∥z(2)(t)− z(1)(t)∥ (6.15)

Then, for t ∈ [0, T ],

∥z(2)(t)− z(1)(t)∥ ⩽ eCt∥z(2)0 − z
(1)
0 ∥

Proof: See [How98]. This is a special case of the general proof where both ODEs

evolve according to different fθ f
′
θ. □

Both properties are well known [You10; How98] for ODEs and become very useful

when we try to predict the trajectories from noisy quantum data by imposing strong

priors on the space of learnable Hamiltonians. Property (b) is a consequence of

Gronwall’s inequality [How98] and essentially can be interpreted as: ODE flows that

start off closer (w.r.t. the initial condition) stay closer (w.r.t. the final condition).

Both (a) and (b) essentially imply a sort of intrinsic robustness of the ODE flow ϕt(z0)

to perturbations on z0 [Yan+19]. They constrain the trajectories predicted by the

model Mζζζ to be intrinsically robust to small noise in the states sk and inaccuracies

in the learned system Hamiltonian H
(L)
0 (ζζζ).
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We call the SAC equipped with this differentiable ODE model the learnable Hamil-

tonian model-based SAC (LH-MBSAC) as listed in Algorithm 2. Crucially, we note

that LH-MBSAC generalizes the SAC by allowing the policy to interact with the

ODE model and the physical system. LH-MBSAC gracefully falls back to the model-

free SAC in the absence of a model with low prediction error that is measured from

the performance of the model’s predictions on an unseen validation set of interaction

data. In this case, the model is no longer used/updated and RL control is model-free

as shown in previous chapters. Note that the threshold or tolerance level for switch-

ing to the agent-model interaction part of the algorithm is likely problem-dependent

and thus needs to be selected along with other hyperparameters in RL. However,

this allows us to improve the sample complexity of model-free reinforcement learning

when possible, by leveraging knowledge about the controllable quantum system, yet

still be able to control the system in a model-free manner if this is not possible.

6.2 On modelling practical noise sources

Before we proceed to the experiments’ section, we need to consider noise sources that

plague NISQ devices and how they might be modelled in simulation. Realistically

the two most significant noise sources are errors in the system characterization of H

and finite precision from single shot measurements.

6.2.1 Finite measurements

The number of single-shot measurements for estimating the realized gate Φ using

finite measurements with error ϵ ⩾ 0 and probability 1 − α is O(3k
log 1

α

ϵ2
) by Ho-

effding’s inequality using up to two qubit Pauli measurements [FL11b]. Here, k is

log2 rank(Φ) = 2n where n is the number of qubits. We model this by writing the

Choi state in terms of the generalized Pauli basis and sampling POVM measurements

from a rescaled binomial distribution per POVM operator. For example, we can ex-

pand any n-qubit quantum state ρ ∈ SU(2n) in a tensored unnormalized Pauli basis

{Pi}4ni=1 = {1, X, Y, Z}⊗n as follows,

ρ =
1

2n

4n∑
i=1

Tr [Piρ]Pi. (6.16)
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Note that the Pauli operator is a physical observable with binary eigenvalues in

{+1,−1} which is what we observe after making the right adjustments to the op-

erator, e.g., 3Pi − 1 to make it positively valued. Note that Tr [Piρ] ∈ [−1, 1]. We

make the adjustment so that pi = 2Tr [Piρ] − 1 ∈ [0, 1] can be treated as a bino-

mial variable Bin(M, pi) where M is the number of single shot Bernoulli (single shot)

experiments and pi = EP (k) [I(Outcome of P
(k)
i = +1)] their expectation. Thus, the

estimator ρ̂ is determined by a mixture of 3k non-redundant binomial estimators p̂i.

6.2.2 System noise

The Hamiltonian parameters can be subject to control dependent and independent

noise. We can model this by adding a random noise perturbation to the control

parameters and the system parameters at each timestep that are all i.i.d. This is

done explicitly in Sec. 4.1.1 and used in the previous chapters. However, sometimes,

a dominating noise source can wash out the effects of other noise sources. For this

reason, we do not consider stochastic noise in the Hamiltonian in this chapter and

only consider finite single-shot measurement noise since that is the dominating noise

in our simulations.

6.3 Experiments

We demonstrate the performance of LH-MBSAC on three quantum systems of current

interest in open and closed settings with shot noise. Measurements in this section

are made using Pauli instead of the generalized Gell-Mann operators mentioned in

Chapter 2 and the simulated systems are all qubit systems. The proceeding descrip-

tions are kept general but in all places a truncation to two level systems is applied in

numerical simulations.

To warm up, the first system H̃
(1)
NV is a single-qubit NV center with microwave pulse

control [Fra+17b],

H
(1)
NV(t)

ℏ
= 2π∆σz + 2πΩ (u1(t)σx + u2(t)σy)︸ ︷︷ ︸

Hc(t)

, (6.17)

where ∆ = 1 MHz is the microwave frequency detuning, Ω = 1.4 MHz is the Rabi

frequency and the control field parameters are uj(t) in the range X(1)
NV = {−1 ⩽
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uj ⩽ 1}. In this and subsequent examples terms not covered by Hc(t) are learned,

parametrized by the learnable model parameters ζζζ. The gate operation time is 20 µs.

The second system HNV is again NV center based, but for two qubits [HZS20]. This

system is realised in the system subspace using microwave pulses of approximately

0.5 MHz and is given by

H
(2)
NV(t)

ℏ
= |1⟩⟨1| ⊗ (− (νz + azz)σz − azxσx)

+ |0⟩⟨0| ⊗ νzσz +
∑
l=x,y

2∑
k=1

σ
(l)
k ulk(t)︸ ︷︷ ︸

Hc(t)

, (6.18)

where νz = 0.158 MHz, azz = −0.152 MHz and azx = −0.11 MHz, σ
(l)
j is the lth

Pauli operator on qubit k, and ulk(t) is a time-dependent control field. The range of

control is X(2)
NV = {−1 MHz ⩽ ulk ⩽ 1 MHz} and the final gate time is T = 20 µs.

The third system H̃
(L)
tra is an effective Hamiltonian model for cavity quantum electro-

dynamics (cQED) [MG20] for two transmons/qubits as a proxy for the IBM quantum

circuits [Cro18],

H
(2)
tra (t)

ℏ
=

2∑
l=1

ωlb̂
†
l b̂l +

ηl
2
b̂†l b̂l(b̂

†
l b̂l − 1) (6.19)

+ J
2∑

l=1

(b̂†l b̂l+1 + b̂lb̂
†
l+1) +

2∑
l=1

ul(t)(b̂l + b̂†l )︸ ︷︷ ︸
Hc(t)

.

This model is comprised of Duffing oscillators with frequency ωj = 5 GHz representing

the qubits with an anharmonicity κj = 0.2 GHz, qubit coupling J , and a control field

per qubit ∆j. Note that this a special case of the Bose-Hubbard model [KWM00]

with b̂j representing the boson annihilation operator on the jth qubit. The control

field uj(t) = ∆j(t) is real by construction in addition to extra constraints imposed on

the space of possible controls X. The range of control is given by X(2)
tra = {−0.2 GHz ⩽

∆ij ⩽ 0.2 GHz} and the final time is T = 20 µs.

We demonstrate the results of LH-MBSAC, benchmarked against its model-free coun-

terpart, SAC, for a one- and two-qubit NV center H
(1)
NV, H

(2)
NV and the two-qubit trans-

mon H
(2)
tra . For the two-qubit system, the target gate is the CNOT and for the one-

qubit system, it is the Hadamard gate. Pulses are discretized in accordance with
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the scheme introduced in Sec. 2.1.2.3 for a number of timesteps, N = 20. We fol-

low the parameter restrictions for all systems introduced in Ref. [Wit+21; MG20;

HZS20; Fra+17b]. Moreover, due to limited support in our autodifferentiation li-

brary [Pas+19], we simulate the complex dynamics by mapping the complex ODE

to two real coupled ODEs [Leu+17] (see Appendix B.2 for more details on our ODE

solver).

The following sections are organized as follows. In Sec. 6.3.1, we demonstrate a sample

complexity improvement for the different control problems discussed above in a noisy

closed setting. For the subsequent sections, we study the two-qubit transmon control

problem in more detail. The results were similar for other systems that we studied.

In Sec. 6.3.2, we study the effect of increasing the estimated Hamiltonian error from

its true value on the sample complexity of control. Sec. 6.3.3 discusses how the

learned Hamiltonian in LH-MBSAC can be further utilized for model-based control

using gradient-based methods like GRAPE. Sec. 6.3.4 extends results from the closed

setting to the noisy open system setting. Finally, in Sec. 6.3.5, we highlight some

limitations and silver linings of the LH-MBSAC and the RL-for-control approach for

our specific MDP (Eq. (6.1)) in this chapter and provide promising ideas to circumvent

some of the issues.

6.3.1 Sample Efficiency for Closed System Control

We only consider closed system control for the single-shot measurements (or shots) in

Eq. (2.19) and Eq. (2.10). Note that the Choi operator is still used to estimate the

propagator using single shot measurements and is discussed in detail below. Unitary

control (with closed system dynamics) is implemented for shots as a special case of

open system control where the dissipation operators L are 0.

The Choi operator Φ, corresponding to the gate realised by the controls, is obtained

by sampling from the binomial distribution in Eq. (2.17) with M = 106 shots per

measurement operator. By Hoeffding’s inequality, we know that with probability

1− 0.01 the error in the estimator of ql is 10
−3. Or generally, with probability 1− α,

for ϵ error, we require O(log 1
α
/ϵ2) measurements. Furthermore, we pick the number of

shotsM to estimate the gate for the noisy control problem by understanding how the

unitary error scales with the number of shots as δ, the Hamiltonian error is increased.

We define the Hamiltonian or model error δ as in Ref. [Bur+22]:

δ = ∥H0(ζζζ)−H0∥ (6.20)
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Figure 6.2: Unitary error scaling as a function of the number of shotsM per observable
for the two-qubit transmon unitary control problem with shot noise. Training is done
for about 100 epochs for each point. Larger errors in the system Hamiltonian lead
to smaller reductions in unitary error as the shot precision is improved. For the
control-with-shot-noise case, a shot size of 106 is optimal i.e. where we get the elbow
of dimishing returns to pick for different Hamiltonian errors δ > 0.

where ∥ · ∥ is the spectral norm (the largest singular value) of H0(ζζζ)−H0.

We randomly initialize the learnable system Hamiltonian using the Pauli basis parametriza-

tion in Eq. (6.12) with coefficients ζi ∼ Uniform(−1, 1). The perturbations on each

coefficient ζi to create the noisy Hamiltonian are sampled from a Gaussian using

rejection sampling until a desired value of δ is achieved.

We trained for a large number of epochs (100) and observed the final train and

holdout loss of the model’s unitary predictions for the two-qubit transmon unitary

control problem with shots. The results are shown in Fig. 6.2. Larger Hamiltonian

error results in larger unitary losses and there is no benefit of increasing the shot

precision past around 106, where the Hamiltonian error contribution to the unitary

prediction error starts to dominate.

The AAPT protocol usesM×3L shots in total for 3L possible measurement operators,

which is quite expensive.
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Further sparsity restrictions on the structure of Φ imposed by a k-local Hamiltonian,

where qubit interactions up to only the nearest k ⩽ L qubits are assumed, can allow

the shot cost to go down to O(4k(logM)/ϵ2) for M observables due to a reduction in

the number of observables that need to be measured/tracked which is asymptotically

optimal in the number of measurements [HKP20]. However, since our goal is gate

control, these costs are generally unavoidable to completely verify gate performance.

In practice, such gates are only limited to a few qubits and operations on many qubits

are achieved in the circuit formalism through gate composition [NC10; Cro18].

The environment’s data bufferDE that stores the model’s training data, i.e., the initial

exploration dataset (see Algorithm 2), consists of 1, 20, and 100 pulse sequences for

the one-qubit NV, two-qubit NV and two-qubit transmon systems respectively. These

data are collected using random uniform policy actions during the first run of the LH-

MBSAC algorithm.

The exploration dataset is then used to learn the system Hamiltonians H
(1)
0NV

, H
(2)F
0NV

,

H
(2)
0tra via supervised learning of Mζζζ using the dynamics prediction loss function

(Eq. (6.13)) until a validation loss of around 10−3 × 22q × batch size is reached,

where batch size is the number of samples used for a single training policy update.

Here, q is the number of qubits and q = 2 for the theoretical unitary and q = 4 for

the Choi state (due to the Choi-Jamiolkowski isomorphism in AAPT).

After this, we switch to the model Mζζζ to generate synthetic samples to train the

policy π. Whilst concurrently maintaining policy interactions and attempting control

of the system via the policy π, the model is successively trained in periods with fresh

data to reduce the model error even further. Once the policy starts producing pulses

with nearly optimal fidelities of around 0.98, we terminate the algorithm and use

the learned Hamiltonian to further optimize the pulses using gradient-based meth-

ods like GRAPE to (a) reduce sample complexity costs and (b) improve runtime of

LH-MBSAC, since the model simulations are computationally expensive. We found

that terminating around 0.98 ensures that the application of further gradient-based

methods does not cause the control parameters to diverge too much from their ini-

tial values thereby retaining, at least partially, their favourable robustness properties

[Kha+23b]. Step (b) is discussed in detail in Sec. 6.3.3.

The results for LH-MBSAC and model-free SAC for the one- and two-qubit control

problems are shown in Fig. 6.3. We consider LH-MBSAC’s performance with shots

by estimating the gate using its corresponding estimated Choi state Φ using AAPT

with 106 shots per observable. The sample complexity of LH-MBSAC to achieve a
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Figure 6.3: The closed system fidelity F of the Hadamard gate for (a) H
(1)
NV, and of

the CNOT gate for (b) H
(2)
NV and (c) H

(2)
tra as a function of the number of environment

E calls. The mean fidelity over 100 controllers is plotted as a solid line with the
shading indicating two standard deviations, and the maximum fidelity is indicated by
the dashed line. LH-MBSAC or model-free SAC with the unitary tag indicates the
shot-noise-free closed system problem in Eq. (2.10) and single shot measurements are
indicated likewise. We terminate the algorithm early at F > 0.98 for LH-MBSAC
with and without single shot measurements since the model simulations are expensive
and the learned model at this point can be used to further optimize the moderately
high fidelity RL pulses further as shown in Sec. 6.3.3. The sample complexity of
LH-MBSAC is significantly improved for the two-qubit transmon and the NV center
over model-free SAC for the closed system control problem and with single shot
measurements (of size M = 106), using AAPT. We average these results over three
seeds of each algorithm run where a seed refers to a single algorithm run from scratch
with a fresh set of randomly initialized parameters.

maximum fidelity significantly improves, by at least an order of magnitude, upon the

model-free baseline in both cases, although it is more significant for the two-qubit

transmon.

The size of of the exploration dataset needs to be chosen by considering the ex-

ploration vs. exploitation dilemma of RL. It is part of the set of hyperparameters

for the LH-MBSAC algorithm which effectively decide how much the learned model

Mζζζ should be exploited after the training phase is complete and we are reasonably

confident in the model’s predictions. To that end, we again considered the two-qubit

transmon unitary control problem, since we found that results regarding hyperparam-

eters generalize to other problems for our algorithm2, with a model that is perfect

and has essentially no prediction error. A grid search over the number of model roll-

outs and model training iterations was considered while we evaluated LH-MBSAC’s

2a sign of good inductive bias for the problem family
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sample complexity performance normally as before. Recall that the model rollouts

are the number of MDP transitions the RL policy π makes using Mζζζ instead of the

true environment and is a proxy for exploration. The model training iterations refer

to the optimizer steps taken (we use Adam [KB14] with a learning rate of 3× 10−3)

that update the policy parameters using stochastic gradient descent w.r.t. the unitary

loss. This is a proxy for exploitation. As expected, we find no ceiling in the agent’s

sample complexity performance w.r.t. both exploration and exploitation using the

perfect model. The highest rollout length rl (explore), train iterations mtit (exploit)

combination rl, mtit = 10, 100 in Fig. 6.4(h) optimizes the fidelity fastest.

Moreover, we observe that a balance is necessary between the two processes as ex-

ploring too much without exploitation results in inaction (see Fig. 6.4(i)) on the

part of the agent and too much exploitation leads to overfitting (see the first row

in Fig. 6.4(a-d)). Moreover, practically we observe diminishing returns for larger

magnitudes of rl, mtit. Due to this fact and that both processes are expensive in

terms of LH-MBSAC’s wall time, we chose rl = 5, mtit = 10 (see Fig. 6.4(g)) as a

compromise between leveraging Mζζζ to improve the policy’s sample complexity and

reduce the wall-time of our numerical simulations. Hence, our aforementioned choice

of exploration datasets is chosen with this empirical utility in mind.

How much training data is really needed for model training or Hamiltonian learning?

A hallmark for a good ansatz for the model Mζζζ estimating the dynamics of the

controllable system would be less demand of supervised learning MDP data needed

for low prediction error.

We consider the Hamiltonian error, unitary train and holdout error. Hamiltonian

error δ is the spectral norm error between the learned and true system Hamilto-

nian. The others are mean squared errors. Cross-validation is used to estimate the

model’s generalization ability on a holdout dataset of unseen random unitary data,

also sampled from the MDP transitions and collected by the policy π during training.

As seen from Fig. 6.7, for the two-qubit transmon control problem, for very small

dataset sizes comprising 20 to 200 unitary transitions, the single step unitary pre-

diction error is large compared to training with about 2, 000 unitaries or about 100

full length pulses with 20 timesteps, though the decrese in error is diminishing with

dataset size. All errors are in agreement across the datasets over 200 training epochs.

This is further corroborated by Fig. 6.5 where the final errors after 200 epochs are

plotted. There is a reduction in the final errors for the 2, 000 dataset size, but the

improvement is diminishing in magnitude and plataeus at this loss for larger dataset
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Figure 6.4: Model rollout length (rl) and model train iterations (mtit) for an LH-
MBSAC with the perfect model. We study the tradeoff between training (exploita-
tion) and the rollout length. For the perfect model, there is no ceiling. However,
in practice, we find that the returns diminish in terms of rollout length and training
iterations: compare for example (g) and (i).
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Figure 6.5: Effect of training data size on model generalization metrics: Hamiltonian
error, unitary training Lmodel(Dtrain) and validation (holdout) loss Lmodel(Dval) for the
noisy shots based unitary control of the transmon. The line with the same shade as
the right axis represents Hamiltonian error.

sizes. This is still much less than what was required to train a neural network model

for Mζζζ during the initial stages of our research where the training dataset size needed

to be of the order of 106. Moreover, these experiments provide us with an idea of what

dataset size to use to train the model Mζζζ by setting the number of initial exploration

MDP transitions to add to the policy’s buffer for the transmon control problem. We

also adopted multiple training phases to continuously train Mζζζ using fresh batches

of training data collected by the policy.

The exploration dataset is used to learn the system Hamiltonians H
(2)
0tra , H0NV

via su-

pervised learning ofMζζζ until a validation loss of around 10−3×22q×train batch size

is reached after which we switch to the model Mζζζ to generate synthetic samples to

train the policy π. Note that here q is the number of qubits and q = 2 for the theoret-

ical unitary and q = 4 for the Choi state (due to the Choi-Jamiolkowski isomorphism

in AAPT).

6.3.2 Sample Complexity as a Function of Hamiltonian
Error

Continuing with the closed system control problem, in this section, we study the

relationship between sample complexity and error in the estimated model Hamiltonian

H0(ζζζ) compared to the true system Hamiltonian H0 as the error is increased. This
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Figure 6.6: Sample complexity or E calls of LH-MBSAC for the two-qubit transmon
control problem as a function of spectral norm error δ, quantifying closeness of the
learned system Hamiltonian H0(ζζζ) and the true system Hamiltonian H0. The cases
for δ = 0.01, 0.02, 0.05, 0.1, 0.2 are plotted in (a)–(e). The mean fidelity over 100 con-
trollers is plotted as a solid line with the shading indicating two standard deviations
and the maximum fidelity is indicated by the dashed line. The ‘noiseless unitary’ is
the no-shot noise setting where the exact unitary is seen by the algorithm while, al-
ternatively, the unitary is estimated using AAPT with M = 106 shots per observable
characterizing the Choi state. The ‘no model train’ line indicates the setting where
no learning of H0(ζζζ) occurs and δ is fixed while the ‘model train’ lines denote the
setting where δ is reduced through model training. In general, we see that there are
some instances where the RL agent is able to optimize the objectively wrong model
δ = 0.2, 0.01 and there is a non-linear dependence of E calls on δ, i.e., a large δ can
produce better model-predictive trajectories with a smaller unitary prediction error.
This points us to consider the idea of learning Hamiltonians that are only ‘locally
consistent’. Once learning H0(ζζζ) is enabled, algorithmic performance is restored in
both the noiseless (with no shot noise) and shot-noise unitary settings. The number
of measurements is M = 106 per observable.
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relationship is highly non-linear/irregular and is discussed in detail later in the section.

On a high level, the purpose of this section is to understand the interplay between

control and model learning especially if the model is inaccurate. Can we still learn

a near optimal control policy even if the model is incorrect? To an extent, yes: we

show that when the model error is small, LH-MBSAC is able to successfully find a

near optimal control pulse, even with an incorrect model.

For this study, we compare two settings for some value of the Hamiltonian or model

error δ in each experimental run: (i) learning the system Hamiltonian, i.e., δ is de-

creased from its initial value; (ii) not learning the system Hamiltonian, i.e., δ remains

fixed throughout the experiment. Case (ii) effectively corresponds to Algorithm 2

without any model training, i.e., we do not attempt to minimize Lmodel(Dtrain) to

update the model and instead set the model to have a fixed constant Hamiltonian

error δ. The range of Hamiltonians corresponding to different δ values are chosen

by randomly sampling the true Hamiltonian with rejection using Gaussian pertur-

bations. The non-linear dependence on the sample complexity of LH-MBSAC as a

function of δ for the two-qubit transmon control problem for both cases is shown in

Fig. 6.6(a)–(e) for δ =∈ {0.01, 0.02, 0.05, 0.1, 0.2}.

For the two-qubit transmon problem, the δ = 0.02, 0.05, 0.1 results show worse per-

formance compared to the δ = 0.2 results for the theoretical unitary control problem

(without measurement noise). This indicates that some model system Hamiltoni-

ans H0(ζζζ) with a larger δ predict dynamics more consistent with the true system

Hamiltonian H0 dynamics than H0(ζζζ) with a smaller δ. However, learning H
(2)
0tra for

all shown cases restores performance for both the noiseless unitary and shots-based

closed system control problems.

To explain these empirical results and make them more intuitive, we now make use

of the integration by parts lemma of Ref. [Bur+22] that bounds δ by the unitary

prediction error of the ODE model w.r.t. the environment for the unitary control

problem Eq. (2.10).

To make our empirical results more intuitive, we bound the unitary prediction error

of the ODE model w.r.t. the environment for our idealised control problem Eq. (2.10)

with the error in the model parameters from truth. Here, we focus, proof-wise, on

the unitary case for simplicity since the arguments are similar for open systems. We

also consider a continuous version of the propagators and the generators since the

result makes a qualitative point only and again the discretization generalizations can

be approximately made if necessary.
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Consider a unitary RL control problem with the MDP in Eq. (6.1), where the envi-

ronment’s Hamiltonian and propagator at some timestep tl are given by HE(tl, ul) =

H0 + Hc(ul, tl) and UE(uk). Now consider the model Mζζζ(sk+1 | ak, sk) that predicts

a single step of unitary dynamics sk
Hζζζ−→ sk+1 under its parameterised generator

Hζζζ = H
(L)
0 (ζζζ) +Hc(ul, tl) following our assumptions in Sec. 6.1. Now we bound the

error in the single step predicted propagator Uζζζ using the integration-by-parts lemma

from Ref. [Bur+22].

Proposition 6.6. (Bound on the model predictions) The following bound between the

unitary model’s predicted state Uζζζ(u:k) and the environment’s unitary state UE(uk)

holds

∥∥UE − UMζζζ

∥∥
∞,t

⩽ t2
∥∥∥H(L)

0 (ζζζ)−H0

∥∥∥ · (1

t
+

2

t
∥Hc∥1,t + ∥Hζζζ∥+ ∥HE∥

)
(6.21)

Proof: Note that the generator differenceHζζζ−HE = H
(L)
0 (ζζζ)−H0 is time-independent.

So the integral action difference term becomes∥∥∥∥∫ t

0

ds H
(L)
0 (ζζζ)−H0

∥∥∥∥
∞,t

= t
∥∥∥H(L)

0 (ζζζ)−H0

∥∥∥
∞,t

= t∥H(L)
0 (ζζζ)−H0∥, (6.22)

where, in the last line, we drop the supremum over time due to time independence.

Now we can rewrite

∥HE(u(t), t)∥1,t = t∥H0 +Hc(u(t), t)∥1,t (6.23)

⩽ t (∥H0∥+ ∥Hc(u(t), t)∥1,t)
(6.24)

using the triangle inequality. Combining both facts yields the inequality. □

The inequality in Eq. (6.21) can be analogously extended to the open system setting

w.r.t. the Choi matrix Φ. Note that
∥∥UE − UMζζζ

∥∥
∞,t

⩽ 2 and so the unitary

prediction error in the left hand side in Eq. (6.21) is generally not linearly related

to the Hamiltonian error. Finally note that Prop. 6.6 will be qualitatively used and

tighter bounds are possible [Bur+22] but will not be qualitatively different.

There are two observations worth mentioning about inequality Eq. (6.21): (a) when

all other variables are fixed, the error in the model’s unitary predictions w.r.t. the

environment’s ground truth grows as a function of time; (b) the model prediction error
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Figure 6.7: The Hamiltonian error, unitary training Lmodel(Dtrain) and validation
(holdout) loss Lmodel(Dval) as functions of training epochs for the two-qubit transmon
unitary control problem with noisy measurements and M = 105. Data size denotes
the number of single-step unitary transitions. The validation set is fixed to 5, 000
transitions under random policy actions ak. All three error measures improve as
a function of training. Adding more training data appears to provide diminishing
returns in predicting the local unitary dynamics.

is a lower bound of the error in the model parameters H0(ζζζ)
(L) w.r.t. the ground

truth parameters H0. The prediction error Lmodel(Dval) can be estimated using a

validation dataset Dval and relates this observed validation loss to the Hamiltonian

difference. Importantly, we note that the inequality implies that the closeness in the

propagator does not always translate to closeness in the Hamiltonian. Therefore, a

model Hamiltonian can be locally a good fit for propagator predictions while still

having a large Hamiltonian error
∥∥∥H(L)

0 (ζζζ)−H0

∥∥∥. So arbitrary closeness in terms

of the Hamiltonian error need not be necessary for good unitary predictions. But

conversely, if we can be certain that the model Hamiltonian is close to the system

Hamiltonian, then the unitaries must be close. This motivates that a good guess (in

the form of partial knowledge about the system) of the true Hamiltonian is useful in

bounding the prediction errors.

We exploit this fact to learn the local Hamiltonian H
(L)
0 (ζζζ) that approximates the dy-

namics of H0 w.r.t. UE . Qualitatively, we observe that Hamiltonian error, propagator

validation and training error are both improved during training (i.e., the propagator

loss on the validation set is predictive of Hamiltonian error). This can be seen in

Fig. 6.7 for the noisy shot setting. But we also note in this example that the Hamil-

tonian H
(L)
0 (ζζζ) that is learned is local, as seen from the Hamiltonian error plateauing

at a non-zero value.
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From this, we infer that the unitary model prediction error or the supervised learning

regression loss Lmodel(D) in Eq. (6.13) being small does not imply closeness between

learned and true system Hamiltonian, i.e., δ → 0. This is illustrated for the two-qubit

transmon control problem in Fig. 6.8(a). Note that there is also a lot of variation in

the unitary model prediction error, even for the same value of δ. However, we see that

with decreasing δ, the variation decreases, which is also explained by the above bound.

Moreover, we confirm that the unitary model prediction error grows as a function of

time. This makes intuitive sense since predictions far into the future compared to

their time-wise preceding counterparts must necessarily have more built-up error.

Although there are some works with better relational bounds on the Hamiltonian error

in terms of the observable error, these hinge on the ability to maintain a privileged

basis and/or access to special probe states such as the Gibbs state basis [Ans+21;

HKT22]. These bounds crucially do not include the propagator error, thanks to

previous assumptions, which is a more general approach to bounding the quantum

dynamical evolution error. Of course, there is always a price to be paid for generality

and in this case, it is that the error bounds are less constrained and the link between

the Hamiltonian and the unitary error becomes non-linear for the general case of the

bound.

From Prop. 6.6, we infer that the unitary model prediction error or the supervised

learning regression loss Lmodel(Dtrain) in Eq. (6.13) being small does not imply close-

ness between learned and true system Hamiltonian, i.e., δ → 0. However, in the

converse case, δ being very small necessarily implies small propagator error. This is

illustrated for the two-qubit transmon Hamiltonian in Fig. 6.8(a). The Hamiltoni-

ans are again sampled using Gaussian perturbations to the transmon Hamiltonian.

There is also significant variation in the unitary model prediction error, even for the

same value of δ for different repetitions of the random Hamiltonian. However, we see

that with decreasing δ, the variation decreases, which is also explained by the above

bound. Finally, the same pattern can also be observed if we take δ to be the mean

squared difference between the Pauli coefficients of the true and learned Hamiltonian.

Thus, this behaviour is general and not limited to the choice of δ.

The main takeaway of this section, that is taken further in the next section, is that

for the control problems considered in this thesis it is only necessary to learn models

that are ‘locally consistent’ in terms of the unitary trajectories they generate, and

small unitary prediction errors can be achieved by models with non-negligibly small

δ.
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Figure 6.8: (a) An illustration of the non-linear relationship between the unitary
model prediction error

∥∥UE − UMζζζ

∥∥ and Hamiltonian spectral norm (solid) error or
mean squared Pauli basis difference (dashed) error as δ for the two-qubit transmon
control problem. For the same 1, 000 random control pulses, we evaluate the average
unitary prediction error of Mζζζ with increasing δ for three different uniform randomly
sampled two-qubit Hamiltonians H0(ζζζ) to illustrate the variation in response to the
unitary error. (b) Local and global unitary trajectories: F as a function of a random
control pulse with either the learned system Hamiltonian H0(ζζζ) or the true system
Hamiltonian H0. The learned H0(ζζζ) trajectories do not coincide with the global
trajectory with δ = 0.91509, with the majority contribution coming from a global
phase factor such that Tr[H −H0(ζζζ)] ≈ 0.9. Both trajectories start off extremely
close and start diverging as time increases due to accumulation of small errors in
the predicted dynamics. (c) The learned H0(ζζζ) can be leveraged using GRAPE to
further optimize the fidelities of LH-MBSAC’s controllers. We plot a histogram of
100 LH-MBSAC controller infidelities 1 − F before and after applying GRAPE on
these controllers using the learned Hamiltonian and a random Hamiltonian. The LH-
MBSAC fidelities are significantly improved after applying GRAPE. The appropriate
baseline/benchmark representing our ignorance of H0 is a random H0(ζζζ) (with uni-
form random Pauli parameters) which, when plugged into GRAPE, yields extremely
low fidelities near 0 towards the extreme right-hand side of the plot.
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6.3.3 Leveraging the Learned Hamiltonian with GRAPE

Proposition 6.6 paves the way to learning system Hamiltonians that are locally con-

sistent with the unitary trajectories they generate. By local we mean that the learned

Hamiltonian is consistent with the true Hamiltonian on only a subset of all possible

generatable trajectories relevant to the control problem. In this section, we delve

deeper into the learned model errors and also show that these local models can be

leveraged to further optimize the fidelities of LH-MBSAC’s controllers using gradient-

based methods like GRAPE [Kha+05a; Mac+11a].

During the model’s Mζζζ training phase, H0(ζζζ) is made consistent with trajectories

uniform randomly drawn from the data buffer DE by minimizing the regression loss

Lmodel(DE). This allows us to learn a model of the environment that can predict

locally consistent unitary trajectories (i.e., at the scale of the control problem). In

other words, the learned system Hamiltonian H0(ζζζ) does not have to coincide with the

true system Hamiltonian H0 for it to be useful for the optimal control task. Indeed,

we take the Hamiltonian learned for the two-qubit transmon in Fig. 6.3(c) and find

that it has δ = 0.91509. Diving deeper, the matrix difference between the true H0

and learned Hamiltonian H0(ζζζ) is,

H − H0(ζζζ) =


−0.912 0.001 −0.001 0.001
0.001 −0.914 0.001− 0.001i 0.001 + 0.001i
−0.001 0.001 + 0.001i −0.913 −0.001
0.001 −0.001− 0.001i −0.001 −0.914

 .
Notably, we can see that most of the error is actually in Tr[H −H0(ζζζ)] with the true

Hamiltonian being learned up to a scale factor of around 0.9 with the rest of the

parameter error being small. This is precisely the global phase error that cannot be

learned [EHF19].

Despite this discrepancy between the true and learned system Hamiltonians, we find

mostly good local agreement between the two random trajectories they induce thanks

to the supervised training phase of the model. We show in Fig. 6.8(b) the local and

global trajectories corresponding to H0(ζζζ) and H0 for the two-qubit transmon which

shows that the two unitary trajectories w.r.t. the CNOT fidelity are not always

coinciding. More specifically, we can see a high overlap in the fidelities induced by

random pulses for times between 0 and 100 µs. Moreover, the small differences in

the generator only start manifesting as the time scales get longer and this can be

explained by accruing of small errors in predicted dynamics. This confirms that the
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Figure 6.9: Diamond norm fidelity F⋄ for the two-qubit transmon control problem in
low and high Lindblad dissipation regimes for LH-MBSAC. The results are averaged
over two seeds with the mean F⋄ over 100 controllers shown in solid and the maximum
F⋄ in dashed lines. Shading denotes two standard deviations from the mean. Here,
the ‘learn’ label signifies that dissipation operators are being learned in addition to
the system Hamiltonian.

unitary model prediction error grows as a function of time. This makes intuitive

sense since predictions far into the future, compared to their time-wise preceding

counterparts, must necessarily have more built-up error. Furthermore, this learned

‘local’H0(ζζζ) and the controllers found by LH-MBSAC can be used in conjunction with

the model-based GRAPE control algorithm [Kha+05a; Mac+11a] to optimize the

SAC controller fidelities much more quickly than via just RL alone using accelerated

second-order gradient descent. The LH-MBSAC controllers act as seeds, so GRAPE

does not move too far away in pulse parameter space compared to where it started.

Although not done here, this can also be imposed as an explicit constraint. Note that

the question of exactly when to switch over to GRAPE beyond heuristics remains

unanswered.

The fidelities after applying GRAPE are evaluated w.r.t. the true system Hamiltonian

H0. Usually LH-MBSAC controllers have moderately high fidelities around F >

0.98 which are improved to F > 0.999. In Fig. 6.8(c), we show the RL controllers

being optimized further using the learned H0(ζζζ) with GRAPE. Experiments in this

section for the two-qubit NV center system yield similar results and can be found in

Appendix B.4.
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6.3.4 Open System Control with Single Shot Measurements

Due to the interpretable nature of our ODE model’s ansatz in Eq. (6.12), it is per-

tinent to ask if two competing but linear terms in the model Mζζζ can be learned

simultaneously. In this section, we find that for our model learning setting, the an-

swer to this question is no. However, this is not general to all problem settings and

could potentially be pursued in future work.

In the previous sections, we only learn one term represented by H0(ζζζ). Utilizing

the open system formulation of the control problem in Eq. (2.19), we consider Lind-

blad dissipation along with shot noise for the two-qubit transmon control problem in

Eq. (2.19). Specifically, we consider the decoherence operator L
(l)
diss =

√
2
R∗

l
blb

†
l , acting

on the lth qubit, and the decay operator L
(l)
deca =

√
2
Rl
bl for l = 1, 2. R∗

l and Rl are the

decoherence and decay rates. Both operators are time-independent. Comprising both

of these time-independent operators, the Lindblad term L1 is learned concomitantly

with the system Hamiltonian.

We perform experiments for high and low dissipation corresponding to the times

R∗hi
l = Rhi

l = 4 µs, and R∗lo
l = Rlo

l = 20 µs. The results are shown in Fig. 6.9

where the ‘learn’ label signifies that L1 is being learned in addition to the system

Hamiltonian H0(ζζζ).

The diamond norm fidelity [BS10] F⋄,

F⋄(Φ(u(t), t),Φtarget) = 1− ∥Φ(u(t), t)−Φtarget∥⋄, (6.25)

is used instead of the generalised state fidelity since the latter lacks the sensitivity

to detect the low dissipation regime (see Appendix B.3). We find that attempting

to learn L1 while learning H0(ζζζ) confers little to no advantage in both the high and

low dissipation regimes for this control task. Further investigation shows that the

estimate of the system Hamiltonian H0(ζζζ) compensates for the observed discrepancy

in observed dynamics due to dissipation as much as it is unitarily possible. More-

over, the learning processes for L1 and H0(ζζζ) become mixed so learning multiple

independent terms in Mζζζ might not be suitable for LH-MBSAC.

6.3.5 Limitations and Silver Linings

We note that there are two major limitations of LH-MBSAC. The first is that only

the system or time-independent part of the Hamiltonian can be learned using the
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Figure 6.10: The infidelities over time for 100 different control pulses found by LH-
MBSAC and by GRAPE using the learned system Hamiltonian H0(ζζζ) for the two-
qubit transmon control problem with final time T ⩽ 20 µs. RL pulses are further
optimized using GRAPE. GRAPE is also used to obtain pulses without the RL con-
trols as initial values for a fixed final gate time T = 20 µs. Short optimal controls
found by RL are identified by truncating RL pulse parameters at times t ⩾ {6, 9} µs
whose final infidelities are shown as stars with t = 6 µs being Pareto optimal w.r.t.
the efficient frontier (the surface indicating the best fidelity for that time).

algorithm, while the more difficult problem of learning the time-dependent part of

the Hamiltonian [EHF19] is left as future work.

Moreover, we found that LH-MBSAC was not able to tackle a three-qubit transmon

control problem to obtain a Toffoli gate on an extension of the transmon system.

The limitation applied mostly to the RL agent; a viable Hamiltonian is learned that

can be leveraged with GRAPE as before. Specific computational details are dis-

cussed in Appendix B.5. Essentially, our findings indicate this is an optimization

landscape problem and an issue specific to the meta RL strategy of finding optimal

pulses instead of a hyperparameter problem. There are two major reasons behind

this assessment. Firstly, the values and the gradients for policy and value functions

saturate with large training times, i.e., both are stuck in suboptimal extrema, which

ultimately culminate with a prematurely optimized reward function. Secondly, since

the model Hamiltonian is known beforehand (or also learned), GRAPE equipped with

this Hamiltonian and initialized with the highest fidelity LH-MBSAC controllers also

gets stuck.
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However, the LH-MBSAC strategy is not limited to SAC and can augment different

RL algorithms for which the three-qubit problem may be tractable. Also, since this

is likely an optimization landscape issue, a reformulation of the RL control problem

could also alleviate this issue by reducing the probability of SAC getting stuck by

increasing the range of fidelities the RL agent sees as ‘proximally optimal’. At present,

the agent’s goal is to maximize all fidelities it observes, with most of the observations

being premature, i.e., before the final gate time. This is highlighted in Fig. 6.10 which

shows the infidelity 1−F as a function of time for 100 pulses found by LH-MBSAC

and GRAPE for the two-qubit transmon control problem. Compared to GRAPE, LH-

MBSAC pulses are much more consistent and periodic in terms of the intermediate

fidelity values. This highlights that the RL approach is biased towards optimizing

intermediate fidelities along with the final target fidelity (since the objective function

in Eq. (2.63) is the regularized expected cumulative fidelity). This is quite different

from the approach taken by the gradient-based GRAPE algorithm. Despite being

interesting from a controller robustness point of view [Kha+23b], this bias can prevent

solutions that do not admit high intermediate fidelities from being found as RL can

get stuck in a loop mining medium-level fidelity values. Stepping away from this

particular sequential decision-making MDP formulation might be one solution to

consider in future work.

There are silver linings for the aforementioned MDP formulation. RL pulses are

fidelity-wise better, on average, across the duration of the pulse. Leveraging the

learned system Hamiltonian, we can further improve the performance of the RL

pulses by using GRAPE with the RL pulse parameters as initialization. As seen

in Fig. 6.10, these pulses are still better than the ones found by GRAPE using the

learned system Hamiltonian but with completely random pulse initializations, i.e.,

without LH-MBSAC controllers as seeds.

Furthermore, this RL bias towards valuing intermediate fidelities allows us to iden-

tify optimal pulses that can be executed in short times, which is a difficult prob-

lem for GRAPE even if the final gate time is explicitly added to the control objec-

tive [Mac+11a].

Truncating the control sequence for pulses at time t if the infidelity is below 5×10−2,

we again leverage GRAPE to maximize the final fidelities at these shorter times.

These are shown as stars in Fig. 6.10 with the fidelities at t = 6 µs being approximately

Pareto optimal, i.e., the best fidelity for that time. The Pareto optimal efficient
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frontier is constructed by sampling 100 GRAPE pulses with random intializations at

different final gate times.

Finally, in the next section we demonstrate that controllers found by LH-MBSAC be-

fore and after applying GRAPE are more robust in comparison to GRAPE controllers

found from scratch using the ARIM from Chapter 5.

6.3.6 Robustness of LH-MBSAC Controllers

In this section, we conduct a RIM analysis of LH-MBSAC controllers both before and

after applying GRAPE to them. We compare both to the baseline where GRAPE is

used without RL seeds to find controllers. The control problem is again for the two-

qubit CNOT for the transmon system. In addition to the 100 controllers found earlier

by LH-MBSAC, we compute 100 new GRAPE controllers with random initialization.

We use the ARIM to compare the 3 control acquisiton algorithms in Fig. 6.11 using the

techniques discussed in Chapter. 5. Also for the gate control problem like in previous

chapters, it can be seen that RL controllers before and after applying GRAPE are

more robust to noise in the control amplitudes and the system Hamiltonian compared

to the pure GRAPE baseline. More importantly, this highlights that the advantages

of robustness conferred by RL, which optimizes indirectly for the RIM, are not lost

when GRAPE is applied to the RL controllers. Note that the computation of the RIM

is expensive in the number of samples, using the RIM as a post evaluator of robustness

rather than during optimization is more beneficial if the goal is sample efficiency (as

discussed in Sec. 5.3.3). In contrast, since GRAPE is a second-order gradient-based

algorithm (relying on L-BFGS), we find that it optimizes for the fidelity only and

therefore expectedly performs poorly in terms of the ARIM compared to LH-MBSAC.

However, the application of GRAPE to RL controllers does well in contrast and

this is likely due to the fact that the starting position (the SAC controller before

applying GRAPE) of the second-order ascent to increase the fidelity coincides with

being closer to a better local optimum than the one found by GRAPE on its own.

The final controller amplitudes after finetuning using GRAPE are not too far from

their starting position since GRAPE stops after the maximal peak sought by the RL

algorithm, which it attains partially, is fully attained since here gradients become

zero. Therefore, applying GRAPE to RL controllers allows us to avoid unnecessarily

increasing the sample complexity of the RL algorithm to reach very high fidelities by

stopping early whilst retaining the robustness properties of RL controllers.
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Figure 6.11: ARIM comparison of RL controllers (SAC) found by LH-MBSAC, the
variant when GRAPE is applied to the SAC controllers and the controllers found by
GRAPE without RL seeds i.e. with random initialization. The ARIM is computed
using the techniques discussed in Chapter 5. We use 1000 bootstrap samples to com-
pute the 95% confidence intervals. Noise in (a), (b) and (c) is drawn from N (0, σ2

sim)
where σsim is a percentage computed w.r.t. the maximum value being perturbed. For
(a) only the controller amplitudes are perturbed. For (b), the noise is added to the
non-zero parameters of the system Hamiltonian and (c) considers both noise sources
simultaneously. In all cases, RL controllers are ARIM-wise better than GRAPE con-
trollers.
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6.4 Conclusions

We have presented the learnable Hamiltonian soft actor-critic (LH-MBSAC) algo-

rithm for time-dependent noisy quantum gate control. LH-MBSAC augments model-

free SAC by allowing the RL policy to query a learnable model of the environment

or the controllable system. It thereby reduces the total number of queries (sample

complexity) required to solve the RL task. The model is a differentiable ODE that

is equipped with a partially characterized Hamiltonian, where only the parametrized

time-independent system Hamiltonian is required to be learned. We show why this

is a good inductive bias for the quantum control task as ODE trajectories do not

intersect, thereby sensibly constraining the space of models to be learned. Using ex-

ploration data acquired from the policy during the RL loop, we train the model by

reducing a model prediction error over the data. We show that LH-MBSAC is able

to reduce the sample complexity for gate control of one- and two-qubit NV centers

and transmon systems in unitary and single-shot measurements’ settings.

We note that our approach is similar in spirit to Ref. [CKW22] where a novel Hamil-

tonian learning protocol via quantum process tomography is proposed for the pur-

pose of model-predictive control. The complete Hamiltonian (including the control

and system parts) is identified term by term via a Zero-Order Hold (ZOH) method

where only one term is turned on at a time, e.g., by setting the control parameters

to zero, and it is learned individually using optimization over the Stiefel manifold.

As a side remark, a sample complexity advantage between learning the Hamiltonian

with quantum control than without it has recently been shown [DOS23]. The learned

Hamiltonian is then used to obtain a viable control sequence for a variety of state and

gate preparation problems for closed (unitary) systems under the influence of initial

state preparation errors. While it is possible for our Hamiltonian learning protocol

to also learn the full Hamiltonian using the ZOH method, we have instead solely

focussed on the problem of improving the sample complexity of RL in this chapter

through the incorporation of a partially known physics-inspired model. Furthermore,

our focus has also been directed on the interplay of concurrently learning the model

and controlling the system in noisy closed and open system settings. Exploring more

efficient Hamiltonian learning protocols for the sake of control is certainly an active

area of research and should be looked at in conjunction with modern machine learning

theory and learning dynamics’ algorithms like the ones considered in this thesis such

as Neural ODEs [Kid22].
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Moreover, we highlight that despite the non-linear relationship between the error in

the learned Hamiltonian and the model prediction error, LH-MBSAC’s performance

is robust to this variation. Furthermore, even if the learned Hamiltonian that mini-

mizes the model prediction error is not the same as the true system Hamiltonian, the

learned Hamiltonian can be leveraged using gradient-based methods that require full

knowledge of the controllable system, like GRAPE, to further optimize the controllers

found by LH-MBSAC. Applying LH-MBSAC in high and low Lindblad dissipation

regimes with shot noise, we found that its performance in both was not improved if

the Lindblad dissipation terms are also learned in addition to the system Hamiltonian.

This is likely because the learning of the system Hamiltonian is affected by the need

to incorrectly account for the extra dissipation effects that should only be represented

by the learned Lindblad operators compared to the case where we solely learn the

system Hamiltonian. Finally, we showed that applying GRAPE to RL controllers still

retains the robustness performance of RL controllers discussed in Chapter 5 using the

ARIM and this procedure could therefore be used to improve the relatively moderate

fidelities found by RL without expending significantly more queries of the system.

Despite LH-MBSAC’s limitations requiring it to know the time-dependent Hamilto-

nian and system scalability beyond two qubits (four with single shot measurements

due to AAPT), the algorithm can be used to augment many existing model-free RL

approaches for quantum control. This should afford more sample-efficient RL-based

optimization of quantum dynamics for near-term noisy quantum processors on a va-

riety of architectures as shown in this chapter. Specific tasks can include noisy small

circuit optimization, state preparation [Siv+22b; Buk+18] or gate optimization us-

ing a partially known model of the underlying dynamics [Dal+20c]. Since having

an accurate model can be extremely useful for validation of quantum operations and

model bias can be crippling, model-based RL methods like LH-MBSAC can improve

the model specifically tailored for some downstream task, e.g., quality assessment

of topological codes [Val+19] or fine-tuning current implementations of a two-qubit

cross resonance gate on some novel architecture [Din+23] using a pre-existing but

partially correct model. Here, the goal for the RL agent would be to help learn

effective and potentially scalable models of the target system whilst optimizing the

target functional. Another interesting goal in this direction could just be to incor-

porate the number of measurements or queries of the system in the RL objective so

that the learning is sample-efficient. A further avenue of future work is to combine

LH-MBSAC with a more feasible measurement protocol than AAPT. AAPT is not

a hard requirement for our approach and was used here for its theoretically simple
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estimation of a quantum process. Two angles of attack are either sparsity assump-

tions on the dynamics generator [Hua+22a] and the generated evolution [HKP20] or

a partially observed MDP formulation of the control problem [HS17; Kha+21].
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Chapter 7

Conclusion

7.1 Takeaways

Quantum technologies is an exciting emerging field with a lot of potential real-world

utility most notably in sensing and simulation applications. However, the path from

the lab to industrial application will need to be paved by strong and robust quantum

control frameworks that work well especially in the presence of noise. This poses a

barrier for NISQ devices to realize the full extent of the promised theoretical quantum

advantage over current classical hardware on various problems of interest. Making

quantum devices perform optimally in the presence of noise of various forms was the

overarching goal of this thesis. Towards this main goal, we made contributions ad-

dressing the problems of robustness certification and robust optimization of quantum

control schemes.

For robustness certification, in Chapter 5, inspired by randomized benchmarking and

control landscape theory, we developed a novel probabilistic robustness measure called

the Robustness Infidelity Measure (RIM) by treating the fidelity as a random variable

whose stochasticity is determined by noise in the controllable system and does not

need to be explicitly modelled or assumed. The RIM is the probabilistic distance of

the fidelity’s probability distribution to the ideal unperturbed point mass distribution

located at the optimum value. Using theoretical arguments, we showed that the RIM

is intuitive, easy to compute and in its simplest form is just the average infidelity which

allowed us to provably generalize the fidelity in the robustness sense and encapsulate

both the optimality and robustness into a single figure-of-merit. Notably, the main

takeaway is that not all optimal control schemes are robust and robustness needs

to be an extra objective that should be considered. It is possible to extend any
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fidelity measure into a RIM as the only requirements for straightforward extension

is stochasticity in the fidelity that can be estimated using multiple fidelity samples

and boundedness of the figure-of-merit. Moreover, our framework allows us to extend

the expectation operator hierarchically to measure the RIMs of control algorithms

(ARIM) or even higher categories like the family to which the control algorithms

belong. We also showed that the RIM is connected to a classical robustness measure,

the log-sensitivity, and the RIM directly captures the intuition of measuring the

variation in a local region on the control landscape around the optimum.

The smaller that variation, the smaller the RIM and higher the robustness of the

control scheme. We expect the RIM to be useful in understanding robustness in

objectives that are empirically designed to encode robustnesss in quantum control

settings without the strong theoretical motivations – that we have helped provide.

For robust optimization, we considered the problem of control when the theoretical

model of the system is absent or is faulty i.e. when the control system is noisy or

the model is uncertain. Our goal, here, was to study the limitations of pure model-

based methods that rely on gradient descent on the model’s controllable parameters

and also of model-free methods that are not dependent on any model but still suf-

fer from large convergence times and consume too many experimental resources to

be effective in real-world settings. Towards this goal, we explored a suite of pol-

icy gradient RL algorithms designed for continuous parameter control problems and

benchmarked their performances on a standard quantum control task in Chapter 4

contrasting their performance with model-based gradient-descent methods. We pre-

sented a novel formulation of the RL control problem as a partially observed MDP

that scales favourably with system size since the RL agent does not need to observe an

exponentially growing quantum state space – an approach that existing RL strategies

for VQA or circuit design type problems could benefit from if scalability is desired.

Moreover, we explored the stability and practicality of these RL algorithms and found

their performances to be broadly similar. However, the on-policy PPO algorithm was,

on average, better than other algorithms on both fronts. Thus, we used PPO sub-

sequently in Chapter 5 as our benchmark model-free RL algorithm. We also found

that as expected, increasing model uncertainty to a reasonable extent significantly

deteriorated the performance of model-based methods while model-free methods like

RL remained mostly unaffected. Furthermore, using the RIM, we studied robustness

profiles of control algorithms and found that optimizing the average infidelity, i.e.

the RIM leads to a greater proportion of the computed control schemes to be robust
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– which is what RL does indirectly through its objective function. The RL control

schemes are better in contrast with those produced by other benchmarked control al-

gorithms. We justified this empirical finding in Chapter 4 using the average infidelity

but it is conditional on existence of robust and optimal control solutions in the first

place which we found was not always the case for all the control problems that we

studied.

Taking it further, we improved upon a central problem of model-free methods, in par-

ticular RL, which is their inability to incorporate any partial knowledge of the con-

trollable system, instead, relying on the construction of ab initio models of the control

system, which wastes potentially precious experimental resources. In Chapter 6, we

introduced a novel model-based actor-critic RL algorithm that is equipped with such

an ability by initializing its learnable model of the system with partial knowledge and

making it learn the rest using quantum data. We demonstrated how this significantly

improves the number of experimental resources required by the control algorithm by

over an order of magnitude and extends model-free RL in the model-based direction,

thereby improving the deployability of RL algorithms in near term NISQ devices.

7.2 Future work

In light of the main contributions of this thesis, there is a lot of scope of extending

the tools that were presented both on the certification and optimization fronts. Some

of the more direct or concrete directions were discussed in earlier chapters. Here,

we discuss future directions of a more broader and general nature that are also not

necessarily tied to a specific topic.

Firstly, given that a central theme of this thesis was acquisition of robust optimal

control schemes, there is still a question of how to generally formally define the concept

of robustness. In this thesis, we presented a definition in terms of the local variation

of the fidelity around the optimum in the control landscape and tried to capture that

property statistically. However, this necessarily forced us to choose the size of the

local region within which the robustness was defined, i.e. the noise scale or strength

that is used in constructing the probability distributions representing fidelities of a

specific control scheme. An interesting question to pursue next would be how to define

robustness in a more general way that does not depend on the choice of the noise

scale or essentially probing the trade-off between the noise-scale and the robustness

to generate a best-case robustness measure for a maximum noise scale. Ideally, this
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should afford a more global view of robustness. Furthermore, using these ideas would

help us understand the effect of noise scale on the ARIM performances of control

acquisition algorithms where variation was observed across different noise-scale.

Secondly, there remains the question of finding theoretical robustness guarantees for

the specific or general control problems that were studied in this thesis. What is

the highest (lowest) robustness permitted for a given fidelity for a particular control

problem? Understanding the fundamental limitations of a control problem from a

more mathematical perspective would be extremely useful before deployment of large

scale computational searches for robust control schemes. Indeed, some more insight

into the nature of the control problem and what specifically needs to be optimized

could be used as a stepping stone to develop more sample efficient robust control

acquisition algorithms. For instance, in chapter 5, robustness is defined in terms

of the stability of state transfer w.r.t. system Hamiltonian fluctuations. Number-

theoretic constraints on perfect [Bur07] and almost perfect state transfer [VZ12] in

the presence of imperfections could be a useful starting point to understand the

fundamental limitations of robustness of the control problem for spin chains and

beyond.

Characterisation of fundamental limitations is also useful for providing incentive to

reformulate the control problem since solutions of desired robustness are not possible

in its existing form. These bounds on performance would also accelerate the perfor-

mance of control acquisition algorithms by providing useful criteria for terminating

the search for control schemes. It might generally not be possible to find such bounds

for all control problems theoretically but computational tools motivated along this

direction should still be useful for practical purposes and augmentation of control

scheme searches.

Thirdly, motivated by the idea of model bias or absence or uncertainty for the control

system, RL techniques were used to find control schemes and the sample efficiency of

these techniques can be improved through the idea of learning effective models of the

controllable system. It is possible to only learn effective models of the system as far

as controlling it is concerned instead of learning the full model. This is very useful for

scalability of such a technique. But there still remains the question of how to build

these effective models from scratch using data with or without prior knowledge with

a small and realistic probe resource overhead. If learning the exact system might not

be necessary for the control problem at hand, is it possible to quickly identify and

isolate the regions that are? And is it possible to get some resource guarantees on
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such a learning protocol? The idea of learning for control imposes a useful constraint

and reduces the need for learning the whole system to just the relevant components.

This should be explored further. More specifically, it might be possible to learn

low level projections of the dynamics of controllable systems by learning to predict

the dynamics using quantum data of the relevant observables. Identifying regions

of interest in the system that are relevant for the control problem should permit

sparsification of the dynamical observables that are necessary to predict.

On the whole, in this thesis, we have tried to address the present limitations in quan-

tum optimal control frameworks when faced with modelling noisy quantum dynamics

by developing novel certification and optimization techniques. However, the story is

far from being over and there remains a need for more generic and powerful learning

algorithms that can provide the robust performance of model-free and the efficiency of

model-based methods on challenging noisy control problems. Further advancements

in the field of classical machine learning and optimization as well the development or

consideration of stronger Hamiltonian learning protocols in conjunction with learning

algorithms should be able to push the frontier beyond the results proposed by this

thesis.
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Appendix A

RIM calculations and extended
numerical analyses

A.1 p-th Order RIM decompositions

We can further decompose the RIMp as a sum of expectations of various powers of

the fidelity,

RIMp =

(
p∑

k=0

(
p

k

)
(−1)k

∫ ∞

−∞
P(F = f)fk df

) 1
p

using the binomial theorem

=

(
p∑

k=0

(
p

k

)
(−1)kEP(F=f)

[
fk
]) 1

p

. (A.1)

For example, using Eq. (A.1) for p = 2, we obtain

RIM2 =
√

1− 2EP(F=f) [f ] + Var(f) + E2
P(F=f) [f ]

using A.1, andVar(X) = EX∼P

[
X2
]
− E2

X∼P [X]

=
√

RIM1 +Var(f)− EP(F=f) [f ] RIM1

=

√
Var(f) + RIM2

1 (A.2)

expanding RIM1 and simplifying.

Likewise, we get

RIM3 =
(
RIM3

1 + 3Var(f) + E3
P(F=f) [f ]− EP(F=f)

[
f 3
]) 1

3 . (A.3)

The degree of distinguishability of the fidelity distribution from the ideal becomes

better for higher p at the cost of the outliers becoming more influential.
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A.2 Recovering the probability distribution from

the RIM

As an aside, we will now show that it is possible to recover the probability distribution

P(I) of the infidelity random variable I using the RIMp values by taking the inverse

Fourier transformation of the characteristic function Ct(I) = Ex∼P(I)[exp{itx}]. Re-
call the definition of the RIM,

RIMp
p =EP(F=f) [(1− f)p]
=E1−f∼P(I) [(1− f)p] . (A.4)

We write the characteristic function for as

Ct(I) =E1−f∼P(I) [exp{it(1− f)}]

=E1−f∼P(I)

[
∞∑
k=0

(it)k(1− f)k
k!

]

=
∞∑
k=0

(it)kE1−f∼P(I)
[
(1− f)k

]
k!

using linearity of expectation

=
∞∑
k=0

(it)kEf∼P(F)

[
(1− f)k

]
k!

using expectation equivalence

=
∞∑
k=0

(it)kRIMk
k

k!
. (A.5)

By taking the inverse Fourier transform of Ct(I), we recover

P(I = 1− f) = 1√
2π

∫ ∞

−∞
e−it(1−f)Ct(I) dt

=
1√
2π

∫ ∞

−∞

∞∑
k=0

(it)kRIMk
k

k!
e−it(1−f) dt. (A.6)

Finally, the distributional equivalence P(F = f) = P(I = 1− f) permits a change of

variable between the two distributions to recover P(F). Alternatively, a more direct

way to obtain P(F) is to use the raw moments of F ,

P(F = f) =
1√
2π

∫ ∞

−∞

∞∑
k=0

(it)kEf∼P(F)

[
fk
]

k!
e−itf dt. (A.7)
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A.3 Error bound on the RIMp and ARIMp

estimators

Here we propose a probably approximately correct (PAC) alternative error bound for

an estimation R̂IMp of RIMp in Eq. (5.10) based on an empirical estimate P̂(F) of

its generating probability distribution P(F). With probability at least 1− δ/2,

|R̂IMp − RIMp| =
∣∣∣Ef∼P̂(F) [(1− f)p]

1
p − EP(F=f) [(1− f)p]

1
p

∣∣∣ (A.8)

=
∣∣∣∥Ef∼P̂(F) [(1− f)p]

1
p ∥ − ∥EP(F=f) [(1− f)p]

1
p ∥
∣∣∣ (A.9)

⩽ |Ef∼P̂(F) [(1− f)p]− EP(F=f) [(1− f)p] |
1
p (A.10)

=

∣∣∣∣∫ 1

0

P̂(F = f)(1− f)p df −
∫ 1

0

P(F = f)(1− f)p df
∣∣∣∣
1
p

(A.11)

⩽

(∫ 1

0

|P̂(F = f)−P(F = f)|(1− f)p df
) 1

p

(A.12)

=

(∫ 1

0

∣∣∣P̂(F = f)− EP̂∼D

[
P̂(F = f)

]∣∣∣ (1− f)p df) 1
p

(A.13)

⩽
C

1
p

p+ 1
=

1

p+ 1

(
log 4

δ

2n

) 1
2p

(A.14)

where the third line come from using Jensen and in the sixth line we rewrite the

true distribution P(F) as EP̂∼D

[
P̂(F)

]
which is true for any unbiased empirical

estimator. We use McDiarmid’s inequality to obtain the bounding constant C using

the fact that the probability distribution D generates a family of random variable

empirical distributional estimators P̂j = 1
n

∑n
i=1 δfi where we have the differences

occurring only on the k-th coordinate,∣∣∣P̂(f1, . . . , fk, . . . , fn)− P̂(f1, . . . , fk′ , . . . , fn)
∣∣∣ ⩽ 1

n
, (A.15)

where n is the number of samples. A similar bound can also be derived for the ÂRIM

estimator. This error bound is similar to the DKW (Dvoretzky-Kiefer-Wolfowitz)

bound for the ECDF and would suffice in generating the 95% confidence intervals for

Fig. 5.6 without the need to do bootstrap resampling.
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Table A.1: Implementation details for various optimization settings in Chapter 5. For
Sec. 5.3.3, the asymptotic setting, (i) refers to the stochastic scenario and (ii) refers
to the non-stochastic scenario where the RIM is optimized using the same 100 fixed
set of perturbations {Sσtrain

} per function call.

Sec. Obj. Function (OF) and args. Train (OF) noise Algorithm Total OF Calls Single Call Cost
5.3.1.1 F No L-BFGS 106 1
5.3.1.1 F No PPO 106 1
5.3.1.1 F No SNOBFit 106 1
5.3.1.1 F No Nelder-Mead 106 1
5.3.2 F No L-BFGS 106 1
5.3.2 F & 1 Sσtrain

Yes PPO 106 1
5.3.2 F & 1 Sσtrain

Yes SNOBFit 106 1
5.3.2 F & 1 Sσtrain

Yes Nelder-Mead 106 1
5.3.3(i) F & 1 Sσtrain

Yes L-BFGS ∞ 1
5.3.3(i) F & 1 Sσtrain

Yes PPO ∞ 1
5.3.3(i) F & 1 Sσtrain

Yes SNOBFit ∞ 1
5.3.3(i) F & 1 Sσtrain

Yes Nelder-Mead ∞ 1
5.3.3(ii) RIM & 100 fixed Sσtrain

No L-BFGS ∞ 100
5.3.3(ii) RIM & 100 fixed Sσtrain

No PPO ∞ 100
5.3.3(ii) RIM & 100 fixed Sσtrain

No SNOBFit ∞ 100
5.3.3(ii) RIM & 100 fixed Sσtrain

No Nelder-Mead ∞ 100

A.4 Implementation details of the optimization

objectives

Details about the optimization objectives for the numerical results in Sec. 5.3 are given

in Table A.1. In every section in Chapter 5, for every σsim, the RIM is evaluated using

N = 100 Monte Carlo Sσsim
perturbations to the fidelity function. The RIM itself is

only optimized in Sec. 5.3.3 for the non-stochastic case (ii) where 100 Sσsim
are sampled

at the start and are reused for every function call. Note, however, that we count these

as 100 function calls as these amount to 100 fidelity function evaluations. Also, for

better performance, in Sec. 5.3.3 for the stochastic case (i), instead of using the

analytical form for the gradient of fidelity F , we use finite differences to approximate

the gradients ∇∆F (where ∆ are the controls).

A.5 More individual controller plots

The results presented in Fig. 5.4 (M = 5 and transition |1⟩ to |3⟩) are not reflective of
PPO’s general behavior on the extended sample of problems examined in Sec. 5.3.2.

Fig. A.2 shows the case (M = 5 and transition |1⟩ to |4⟩) where all the controllers

found are not very robust. This is likely either due to unlucky sampling of the

space of possible controllers or their non-existence. Note that SNOBFit and PPO are

similar in their RIM degradation as observed from Fig. A.2(e). We also provide some
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more cases (M = 5 and transition |1⟩ to |5⟩; M = 6 and transitions |1⟩ to |4⟩, |1⟩
to |6⟩) for algorithm comparison of controllers under noisy training in Sec. 5.3.2 to

highlight some of the variation of controller quality for different regimes of noise and

spin chain transitions observed in the main ARIM comparison presented in Fig. A.8.

Each individual subplot is the result of an independent run of each algorithm with

a stochastic fidelity function evaluated under the unstructured perturbations using

with σsim. These are also plotted for a more distributional comparison as pairwise

box-plots in Fig. A.7. For both, Figs. A.3 and A.7, we also show L-BFGS results for

comparison.

A.6 Full ARIM comparisons

For the cases M = 6, 7, both types of transitions appear to be challenging for PPO,

SNOBFit and Nelder-Mead at most, if not all, training perturbation strengths; espe-

cially the end-to-end M = 7 transition (Fig. A.8(d)), where PPO at σtrain = 0.05 is

only marginally better than the rest of the algorithm runs, excluding Nelder-Mead.

A pertinent question is whether this is genuinely reflective of the landscape or if,

for PPO, our budget constraint of 106 target functional calls is insufficient for larger

system sizes, as the control problem is exponentially dependent on the number of

control degrees of freedom. The former hypothesis might hint at a fundamental lim-

itation on robustness of this particular control landscape. The fact that most noisy

Nelder-Mead curves for these problems are clustering together suggests that noise

could also help in reaching robust areas in the control landscape faster by regulariz-

ing or smoothing the landscape by an appropriate degree. We investigate asymptotic

algorithm behavior w.r.t. the training noise in Sec. 5.3.3 to illustrate this and show

that there is convergence in PPO performance for all the noise levels at sufficiently

many function calls.
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Figure A.1: Consistency statistic τ̃0,j for all algorithms at σtrain = 0.0, . . . , 0.05 for
discrepancy parameter α = 0.05 for M = 5 and the transition from |1⟩ to |4⟩. Again,
the PPO curves are the most consistent.
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Figure A.2: (a)-(d) 100 controllers found for the XX spin chain model, Eq. (4.2),
using Nelder-Mead, SNOBFit, PPO (σtrain = 0), and L-BFGS for M = 5 and the
spin transition from |1⟩ to |5⟩. All algorithms find controllers that are not very
robust as indicated by the RIM. PPO has notably worse initial infidelities for all
controller compared to Fig. 5.4(c), but their degradation is slow as seen from (e).
This is only the case for this noise level and Fig. A.4(r) indicates the existence of a
much better controller set at σsim = 0.05 that is similar in performance to Fig. 5.4(c).
From (e), we can see that Nelder-Mead and L-BFGS optimize the infidelity to < 10−4.
However, these best controllers decay in robustness very quickly as well.
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Figure A.3: Individual-controller comparison between (a)-(f) Nelder-Mead, (g)-(k)
SNOBFit and (m)-(r) PPO with σtrain = 0, 0.01, . . . , 0.05, using 100 controllers ranked
by lowest infidelity (left) for the case M = 5 and the spin transition from |1⟩ to |3⟩.
(s) shows the L-BFGS results for the same spin transition problem.
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Figure A.4: Individual-controller comparison between (a)-(f) Nelder-Mead, (g)-(k)
SNOBFit, (m)-(r) PPO with σtrain = 0, 0.01, . . . , 0.05, using 100 controllers ranked
by lowest infidelity for the case M = 5 and the spin transition from |1⟩ to |5⟩. (s)
shows the L-BFGS result for σtrain = 0.
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Figure A.5: Individual-controller comparison between (a)-(f) Nelder-Mead, (g)-(k)
SNOBFit, (m)-(r) PPO with σtrain = 0, 0.01, . . . , 0.05, using 100 controllers ranked
by lowest infidelity for the case M = 6 and the spin transition from |1⟩ to |6⟩. (s)
shows the L-BFGS result for σtrain = 0.
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Figure A.6: Individual-controller comparison between (a)-(f) Nelder-Mead, (g)-(k)
SNOBFit, (m)-(r) PPO with σtrain = 0, 0.01, . . . , 0.05, using 100 controllers ranked
by lowest infidelity for the case M = 6 and the spin transition from |1⟩ to |4⟩. (s)
shows the L-BFGS result for σtrain = 0.
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Figure A.7: Box plots of the RIM for the 100 controllers for M = 5, |1⟩ to |3⟩ shown
in Fig. A.3 found by Nelder-Mead, SNOBFit, and PPO for various σtrain (a)-(f).
For the case σtrain = 0 in (a), we also show L-BFGS box plots as a reference. On
the distributional level, PPO controllers are generally the more robust of the three
w.r.t. the RIM, but there is high variance across σtrain compared to the SNOBFit
and Nelder-Mead controllers. The median SNOBFit RIM value per σsim is higher
than L-BFGS, so it has a longer left tail. The Nelder-Mead controllers have the most
weight on their right tails and are comparatively the worst.
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Figure A.8: ARIM as a function of σsim for M = 4, 5, 6, 7 where the left column
contains end-to-middle transitions and the right column contains end-to-end transi-
tions. The final state is denoted by O. The ARIM is computed from a distribution
of RIM values for 100 controllers for each σsim for SNOBFit, Nelder-Mead, PPO and
L-BFGS indicated by their marker shapes and line-styles. Both PPO and SNOBFit
are run multiple times at σtrain = 0, 0.01, . . . , 0.05 which is indicated by the color of
the ARIM curve. For all problems, PPO has higher variance with respect to σtrain
than SNOBFit and Nelder-Mead. The latter pair’s performance curves are more in
line with the L-BFGS curve for σsim ⩾ 0.05 and mostly worse for σsim ⩽ 0.05. For
most of the problems the best performing (lowest) curve across all problems is PPO
at σtrain = 0.05 (brown) except in (a) where it is PPO at σtrain = 0.02 and in (g) where
it is Nelder-Mead at σtrain ⩾ 0.04. 95% confidence intervals (shading) are computed
using non-parametric bootstrap resampling [Efr87] with 100 resamples.
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Appendix B

Sample-efficient RL: additional
results

B.1 Technical proofs

Lemma B.1. H where n = rank(H) admits a real decomposition {bi}n2

i=1 in terms of

the traceless hermitian basis elements {Bi}n2

i=1 of SUn.

Proof: Note that by definition H = H† is Hermitian. Then, it is easy to see that for

bi,

b†i = Tr[BiH(t)]†

= Tr
[
(BiH(t))†

]
using trace linearity

= Tr
[
H(t)†B†

i

]
= Tr

[
B†

iH(t)†
]

using the trace’s cyclic property

= Tr[BiH(t)].

□

B.2 Mapping complex linear ODEs to coupled

real ODEs and step-size effects

The quantum control problem in Eqs. Eq. (2.10) and Eq. (2.19) involve ODEs (Eqs. Eq. (2.8),

Eq. (2.13)) in the complex domain with a complex vector field map fθ : R×Cd → Cd.

For the unitary control problem we have a linear map fθ(U(u(t), t), t) = Hθ(u(t), t)U(u(t), t)

171



B.2. MAPPING COMPLEX LINEAR ODES TO COUPLED REAL ODES AND
STEP-SIZE EFFECTS

where Hθ is a Hermitian Hamiltonian that generates the ODE path of the propaga-

tor U(t). We make use of the following isomorphism to map the complex ODE

to two coupled real ODEs in R2d by separating the propagator into its real and

imaginary parts U = Ureal + iUimag and mapping the Hamiltonian isomorphically

H(u(t), t)
∼−→ 1 ⊗ Hreal(u(t), t) − iσy ⊗ Himag(u(t), t), to get the following [Leu+17]

coupled real ODE system,

d

dt

(
Ureal(u(t), t)
Uimag(u(t), t)

)
=

(
Himag(u(t), t) Hreal(u(t), t)
−Hreal(u(t), t) Himag(u(t), t)

)(
Ureal(u(t), t)
Uimag(u(t), t)

)
. (B.1)

The mapping is analogous for the superoperator ODE in Eq. (2.13). Likewise, various

other metrics, e.g., the fidelity F , were analogously transformed. We made use of

the real nature of the Pauli vector decomposition of H to keep track of both the

time-independent learnable Hamiltonian and the time-dependent control Hamiltonian

representations.

We use Heun’s method [SM03] to implement a custom differentiable numerical ODE

solver in pytorch [Pas+19], a popular automatic differentiation code library. The

solver is able to evolve multiple ODEs under multiple generators in parallel using

generalised matrix/tensor operations (ideally on a GPU to maximally leverage com-

putational efficiency). The solver can be accessed in the LearnableHamiltonian

module in our code [Kha22]. To determine the optimal tradeoff between accuracy of

dynamical simulation, computed gradients and the size of the computation graph that

is held in memory for automatic differentiation, we conduct experiments by simulat-

ing the dynamics of random n-qubit Hamiltonians from n = 1 to n = 4 at different

precision or tolerance or step size of the ODE solver (see Fig. B.1).

Computational speed of the solver naturally trades off with the accuracy in the sim-

ulation and the computed gradients. We find that a step size of 10−2 is sufficiently

accurate for forward dynamical simulation (no gradients are computed in this step)

and a step size of 5× 10−4 is required for the backward step when the gradients need

to be computed to train the ODE model. The errors in the dynamical predictions

(averaged over many thousands of data points) in both steps are reasonably small

and are monitored. The ODE solvers in scipy [Vir+20] and the matrix exponential

method for solving linear ODEs [Mac+11a] both have similar errors than our method

for the step size 5×10−4 (likely the Bayes’ optimal error for our numerical simulation).

The ability to be fast, but produce slightly less accurate predictions, improved the wall

time of our algorithm. Specifically, a significantly large number of trajectories can be
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B.3. COMPARISON OF FIDELITIES FOR LINDBLADIAN DYNAMICS

quickly sampled in the forward step to augment the RL policy’s training data while

the much slower backward step can be limited to a smaller number of trajectories

that need to be predicted and are divided over multiple batches.

B.3 Comparison of fidelities for lindbladian

dynamics

We study the agreement between three different fidelity measures of realised noisy

gates on open systems with Lindblad decay and decoherence for the two-qubit trans-

mon gate control problem. The fidelity measures are the diamond norm fidelity [BS10],

the generalised state fidelity [FL11a], and the average gate fidelity [Uhl00]. The dia-

mond norm fidelity, derived from the diamond norm or the completely bounded trace

norm, is the most expensive to compute as it involves solving a convex optimization

problem:

F⋄(Φ(u(t), t),Φtarget) = 1− ∥Φ(u(t), t)−Φtarget∥⋄ (B.2)

= 1−max
ρ
∥Φ(u(t), t)(ρ)−Φtarget(ρ)∥1 (B.3)

where the maximization is over the space of all density matrices ρ. This can be done by

solving an equivalent semi-definite program [Wat09]. Note that 0.5 ⩽ F⋄(Φ(u(t), t) ⩽

1.

To study the sensitivities of the measures to dissipation and their agreement w.r.t.

each other, we consider low, medium and high dissipation regimes. We evaluate

100 of our controllers found for the noisy shots setting of the two-qubit transmon

in these regimes. The results are plotted in Fig. B.2. Here, deca and deco refer

to inverse decoherence and decay rates 2/T ∗
l , 2/Tl respectively, for the lth qubit and

are measured in MHz. Note that we renormalize the trace of the realised operator

Φ(u(t), t) during our experiments, as is standard practice. Due to the exhaustive

nature of its computation, F⋄ is the most sensitive to noise and loss of coherence

out of all the measures. The generalised state fidelity is the least sensitive and the

average gate fidelity falls in the middle. For very low to medium dissipation levels,

e.g., (0.05, 0.05), (0.05, 0.1), or (0.05, 0.2) for the pair (deca, deco), the generalised

state fidelity is near perfect while the gate and diamond norm fidelities are more

sensitive and closer to 0.9. For this reason, in Chapter 6.3.4, we chose to use the

diamond norm fidelity to more accurately gauge controller performance – this was

especially true for the low dissipation regime results.
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B.4. LEVERAGING THE LEARNED HAMILTONIAN FOR THE TWO-QUBIT NV
CENTER

As a side note, some controllers shown in Fig. B.2 are more robust to dissipation than

others as revealed by the noisy variation across the controller index vs. fidelity plot.

The controllers are not ordered, so the fidelity in the zero dissipation regime has some

noise/variation as seen for deca, deco = (0.05, 0.05). Across all the subfigures, the

robustness is captured by all the fidelity measures where the variation magnitudes

and positions are more or less aligned.

B.4 Leveraging the learned Hamiltonian for the

two-qubit NV Center

Similar to the results found in Chapter 6.3.3, here we report the structural differences

between the learned and target Hamiltonians for the two-qubit NV center.

The matrix difference between the true H0 and learned Hamiltonian H0(ζζζ) is

H −H0(ζζζ) =
0.0116 0.0013i −0.0001− 0.0002i −0.0007
−0.0013i −0.0111 −0.0001 + 0.0002i 0.0003 + 0.0003i

−0.0001 + 0.0002i 0.0001 + 0.0002i −0.0108 −0.0005− 0.0002i
−0.0007 0.0003− 0.0003i −0.0005 + 0.0002i −0.013

 .
Moreover, the non-linear relationship between the model prediction errors and the

spectral norm error δ or the mean squared Pauli expectation value error is confirmed

as before in Fig. B.3(a). Local and global trajectory differences under a random con-

trol pulse and the results of using GRAPE on RL controllers are shown in Fig. B.3(b)

and (c) respectively. The learned Hamiltonian is able to improve the controller fideli-

ties to greater than 0.999.

B.5 Three-qubit transmon control problem

In this section we discuss the issue of scalability of LH-MBSAC’s performance related

to the three-qubit transmon control problem in Chapter 6.3.5 in detail.

Working with two level systems, we extend the two-qubit transmon Hamiltonian to

its three-qubit version H
(3)
tra . The system part generalizes trivially. For the control

part H
(3)
trac , we generalize the cross resonance interaction presented in Ref. [She+16] to
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B.5. THREE-QUBIT TRANSMON CONTROL PROBLEM

construct the following time-dependent part of the three-qubit transmon Hamiltonian,

H
(3
trac(t)

ℏ
=

3∑
l=1

(
al(t)(ZlXl+1 +Xl+1 + Yl+1 + Zl)

+ bl(t)(XlZl+1 +Xl + Yl + Zl+1)
)

(B.4)

where al(t), bl(t) are the real drive amplitudes and Xl, Yl, Zl are the corresponding

Pauli operators on the lth qubit.

To start, we mention our hyperparameter strategy. Only an initial hyperparameter

search is performed for the two-qubit transmon control problem, and we were suc-

cessfully able to transfer the same hyperparameters to all problems in the paper that

were studied including the ones presented in Fig. 6.3.

It is a desirable property for the stabiltiy of RL algorithms to be robust to hyperpa-

rameter changes for different target problems, which we found to be the case. The

search was only conducted for the model-free SAC since LH-MBSAC is just a model-

based augmentation of the underlying SAC algorithm so there is no strong reason for

the hyperparameters to fail to transfer.

However, for the three-qubit transmon control problem, we encountered issues and

had to repeat the search. This was extensive, and what we focused on are: more

initial exploration data, using bigger layer sizes for the policy and value function

neural networks, changing the learning and update rates for the policy and value

functions, amongst other things. An extremely thorough search is difficult since the

problem is more computationally challenging, and it is hard to determine when to

terminate the training during a trial run that necessarily needs to be premature

during the hyperparameter search. Please see the accompanying code for the list of

hyperparameters we searched over using Bayesian optimization in tune hypers.py

along with some results in the hyper tests folder [Kha22].

Furthermore, we make observations that make this issue seem less like a hyperparam-

eter issue and more like an optimization landscape problem:

1. The values and the gradients for policy and value functions that saturate are

both stuck in suboptimal extrema and ultimately we get stuck at a prematurely

optimized reward function. This is illustrated in Fig. B.4. Essentially, SAC gets

stuck in a loop mining medium level fidelities and its policy outputs saturate on

the extremes of the control amplitudes. It is already detailed in Chapter 6.3.5
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B.5. THREE-QUBIT TRANSMON CONTROL PROBLEM

that RL pulses are biased towards maintaining high intermediate fidelities due

to the nature of the MDP used in this thesis. Fig. 6.10 example pulses found

by RL vs. GRAPE for the two-qubit transmon, confirming this.

2. Since we have the model Hamiltonian, we insert it into GRAPE initialized with

the highest fidelity SAC controller values, and it also gets stuck (at slightly

better fidelities).

Despite these issues, the system Hamiltonian is still learned. It can be inserted into

GRAPE with uniform random initialization of control pulse parameters to achieve

fidelities of over 0.999.
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B.5. THREE-QUBIT TRANSMON CONTROL PROBLEM
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Figure B.1: Frobenius norm of the prediction error of the Heun ODE solver [SM03]
compared to the matrix exponential method. The number of qubits n is shown
on top of each subfigure. The random time-dependent sinusoidal Hamiltonians are
as follows: for n = 1, H = −2.32σz cos 2.19t − 0.011 sin 3.62t + 1.79σx cos 4.89t +
3.04σy cos 2.69t; for n = 2, H = 1.01σz1 cos 1.44t+4.511 sin 4.55t−2.7σyσz sin 1.07t+
0.48σxσz cos 2.26t; for n = 3, H = −1.281σx1 cos 2.62t − 0.23σyσzσy sin 3.75t −
1.341σyσx sin 3.35t + 3.38σxσxσz cos 2.34t; for n = 4, H = −0.411σzσzσx sin 2.86t +
2.19σy1σxσz sin 1.38t−0.87σyσxσxσz sin 2.26t+4.06σxσxσz1 sin 1.76t where the short-
hand used is 1σx1 ≡ 1⊗ σx ⊗ 1. Trace fidelities w.r.t. the generalized CNOT (NOT
or X-gate for n = 1, CNOT for n = 2, CCNOT for n = 3 and so on) are shown in
the twin axis on the right. It can be seen that the step size of 10−1 leads to quick
accumulation of error seen in the sharp peaks but a step size of 10−2 is more stable
with more than O(103) times less prediction error.
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Figure B.2: How much the fidelity measures relate to one another as the dissipation
strength varies in terms of the decoherence and the decay coefficients in Eq. (2.7)
for the Lindbladian operators ld. Here, deca, deco refer to inverse decay and de-
coherence rates 2/T ∗

l , 2/Tl respectively, for the lth qubit and are measured in MHz.
The x-axis refers to a controller cj obtained for the two-qubit transmon gate control
problem with shots noise where the target is the CNOT gate. The controllers are in
random order w.r.t. the fidelity but the ordering is preserved across each subfigure.
The number of shots is 106 and diamond, pauli vec, av gate refer to the diamond
norm fidelity [BS10], the generalised state fidelity [FL11a] and the average gate fi-
delity [Uhl00].
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Figure B.3: (a) The non-linear relationship between the prediction error
∥∥UE − UMζζζ

∥∥
and Hamiltonian spectral norm error or mean squared Pauli expectation value error δ
for the two-qubit NV center Hamiltonian. For the same 1, 000 random control pulses,
we evaluate the average unitary prediction error of Mζζζ with increasing δ for three
different uniform randomly sampled two-qubit Hamiltonians H0(ζζζ). (b) Local and
global unitary trajectories: F as a function of a random control pulse with either
the learned H0(ζζζ) or true H0. The learned trajectories and global trajectory overlap
less with increasing time with the spectral norm error of δ = 0.01301 and a global
phase factor Tr[H −H0(ζζζ)] of ∼ 0.01. (c) The learned H0(ζζζ) can be leveraged using
GRAPE to further optimize the fidelities of LH-MBSAC’s controllers. Repeating the
procedure in Chapter 6.3.3, yields fidelities of greater than 0.999.
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Figure B.4: Noiseless unitary sample complexity for the three-qubit transmon where
the target gate is the Toffoli gate. Since LH-MBSAC is based on SAC, the latter’s
training curves are obtained first to see if it viably solves the problem, and it was
trained for much longer, i.e., in the order of millions of samples as seen in Fig. B.4.
Mean (solid) and maximum fidelities (dashed) saturate as the policy and value func-
tion gradients and outputs saturate due to the agent getting stuck in a suboptimal
extremum of the optimization landscape.
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[EAŻ05] J. Emerson, R. Alicki, and K. Życzkowski. “Scalable noise estimation
with random unitary operators”. In: Journal of Optics B: Quantum and
Semiclassical Optics 7.10 (2005), S347.

[EBL18] S. Endo, S. C. Benjamin, and Y. Li. “Practical Quantum Error Mitiga-
tion for Near-Future Applications”. In: Phys. Rev. X 8 (3 July 2018),
p. 031027.

[Eri+19] D. Eriksson et al. “Scalable global optimization via local bayesian op-
timization”. In: Advances in neural information processing systems 32
(2019).

[EHF19] T. J. Evans, R. Harper, and S. T. Flammia. “Scalable Bayesian Hamil-
tonian learning”. In: arXiv preprint arXiv:1912.07636 (2019).

[FGG14] E. Farhi, J. Goldstone, and S. Gutmann. A Quantum Approximate Op-
timization Algorithm. 2014. arXiv: 1411.4028.

[Faw+22] A. Fawzi et al. “Discovering faster matrix multiplication algorithms with
reinforcement learning”. In: Nature 610.7930 (2022), pp. 47–53.

[Fel60] A. A. Feldbaum. “Dual control theory. i & ii”. In: Avtomatika i Tele-
mekhanika 21.9 (1960), pp. 1240–1249.

[Fey18] R. P. Feynman. “Simulating physics with computers”. In: Feynman and
computation. CRC Press, 2018, pp. 133–153.

[FL11a] S. T. Flammia and Y.-K. Liu. “Direct Fidelity Estimation from Few
Pauli Measurements”. In: Phys. Rev. Lett. 106 (23 June 2011), p. 230501.

[FL11b] S. T. Flammia and Y.-K. Liu. “Direct Fidelity Estimation from Few
Pauli Measurements”. In: Phys. Rev. Lett. 106 (23 June 2011), p. 230501.

[FDS12] F. F. Floether, P. De Fouquieres, and S. G. Schirmer. “Robust quan-
tum gates for open systems via optimal control: Markovian versus non-
Markovian dynamics”. In: New Journal of Physics 14.7 (2012), p. 073023.

[Fou+11] P. de Fouquieres et al. “Second order gradient ascent pulse engineering”.
In: Journal of Magnetic Resonance 212.2 (2011), pp. 412–417.

186

https://arxiv.org/abs/1411.4028


[Fra+17a] F. Frank et al. “Autonomous calibration of single spin qubit operations”.
In: npj Quantum Information 3.1 (2017), p. 48.

[Fra+17b] F. Frank et al. “Autonomous calibration of single spin qubit operations”.
In: npj Quantum Information 3.1 (2017), pp. 1–5.

[Fra+16] S. van Frank et al. “Optimal control of complex atomic quantum sys-
tems”. In: Scientific reports 6.1 (2016), p. 34187.

[Fra18] P. I. Frazier. “A tutorial on Bayesian optimization”. In: arXiv preprint
arXiv:1807.02811 (2018).

[FHM18] S. Fujimoto, H. Hoof, and D. Meger. “Addressing function approxi-
mation error in actor-critic methods”. In: International conference on
machine learning. PMLR. 2018, pp. 1587–1596.

[Gau+88] U. Gaubatz et al. “Population switching between vibrational levels in
molecular beams”. In: Chemical physics letters 149.5-6 (1988), pp. 463–
468.

[GW21] X. Ge and R.-B. Wu. “Risk-sensitive optimization for robust quantum
controls”. In: Phys. Rev. A 104 (1 July 2021), p. 012422.

[GLM11] V. Giovannetti, S. Lloyd, and L. Maccone. “Advances in quantummetrol-
ogy”. In: Nature photonics 5.4 (2011), pp. 222–229.

[Gla+15] S. J. Glaser et al. “Training Schrödinger’s cat: Quantum optimal con-
trol: Strategic report on current status, visions and goals for research in
Europe”. In: The European Physical Journal D 69 (2015), pp. 1–24.

[GCM22] M. H. Goerz, S. C. Carrasco, and V. S. Malinovsky. Quantum Optimal
Control via Semi-Automatic Differentiation. 2022.

[Gol+22] A. J. Goldschmidt et al. Model predictive control for robust quantum
state preparation. 2022.

[Got97] D. Gottesman. Stabilizer codes and quantum error correction. California
Institute of Technology, 1997.

[Got09] D. Gottesman. An Introduction to Quantum Error Correction and Fault-
Tolerant Quantum Computation. 2009. arXiv: 0904.2557.

[GL14] T. Graß and M. Lewenstein. “Trapped-ion quantum simulation of tunable-
range Heisenberg chains”. In: EPJ Quantum Technology 1.8 (2014),
pp. 1–20. doi: 10.1140/epjqt8.

[Gre+13] T. J. Green et al. “Arbitrary quantum control of qubits in the presence
of universal noise”. In: New J. Phys. 15.9 (Sept. 2013), p. 095004. doi:
10.1088/1367-2630/15/9/095004.

[GB17] C. Gross and I. Bloch. “Quantum simulations with ultracold atoms in
optical lattices”. In: Science 357.6355 (2017), pp. 995–1001.

[GSD12] A. Guez, D. Silver, and P. Dayan. “Efficient Bayes-adaptive reinforce-
ment learning using sample-based search”. In: Advances in neural in-
formation processing systems 25 (2012).

187

https://arxiv.org/abs/0904.2557
https://doi.org/10.1140/epjqt8
https://doi.org/10.1088/1367-2630/15/9/095004


[HKT22] J. Haah, R. Kothari, and E. Tang. “Optimal learning of quantum Hamil-
tonians from high-temperature Gibbs states”. In: IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS). 2022, pp. 135–
146. doi: 10.1109/FOCS54457.2022.00020.

[Haa+18] T. Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor”. In: International con-
ference on machine learning. PMLR. 2018, pp. 1861–1870.

[HS17] M. Hausknecht and P. Stone. “Deep recurrent Q-learning for partially
observable MDPs”. In: AAAI Fall Symposium Series. 2017. arXiv: 1507.
06527.

[HZS20] S. S. Hegde, J. Zhang, and D. Suter. “Efficient Quantum Gates for
Individual Nuclear Spin Qubits by Indirect Control”. In: Phys. Rev.
Lett. 124 (22 June 2020), p. 220501.

[Hoc+14] D. Hocker et al. “Characterization of control noise effects in optimal
quantum unitary dynamics”. In: Phys. Rev. A 90 (6 Dec. 2014), p. 062309.

[Hol+20] E. T. Holland et al. “Optimal control for the quantum simulation of
nuclear dynamics”. In: Phys. Rev. A 101 (6 June 2020), p. 062307.

[Hou+12] S. C. Hou et al. “Optimal Lyapunov-based quantum control for quantum
systems”. In: Phys. Rev. A 86 (2 Aug. 2012), p. 022321.

[How98] R. Howard. “The Gronwall Inequality”. In: Lecture Notes (1998).

[HJM19] T. A. Howell, B. E. Jackson, and Z. Manchester. “ALTRO: A fast solver
for constrained trajectory optimization”. In: 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE.
2019, pp. 7674–7679.

[HKP20] H.-Y. Huang, R. Kueng, and J. Preskill. “Predicting many properties
of a quantum system from very few measurements”. In: Nature Physics
16.10 (2020), pp. 1050–1057.

[Hua+22a] H.-Y. Huang et al. “Learning many-body Hamiltonians with Heisenberg-
limited scaling”. In: arXiv preprint arXiv:2210.03030 (2022).

[Hua+22b] H.-Y. Huang et al. “Quantum advantage in learning from experiments”.
In: Science 376.6598 (2022), pp. 1182–1186.

[HN08] W. Huyer and A. Neumaier. “SNOBFIT - Stable Noisy Optimization
by Branch and Fit”. In: ACM Trans. Math. Softw. 35.2 (July 2008).

[Jam72] A. Jamiolkowski. “Linear transformations which preserve trace and posi-
tive semidefiniteness of operators”. In: Reports on Mathematical Physics
3.4 (1972), pp. 275–278.

[Jan+19] M. Janner et al. “When to Trust Your Model: Model-Based Policy Op-
timization”. In: Advances in Neural Information Processing Systems.
Vol. 32. Curran Associates, Inc., 2019.

188

https://doi.org/10.1109/FOCS54457.2022.00020
https://arxiv.org/abs/1507.06527
https://arxiv.org/abs/1507.06527


[Jin+13] J. Jing et al. “Inverse engineering control in open quantum systems”.
In: Phys. Rev. A 88 (5 Nov. 2013), p. 053422.

[JSL17] E. Jonckheere, S. Schirmer, and F. Langbein. “Structured singular value
analysis for spintronics network information transfer control”. In: IEEE
Trans. Automatic Control 62.12 (Dec. 2017), pp. 6568–6574. arXiv:
1706.03247.

[JSR14] E. Jonckheere, A. Shabani, and A. Rezakhani. “Indirect control invari-
ance of Decoherence Splitting Manifold”. In: IEEE Conf. Decision and
Control. Dec. 2014, pp. 5794–5801.

[JLS14] E. Jonckheere, F. C. Langbein, and S. Schirmer. “Quantum networks:
anti-core of spin chains”. In: Quantum Information Processing 13.7
(2014), pp. 1607–1637.

[JSL18] E. Jonckheere, S. Schirmer, and F. Langbein. “Jonckheere-Terpstra test
for nonclassical error versus log-sensitivity relationship of quantum spin
network controllers”. In: Int. J. Robust and Nonlinear Control 28.6
(2018), pp. 2383–2403.

[Jon+09] J. A. Jones et al. “Magnetic Field Sensing Beyond the Standard Quan-
tum Limit Using 10-Spin NOON States”. In: Science 324.5931 (2009),
pp. 1166–1168.

[JR92] R. S. Judson and H. Rabitz. “Teaching lasers to control molecules”. In:
Phys. Rev. Lett. 68 (10 Mar. 1992), pp. 1500–1503.

[Kab+14] C. Kabytayev et al. “Robustness of composite pulses to time-dependent
control noise”. In: Phys. Rev. A 90 (1 July 2014), p. 012316.

[KL02] S. Kakade and J. Langford. “Approximately optimal approximate re-
inforcement learning”. In: Proceedings of the Nineteenth International
Conference on Machine Learning. 2002, pp. 267–274.

[Kau+19] R. Kaubruegger et al. “Variational Spin-Squeezing Algorithms on Pro-
grammable Quantum Sensors”. In: Phys. Rev. Lett. 123 (26 Dec. 2019),
p. 260505.

[Kel+14a] J. Kelly et al. “Optimal Quantum Control Using Randomized Bench-
marking”. In: Phys. Rev. Lett. 112 (24 June 2014), p. 240504.

[Kel+14b] J. Kelly et al. “Optimal Quantum Control Using Randomized Bench-
marking”. In: Phys. Rev. Lett. 112 (24 June 2014), p. 240504.

[Kel+14c] J. Kelly et al. “Optimal Quantum Control Using Randomized Bench-
marking”. In: Phys. Rev. Lett. 112 (24 June 2014), p. 240504.

[Ken62] M. G. Kendall. Rank Correlation Methods: 3d Ed. C. Griffin, 1962.

[Kha+21] I. Khalid et al. “Reinforcement learning vs. gradient-based optimisation
for robust energy landscape control of spin-1/2 quantum networks”. In:
2021 60th IEEE Conference on Decision and Control (CDC). IEEE.
2021, pp. 4133–4139.

189

https://arxiv.org/abs/1706.03247


[Kha22] I. Khalid. 2022. url: https : / / github . com / erg0dic / transmon _
public.

[Kha+23a] I. Khalid et al. Sample-efficient Model-based Reinforcement Learning for
Quantum Control. 2023. arXiv: 2304.09718.

[Kha+23b] I. Khalid et al. “Statistically characterizing robustness and fidelity of
quantum controls and quantum control algorithms”. In: Phys. Rev. A
107 (3 2023), p. 032606.

[Kha+05a] N. Khaneja et al. “Optimal control of coupled spin dynamics: design
of NMR pulse sequences by gradient ascent algorithms”. In: Journal of
magnetic resonance 172.2 (2005), pp. 296–305.

[Kha+05b] N. Khaneja et al. “Optimal control of coupled spin dynamics: design of
NMR pulse sequences by gradient ascent algorithms”. In: J. Magn. Res.
172.2 (2005), pp. 296–305.

[KV09] K. Khodjasteh and L. Viola. “Dynamically Error-Corrected Gates for
Universal Quantum Computation”. In: Phys. Rev. Lett. 102 (8 2009),
p. 080501.

[Kid22] P. Kidger. “On neural differential equations”. PhD thesis. University of
Oxford, 2022.

[KB14] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[KB17] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.
2017. arXiv: 1412.6980.

[KW19] D. P. Kingma and M. Welling. “An introduction to variational au-
toencoders”. In: Foundations and Trends ® in Machine Learning 12.4
(2019), pp. 307–392.

[Kni+08] E. Knill et al. “Randomized benchmarking of quantum gates”. In: Phys.
Rev. A 77 (1 Jan. 2008), p. 012307.

[Koc+22] C. P. Koch et al. Quantum optimal control in quantum technologies.
Strategic report on current status, visions and goals for research in Eu-
rope. 2022.

[KBC21] A. Koswara, V. Bhutoria, and R. Chakrabarti. “Robust control of quan-
tum dynamics under input and parameter uncertainty”. In: Phys. Rev.
A 104 (5 Nov. 2021), p. 053118.

[Kra+19] P. Krantz et al. “A quantum engineer’s guide to superconducting qubits”.
In: Applied Physics Reviews 6.2 (2019), p. 021318. doi: 10.1063/1.
5089550.

[Kud+22] M. Kudra et al. “Robust Preparation of Wigner-Negative States with
Optimized SNAP-Displacement Sequences”. In: PRX Quantum 3 (3
July 2022), p. 030301.

190

https://github.com/erg0dic/transmon_public
https://github.com/erg0dic/transmon_public
https://arxiv.org/abs/2304.09718
https://arxiv.org/abs/1412.6980
https://doi.org/10.1063/1.5089550
https://doi.org/10.1063/1.5089550


[KWM00] T. D. Kühner, S. R. White, and H. Monien. “One-dimensional Bose-
Hubbard model with nearest-neighbor interaction”. In: Phys. Rev. B 61
(18 May 2000), pp. 12474–12489.

[Kuk+89] J. R. Kuklinski et al. “Adiabatic population transfer in a three-level
system driven by delayed laser pulses”. In: Phys. Rev. A 40 (11 Dec.
1989), pp. 6741–6744.

[KR09] I. Kuprov and C. T. Rodgers. “Derivatives of spin dynamics simula-
tions”. In: The Journal of Chemical Physics 131.23 (2009). doi: 10.
1063/1.3267086.

[LSJ15a] F. C. Langbein, S. Schirmer, and E. Jonckheere. “Time optimal infor-
mation transfer in spintronics networks”. In: IEEE Conf. Decision and
Control (2015), pp. 6454–6459.

[LSJ15b] F. C. Langbein, S. Schirmer, and E. Jonckheere. “Time optimal informa-
tion transfer in spintronics networks”. In: 2015 54th IEEE Conference
on Decision and Control (CDC). IEEE. 2015, pp. 6454–6459.

[LKD02] H. Lee, P. Kok, and J. P. Dowling. “A quantum Rosetta stone for in-
terferometry”. In: Journal of Modern Optics 49.14-15 (2002), pp. 2325–
2338.

[Lee+18] J.-S. Lee et al. “Quantum plasmonic sensing using single photons”. In:
Opt. Express 26.22 (2018), pp. 29272–29282.

[Len+22] Y. L. Len et al. “Quantum metrology with imperfect measurements”.
In: Nature Communications 13.1 (2022), p. 6971.

[Leu+17] N. Leung et al. “Speedup for quantum optimal control from automatic
differentiation based on graphics processing units”. In: Phys. Rev. A 95
(4 Apr. 2017), p. 042318.

[LK09] J.-S. Li and N. Khaneja. “Ensemble control of Bloch equations”. In:
IEEE Transactions on Automatic Control 54.3 (2009), pp. 528–536.

[LB17] Y. Li and S. C. Benjamin. “Efficient Variational Quantum Simulator
Incorporating Active Error Minimization”. In: Phys. Rev. X 7 (2 June
2017), p. 021050.

[Lic16] A. Lichnerowicz. Elements of tensor calculus. Courier Dover Publica-
tions, 2016.

[LCW98] D. A. Lidar, I. L. Chuang, and K. B. Whaley. “Decoherence-Free Sub-
spaces for Quantum Computation”. In: Phys. Rev. Lett. 81 (12 Sept.
1998), pp. 2594–2597.

[LSM61] E. Lieb, T. Schultz, and D. Mattis. “Two soluble models of an antifer-
romagnetic chain”. In: Annals of Physics 16.3 (1961), pp. 407–466.

[Lil+15] T. P. Lillicrap et al. Continuous control with deep reinforcement learn-
ing. 2015.

191

https://doi.org/10.1063/1.3267086
https://doi.org/10.1063/1.3267086


[Loh96] W.-L. Loh. “On Latin hypercube sampling”. In: Annals of Statistics
24.5 (1996), pp. 2058–2080.

[Lov+13] N. B. Lovett et al. “Differential Evolution for Many-Particle Adaptive
QuantumMetrology”. In: Phys. Rev. Lett. 110 (22 May 2013), p. 220501.

[Lud+15] A. D. Ludlow et al. “Optical atomic clocks”. In: Rev. Mod. Phys. 87 (2
June 2015), pp. 637–701.

[Lyk+22] D. Lykov et al. Sampling Frequency Thresholds for Quantum Advantage
of Quantum Approximate Optimization Algorithm. 2022. arXiv: 2206.
03579 [quant-ph].

[Mac+11a] S. Machnes et al. “Comparing, optimizing, and benchmarking quantum-
control algorithms in a unifying programming framework”. In: Phys.
Rev. A 84 (2 Aug. 2011), p. 022305.

[Mac+11b] S. Machnes et al. “Comparing, optimizing, and benchmarking quantum-
control algorithms in a unifying programming framework”. In: Phys.
Rev. A 84 (2 Aug. 2011), p. 022305.

[Mac+18] S. Machnes et al. “Tunable, Flexible, and Efficient Optimization of Con-
trol Pulses for Practical Qubits”. In: Phys. Rev. Lett. 120 (15 Apr. 2018),
p. 150401.

[MGE11] E. Magesan, J. M. Gambetta, and J. Emerson. “Scalable and Robust
Randomized Benchmarking of Quantum Processes”. In: Phys. Rev. Lett.
106 (18 May 2011), p. 180504. doi: 10 . 1103 / PhysRevLett . 106 .

180504.

[MG20] E. Magesan and J. M. Gambetta. “Effective Hamiltonian models of the
cross-resonance gate”. In: Phys. Rev. A 101 (5 May 2020), p. 052308.

[Man+23] D. J. Mankowitz et al. “Faster sorting algorithms discovered using deep
reinforcement learning”. In: Nature 618.7964 (2023), pp. 257–263.

[Moe+23] T. M. Moerland et al. “Model-based reinforcement learning: A survey”.
In: Foundations and Trends® in Machine Learning 16.1 (2023), pp. 1–
118.

[MRT18] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine
learning. MIT press, 2018.

[MR12] K. W. Moore and H. Rabitz. “Exploring constrained quantum con-
trol landscapes”. In: The Journal of chemical physics 137.13 (2012),
p. 134113.

[Mue+22] M. Mueller et al. “One decade of quantum optimal control in the chopped
random basis”. In: Reports on Progress in Physics (2022).

[Muk+20] R. Mukherjee et al. “Preparation of ordered states in ultra-cold gases
using bayesian optimization”. In: New Journal of Physics 22.7 (2020),
p. 075001.

192

https://arxiv.org/abs/2206.03579
https://arxiv.org/abs/2206.03579
https://doi.org/10.1103/PhysRevLett.106.180504
https://doi.org/10.1103/PhysRevLett.106.180504


[NM65] J. A. Nelder and R. Mead. “A Simplex Method for Function Minimiza-
tion”. In: The Computer Journal 7.4 (Jan. 1965), pp. 308–313.

[NP20] G. Neu and C. Pike-Burke. “A unifying view of optimism in episodic
reinforcement learning”. In: Advances in Neural Information Processing
Systems 33 (2020), pp. 1392–1403.

[NC10] M. A. Nielsen and I. L. Chuang. Quantum computation and quantum
information. Cambridge University Press, 2010.

[Niu+19a] M. Y. Niu et al. “Universal quantum control through deep reinforcement
learning”. In: npj Quantum Information 5.1 (2019), p. 33.

[Niu+19b] M. Y. Niu et al. “Universal quantum control through deep reinforcement
learning”. In: npj Quantum Information 5.1 (2019), pp. 1–8.

[Niu+19c] M. Y. Niu et al. “Universal quantum control through deep reinforcement
learning”. In: npj Quantum Information 5.1 (2019), pp. 1–8.

[NY98] J. Nocedal and Y. Yuan. “Combining trust region and line search tech-
niques”. In: Advances in Nonlinear Programming. 1998, pp. 153–175.

[ONe+22a] S. O’Neil et al. Time Domain Sensitivity of the Tracking Error. 2022.
eprint: 2210.15783.

[ONe+22b] S. O’Neil et al. Time Domain Sensitivity of the Tracking Error. 2022.
arXiv: 2210.15783.

[ONe+23] S. P. O’Neil et al. “Analyzing and Unifying Robustness Measures for Ex-
citation Transfer Control in Spin Networks”. In: IEEE Control Systems
Letters 7 (2023), pp. 1783–1788.

[Owe19] A. B. Owen. Monte Carlo Book: the Quasi-Monte Carlo parts. 2019.

[Par+16] D. K. Park et al. “Randomized benchmarking of quantum gates imple-
mented by electron spin resonance”. In: Journal of Magnetic Resonance
267 (2016), pp. 68–78.

[Pas+19] A. Paszke et al. “Pytorch: An imperative style, high-performance deep
learning library”. In: Advances in neural information processing systems
32 (2019).

[Per+13] A. Perez-Leija et al. “Coherent quantum transport in photonic lattices”.
In: Phys. Rev. A 87 (1 Jan. 2013), p. 012309.

[Per+14] A. Peruzzo et al. “A variational eigenvalue solver on a photonic quantum
processor”. In: Nature communications 5.1 (2014), p. 4213.
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