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Increased frequency of repeat expansion 
mutations across different populations
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Repeat expansion disorders (REDs) are a devastating group of 
predominantly neurological diseases. Together they are common, 
affecting 1 in 3,000 people worldwide with population-specific differences. 
However, prevalence estimates of REDs are hampered by heterogeneous 
clinical presentation, variable geographic distributions and technological 
limitations leading to underascertainment. Here, leveraging whole-genome 
sequencing data from 82,176 individuals from different populations, we 
found an overall disease allele frequency of REDs of 1 in 283 individuals. 
Modeling disease prevalence using genetic data, age at onset and 
survival, we show that the expected number of people with REDs would 
be two to three times higher than currently reported figures, indicating 
underdiagnosis and/or incomplete penetrance. While some REDs are 
population specific, for example, Huntington disease-like 2 in Africans, most 
REDs are represented in all broad genetic ancestries (that is, Europeans, 
Africans, Americans, East Asians and South Asians), challenging the notion 
that some REDs are found only in specific populations. These results have 
worldwide implications for local and global health communities in the 
diagnosis and counseling of REDs.

Repeat expansion disorders (REDs) are a heterogeneous group of 
conditions that mainly affect the nervous system and include fragile  
X syndrome, the most common inherited form of amyotrophic lateral 
sclerosis and frontotemporal dementia (C9orf72-ALS/FTD)1 and inher-
ited ataxias (Friedreich ataxia (FA), RFC1-CANVAS (cerebellar ataxia, 
neuropathy, vestibular areflexia syndrome)2). REDs are caused by the 
same underlying mechanism: the expansion of short repetitive DNA 
sequences (1–6 bp) within their respective genes. The mutational pro-
cess is gradual; normal alleles are usually passed stably from parent to 

child with rare changes in repeat size, and intermediate-size alleles are 
more likely to expand into the disease range, giving rise to pathogenic 
repeat lengths in the next generation. Repeat lengths are classified in 
ascending order as normal, intermediate, premutation, reduced pen-
etrance or full mutations, though this classification is not universal and 
not all RED loci have well-defined ranges for intermediate or reduced 
penetrance range.

REDs are clinically heterogeneous. For example, C9orf72 expan-
sions can present as either FTD or ALS even within the same family; 

Received: 22 June 2023

Accepted: 11 July 2024

Published online: xx xx xxxx

 Check for updates

A full list of affiliations appears at the end of the paper.  e-mail: a.tucci@qmul.ac.uk

http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-024-03190-5
http://orcid.org/0000-0003-3343-1547
http://orcid.org/0000-0001-7181-9652
http://orcid.org/0000-0002-8762-8188
http://orcid.org/0000-0003-2716-2045
http://orcid.org/0000-0001-9295-3594
http://orcid.org/0000-0003-1784-5483
http://orcid.org/0000-0002-2866-7777
http://orcid.org/0000-0003-1415-5129
http://orcid.org/0000-0001-5644-0070
http://crossmark.crossref.org/dialog/?doi=10.1038/s41591-024-03190-5&domain=pdf
mailto:a.tucci@qmul.ac.uk


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03190-5

program focused on elucidating the genetic architecture and risk 
factors of heart, lung, blood and sleep disorders from the National 
Institutes of Health (NIH)25.

First, we selected WGS data generated using PCR-free protocols 
and sequenced with paired-end 150 bp reads (Methods and Supple-
mentary Table 1). To avoid overestimating the frequency of REDs, we 
excluded individuals with neurological diseases, as their recruitment 
was driven by the fact that they had a neurological disease potentially 
caused by a repeat expansion. We then performed relatedness and 
principal component (PC) analyses to identify a set of genetically unre-
lated individuals and predict broad genetic ancestries based on 1000 
Genomes Project phase 3 (1K GP3) superpopulations26. The resulting 
dataset comprised a cross-sectional cohort of 82,176 genomes from 
unrelated individuals (median age 61 years, Q1 (first quartile)–Q3 
(third quartile): 49–70, 58.5% females, 41.5% males; Supplementary 
Table 2 and Extended Data Fig. 1), genetically predicted to be of Euro-
pean (n = 59,568), African (n = 12,786), American (n = 5,674), South 
Asian (n = 2,882) and East Asian (n = 1,266) descent (Methods and 
Extended Data Fig. 2).

RED mutation frequency
To estimate the number of individuals carrying premutation or 
full-mutation alleles (Fig. 1b), we selected repeats in RED genes27 for 
which WGS can accurately discriminate between normal and patho-
genic alleles7, based on either or both of the following conditions: the 
threshold between premutation and full mutation is shorter than the 
sequencing read length (and therefore WGS can accurately distinguish 
between premutation and full mutation), or WGS was validated against 
the current gold-standard PCR test (Extended Data Fig. 3 and Supple-
mentary Table 3). For the latter, PCR tests were obtained from a cohort 
of individuals recruited to 100K GP who had RED testing as part of their 
standard diagnostic pathway (Methods and Supplementary Table 4). 
Within this dataset, we show the following: (1) WGS accurately classifies 
alleles in the normal, premutation and full-mutation range in all loci 
assessed except FMR1 (which causes fragile X syndrome) (Extended 
Data Fig. 3a and Supplementary Table 4); (2) the accuracy of repeat 
sizing by WGS is not affected by genetic ancestry by comparing geno-
types generated by WGS with those generated by PCR from different 
populations (Extended Data Fig. 3b), but it might underestimate the 
size of large expansions in FMR1, DMPK, FXN and C9orf72, as previously 
described7.

Furthermore, as we previously developed and validated a dedi-
cated WGS analytical workflow for the repeat expansion in RFC1 that 
causes CANVAS28, this repeat was included in our analysis.

Overall, 16 RED loci pass our criteria for accurately estimating pre-
mutation and full-mutation carrier frequencies, representing a broad 
spectrum of REDs and different modes of inheritance: (1) autosomal 
dominant: HD, Huntington disease-like 2 (HDL2), DM1, C9orf72-ALS/
FTD, the SCAs (SCA1, SCA2, SCA3, SCA6, SCA7, SCA12 and SCA17), 
dentatorubral–pallidoluysian atrophy (DRPLA) and NOTCH2NLC, which 
causes a spectrum of neurological disorders, especially neuronal intra-
nuclear inclusion disease and oculopharyngodistal myopathy; (2) 
autosomal recessive: FA and CANVAS; and (3) X-linked SBMA (Fig. 1b).

Our analysis workflow (Fig. 1) included profiling each RED locus, 
followed by quality control (QC) of all alleles (employing Expansion 
Hunter classifier (https://github.com/bharatij/ExpansionHunter_Clas-
sifier) and visual inspection of pileup plots as previously described29) 
predicted to be larger than the premutation threshold (Methods and 
Supplementary Table 5). We also retrospectively analyzed factors 
potentially leading to overestimating disease allele frequency, such as 
checking that there was no selection bias for patients with DM1, which 
can cause cardiac abnormalities (Supplementary Table 6).

In total, for autosomal dominant and X-linked REDs, there were 
290 individuals carrying one fully expanded repeat and 1,279 indi-
viduals carrying one repeat in the premutation range, meaning that 

and one in three patients carrying the repeat expansion in C9orf72 
shows an atypical presentation at onset such as Alzheimer’s and Hun-
tington disease (HD) among others3,4. For many REDs, the variability 
in repeat lengths underlines the substantial clinical heterogeneity5; 
longer repeats cause more severe disease and earlier symptom onset6.

Previous studies have estimated that REDs affect 1 in 3,000 peo-
ple7. Despite their broad distribution in human populations, few global 
epidemiological studies have been performed. In these studies, preva-
lence estimates are either population based, in which affected individu-
als are identified on the basis of clinical presentation, or genetically 
tested on the basis of the presence of a relative with a RED. Given that 
one of the most striking features of REDs is that they can present with 
markedly diverse phenotypes, REDs can remain unrecognized, leading 
to underestimation of the disease prevalence8.

While many of the epidemiological studies so far have been con-
ducted in cohorts of European origin, studies in other ancestries have 
highlighted population differences at specific RED loci9–11. Among the 
most common REDs, myotonic dystrophy type 1 (DM1) affects 1 in 8,000 
people worldwide12, ranging from 1 in 10,000 in Iceland to 1 in 100,000 
in Japan13. Similarly, HD prevalence ranges from 0.1 in 100,000 in Asian 
and African countries14,15 to 10 in 100,000 in Europeans16. In Europe-
ans, it is estimated that the prevalence of C9orf72-FTD is 0.04–134 in 
100,000, and C9orf72-ALS is 0.5–1.2 in 100,000 (ref. 4). The spinocer-
ebellar ataxias (SCAs) are a group of rare neurodegenerative disorders 
mainly affecting the cerebellum. They are individually rare worldwide, 
with largely variable frequencies among populations17, mainly due to 
founder effects. Overall, the worldwide prevalence of SCAs is 2.7–47 
cases per 100,000 (ref. 10), with SCA3 being the most common form 
worldwide, followed by SCA2, SCA6 and SCA118.

With the advent of disease-modifying therapies for REDs, it is 
becoming necessary to determine comprehensively the number of 
patients and type of RED expected in different populations so that 
targeted approaches can be developed accordingly. Large-scale genetic 
analyses of REDs have been limited by repeat expansion profiling tech-
niques, which historically have relied on polymerase chain reaction 
(PCR)-based assays or Southern blots, which by nature are targeted 
assays and can be difficult to scale. So far, the largest population study 
of the genetic frequency REDs involved the PCR-based analysis of 14,196 
individuals of European ancestry19.

In the past few years, bioinformatic tools have been developed to 
profile DNA repeats from short-read whole exome20 and whole-genome 
sequencing (WGS) data21. We have recently shown that disease-causing 
repeat expansions can be detected from WGS with high sensitivity and 
specificity, making large-scale WGS datasets an invaluable resource 
for the analysis of the frequency and distribution of REDs7. Our group 
has previously applied this pipeline to a large WGS cohort to assess the 
distribution of repeat expansions in the AR gene, which cause spinal 
and bulbar muscular atrophy (SBMA), and found an unexpectedly 
high frequency of pathogenic alleles, suggesting underdiagnosis or 
incomplete penetrance of this RED22. However, a comprehensive study 
of REDs in the general population and across different ancestries using 
WGS has never been performed.

Here, we used large-scale genomic databases to address two main 
questions: (1) What is the frequency of RED mutations in the general 
population? (2) How does the frequency and distribution of REDs vary 
across populations?

Results
Cohort description
We analyzed RED loci from two large-scale medical genomics cohorts 
with high-coverage WGS and rich phenotypic data: the 100,000 
Genomes Project (100K GP) and Trans-Omics for Precision Medicine 
(TOPMed). The 100K GP is a program to deliver genome sequencing of 
people with rare diseases and cancer within the National Health Service 
(NHS) in the United Kingdom23,24. TOPMed is a clinical and genomic 
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the frequency of individuals carrying full-expansion and premuta-
tion alleles among this large cohort is 1 in 283 and 1 in 64, respectively  
(Supplementary Table 7).

The most common expansions (in the full-mutation range; Fig. 1b) 
were those in C9orf72 (C9orf72-ALS/FTD) and DMPK (DM1) with a fre-
quency of 1 in 839 and 1 in 1,786, respectively, followed by expansions 

in AR (SBMA: 1 in 2,561 males) and HTT (HD: 1 in 4,109). Surprisingly, 
many individuals were found to carry expansions in the SCA genes: 1 
in 5,136 in ATXN2 (SCA2), 1 in 5,136 in CACNA1A (SCA6), and 1 in 6,321 
in ATXN1 (SCA1). By contrast, expansions in ATXN7 (SCA7) and TBP 
(SCA17) were present in only two individuals at each locus (1 in 41,077), 
and expansions in JPH3 (HDL2) and ATN1 (DRPLA) were very rare, with 
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Fig. 1 | Overview of the study. a, Technical flowchart. Whole-genome sequences 
from the 100K GP and TOPMed datasets were first selected by excluding those 
associated with neurological diseases. WGS data from 1K GP3 were also selected 
by having the same technical specifications (Methods). After inferring ancestry 
prediction, repeat sizes for all 22 REDs were computed by using EH v3.2.2. On one 
hand, for 16 REDs overall carrier frequency, disease modeling and correlation 

distribution of long normal alleles were computed in the 100K GP and TOPMed 
projects (yellow box). On the other hand, the distribution of repeat sizes across 
different populations was analyzed in 100K GP and TOPMed combined, and in the 
1K GP3 cohorts. AFR, African; AMR, American; EAS, East Asian; EUR, European; 
SAS, South Asian. b, A list of the RED loci included in the study, including repeat-
size thresholds for reduced penetrance and full mutations.
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only a single individual at each locus identified with a repeat allele 
in the pathogenic full-mutation range. No pathogenic full-mutation 
expansions were identified in ATXN3 (SCA3), PPP2R2B (SCA12) and 
NOTCH2NLC (Fig. 2 and Supplementary Table 7).

For autosomal recessive REDs, we found a carrier frequency (that 
is, people who carry one expanded allele) of 1 in 101 for FXN (FA) and 
1 in 14 for RFC1, and a frequency of biallelic expansions of 1 in 82,176 
for FXN (FA) and 1 in 712 for RFC1 CANVAS (Fig. 2 and Supplementary 
Table 8). Demographic data available on all individuals carrying a 
pathogenic full-mutation repeat are listed in Supplementary Table 9. 
The distribution of repeat sizes overall in this cohort is represented in 
Extended Data Fig. 4.

Modeling the expected number of people affected by REDs
REDs have variable age at onset, disease duration and penetrance1. 
Therefore, the mutation frequency cannot be directly translated into 
disease frequency (that is, prevalence). To estimate the expected num-
ber of people affected by REDs, we took the mutation frequency of 
the most common REDs (C9orf72-ALS/FTD, DM1, HD, SCA1, SCA2 and 
SCA6) and modeled the distribution by age of those expected to be 
affected by REDs in the UK population. For this analysis, we used the 
data from the Office of National Statistics30, and age of onset, pen-
etrance and impact on survival of each RED based on either cohort 
studies or disease-specific registries (Methods).

We estimated on average a two- to threefold increase in the pre-
dicted number of people with REDs, compared with currently reported 
figures based on clinical observation, depending on the RED (Fig. 3). 

Since C9orf72 expansions cause both ALS and FTD, we modeled both 
diseases separately, providing for C9orf72-ALS an expected number 
of people affected over two times higher than previous estimates  
(Supplementary Table 10: 1.8 per 100,000 versus 0.5–1.2 in 100,000 
(refs. 4,31)) and for C9orf72-FTD 6.5 per 100,000 (Supplementary 
Table 11) within the wide reported range32,33. For DM1, we estimated 
that 15.9 per 100,000 people would be affected by the condition (Sup-
plementary Table 12), 1.3 times higher than the estimated prevalence 
from clinical data (12.25 in 100,000 (ref. 34)). For HD, the majority of 
individuals with a pathogenic expansion in our cohort carry alleles 
with 40 repeats (12 out of 20 people; Supplementary Table 9). Given 
the well-established relationship between HTT repeat length and age 
at onset, we modeled the expected number of people with HD based 
on the observed frequency of the expansion, taking into account age 
at onset distribution and penetrance data for repeat length equal to 
40 units6. We found that 2.3 per 100,000 people are estimated to have 
HD caused by 40 CAG repeats (Supplementary Table 13), over 3 times 
higher than the reported number of affected patients with 40 CAG 
repeats (0.72 per 100,000; Methods and personal communication, 
D.R.L. and D.H.M.). For SCA2 and SCA1, our model indicates an over 
threefold increase in the number of people expected with the disease 
compared with the reported prevalence (3 and 3.7 per 100,000, respec-
tively, based on our estimate in Supplementary Tables 14 and 15 versus 
the currently reported prevalence of 1 per 100,000)35,36. Strikingly, we 
found that the expected number of people with SCA6 would be nine 
times higher than the reported prevalence: 9 in 100,000 versus 1 in 
100,000 individuals (Methods and Supplementary Table 16). Overall, 
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Fig. 2 | Forest plot with combined overall disease allele carrier frequency in 
the combined 100K GP and TOPMed datasets N = 82,176 (N individuals may 
vary slightly between loci owing to data quality and filtering; Supplementary 
Table 7). The squares show the estimated disease allele carrier frequency, and the 
bars show the 95% confidence interval (CI) values. Details of the statistical models 

are described in Methods. For autosomal dominant loci (AR, ATN1, ATXN1, ATXN2, 
ATXN3, ATXN7, C9orf72, CACNA1A, DMPK, HTT, JPH3, NOTCH2NLC, PPP2R2B  
and TBP), the gray and black boxes show premutation/reduced penetrance and 
full-mutation allele carrier frequencies. For recessive loci (FXN and RFC1) the gray 
and black boxes show mono- and biallelic carrier frequencies, respectively.
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these data indicate either that REDs are underdiagnosed or that not all 
individuals who carry a repeat larger than the established full-mutation 
cutoff develop the condition (that is, incomplete penetrance).

RED mutation frequency in different populations
The prevalence of individual REDs varies considerably on the basis of 
geographic location. Hence, we set out to analyze whether these differ-
ences are reflected in the broad genetic ancestries of our cohort. First, 
we visualized the individuals carrying an expansion in a RED gene on the 
PC analysis plot (Extended Data Fig. 5). We then computed the propor-
tion of pathogenic allele carriers (premutation and full-mutation allele 
carriers) in each population (Fig. 4a and Supplementary Table 17). In 
agreement with current known epidemiological studies, we observed 

that pathogenic alleles in FXN (FA), C9orf72 and DMPK (DM1) are more 
common in Europeans; those in ATN1 (DRPLA), TBP (SCA17) and in 
NOTCH2NLC are more common in East Asians; and those in JPH3 (HDL2) 
are more common in Africans. Conversely, pathogenic alleles in ATXN2 
are more equally distributed across different populations, and those in 
RFC1 are less prevalent in Africans. Moreover, pathogenic expansions 
within C9orf72 and HTT were identified in Africans and South Asians, 
which so far have only been reported in smaller clinical studies11,37–40. 
Given that the initial ancestry assignments for our cohort were based 
on genome-wide data, we performed local ancestry analysis to check 
for admixture in these individuals, confirming that the expanded repeat 
alleles segregated on haplotypes of African and South Asian ancestry 
(Methods).
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Fig. 3 | Flowchart showing the modeling of disease prevalence by age for 
C9orf72-ALS, C9orf72-FTD, HD in 40 CAG repeat carriers, SCA2, DM1, SCA1 
and SCA6. The UK population count by age is multiplied by the disease allele 
frequency of each genetic defect and the age of onset distribution of each 
corresponding disease, and corrected for median survival. Penetrance is also 
taken into account for C9orf72-ALS and C9orf72-FTD. The estimated number 

of people affected by REDs (dark-blue area) is compared with the reported 
prevalence from the literature (light-blue area). x-axis: The age bins are 5 years 
each; y-axis: estimated number of affected individuals. For C9orf72-FTD, given 
the wide range of the reported disease prevalence32,33, both lower and upper 
limits are plotted in light blue.
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We then analyzed the relative frequency of pathogenic allele car-
riers within each population (Fig. 4b and Supplementary Table 18), 
highlighting differences in the proportion of REDs within and among 
populations. Pathogenic allele carriers were observed in most REDs 
across all populations (for example, those in AR, ATXN1, ATXN2, HTT 
and TBP), though in variable proportions and with some notable 
exceptions. Pathogenic alleles in RFC1 are by far the most widely rep-
resented (followed by those in AR and TBP). The African population 
is the most diverse, with pathogenic expansions present across all 
RED loci, except CACNA1A. The East Asian population is the one with 
the more striking differences in the relative frequency of REDs and, 
notably, the absence of pathogenic alleles in FXN and DMPK and the 
large proportion of TBP (signal driven mainly by reduced penetrance 
alleles; Supplementary Table 7 shows the carrier frequency of reduced 
penetrance alleles).

Distribution of repeat lengths in different populations
REDs are thought to arise from large normal polymorphic repeats (large 
normal or ‘intermediate’ range repeats), as they have an increased pro-
pensity to further expand upon transmission from parent to progeny, 
moving into the pathogenic range. The uneven RED prevalence across 
major populations has been associated with the variable frequency of 
intermediate alleles41,42.

Therefore, we analyzed intermediate allele frequencies for those 
genes where WGS can accurately size intermediate alleles (Methods) 
across populations and confirmed that (1) the overall distribution of 
repeat lengths varies across populations (Fig. 5a, Extended Data Fig. 6 
and Supplementary Table 19); for example, the median repeat size of 
PPP2R2B is higher in East and South Asians compared to Europeans 
(13 versus 10 repeats)) and (2) overall, the frequency of intermediate 
alleles varies in each population and correlates with the frequency 
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Fig. 4 | Pathogenic RED frequencies in different populations (African 12,786, 
American 5,674, East Asian 1,266, European 59,568, South Asian 2,882). 
a, Forest plot of pathogenic allele carrier frequency divided by population. 
Pathogenic alleles are defined as those larger than the premutation cutoff  
(Fig. 1b). The data are presented as squares showing the estimated pathogenic 
allele carrier frequency and bars showing the 95% confidence interval values.  

b, Bar chart showing the proportion of pathogenic allele carrier frequency 
repeats by ancestry. Both plots have been generated by combining data from 
100K GP and TOPMed from a total of N = 82,176 unrelated genomes. N individuals 
may vary slightly between loci due to data quality and filtering (Supplementary 
Tables 17 and 18). Predicted ancestries are abbreviated as follows: AFR, African; 
AMR, American; EAS, East Asian; EUR, European; SAS, South Asian.
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of pathogenic alleles; (R = 0.65; P = 3.1 × 10−7, Spearman correlation) 
(Fig. 5b, Extended Data Fig. 7 and Supplementary Table 20). These 
data suggest that different distributions of repeat lengths underlie 
differences in the epidemiology of REDs.

In fact, for HD43,44, specific structures have been proposed as 
cis-acting modifiers of HD39. In a typical HTT allele, the pure CAG tract 
(Q1) is followed by an interrupting CAACAG sequence (Q2). These are 
followed by a polyproline region encoded by a CCGCCA sequence (P1), 
then by stretches of CCG repeats (P2) and, lastly, by CCT repeats (P3) 
(Fig. 6a). Variations in this sequence have been described, including 
duplication or loss of Q2 or loss of P1, and variation in the number of 
the downstream P2 and P3 repeats. To analyze population differences 
in the repeat structures of HTT, we developed an analytical workflow 
to determine accurately phased Q1, Q2 and P1 elements of the HTT 
structure from WGS (Methods). We confirm that the typical structure 
Q1n–Q21–P11 (also known as ‘canonical’) is the most common across 
populations and that other structures are present in different pro-
portions in different populations: P1 loss alleles are more prevalent in 
Africans and East Asians, while overall noncanonical alleles are more 
frequent in African (P < 0.0001 two-tailed chi-square test; Fig. 6b). 
Moreover, variable Q1 repeat lengths are associated with different 
structures (linear model, P < 2.2 × 10−16): shorter Q1 lengths are found 
on chromosomes with Q2 duplication, and larger Q1 lengths are found 
in those with Q2 loss and Q2–P1 loss (Fig. 6c).

Population distribution of other REDs
WGS cannot accurately size repeats larger than the read length (here, 
150 bp) and is therefore unable to distinguish between premutation 
and full mutations of some REDs (for example, FMR1). However, the 
technology can be used to determine the distribution of repeat lengths 
within each population, with the largest percentiles (99.9th percentiles) 
reflecting the variable presence of expanded alleles in each popula-
tion. For example, the 99.9th percentile of repeat sizes of DMPK is 39 
in Europeans and 30 in Africans (Fig. 5a and Supplementary Table 19).

Hence, we set out to extend our analysis of population differences 
to other RED loci. For this analysis, we used 1K GP3 data and selected 
RED genes that are caused by expansion of the reference sequence: 
FMR1 (fragile X syndrome), DIP2B (intellectual disability FRA12A type), 
ATXN8 (SCA8), ATXN10 (SCA10), LRP12 and GIPC1 (oculopharyngodistal 
myopathy 1 and 2, respectively45). In line with epidemiological stud-
ies, we found that for FMR1, DIP2B and ATXN8 the largest percentiles 
are those found in Europeans, for ATXN10 are those in Americans and 
for LRP12 are those found in East Asians. Surprisingly, we found that 
Africans have larger repeats in GIPC1 compared with other ancestries 
(Extended Data Fig. 8 and Supplementary Tables 21 and 22). The dif-
ferent distributions of REDs reported in this analysis reflect the rela-
tively smaller proportion of large normal/intermediate alleles among 
populations, which may provide some explanation for the different 
frequencies of REDs in different populations.

Discussion
By analyzing a cross-sectional cohort of 82,176 people, this study pro-
vides the largest population-based estimate of disease allele carrier fre-
quency and RED distribution in different populations. We show that (1) 
the disease allele carrier frequency of REDs is approximately ten times 
higher than the previous estimates based on clinical observations and 
that, based on population modeling, REDs would be predicted to affect, 

on average, two to three times more individuals than are currently rec-
ognized clinically; (2) while some REDs are population specific like JPH3 
(HDL2), the majority are observed in all ancestral populations, challeng-
ing the notion that some REDs are associated with population-specific 
founder effects (for example, C9orf72); (3) the different distribution of 
repeat lengths between population broadly reflects the known differ-
ences in disease epidemiology; (4) an appreciable proportion of the 
population carry alleles in the premutation range and are, therefore, 
at risk of having children with REDs.

As the data for the cohort in which we carried out this study were 
collected for medical sequencing purposes, we controlled for factors 
potentially leading to overestimating disease allele carrier frequency, 
such as excluding people with neurological disorders and checking 
that there was no selection bias for patients with DM1 (Supplemen-
tary Table 6), which can cause cardiac abnormalities. Our estimates 
for DM1 and SCAs match those previously reported using PCR-based 
approaches to determine the genetic prevalence of REDs8,19,46, confirm-
ing the accuracy of our results.

Different factors might explain the discrepancy between the 
increased number of people carrying disease alleles in our cohort 
compared with known RED epidemiology. First, our estimates are 
based on large admixed cohorts, as opposed to epidemiological stud-
ies based on clinically affected individuals in smaller populations. As 
REDs have variable clinical presentation and age at onset, individuals 
with REDs may remain undiagnosed in studies in which estimates of 
disease frequency rely on clinical ascertainment of patients. Notably, 
the first descriptions of the clinical phenotype of RED were based 
on families collected for linkage studies with an intrinsic ascertain-
ment bias for more severe disease manifestations, resulting in a lack 
of very mild cases in the phenotypic spectrum. Because of the wide 
spectrum of milder phenotypic presentations of REDs, the prevalence 
of these diseases might have been underestimated. This might be 
true particularly for milder forms of the disease spectrum, such as 
DM1; it is well documented that carriers of small DMPK expansions 
(50–100 repeats) have a milder disease with clinical features that 
may go unnoticed, especially early in their disease course47. In fact, we 
observed a large number of individuals carrying repeats in the lower 
end of the pathogenic range (for example HTT, ATXN2 and DMPK; 
Supplementary Table 9).

Moreover, prevalence studies are only based on individuals with 
manifest disease, leading to a potential bias in the disease penetrance 
from those who have not developed the illness. It is believed that the 
penetrance of REDs is characterized by a threshold effect, with people 
carrying an allele above a particular repeat length certainly developing 
the disease, as opposed to those carrying shorter repeats. Given the 
relationship between the size of the repeat expansion and the disease 
onset and progression, it is possible that individuals carrying alleles 
currently classified as fully penetrant (for example, ≥40 CAG repeats in 
HTT) may sometimes remain asymptomatic. In this regard, previously 
published studies on HD6 and SBMA48 have suggested incomplete pen-
etrance of repeats in the lower end of the pathogenic range.

Finally, these individuals may carry genetic modifiers of REDs, 
such as interspersions. We visually inspected all alleles in the patho-
genic range and did not identify atypical sequence structures within 
the expanded repeat. Accordingly, in HTT, where we performed a 
dedicated structural analysis (Fig. 6), all individuals carrying a fully 
expanded repeat show a typical canonical structure.

Fig. 5 | The distribution of repeat lengths in different populations.  
a, Half-violin plots showing the distribution of alleles in different populations 
(African 12,786, American 5,674, East Asian 1,266, European 59,568, South Asian 
2,882) for 10 loci (Methods) from the combined 100K GP and TOPMed cohorts. 
The box plots highlight the interquartile range and median, and the black dots 
show values outside 1.5 times the interquartile range. The red dots mark the 
99.9th percentile for each population and locus. The vertical bars indicate the 

intermediate and pathogenic allele thresholds (Supplementary Table 20). 
Predicted ancestries are abbreviated as follows: AFR, African; AMR, American; 
EAS, East Asian; EUR, European; SAS, South Asian. b, A scatter plot showing the 
frequency of intermediate allele carriers against the frequency of pathogenic 
allele carriers. The data points are divided by population (n = 5) and gene (n = 10), 
and the size represents the total number of intermediate alleles. Correlations 
were computed using the Spearman method and two-tailed P values.
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The finding that a much larger number of people in the general 
population carry pathogenic alleles of REDs has important implica-
tions both for diagnosis and genetic counseling of RED. For diagnosis, 
when a patient presents with symptoms compatible with a RED, clini-
cians should have a higher index of suspicion of these diseases, and 
clinical diagnostic pathways should facilitate genetic testing for REDs. 
Currently, genetic testing for REDs tends to be a PCR-based targeted 
assay, with clinicians suspecting a RED ordering a test for a specific 
gene. As REDs are clinically and genetically heterogeneous with a ten-
dency to have overlapping features, REDs may remain undiagnosed. 
The wider use of WGS and the advent of genetic technologies such as 
long-read sequencing can potentially address this by simultaneously 
interrogating an entire panel of RED loci49. The broader availability of 

these diagnostic tools would increase the diagnostic rate for REDs, thus 
closing the gap between disease incidence rates and estimates based 
on population genetic sequencing. As for genetic counseling, when a 
RED expansion is identified incidentally in an individual clinically unaf-
fected, it would be important to address the potentially incomplete 
penetrance of the repeat, especially for small expansions. Further 
studies both in clinically affected individuals and in large clinical and 
genomic datasets from the general population are needed to address 
the full clinical spectrum and the penetrance by repeat sizes.

Our results are concordant with current epidemiological studies 
about the relative frequency of REDs, with the most common being DM1 
and C9orf72-ALS/FTD (autosomal dominant) and CANVAS and sensory 
neuropathy (recessive). One exception is ATXN3, the most commonly 
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reported SCA locus in patients affected by SCA, which was absent in our 
cohort. This might be due either to a recruitment bias, with individuals 
with overt REDs having a reduced likelihood of being recruited to such 
studies because of the severity of their disease (TOPMed cohort), or to 
the fact that there are no or very few premutation alleles (0 in 59,568 
Europeans), indicating that the expansion mutation is linked to few 
rare ancestral haplotypes50 rather than being a gradual process arising 
from common large normal alleles like other REDs.

The presence of rare expansions of REDs previously thought to 
occur only in Europeans (for example, C9orf72) in African and Asian 
populations supports diagnostic testing for them in people presenting 
with features of ALS–FTD independently of their ethnicity. The lowest 
observed rates of some REDs in some populations (for example, FXN 
and DMPK in East Asians), consistent with known epidemiological 
studies, might be due to reduced mutation rates. Further research is 
needed to study the potential role of population-specific cis and trans 
genetic modifiers of repeat expansion mutations that underlie the 
marked global differences in prevalence found in the present study.

One limitation of this study is that WGS cannot accurately size 
repeats larger than the sequencing read length, and it is therefore not 
possible to accurately estimate the disease allele frequency of all RED 
loci. Of the 46 RED loci that have been linked to human disease27, we 
included all loci where it is technically possible to address our ques-
tions: (1) to accurately estimate the disease allele carrier frequency, 16 
REDs were selected; (2) to analyze the distribution of repeat lengths in 
different populations, 6 further REDs were selected, covering a total 
of 22 RED loci and providing the basis for the different prevalence 
of REDs in different populations. RED loci that are not included are 
those caused by an insertion of a nonreference sequence (currently 
there is no validated pipeline that can accurately size and sequence 
large repeat expansions in such loci, except RFC1) and those caused 
by nonpure sequences, such as ‘GCN’ motifs (caused by a different 
mutational mechanism, namely unequal allelic homologous recom-
bination)51. We note that many newly discovered REDs are caused by 
large expansions52; only a broader availability of long-read sequencing 
technologies will facilitate addressing important questions about the 
frequency of these mutations.

Both 100K GP and TOPMed datasets are Eurocentric, comprising 
over 62% of European samples. TOPMed is more diverse, with 24% and 
17% of African and American genomes, respectively, which are only 
present at 3.2% and 2.1% frequency in 100K GP. East and South Asian 
backgrounds are underrepresented in both datasets, limiting the ability 
to detect rarer repeat expansions in these populations. Further analyses 
on more heterogeneous and diverse large-scale WGS datasets are neces-
sary not only to confirm our findings but also to shed light on additional 
ancestries. With regard to this, there are multiple ongoing projects with 
Asian populations53. Countries including China, Japan, Qatar, Saudi Ara-
bia, India, Nigeria and Turkey have launched their own genomics projects 
during the past decade54. Analyzing genomes from these programs will 
yield more detail on the prevalence of REDs around the world.

Despite efforts to estimate the frequency of REDs globally and 
locally, there is uncertainty surrounding their true prevalence, limiting 
the knowledge of the burden of disease required to secure dedicated 
resources to support health services, such as the estimation of the num-
bers of individuals profiting from drug development and novel therapies, 
or participating in clinical trials. There are currently no disease-modifying 
treatments for REDs; however, both disease-specific treatments and 
drugs that target the mechanisms leading to repeat expansions are in 
development. We have established that the number of people who may 
benefit from such treatments is greater than previously thought.

Online content
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Methods
Ethics statement inclusion and ethics
The 100K GP is a UK program to assess the value of WGS in patients 
with unmet diagnostic needs in rare disease and cancer. Following 
ethical approval for 100K GP by the East of England Cambridge 
South Research Ethics Committee (reference 14/EE/1112), including 
for data analysis and return of diagnostic findings to the patients, 
 these patients were recruited by healthcare professionals and 
researchers from 13 genomic medicine centers in England and were 
enrolled in the project if they or their guardian provided written 
consent for their samples and data to be used in research, including 
this study.

For ethics statements for the contributing TOPMed studies, full 
details are provided in the original description of the cohorts55.

WGS datasets
Both 100K GP and TOPMed include WGS data optimal to genotype 
short DNA repeats: WGS libraries generated using PCR-free protocols, 
sequenced at 150 base-pair read length and with a 35× mean average 
coverage (Supplementary Table 1).

For both the 100K GP and TOPMed cohorts, the following 
genomes were selected: (1) WGS from genetically unrelated indi-
viduals (see ‘Ancestry and relatedness inference’ section); (2) WGS 
from people not presenting with a neurological disorder (these 
people were excluded to avoid overestimating the frequency of a 
repeat expansion due to individuals recruited due to symptoms 
related to a RED).

The TOPMed project has generated omics data, including WGS, on 
over 180,000 individuals with heart, lung, blood and sleep disorders 
(https://topmed.nhlbi.nih.gov/). TOPMed has incorporated samples 
gathered from dozens of different cohorts, each collected using dif-
ferent ascertainment criteria. The specific TOPMed cohorts included 
in this study are described in Supplementary Table 23.

To analyze the distribution of repeat lengths in REDs in different 
populations, we used 1K GP3 as the WGS data are more equally distrib-
uted across the continental groups (Supplementary Table 2). Genome 
sequences with read lengths of ~150 bp were considered, with an aver-
age minimum depth of 30× (Supplementary Table 1).

Ancestry and relatedness inference
For relatedness inference WGS, variant call formats (VCF)s were 
aggregated with Illumina’s agg or gvcfgenotyper (https://github.
com/Illumina/gvcfgenotyper). All genomes passed the following 
QC criteria: cross-contamination <5% (VerifyBamId)56, mapping 
rate >75%, mean-sample coverage >20 and insert size >250 bp. No 
variant QC filters were applied in the aggregated dataset, but the 
VCF filter was set to ‘PASS’ for variants that passed GQ (genotype 
quality), DP (depth), missingness, allelic imbalance and Mende-
lian error filters. From here, by using a set of ~65,000 high-quality 
single-nucleotide polymorphisms (SNPs), a pairwise kinship matrix 
was generated using the PLINK2 implementation of the KING-Robust 
algorithm (www.cog-genomics.org/plink/2.0/)57. For relatedness, 
the PLINK2 ‘--king-cutoff ’ (www.cog-genomics.org/plink/2.0/) 
relationship-pruning algorithm57 was used with a threshold of 0.044. 
These were then partitioned into ‘related’ (up to, and including, 
third-degree relationships) and ‘unrelated’ sample lists. Only unre-
lated samples were selected for this study.

The 1K GP3 data were used to infer ancestry, by taking the unre-
lated samples and calculating the first 20 PCs using GCTA2. We then 
projected the aggregated data (100K GP and TOPMed separately) 
onto 1K GP3 PC loadings, and a random forest model was trained to 
predict ancestries on the basis of (1) first eight 1K GP3 PCs, (2) setting 
‘Ntrees’ to 400 and (3) training and predicting on 1K GP3 five broad 
superpopulations: African, Admixed American, East Asian, European 
and South Asian.

In total, the following WGS data were analyzed: 34,190 individuals 
in 100K GP, 47,986 in TOPMed and 2,504 in 1K GP3. The demographics 
describing each cohort can be found in Supplementary Table 2.

Correlation between PCR and EH
Results were obtained on samples tested as part of routine clinical 
assessment from patients recruited to 100K GP. Repeat expansions 
were assessed by PCR amplification and fragment analysis. Southern 
blotting was performed for large C9orf72 and NOTCH2NLC expansions 
as previously described7.

A dataset was set up from the 100K GP samples comprising a 
total of 681 genetic tests with PCR-quantified lengths across 15 loci: 
AR, ATN1, ATXN1, ATXN2, ATXN3, ATXN7, CACNA1A, DMPK, C9orf72, 
FMR1, FXN, HTT, NOTCH2NLC, PPP2R2B and TBP (Supplementary 
Table 3).

Overall, this dataset comprised PCR and correspondent EH 
estimates from a total of 1,291 alleles: 1,146 normal, 44 premuta-
tion and 101 full mutation. Extended Data Fig. 3a shows the swim 
lane plot of EH repeat sizes after visual inspection classified as 
normal (blue), premutation or reduced penetrance (yellow) and full 
mutation (red). These data show that EH correctly classifies 28/29 
premutations and 85/86 full mutations for all loci assessed, after 
excluding FMR1 (Supplementary Tables 3 and 4). For this reason, 
this locus has not been analyzed to estimate the premutation and 
full-mutation alleles carrier frequency. The two alleles with a mis-
match are changes of one repeat unit in TBP and ATXN3, changing 
the classification (Supplementary Table 3). Extended Data Fig. 3b 
shows the distribution of repeat sizes quantified by PCR compared 
with those estimated by EH after visual inspection, split by super-
population. The Pearson correlation (R) was calculated separately 
for alleles larger (for Europeans, n = 864) and shorter (n = 76) than 
the read length (that is, 150 bp).

Repeat expansion genotyping and visualization
The EH software package was used for genotyping repeats in 
disease-associated loci58,59. EH assembles sequencing reads across 
a predefined set of DNA repeats using both mapped and unmapped 
reads (with the repetitive sequence of interest) to estimate the size of 
both alleles from an individual.

The REViewer software package was used to enable the direct 
visualization of haplotypes and corresponding read pileup of the EH 
genotypes29. Supplementary Table 24 includes the genomic coordi-
nates for the loci analyzed. Supplementary Table 5 lists repeats before 
and after visual inspection. Pileup plots are available upon request.

Computation of genetic prevalence
The frequency of each repeat size across the 100K GP and TOPMed 
genomic datasets was determined. Genetic prevalence was calcu-
lated as the number of genomes with repeats exceeding the premuta-
tion and full-mutation cutoffs (Fig. 1b) for autosomal dominant and 
X-linked REDs (Supplementary Table 7); for autosomal recessive REDs, 
the total number of genomes with monoallelic or biallelic expansions 
was calculated, compared with the overall cohort (Supplementary 
Table 8).

Overall unrelated and nonneurological disease genomes cor-
responding to both programs were considered, breaking down by 
ancestry.

Carrier frequency estimate (1 in x) 
 – freq_carrier = round(total_unrel/total_exp_after_VI_locus,  

digits = 0), where
 – ‘total_unrel’ is the total number of unrelated genomes
 –  ‘total_exp_after_VI_locus’ is the total number of genomes that 

have a repeat expansion beyond premutation or full-mutation 
after visual inspection (per each locus)
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Confidence intervals: 
 – n is the total number of unrelated genomes
 – p = total expansions/total number of unrelated genomes
 – q = 1 − p
 – z = 1.96

 – ci_max = p + z2

2n
+ z × √

p×q

n
+ z2

4n2

1+ z2

n

 – ci_min = p − z2

2n
− z × √

p×q

n
+ z2

4n2

1+ z2

n

Prevalence estimate (x in 100,000) 
x = 100,000/freq_carrier
new_low_ci = 100,000 × ci_max_final
new_high_ci = 100,000 × ci_min_final

Modeling disease prevalence using carrier frequency
The total number of expected people with the disease caused by the 
repeat expansion mutation in the population (M ) was estimated 
aswhere Mk is the expected number of new cases at age k  with the muta-
tion and n is survival length with the disease in years.

Mk is estimated as Mk = f × Nk × pk, where f  is the frequency of the 
mutation, Nk is the number of people in the population at age k  (accord-
ing to Office of National Statistics60) and pk is the proportion of people 
with the disease at age k, estimated at the number of the new cases at 
age k  (according to cohort studies and international registries) divided 
by the total number of cases.

To estimate the expected number of new cases by age group, 
the age at onset distribution of the specific disease, available from 
cohort studies or international registries, was used. For C9orf72 dis-
ease, we tabulated the distribution of disease onset of 811 patients with 
C9orf72-ALS pure and overlap FTD, and 323 patients with C9orf72-FTD 
pure and overlap ALS61. HD onset was modeled using data derived 
from a cohort of 2,913 individuals with HD described by Langbehn 
et al.6, and DM1 was modeled on a cohort of 264 noncongenital patients 
derived from the UK Myotonic Dystrophy patient registry (https://www.
dm-registry.org.uk/). Data from 157 patients with SCA2 and ATXN2 
allele size equal to or higher than 35 repeats from EUROSCA were used 
to model the prevalence of SCA2 (http://www.eurosca.org/). From the 
same registry, data from 91 patients with SCA1 and ATXN1 allele sizes 
equal to or higher than 44 repeats and of 107 patients with SCA6 and 
CACNA1A allele sizes equal to or higher than 20 repeats were used to 
model disease prevalence of SCA1 and SCA6, respectively.

As some REDs have reduced age-related penetrance, for exam-
ple, C9orf72 carriers may not develop symptoms even after 90 years 
of age61, age-related penetrance was obtained as follows: as regards 
C9orf72-ALS/FTD, it was derived from the red curve in Fig. 2 (data 
available at https://github.com/nam10/C9_Penetrance) reported by 
Murphy et al.61 and was used to correct C9orf72-ALS and C9orf72-FTD 
prevalence by age. For HD, age-related penetrance for a 40 CAG repeat 
carrier was provided by D.R.L., based on his work6.

Detailed description of the method that explains Supplementary 
Tables 10–16:

The general UK population and age at onset distribution were tabu-
lated (Supplementary Tables 10–16, columns B and C). After standardiza-
tion over the total number (Supplementary Tables 10–16, column D), the 
onset count was multiplied by the carrier frequency of the genetic defect 
(Supplementary Tables 10–16, column E) and then multiplied by the cor-
responding general population count for each age group, to obtain the 
estimated number of people in the UK developing each specific disease by 
age group (Supplementary Tables 10 and 11, column G, and Supplemen-
tary Tables 12–16, column F). This estimate was further corrected by the 
age-related penetrance of the genetic defect where available (for example, 
C9orf72-ALS and FTD) (Supplementary Tables 10 and 11, column F). Finally, 
to account for disease survival, we performed a cumulative distribution of 

prevalence estimates grouped by a number of years equal to the median 
survival length for that disease (Supplementary Tables 10 and 11, column 
H, and Supplementary Tables 12–16, column G). The median survival 
length (n) used for this analysis is 3 years for C9orf72-ALS62, 10 years for 
C9orf72-FTD62, 15 years for HD63 (40 CAG repeat carriers) and 15 years for 
SCA2 and SCA164. For SCA6, a normal life expectancy was assumed. For 
DM1, since life expectancy is partly related to the age of onset, the mean 
age of death was assumed to be 45 years for patients with childhood  
onset and 52 years for patients with early adult onset (10–30 years)65,  
while no age of death was set for patients with DM1 with onset after  
31 years. Since survival is approximately 80% after 10 years66, we  
subtracted 20% of the predicted affected individuals after the first 
10 years. Then, survival was assumed to proportionally decrease in the fol-
lowing years until the mean age of death for each age group was reached.

The resulting estimated prevalences of C9orf72-ALS/FTD, HD, 
SCA2, DM1, SCA1 and SCA6 by age group were plotted in Fig. 3 (dark-blue 
area). The literature-reported prevalence by age for each disease was 
obtained by dividing the new estimated prevalence by age by the ratio 
between the two prevalences, and is represented as a light-blue area.

To compare the new estimated prevalence with the clinical disease 
prevalence reported in the literature for each disease, we employed 
figures calculated in European populations, as they are closer to the UK 
population in terms of ethnic distribution: C9orf72-FTD: the median 
prevalence of FTD was obtained from studies included in the system-
atic review by Hogan and colleagues33 (83.5 in 100,000). Since 4–29% 
of patients with FTD carry a C9orf72 repeat expansion32, we calculated 
C9orf72-FTD prevalence by multiplying this proportion range by median 
FTD prevalence (3.3–24.2 in 100,000, mean 13.78 in 100,000). (2) 
C9orf72-ALS: the reported prevalence of ALS is 5–12 in 100,000 (ref. 4),  
and C9orf72 repeat expansion is found in 30–50% of individuals with 
familial forms and in 4–10% of people with sporadic disease31. Given that 
ALS is familial in 10% of cases and sporadic in 90%, we estimated the 
prevalence of C9orf72-ALS by calculating the ((0.4 of 0.1) + (0.07 of 0.9)) 
of known ALS prevalence of 0.5–1.2 in 100,000 (mean prevalence is 0.8 
in 100,000). (3) HD prevalence ranges from 0.4 in 100,000 in Asian 
countries14 to 10 in 100,000 in Europeans16, and the mean prevalence 
is 5.2 in 100,000. The 40-CAG repeat carriers represent 7.4% of patients 
clinically affected by HD according to the Enroll-HD67 version 6. Con-
sidering an average reported prevalence of 9.7 in 100,000 Europeans, 
we calculated a prevalence of 0.72 in 100,000 for symptomatic 40-CAG 
carriers. (4) DM1 is much more frequent in Europe than in other con-
tinents, with figures of 1 in 100,000 in some areas of Japan13. A recent 
meta-analysis has found an overall prevalence of 12.25 per 100,000 
individuals in Europe, which we used in our analysis34.

Given that the epidemiology of autosomal dominant ataxias var-
ies among countries35 and no precise prevalence figures derived from 
clinical observation are available in the literature, we approximated 
SCA2, SCA1 and SCA6 prevalence figures to be equal to 1 in 100,000.

Local ancestry prediction
100K GP. For each repeat expansion (RE) locus and for each sample 
with a premutation or a full mutation, we obtained a prediction for 
the local ancestry in a region of ±5 Mb around the repeat, as follows:

 1.  We extracted VCF files with SNPs from the selected regions 
and phased them with SHAPEIT v4. As a reference haplotype set, 
we used nonadmixed individuals from the 1 K GP3 project.  
Additional nondefault parameters for SHAPEIT include --mcmc- 
iterations 10b,1p,1b,1p,1b,1p,1b,1p,10 m –pbwt-depth 8.

 2.  The phased VCFs were merged with nonphased genotype 
prediction for the repeat length, as provided by EH. These 
combined VCFs were then phased again using Beagle v4.0. 
This separate step is necessary because SHAPEIT does not 
accept genotypes with more than the two possible alleles  
(as is the case for repeat expansions that are polymorphic).
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 3.  Finally, we attributed local ancestries to each haplotype with 
RFmix, using the global ancestries of the 1 kG samples as a 
reference. Additional parameters for RFmix include -n 5 -G 15 -c  
0.9 -s 0.9 –reanalyze-reference.

TOPMed. The same method was followed for TOPMed samples, except 
that in this case the reference panel also included individuals from the 
Human Genome Diversity Project.

 1. We extracted SNPs with minor allele frequency (maf) ≥0.01  
that were within ±5 Mb of the tandem repeats and ran Beagle 
(version 5.4, beagle.22Jul22.46e) on these SNPs to perform 
phasing with parameters burnin = 10 and iterations = 10. 
SNP phasing using beagle 
java -jar./beagle.22Jul22.46e.jar \ 
gt = ${input} \ 
ref = ./RefVCF/hgdp.tgp.gwaspy.merged.chr${chr}.merged.
cleaned.vcf.gz \ 
out=Topmed.SNPs.maf0.001.chr${prefix}.beagle \ 
chrom = $region \ 
burnin = 10 \ 
iterations = 10 \ 
map = ./genetic_maps/plink.chr${chr}.GRCh38.map \ 
nthreads = ${threads} \ 
impute = false

 2. Next, we merged the unphased tandem repeat genotypes 
with the respective phased SNP genotypes using the bcftools. 
We used Beagle version r1399, incorporating the parameters 
burnin-its = 10, phase-its = 10 and usephase = true. This version 
of Beagle allows multiallelic Tander Repeat to be phased with 
SNPs. 
java -jar./beagle.r1399.jar \ 
gt = ${input} \ 
out = ${prefix} \ 
burnin-its = 10 \ 
phase-its = 10 \ 
map = ./genetic_maps/plink.${chr}.GRCh38.map \ 
nthreads = ${threads} \ 
usephase = true

 3. To conduct local ancestry analysis, we used RFMIX68 with the 
parameters -n 5 -e 1 -c 0.9 -s 0.9 and -G 15. We utilized phased 
genotypes of 1K GP as a reference panel26. 
time rfmix \ 
-f $input \ 
-r./RefVCF/hgdp.tgp.gwaspy.merged.${chr}.merged.cleaned.
vcf.gz \ 
-m samples_pop \ 
-g genetic_map_hg38_withX_formatted.txt \ 
–chromosome = $c \ 
-n 5 \ 
-e 1 \ 
-c 0.9 \ 
-s 0.9 \ 
-G 15 \ 
–n-threads=48 \ 
-o $prefix

Distribution of repeat lengths in different populations
Repeat size distribution analysis. The distribution of each of the 16 RE 
loci where our pipeline enabled discrimination between the premuta-
tion/reduced penetrance and the full mutation was analyzed across 
the 100K GP and TOPMed datasets (Fig. 5a and Extended Data Fig. 6). 
The distribution of larger repeat expansions was analyzed in 1K GP3 
(Extended Data Fig. 8). For each gene, the distribution of the repeat 
size across each ancestry subset was visualized as a density plot and 

as a box blot; moreover, the 99.9th percentile and the threshold for 
intermediate and pathogenic ranges were highlighted (Supplementary 
Tables 19, 21 and 22).

Correlation between intermediate and pathogenic repeat fre-
quency. The percentage of alleles in the intermediate and in the patho-
genic range (premutation plus full mutation) was computed for each 
population (combining data from 100K GP with TOPMed) for genes 
with a pathogenic threshold below or equal to 150 bp. The intermedi-
ate range was defined as either the current threshold reported in the 
literature36,69–72 (ATXN1 36, ATXN2 31, ATXN7 28, CACNA1A 18 and HTT 27)  
or as the reduced penetrance/premutation range according to Fig. 1b 
for those genes where the intermediate cutoff is not defined (AR, ATN1, 
DMPK, JPH3 and TBP) (Supplementary Table 20). Genes where either the 
intermediate or pathogenic alleles were absent across all populations 
were excluded. Per population, intermediate and pathogenic allele 
frequencies (percentages) were displayed as a scatter plot using R and 
the package tidyverse, and correlation was assessed using Spearman’s 
rank correlation coefficient with the package ggpubr and the function 
stat_cor (Fig. 5b and Extended Data Fig. 7).

HTT structural variation analysis. We developed an in-house analysis 
pipeline named Repeat Crawler (RC) to ascertain the variation in repeat 
structure within and bordering the HTT locus. Briefly, RC takes the 
mapped BAMlet files from EH as input and outputs the size of each of 
the repeat elements in the order that is specified as input to the soft-
ware (that is, Q1, Q2 and P1). To ensure that the reads that RC analyzes 
are reliable, we restrict our analysis to only utilize spanning reads. To 
haplotype the CAG repeat size to its corresponding repeat structure, 
RC utilized only spanning reads that encompassed all the repeat ele-
ments including the CAG repeat (Q1). For larger alleles that could not 
be captured by spanning reads, we reran RC excluding Q1. For each 
individual, the smaller allele can be phased to its repeat structure using 
the first run of RC and the larger CAG repeat is phased to the second 
repeat structure called by RC in the second run. RC is available at https://
github.com/chrisclarkson/gel/tree/main/HTT_work.

To characterize the sequence of the HTT structure, we used 66,383 
alleles from 100K GP genomes. These correspond to 97% of the alleles, 
with the remaining 3% consisting of calls where EH and RC did not agree 
on either the smaller or bigger allele.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
For 100K GP, full data are available in the Genomic England Secure 
Research Environment. Access is controlled to protect the privacy 
and confidentiality of participants in the Genomics England 100K GP 
and to comply with the consent given by participants for use of their 
healthcare and genomic data. Access to full data is permitted through 
the Research Network (https://www.genomicsengland.co.uk/research/ 
academic/join-research-network). For TOPMed, a detailed descrip-
tion of the TOPMed participant consents and data access is provided 
in Box 1 of ref. 55. TOPMed data used in this manuscript are available 
through dbGaP. The dbGaP accession numbers for all TOPMed stud-
ies referenced in this paper are listed in Supplementary Table 2355. A 
complete list of TOPMed genetic variants with summary-level infor-
mation used in this manuscript is available through the BRAVO variant 
browser (bravo.sph.umich.edu). The TOPMed imputation reference 
panel described in this manuscript can be used freely for imputation 
through the NHLBI BioData Catalyst at the TOPMed Imputation Server 
(https://imputation.biodatacatalyst.nhlbi.nih.gov/). DNA sequences 
and reference placement of assembled insertions are available in VCF 
format (without individual genotypes) on dbGaP under the TOPMed 
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GSR accession phs001974. For the 1000 Genomes Project, the WGS 
datasets are available from the European Nucleotide Archive under 
accessions PRJEB31736 (unrelated samples) and PRJEB36890 (related 
samples).

Code availability
The following GitHub repositories used in this work are free to access. 
ExpansionHunter v3.2.2 (to estimate the repeat size within defined 
loci): https://github.com/Illumina/ExpansionHunter. REViewer v0.2.7 
(to generate pileup plots for quality check): https://github.com/Illu-
mina/REViewer. ExpansionHunter_Classifier (March 2024 release, to 
automatically run quality assessment of EHv322 call): https://github.
com/bharatij/ExpansionHunter_Classifier. Code to analyze repeat 
structure across HTT: https://github.com/chrisclarkson/gel/tree/
main/HTT_work. gvcfgenotyper (to merge gVCF files, when inferring 
ancestry across genomes within the 100K GP and TOPMed datasets): 
https://github.com/Illumina/gvcfgenotyper. To compute survival 
curve analysis for C9orf72: https://github.com/nam10/C9_Penetrance.
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Extended Data Fig. 1 | Study cohorts by gender and age. Population pyramid of (A) the 100 K GP and (B) TOPMed cohorts.
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Extended Data Fig. 2 | Principal components of genetic ancestry. First two principal components derived from PCA on A) the 100 K GP and B) TOPMed samples 
respectively.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Experimental estimations of repeat sizes using PCR 
versus genotypes generated by ExpansionHunter v3.2.2. a). Swim lane plot 
showing sizes of repeat expansions predicted by ExpansionHunter across 681 
samples with expansion calls. Each genome is represented by two points, one 
corresponding to each allele for each locus, except for those on the  
X chromosome (that is FMR1 and AR) in males, for which only one point is shown. 
Points indicate the repeat length estimated by ExpansionHunter after visual 
inspection and the colours indicate the repeat size as assessed by PCR (blue 
represents non-expanded; red represents expanded). The regions are shaded 

to indicate non-expanded (blue), premutation (yellow), and expanded (red) 
ranges for each gene, as indicated in Table 1. Blue points in yellow or red-shaded 
regions indicate false positives and red points in blue-shaded regions indicate 
false negatives. The individual calls are provided in Supplementary Table 3. b). 
Points indicate the RE size estimated by both PCR and EH v3.2.2 split by super-
population. We show the R correlation coefficient calculated using Pearson’s 
equation and two-tailed P values. Exact p-values for the regression model:  
AFR (1.1×10−28), AMR (2.1×10−29), EUR (1.7×10−168), and SAS (1.3×10–80).
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Extended Data Fig. 4 | Distribution of repeat size alleles within the combined 
100 K GP and TOPMed cohort. Allele frequency (percentage) predicted by 
ExpansionHunter in the combined 100 K GP and TOPMed cohorts. The regions 
are shaded to indicate non-expanded (blue), premutation (yellow), and full 

mutation expanded (red) ranges for each gene, as indicated in Table 1. For RFC1, 
repeat sizes beyond 30 are shaded as repeat sizes beyond this threshold may 
represent expanded alleles.
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Extended Data Fig. 5 | PC values of genomes carrying normal and pathogenic 
alleles. Principal component (PC) values on all genomes within (A) the 100 K 
GP and (B) TOPMed cohorts. Black dots represent genomes having a repeat 
size beyond premutation and full mutation range for X-linked and autosomal 
dominant loci, split by locus. For recessive loci, the plot shows genomes carrying 

monoallelic and biallelic expansions. Note that RFC1 has only been analysed in 
the 100 K GP dataset due to code availability. Note that ATXN3 is missing from  
the 100 K GP panels as there are no pathogenic alleles in this cohort 
(Supplementary Table 7).
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Extended Data Fig. 6 | Distribution of repeat size alleles in different 
populations in the combined cohort (100K GP  and TOPMed). Half-violin 
plots showing the distribution of alleles in different populations for 6 loci 
excluded from the correlation analysis from the combined 100K GP and TOPMed 
cohort (African = 12,786; American = 5,674; East Asian = 1,266; European = 59,568; 

South Asian = 2,882). Boxplots highlight the interquartile range and median, 
and black dots show values outside 1.5 times interquartile ranges. Red dots mark 
the 99.9th percentile for each population and locus. Vertical bars indicate the 
intermediate and pathogenic allele thresholds (Supplementary Table 20).
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Extended Data Fig. 7 | Frequency of intermediate alleles versus frequency 
of pathogenic alleles by population. The scatter plots show the frequency of 
intermediate allele carriers (x-axis) against the frequency of pathogenic allele 
carriers (y-axis), based on the thresholds in Supplementary Table 20, split by 

population. Data points are divided by gene (n = 10), and size represents the total 
number of intermediate alleles. Correlations were computed using the Spearman 
method.
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Extended Data Fig. 8 | Distribution of repeat size alleles by population in 
the 1 K GP. Distribution of disease RE sizes for 22 genes within the 1 K GP3 split 
by population (African = 661; American = 347; East Asian = 504; European = 
503; South Asian = 489). Half-violin plots show the distribution of alleles, while 

boxplots highlight the interquartile range and median, and black dots show 
values outside 1.5 times interquartile ranges. Red dots mark the 99.9th percentile 
for each population and locus. Repeat size mean;median (Q1-Q3) among all 
ancestries are in Supplementary Table 19.
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