
RESEARCH

Clinical Oral Investigations          (2024) 28:433 
https://doi.org/10.1007/s00784-024-05808-x

	
 Burçin Arıcan
burcin.aricanalpay@bau.edu.tr

1	 Department of Endodontics, School of Dental Medicine, 
Bahçeşehir University, Istanbul, Turkey

2	 Department of Endodontics, Faculty of Dentistry, Çanakkale 
Onsekiz Mart University, Istanbul, Turkey

3	 Department of Endodontics, Faculty of Dentistry, Medipol 
University, Istanbul, Turkey

4	 Department of Endodontics, School of Dentistry, Tehran 
University of Medical Sciences, Tehran, Iran

5	 Department of Tissue Engineering, School of Advanced 
Technologies in Medicine, Tehran University of Medical 
Sciences, Tehran, Iran

6	 School of Dentistry, College of Biomedical and Life 
Sciences, Cardiff University, Cardiff, UK

Abstract
Objectives  This study aimed to investigate the influence of access cavity designs on the mechanical properties of a single-
rooted mandibular first premolar tooth under various static loads using a finite element analysis.
Materials and methods  3-dimensional FEA designs were modeled according to the access cavity designs: an intact tooth 
(control), traditional access cavity (TEC-I), traditional access cavity with Class-II mesio-occlusal cavity design (TEC-II), 
conservative access cavity (CEC), ninja access cavity (NEC), caries-driven access cavity (Cd-EC), buccal access cavity 
(BEC) and bucco-occlusal access cavity (BOEC). After the simulated access cavity preparations, root canal treatment was 
simulated and three different static loads which mimicked oblique and vertical mastication forces were applied to the models. 
The stress distribution and maximum Von Misses stress values were recorded. The maximum stress values were obtained on 
both enamel and dentin under multi-point vertical loads.
Results  The maximum stress values were obtained on both enamel and dentin under multi-point vertical loads. Under all 
load types, the minimum stress distribution was observed in the control group, followed by CEC, NEC and BEC designs. 
The highest stress concentration was detected in Cd-EC and TEC-II designs. Under single-point vertical loading, the stress 
was mostly concentrated in the lingual PCD area, while under multi-point vertical loading, the entire root surface was stress-
loaded except for the lingual apical third of the root.
Conclusion  Preserving tooth tissue by simulating CEC, NEC and BEC access cavities increased the load capacity of a 
single-rooted mandibular first premolar following simulated endodontic treatment.

Clinical significance:
• The BEC design can be considered as a viable alternative in cases involving cervical lesions.
• Oblique and multipoint forces were identified as critical loads impacting the failure probabilities of a root-filled single-
rooted first premolar tooth.
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Introduction

Minimally invasive endodontics is a concept based on pre-
serving as much enamel and dentin as possible in the hope 
of reducing tooth fracture and thus prolonging the survival 
of the tooth [1, 2]. The concept aims to preserve and retain 
occlusal tooth structure and pericervical dentin. The peri-
cervical dentin is defined as an area 4 mm above and below 
the crestal bone [1, 3]. This area is believed to play a critical 
role in reducing cusp deflection [1]. Technological develop-
ment allows the preparation of minimal endodontic access 
cavities where the pericervical region is protected, which 
has the potential to make this concept more applicable in 
clinic practice.

Mandibular premolars have been reported to be the most 
difficult teeth to root fill due to the variations in root canal 
anatomy of mandibular premolars such as deep splits [4], 
C-shaped root canals [4], cervical lesions [5], fine ribbon-
shaped root canals [6], and multiple canals [7]. To prepare 
and fill these canal irregularities, adapting the endodontic 
access cavities to each specific anatomical feature is neces-
sary. In mandibular premolars with a single root canal con-
figuration, the root canal space is accessible using minimally 
invasive endodontic cavity designs, such as conservative 
and ninja endodontic cavities, which extend lingually from 
the central occlusal groove [8]. However, in the presence 
of challenging root canal anatomy, caries and/or cervical 
lesions, modified cavity designs may be necessary. Cervi-
cal lesions, which can be defined as both carious and non-
carious defects, are the most prevalent on the buccal surface 
of mandibular premolars [5]. In these cases, access to the 
root canal space can be created with buccal access cavity 
designs (BEC). It has been reported that if these lesions are 
unrestored, the stress concentration caused by the cervical 
lesion may cause further deterioration of the tooth [9]. For 
this reason, in the presence of occlusal or fissure caries, this 
cavity design can be modified and extended to include a tra-
ditional endodontic access cavity which can be referred to 
as a bucco-occlusal access cavity (BOEC).

Finite element analysis (FEA) was first introduced origi-
nally in the field of engineering. It gained popularity in den-
tistry, especially modeling teeth, bone, tooth restorations, 
and nanocoatings on implants and devices [10, 11] due to 
its reproducible and numerical methodology [12]. In FEA, a 
physical model is divided into smaller elements called finite 
elements and then a mesh model of the structure is formed 
[11]. This method allows the generation of a virtual picture 
of the mechanical properties of the tooth and restoration [5] 
and it has been reported that the results of FEA studies affirm 
the results of laboratory-based studies [13]. It can overcome 
the limitation of the standardization of teeth because of pos-
sible variations in dentin mechanical properties, age, tooth 

extraction forces, storage time, and storage medium after 
extraction [14].

Mandibular premolars are inherently more susceptible to 
fracture due to the lingual orientation of these teeth, result-
ing in concentration of tensile stresses in the cervical sec-
tion. This preference for structural compromise under stress 
makes them particularly important for study giving critical 
information about failure trends following different access 
cavity designs and restorations [15]. The load capacity and 
mechanical properties of mandibular premolars have been 
investigated in previous FEA and push-out studies [15–18]. 
However, knowledge on the effect of endodontic access 
cavity design on the load capacity of mandibular premo-
lars under various occlusal forces is limited. Therefore, this 
study aimed to investigate the influence of conventional and 
modified endodontic access cavity designs on the mechani-
cal properties of FEA single-rooted mandibular premolar 
models under simulated vertical and oblique occlusal forces. 
The null hypothesis is that the access cavity design has no 
effect on the stress distribution of a mandibular premolar 
tooth under static occlusal loads.

Materials and methods

The study protocol was approved by university ethics com-
mittee (Approval no: 2019/642).

The manuscript of this laboratory study has been written 
according to Preferred Reporting Items for Laboratory stud-
ies in Endodontology (PRILE) 2021 guidelines [19].

An intact, mature, carious free, extracted single-rooted 
mandibular first premolar without any resorption was 
scanned with cone beam computed tomography (ILUMA, 
Orthocad, CBCT, 3 M Imtec, Oklahoma, USA) using the 
parameters of 90 kV, 12 mA, 75 μm slice thickness. A three-
dimensional model with enamel, dentin and the cementum 
in a single structure was obtained by using Rhinoceros 4.0 
Software (3670 Woodland Park Ave N, Seattle, WA 98,103 
USA).

Access cavity design

An intact tooth (Figs. 1A and 2A) and 7 different access cav-
ity designs were modeled based on traditional, minimally 
invasive and modified principals. Occlusal view of the mod-
els were shown in Fig. 3.

To transfer the traditional cavity principals to the models, 
the traditional endodontic cavity (TEC-I) in which straight 
line access to the pulp chamber with complete deroofing 
was designed (Figs. 1B and 2B). The access cavity design 
in which the mesial marginal ridge was removed and thus 
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converted to a Class-II restoration was named as TEC-II 
(Figs. 1C and 2C).

To simulate minimally invasive endodontic access cavi-
ties, a conservative access cavity (CEC) (Figs. 1D and 2D), 
a ninja access cavity (NEC) (Figs. 1E and 2E) and a buc-
cal access cavity (BEC) (Figs.  1G and 2G) models were 
designed. In the CEC design, the cavity boundary started 
at the center of the occlusal surface down to the root canal 
orifice thus retaining part of the chamber roof [20] and lin-
gual shelf [21]. The NEC model was designed with the same 
principles as the CEC, but the cavity was smaller yet still 
allowed observation of the root canal at different angles and 
preservation of the pulp chamber [20]. The BEC design was 

simulated with a diamater of 2 mm, centrally located in the 
mesio-distal direction in the buccal lower half of the crown. 
The access cavity was modified to provide access to the root 
canals from the buccal aspect.

In order to mimic clinical conditions, the modified end-
odontic access cavities were also supplemented with a 
caries-driven access cavity (Cd-EC) and a bucco-occlusal 
access cavity (BOEC). In the Cd-EC (Fig. 1E) design, the 
TEC-I design was enlarged on the occlusal surface allowing 
2  mm of dentin to remain on the proximal margins [22]. 
The BOEC (Fig. 1H) model was the combination of BEC 
and TEC-I designs in which the occlusal access cavity was 
joined up with the BEC design.

Root canal preparation

Root canal dimensions were simulated as size 40, 0.04 taper 
at 0.5  mm coronal to the apical foramen. The root canal 

Fig. 3  Occlusal view of the models. TEC-I (A); CEC (B); NEC (C); 
TEC-II (D); Cd-EC (E)

 

Fig. 2  Lateral view of the models. Control model (A); TEC-I (B); 
TEC-II (C); CEC (D); NEC (E); Cd-EC (F); BEC (G) and BOEC (H), 
respectively

 

Fig. 1  Digital experimental cavity 
designs: Control (A), TEC-I (B), 
TEC-II (C), CEC (D), NEC (E), 
Cd-EC (F), BEC (G) and BOEC 
(H), respectively
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FEA

All the models were subjected to simulated static loads. 
Three different load types were applied to the models.

	● For the Static-I load, a vertical load of 250 N was ap-
plied only from the central fossa. Because the load was 
applied form only one point, this type of load was de-
fined as a “single-point vertical load” (Fig. 4A) [32].

	● For Static-II load, a vertical occlusal load of 200 N (a 
total of 800 N) was applied from each of 4 points, name-
ly the buccal cusp, central fossa and 2 marginal ridges. 
This type of load was defined as a “multi-point vertical 
load” (Fig. 4B) [33].

	● For Static-III load, a total chewing load of 225 N was 
applied from two points (lingual surface of the buccal 
cusp) at an angle of 45° to the long axis of the tooth 
to simulate the intercuspation contact. This type of load 
was defined as a “multi-point oblique load” (Fig. 4C-D) 
[34].

For “multi-point load” types, the occlusal force was loaded 
not only from one point like in Static-I load but also from 
two or more points on occlusal surface like in Static- II 
and III loads. The load types are also shown in Fig. 4 with 
details.

Maximum von Mises (VM) Stress values and the stress 
distribution of the models under static loads were evaluated 
and compared.

Results

The peak VM stress distribution on enamel and dentin is 
shown in Table 3. The maximum stress values were obtained 
on both enamel and dentin under Static-II load. Under all 
load types, the minimum stress distribution was observed 
in the control group (intact tooth), which was followed by 
CEC, NEC and BEC designs.

On the enamel surface, the stress mainly aggregated 
around the cavity margins, approximal surfaces and buccal 
side of the crown under Static-I, II and III loads, respectively 
(Fig. 5). The minimum stress distribution was observed in 

was filled with simulated gutta-percha up to 2 mm from the 
root canal orifice [23, 24]. An endodontic sealer was not 
simulated in the FEA modelling [25]. The root canal orifice 
was filled with simulated flowable composite and then the 
entire access cavity was restored with composite resin. The 
volume of used composite in TEC-I, TEC-II, CEC, NEC, 
Cd-EC, BEC and BOEC designs was 60.146 mm3, 78.905 
mm3, 26.724 mm3, 16.679 mm3, 76.103 mm3, 41.764 mm3 
and 66.941 mm3, respectively.

Set material properties

The thickness of the periodontal ligament, lamina dura and 
cortical bone was set to 0.2 mm, 0.3 mm and 2 mm, respec-
tively [20, 26]. Cementum was modelled as 0.175 mm thick 
in the apical third and 0.038 mm thick in the coronal third. 
Cortical bone was designed as a 15 mm cube around the root 
starting 1.5 mm below the cementoenamel junction.

All models were designed in a three-dimensional format 
in the VRMesh Software and then imported into the Algor 
Fempro Software program for meshing. In accordance with 
previous studies, the teeth and materials were assumed to 
be homogeneous, linear, elastic, and isotropic [13]. The 
number of elements and nodes is summarized in Table 1. 
The elastic modulus and the Poisson ratio of the structures 
used in the FEA models were determined according to data 
derived from the literature [23, 27–31] and listed in Table 2.

Table 1  The number of nodes and elements of models
Number Control TEC-I TEC-II CEC NEC Cd-EC BEC BOEC

Static I Node 53,088 44,980 47,132 48,662 51,980 48,108 54,987 50,014
Elements 252,167 220,218 227,589 237,918 249,666 231,205 265,277 236,785

Static II Node 53,088 44,980 47,132 48,662 51,980 48,108 54,987 50,014
Elements 252,167 220,218 227,589 237,920 249,665 231,205 265,277 236,785

Static III Node 36,980 44,980 47,132 48,662 51,980 48,108 54,987 50,014
Elements 198,253 220,213 227,589 237,920 249,666 231,217 265,277 236,772

Table 2  The mechanical characteristic of investigated material
Materials Elastic 

modulus
(E; MPa)

Pois-
son 
ration
(µ)

Enamel (Sathorn et al., 2005) 84,100 0.33
Dentin (Sathorn et al., 2005) 18,600 0.31
Periodontal Ligament (Sathorn et al., 2005) 68.9 0.45
Gutta-percha (Helal & Wang, 2019) 140 0.40
Cortical bone (Huempfner-Hierl et al., 2014) 13,700 0.3
Cancellous bone (Huempfner-Hierl et al., 2014) 1370 0.3
Composite resin (Jiang et al., 2018) 12,000 0.3
Flowable composite resin (Jiang et al., 2018) 5100 0.27
Cement (Eskitaşçıoğlu et al., 2002) 6800 0.31
Pulp (Gale & Darvell, 1999) 3 0.45
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Table 3  The maximum Von mises (VM) stress values recorded in enamel and dentin of experimental models
Control TEC-I TEC-II CEC NEC Cd-EC BEC BOEC

Static I Enamel 2576.78 1980.6 1587.57 1785.68 1685.78 1305.94 1791.19 1423.69
Dentin 63.5812 212.135 51.3136 115.247 95.1722 95.724 60.2596 59.5486

Static II Enamel 2787.45 2488.29 3211.45 7070.33 2396.69 3149.83 2106.84 2582.94
Dentin 78.3298 191.574 162.725 115.58 139.783 114.573 95.1778 72.8548

Static III Enamel 582.914 1251.03 1435.52 613.064 779.178 1110.47 616.137 1021.23
Dentin 78.1796 88.1234 75.6949 98.8375 78.6388 98.1737 89.3717 141.512

Fig. 5  The stress distribution on the occlusal surface of the FEA models under Static-I, II and III loads

 

Fig. 4  The load locations for 
single-point occlusal load; Static-
I (A), multi-point occlusal load; 
Static-II (B) and multi-point 
oblique load; Static-III (C) forces 
from occlusal view. The lateral 
view of the Static III load is also 
presented in (D)
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Discussion

The prognosis of root filled teeth depends on several fac-
tors, such as detection of the root canal orifices, the qual-
ity of chemo-mechanical canal preparation and filling of 
the root canals. The procedure causes a certain amount of 
tooth tissue loss which mainly occurs with the access cavity. 
In this study, the stress distribution of a single-rooted man-
dibular first premolar tooth with various endodontic access 
cavity designs was investigated under a range of simulated 
static occlusal loads. The novelty of the study is to test the 
mechanical performance of different access cavities, espe-
cially Cd-EC and BEC which were not evaluated before, by 
using an objective test, FEA. According to the results, mini-
mal invasive cavity designs represented by NEC, CEC and 
BEC models were associated with less stress distribution on 
the tooth surface. In other words, the different access cavity 
designs showed different stress distributions throughout the 
dentin and enamel. In the light of these findings, the null 
hypothesis was rejected.

In the present study, the maximum VM stress was seen on 
enamel, rather than dentin under all types of loads. The main 
reason for this may be the mechanical and physical proper-
ties of these specific tissues. Both enamel and dentin play a 
crucial role in tooth fractures. However, the transmission of 
the load through these two tissues is different [35]. While 
enamel is the first tissue that encounters grinding stress 
with low tensile strength and high modulus of elasticity, the 

the control group and the maximum was in Cd-EC design 
followed by TEC-I and TEC-II under all load types. The 
minimum stress distribution among the experimental cavity 
designs was observed in CEC and NEC designs under Static 
II and III loads, and in BEC designs under Static I load. For 
the modified buccal access cavity groups, the stress distribu-
tion pattern under Static-II load was different. In the BEC 
design, the stress accumulated at the margins of the buc-
cal cavity, while in the BOEC design, the stress was mainly 
concentrated around the lingual cusp.

On the dentin surface, the stress distribution pattern on 
the root surface was similar for all cavity groups (Fig. 6). 
NEC and CEC designs were associated with less VM stress 
than the other experimental groups. The highest stress con-
centration on the root surface was detected on the TEC-II 
design and followed by the Cd-EC design under Static-I, II 
and III loads. Under single-point vertical loading, the stress 
was mostly concentrated in the lingual PCD area, while 
under multi-point vertical loading, the entire root surface 
was stress-loaded except for the lingual apical third of the 
root. For multi-point oblique forces, the stress was concen-
trated on the buccal and lingual surfaces of the root while 
decreasing in the middle third of the approximal surfaces. 
The BEC design had less stress concentration and distribu-
tion than the BOEC design under all load types.

Fig. 6  The stress distribution on the root, pericervical dentin and apex of the models
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procedural errors with BEC designs is unclear and must be 
investigated in future studies.

Teeth are exposed to a wide range of forces in the mouth. 
In order to predict the clinical behaviour and loading capac-
ity of a tooth, static or dyanmic loading tests can be used. 
In the present study, while Static-I and II loads mimicked 
vertical mastication forces, Static-III represented an oblique 
mastication force [23]. When the direction of the load was 
changed from a single point and vertical to multipoint and 
oblique, the stress pattern on the root surface changed and 
increased substantially in all access cavity types. It can be 
interpreted that oblique and multipoint forces are more dan-
gerous for mandibular premolar in terms of tooth fracture. 
This finding is also supported by previous studies [41, 42].

The limitation of the study must also be taken into con-
sideration. Only one specific mandibular premolar model 
was evaluated using a constant and standard root canal size. 
It is unknown whether any difference in root canal size and 
taper may affect the stress distribution on the tooth surface. 
In addition, the stress distribution was analyzed only under 
static loads. However, it was reported in a previous study 
that the fracture strength of cementum was different under 
static and fatigue load [42, 43]. Therefore, the load capac-
ity of the tooth and consequently the probabilty of survival 
may vary under a range of forces. Moreover, usage of fiber-
reinforced composite filling, post-core restoration, adhesion 
quality of restoration, tensile stress arise from polymeriza-
tion shrinkage, cusp coverage and/or cusp reduction in root 
filled mandibular premolars may also have an impact on 
load capacity [44–46].

Finite Element Analysis (FEA) offers significant benefits. 
It enables researchers to obtain stress distributions within 
intricate structures under various conditions, which can be 
challenging to achieve through laboratory experiments (23). 
Clinical or experimental research often faces numerous con-
founding factors, such as operator or observer bias, differ-
ences in tooth anatomies, operational flaws, and equipment 
calibration issues, among others [23, 47]. Despite the invalu-
able insights provided by FEA in dental research, it is impor-
tant to acknowledge the inherent limitations of this method. 
FEA, being a computerized virtual simulation, cannot fully 
replicate the complexities of the clinical environment. The 
assumption of homogeneous, isotropic, and linear mechani-
cal properties in the materials used in FEA models oversim-
plifies the reality, as dental structures such as the tubular 
structure of dentin and the dentin-enamel junction are func-
tionally graded materials exhibiting varying elastic moduli 
and creep-related behaviors. This discrepancy underscores 
the need for cautious interpretation of FEA results and high-
lights the importance of complementing virtual models with 
empirical clinical data [47, 48]. Besides, it should be kept 
in mind that various controlled and uncontrolled factors can 

dentin absorbs the biting force that comes from the enamel 
[36]. This situation may explain the present results which 
were also supported by a previous study [37].

In this study, the type of endodontic access cavity appears 
to affect the stress distribution on the tooth surface. Among 
the experimental groups, NEC and CEC had the lowest 
stress distribution under all types of loads, except the Static-
I load in which the BEC design had lower VM values. Many 
reports have concluded that the amount of tissue lost was 
directly related to the tooth strength against the mastication 
forces, which is also supported by the present findings [23, 
24, 38]. Therefore, it is quite logical to observe less stress 
distribution associated with minimal invasive access cavi-
ties. On the other hand, the highest stress distribution was 
mainly observed in the Cd-EC design, followed by TEC 
cavities on the enamel surface. Considering this result, it 
can be concluded that while marginal tissue thickness was 
an important parameter in stress distribution, the loss of 
one marginal ridge had no significant effect on the enamel 
strength [38].

The pattern of stress distribution was affected by the 
direction and position of the occlusal load. [38, 39]. Bena-
zzi et al. performed a FEA study with intact mandibular 
premolar models under different occlusal loads [15]. They 
reported that the tensile stress was mainly concentrated on 
the buccal side of the crown and the root whereas the min-
imum stress was observed on the lingual side of the root 
under Static-III load. In the present study, similar results 
were obtained with one exception. The lingual surface of 
the root also was associated with high-stress patterns in all 
experimental access cavity designs. So, the root filled sin-
gle-rooted mandibular first premolar appears to be at risk of 
fracture from the lingual surface of the root, regardless of 
the access cavity design.

Non-carious cervical lesions are common on the buccal 
aspect of the crown of mandibular premolars. One of the 
hypotheses to explain this situation is that the high tensile 
stress occurs on the buccal wall of the crown under non-
axial mastication forces [15], which will cause abfraction at 
the cervical region of the tooth [40]. This situation may gen-
erate two different approaches for access cavity preparation. 
The clinician creates either a BEC or BOEC (combine TEC 
design with Class V restoration) to reach the pulp cham-
ber. In this study, the stress distribution for these two cavity 
designs was different. The BEC design, which was designed 
as a minimal invasive endodontic procedure, had less stress 
concentration and distribution than the BOEC design under 
all load types. This may indicate that the BEC is a good 
choice for a tooth with this kind of cervical lesion. How-
ever, the irrigating and shaping efficiency of the root canals, 
risk of file separation, centering ability, transportation, and 
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Conclusion

Within the limitation of the study, these are the main 
conclusions:

1.	 Minimally invasive cavities relieved the stress 
distribution.

2.	 CEC, NEC and BEC designs were associated with 
lower stress distribution than other experimental cavity 
designs on the root and crown of a root filled single-
rooted first premolar tooth. Therefore, it can be con-
cluded that the BEC design could be a good alternative 
in the presence of cervical lesions.

3.	 The application of oblique and multipoint forces were 
identified as critical loads that impact the failure proba-
bilities of a root filled single-rooted first premolar tooth.

Further clinical and laboratory studies are needed to evaluate 
the effect of restoration and dynamic loads on the mechani-
cal behavior of mandibula premolars.
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