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Thesis summary 

 

While a third of life is spent asleep, it is reasonable to admit that the exact reasons 

remain unclear. However, decades of intense research in the fields of cognition, 

biology, and psychology have brought strong evidence about the relationship between 

spontaneous reactivations during sleep of active encoding neuron networks and the 

emergence of abilities to develop original, innovative, and adaptive strategies. On that 

basis, a convincing technique called targeted memory reactivation (TMR) that aims to 

mimic spontaneous replay of memory has emerged. 

 

The present thesis combined TMR during slow-wave sleep (SWS) and rapid-eye 

movement (REM) sleep with an electrophysiological approach to examine behavioral 

benefits over time and the dynamics of neural correlates susceptible to explain them. 

 

Overall, chapter 2 has provided convincing evidence about the benefits of a full night 

of sleep in the consolidation of memory and the emergence of transitive inference (TI) 

abilities after a full night of sleep and after a week. Chapter 3 shed light on the impact 

of TMR during REM sleep in the progressive increase of TI accuracy through a week, 

the existence of theta/gamma coupling as a potential neural correlate of TI abilities, 

and finally. Lastly, chapter 4 provided convincing and encouraging findings about the 

role of TMR during SWS in the immediate improvement of TI ability and its 

maintenance over time, and the role of delta/sigma and delta/gamma coupling in the 

formation of associations between premises to create inferences. 

 

Taken together, these findings provided insightful evidence about the crucial role of 

sleep and the powerful potential of TMR in the formation of relational memory and 

long-term memory consolidation, but also pointed out the numerous remaining gaps 

and open questions about the neural correlates and their interaction in the formation 

of long-term cognitive flexibility. 
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1 - Preface 

 

Sleep can be defined as “a rapidly reversible state of immobility and greatly reduced 

sensory responsiveness” (Siegel, 2008, p. 208). Moreover, sleep is homeostatically 

regulated, meaning that a reduction in sleep is subsequently followed by an increased 

need for sleep (‘sleep rebound’). Although sleep appears to be fundamental for many 

species, many questions remain about its function. Historically, sleep has been seen 

as a passive state, a state of mere inactivity, but starting with the first 

electroencephalographic (EEG) recording of sleep in 1924, this has slowly changed 

(Haba-Rubio & Krieger, 2012). For the first time, sleep could be measured and studied 

objectively, and recordings of full nights of sleep thereafter revealed that the brain 

appears to be quite busy while asleep. Sleep is characterized by different stages and 

oscillatory patterns, and it is quite possible that each of these patterns serves different 

or complementary functions. 

 

Sleep is the opposite state of wakefulness and is characterized by a temporary loss of 

consciousness of the external world, but without a loss of sensory sensitivity, as is the 

case in a coma. Concretely, sleep can be defined as “a rapidly reversible state of 

immobility and greatly reduced sensory responsiveness” (Siegel, 2008, p. 208). In 

simple terms, sleep can be characterized by two specific stages: predominant slow-

wave sleep (SWS) in the first part of the night and predominant REM sleep (Rapid Eye 

Movement) in the later part of the night. During slow-wave sleep, the body and brain 

are at rest, and muscle tone decreases. It's also during this phase that growth 

hormone, also known as somatotropin, is synthesized. On the other hand, REM sleep 

is more conducive to regulating homeostatic functions and is characterized by intense 

brain activity that sharply contrasts with a near-complete loss of muscle tone. This 

stage is also a privileged period for dreams with high emotional valence. 

 

Not only recognized for its restorative properties, sleep soon appeared to be strongly 

associated with memory. Indeed, from an initial passive and protective state against 

external interference (Jenkins and Dallenbach, 1924), sleep rapidly became the 
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cornerstone of memory consolidation (Diekelmann and Born, 2010; Rasch and Born, 

2013). More recently, sleep research went further, suggesting that sleep would be 

crucial not only for the consolidation process of memory but also for its reorganization 

and transformation (Lewis and Durrant, 2011; Lewis et al., 2018). 

 

Among the multiple physiological and biological mechanisms proposed to explain 

sleep-related benefits on memory transformation, "replay" became rapidly considered 

the core process of progressive memory integration (Wilson and McNaughton, 1994; 

Maquet et al., 2000; Peigneux et al., 2004). On that basis, a recent and promising 

technique, now widely used, emerged in order to promote neural replay and thus 

improve memory integration (Rasch et al., 2007; Rudoy et al., 2008). The so-called 

"targeted memory reactivation" protocol, which consists of pairing cues with specific 

material to learn and then re-presenting the cues during sleep to promote memory 

reactivation and improve behavioral abilities (Tamminen et al., 2017; Goldi and Rasch, 

2019), has proven efficiency in numerous applications like memory consolidation 

(Fuentemilla et al., 2013; Sterpenich et al., 2014; Cairney et al., 2018; Goldi et al., 

2019), grammatical generalization (Batterink and Paller, 2017), language acquisition 

(Batterink et al., 2017; Schönauer et al., 2018), classical music (Gao et al., 2020), 

procedural (Cousins et al., 2014; Rakowska et al., 2021), and emotional memories 

(Cairney et al., 2014; Pereira et al., 2023). However, neither the mechanisms behind 

TMR-related benefits nor their duration and evolution over time are clear. 

 

The overall objective of the present thesis is to further knowledge about the role of 

sleep and, to a greater extent, TMR in memory integration and restructuring to 

promote transitive inference ability, a specific type of relational memory. For that 

purpose, three experimental behavioral tasks, comprising brain recording and TMR 

application during SWS and REM sleep, will be performed. After a general introduction 

that aims to provide relevant background about the evolution of the perception of 

sleep and memory over time, the present thesis will focus on the sleep and TMR-

related behavioral benefits in the short and long term. Finally, this thesis will aim to 

investigate the neural correlates susceptible to explain these benefits. 

 



19 
 

2 - Physiological aspects of sleep 

 

After the first electroencephalogram (EEG) recorded in humans in 1924 by Hans 

Berger, which revealed the presence of brain waves later called "alpha" and "beta" 

(Berger, 1929), the perception of the sleep state as a simple "resting mode" changed. 

Subsequent decades of research have furthered knowledge about sleeping brain 

activity and the complexity behind it. Indeed, it is now well known that sleep is 

characterized by specific brain-wave patterns, variations of muscle activities (recorded 

by electromyography - EMG), and eye movements (recorded by electrooculography - 

EOG) (Figure 2). Ideally, a full night of sleep is divided into 5 or 6 cycles of 90 minutes 

each. Each cycle comprises two main stages, namely non-rapid eye movement (nREM) 

and rapid eye movement (REM). nREM sleep can be subdivided into four groups, called 

N1, N2, slow-wave sleep (SWS) or N3, and REM sleep or R (Iber et al., 2007) (Figure 

1). nREM is predominant during the early part of the night, whereas REM sleep 

duration tends to increase as the night progresses (Patel et al., 2022). 

 

 

Figure 1. Hypnogram representing a theorical night of sleep. 

Source: from Miller, Christopher & Kyle, Simon & Melehan, Kerri & Bartlett, Delwyn. (2015). Chapter 

4. Methodology for the Assessment of Sleep 

 

Stage N1 constitutes around 5% of total sleep duration. It is mainly represented by 

theta rhythm oscillations (4-8 Hz). N1 is the lightest sleep stage, beginning when more 

than 50% of the alpha waves (8-12 Hz) that characterize the wake stage with eyes 

closed are replaced with low-amplitude mixed-frequency (LAMF) activity (Patel et al., 
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2022). At this stage, muscle activity is still present, and homeostatic activities 

(breathing, heart rate) are still regular. N1 is usually followed by stage N2. 

 

Stage N2 is the longest sleep stage and consists of about 45 to 50% of total sleep 

duration. Sleep becomes deeper than in N1, and heart rate and temperature tend to 

drop (Patel et al., 2022). N2 is represented by two specific brain oscillations: thalamo-

dependent spindles (12-15 Hz) and K-complexes. Although spindles are more 

prominent during N2, they can also be observed during SWS. Spindles are still subject 

to intensive research and debated conclusions about their role in memory formation. 

This is mainly due to the variation in their oscillatory frequency (slow spindles from 

10-12 Hz versus fast spindles from 13-15 Hz) (Mölle et al., 2011; Marshall et al., 2019), 

which could provide different contributions to the process of memory consolidation, 

or the sleep stage they belong to, namely SWS where spindles could promote 

declarative memory (Clemens et al., 2005; 2006; Laventure et al., 2016) or N2 where 

they could promote non-declarative memory (Fogel and Smith, 2006; Genzel et al., 

2014) and synaptic plasticity (Rosanova and Ulrich, 2005). As mentioned earlier, the 

N2 sleep stage is also represented by K-complexes, brief (+/- 1 sec) delta bursts (1-4 

Hz) that comprise a negative sharp wave, immediately followed by a positive 

component (Amzica and Steriade, 1997). They are mostly visible in the superior 

temporal gyri, the cingulum, and the thalamus (Patel et al., 2022). Although K-complex 

functions are still debated, some studies have provided findings about a potential 

implication in numerous functions as reported by Gandhi and Emmady's review 

(Gandhi and Emmady, 2022) such as the maintenance of sleep (Forget et al., 2011) 

or sudden arousal (Nguyen et al., 2016), depending on how an external stimulus is 

perceived to be dangerous or not, memory consolidation (Cash et al., 2009), or the 

maintenance of synaptic homeostasis (Tononi and Cirelli, 2006). 

 

Stage N3, or SWS, is prominent during the first part of the night and represents 25% 

of sleep duration. It is mostly represented by highly synchronous delta activity (0.5-4 

Hz) due to the alternation between global excitation and neuronal silence (Steriade, 

2006), though not exclusive to this stage (Dijk, 2009). Known to be the deepest and 

most restorative stage (Tononi and Cirelli, 2003; Lange et al., 2010), SWS is a stage 
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during which arousal can be difficult (Patel et al., 2022). SWS is strongly influenced 

by age, with a decrease in time duration and amplitude as individuals become older 

(Ohayon et al., 2004). SWS slow oscillations (SO) have been widely investigated due 

to their crucial role in memory consolidation (Born and Wilhelm, 2012; Rasch and 

Born, 2013) and the formation of new spines (Chauvette et al., 2012; Yang et al., 

2014) according to the Active System Consolidation (ASC) model, or their role in the 

synaptic downscaling of the neurons (Tononi and Cirelli, 2006; Huber et al., 2006; 

Vyazovskiy et al., 2008) according to the synaptic homeostasis hypothesis (SHY), two 

models of sleep and memory that will be detailed later (cf. infra - 1.2.3.3 - Sleep to 

remember or to forget?). 

 

 

Figure 2: Presentation of sleeping brain oscillations 

Source: from Britannica, The Editors of Encyclopaedia. "electroencephalography". Encyclopedia 
Britannica, 14 Sep. 2022 

 

REM sleep, or the R stage, is the last stage and constitutes up to 20-25% of a total 

night of sleep. Described in the early fifties and usually called REM sleep (Aserinsky 

and Kleitman, 1953) or paradoxical sleep in France (Jouvet and Michel, 1960), this 

stage, for which time duration tends to become more important as the night 

progresses, is the privileged period for dreams with high emotional valence and 

nightmares. REM sleep's name comes from the specific eye movements exclusively 

observed during this stage, contrasting with total muscle atonia besides twitching 

occurring especially in distal muscles. At the electrophysiological level, high and 
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desynchronized brain activity is observed. At the physiological level, homeostasis 

functions are deregulated (Siegel, 2005). Distinctive brain waves from the pons, 

geniculate nucleus, and occipital area (PGO waves) initially observed in 1957 in 

anesthetized cats (McGaugh, 2012), can be observed. Although their role is still 

unclear, they could contribute to memory consolidation (Datta, 2008) and synaptic 

maturation (Amzica and Steriade, 1996; Li et al., 2017) as a massive concentration of 

acetylcholine (ACh), a neurotransmitter assumed to foster long-term potentiation 

(LTP) of the neurons (Teber et al., 2004; von der Kammer et al., 1998), and frontal 

brain-derived neurotrophic factor (BDNF), a protein involved in the maintenance of 

memory (Datta et al., 2008) have been reported with PGO waves presence. Finally, 

studies have reported a high proportion of REM sleep in humans at an early stage of 

life, suggesting a role in the maturation of the brain (Marks et al., 1995; Frank and 

Heller, 1997; Blumberg and Seelke, 2010). 

 

3 - From sleep to memory consolidation 

 

From a simple state of protective wakefulness against memory interference to our 

current knowledge on sleep and its potential links with consolidation and cognitive 

flexibility, it is reasonable to acknowledge the exceptional evolution of the field of 

sleep research. While today’s major advancements are based on cognitive or 

computational foundations, the origins can be traced back to the field of clinical 

research, which indirectly helped establish the fundamental bases of the sleep 

models we know today. 

 

3.1 - Contribution from retrograde amnesia 

 

The close relationship between sleep and the role of temporal brain regions in the 

consolidation process of declarative memory originates from clinical reports of amnesic 

patients whose autonoetic abilities—namely, the capacity to "mentally travel among 

memories" (Baddeley, 2001; Tulving, 2002)—were impaired (Ribot, 1881; Russell and 

Nathan, 1946; Sander and Warrington, 1971). Indeed, a gradient, today called the 



23 
 

"Ribot gradient," was illustrated by an increased capacity to recall old memories 

compared to recent ones and was associated with extensive hippocampal damage 

(Zola-Morgan et al., 1986; Sutherland and Rudy, 1989; Winocur, 1990) (see Jarrard, 

2001 for review). In a seminal study, the authors pointed out how limited damage to 

medial temporal structures resulted in temporary graded amnesia, whereas extensive 

damage tended to suppress the gradient, raising for the first time the idea that medial 

temporal structures become less important over time for the maintenance of explicit 

memory (Squire and Alvarez, 1995). 

  

3.2 - Hippocampo-neocortical interaction in the process of consolidation 

 

While studies of brain-damaged patients provided insightful information about the 

importance of temporal brain regions in the process of memory consolidation, the 

“standard model” (Figure 3a) (McClelland et al., 1995; Squire and Alvarez, 1995) and 

the "multiple memory trace" (MMT) model (Nadel and Moscovitch, 1997) (Figure 3b), 

two opposing models respectively based on animal studies, connectionist simulations, 

fMRI, and clinical studies, shed light on the interaction between the hippocampus and 

neocortical brain regions in the ability to recall memories. 

 

The sleep standard model (McClelland et al., 1995; Squire and Alvarez, 1995) 

emphasizes the role of sleep, especially SWS, in the consolidation process of 

memories. According to this model, newly encoded experiences are replayed within 

the hippocampus, leading to a progressive transfer and integration within the 

neocortex for long-term memory storage. Importantly, the progressive importance of 

the neocortex in the long-term consolidation process is associated with a gradual 

withdrawal of the hippocampus in maintaining these memories. In line with the 

temporal gradient observed in retrograde amnesia, the standard model provides 

explanations for the phenomenon where recent hippocampo-dependent memories are 

more susceptible to disruption than consolidated memories that rely on the neocortex. 

 

Comparatively, the multiple memory trace model (Nadel and Moscovitch, 1997) posits 

that the hippocampus remains involved in the storage and retrieval of episodic 
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memories, while the neocortex is involved in semantic information and less detailed 

representations of memories. More specifically, each time a memory is recalled, a new 

memory trace is created, involving both the hippocampus and the neocortex, resulting 

in distributed memories across multiple traces, with each trace being a combination 

of hippocampal and cortical elements. The multiple memory trace model challenges 

findings about retrograde amnesia and the temporal gradient, proposing that even old 

episodic memories can be affected by hippocampal damage. 

 

 

Figure 3: Graphical representations of the cognitive models of memory consolidation. Sleep 

standard model (a) and the MMT model (b) offer contrasting views on the roles of the hippocampus 
and neocortex in memory consolidation and storage, the nature of memory traces and the impact 

upon retrograde amnesia. 
(a): Representation of the standard model of consolidation. (Source: Frankland and Bontempi, 2005. 

The organization of recent and remote memories)  

(b): Representation of the multiple trace transformation theory. (Source: Barry and Maguire, 2018. 
Remote Memory and the Hippocampus: A Constructive Critique) 

 

Although these models offer diverging perspectives about the hippocampus's role in 

the ability to recall events, they both laid the groundwork for future models of sleep 

and memory. These foundational models emphasize the involvement of the medial 

temporal and neocortical regions in the consolidation of explicit memory, the crucial 

concept of memory transfer between these two regions, and the maintenance of 

semantic components that progressively become independent of the hippocampus (cf. 

infra - 3.3.3 - The first models of sleep and memory). 

 

3.3 - Sleep's role in memory consolidation 

 

While the multiple memory trace model and the standard model brought insightful 

elements about the mechanisms underlying memory consolidation and interactions 
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between the hippocampus and neocortex, the question about sleep’s influence was 

raised by the so-called "stability-plasticity dilemma." This dilemma involves the issue 

whereby temporal and neocortical brain regions could not both contribute to the 

processes of encoding, consolidation, and recall of declarative information without 

resulting in massive memory interference or overriding (Carpenter and Grossberg, 

1988; Abraham and Robins, 2005). On that basis, the standard two-stage model of 

memory (Marr, 1971; McClelland et al., 1995) proposed that wakefulness would serve 

as a crucial period for encoding information dependent on the hippocampus, while 

sleep would promote the transfer of these encoded events from the hippocampus to 

the neocortical regions for gradual long-term consolidation. However, the standard 

two-stage model, like many conceptual scientific breakthroughs, raised more 

questions than it answered. Among these ongoing debates are the questions of sleep’s 

active versus passive role in memory consolidation, namely whether sleep protects 

newly formed memories against interference from the environment or serves as a 

privileged time window for specific physiological mechanisms that contribute to 

memory consolidation and, assuming the active role of sleep, the contributions of 

different sleep stages to the formation of long-term memory. 

 

3.3.1 - Sleep’s role in memory consolidation: active or passive? 

 

Decades before the standard two-stage model of memory and the association between 

sleep and consolidation (Marr, 1971; McClelland et al., 1995), sleep benefits were 

thought to result from protection against interference that could alter recently encoded 

events. In their study, Jenkins and Dallenbach (1924) aimed to compare the evolution 

of recall accuracy of nonsense syllables in two participants after 1, 2, 4, and 8 hours 

of retention, including periods of sleep or wakefulness. While the sleep condition 

showed performance three times higher than a similar period of wakefulness, they 

concluded that the difference resulted from the preventive effect of sleep against 

external interference that could conflict with newly encoded memories. This led to the 

theory that sleep’s role in memory consolidation is passive. According to this theory, 

sleep provides a state where interference from new sensory input is minimized, 

allowing memory consolidation processes that began during wakefulness to continue 
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uninterrupted. The brain is less exposed to external stimuli and new information during 

sleep, reducing interference and allowing for the uninterrupted processing and 

integration of memories encoded during wakefulness. Moreover, the reduced cognitive 

load during sleep is thought to give the brain the opportunity to stabilize and 

strengthen memories. Finally, the theory posits that even if overall reduced neural 

activity and metabolic demands during sleep create a favorable environment for 

memory consolidation, it does not imply that sleep actively facilitates these processes. 

These arguments were addressed by numerous studies (Ellenbogen et al., 2006; 

Ellenbogen et al., 2009; Piosczyk, 2013; Zhang et al., 2022). Although results from 

Ellenbogen's research revealed a significant sleep benefit, two important concerns can 

be raised. First, the offline period between encoding and recall was not controlled, 

leading to potential interferences or cueing effects during the incubation. Second, 

since the studies were only behavioral, no physiological output that could correlate 

with the behavioral performances was provided. Four years later, these considerations 

were controlled in a sleep study using EEG recording and a controlled incubation time 

between encoding and recall (Piosczyk, 2013). Interestingly, no significant difference 

between sleep and wake conditions was reported. Among the different sources of 

explanations for the lack of significance (age of participants - 16 years old, their sex - 

all female), the design of the study (participants' training and testing sessions were 

separated by a nap instead of a full night of sleep and a week between conditions) 

can be raised. Indeed, a recent study (Zhang et al., 2022) that compared different 

incubation durations after encoding (30 min, 12 h, and 24 h) only reported a sleep 

benefit after 12 hours of incubation. Finally, in a recent study, sleep was shown to 

significantly improve rule abstraction but only a week after learning (Pereira et al., 

2023). 

 

3.3.2 - Sleep to remember: REM sleep versus nREM sleep contribution 

 

The last decades of sleep research were ripe not only for innovative cognitive models 

about memory consolidation but also crucial findings about the specificities of sleep 

stages. Fostered by technological advancements (polysomnography and 

neuroimaging), early sleep research in the mid-20th century identified different stages 
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of sleep, notably REM sleep (Aserinsky and Kleitman, 1953). Investigations and 

comparisons between nREM and REM sleep soon revealed strong biological, 

physiological, and homeostatic differences (Jacobson, 2022) (Table 1), leading to the 

question of how those two stages could also differ in their role in cognitive functions, 

including memory. 

 

Table 1 nREM sleep versus REM sleep 

  Differences 

 nREM sleep REM sleep 

Sleeping brain physiology   
Brain waves . Low frequency  

. High synchronization 
. High frequency  
. desynchronized 

Timing . First part of the night . Second part of the night 
Brain activity . Decreased from wake . Increased in motor and 

sensory areas 

Movements   

Eye movement . No movements . Movements around all 
directions 

Muscles . Similar to wakefulness . Muscle atonia 

Homeostasis   
Heat rate . Slow and steady . High and irregular 
Respiration . Slow (15% compared to 

wake) 
. Increased 

Blood pressure . Decreased from wake . Increased from wake 
Body temperature . Regulated at lower set 

point than wakefulness  
. Not regulated 
. No shivering or sweating 

 

The question about the specificity of each sleep stage upon the mechanism of 

consolidation was illustrated by the dual process hypothesis, promoting an 

independence between nREM and REM sleep and the sequential hypothesis that posits 

a mutual influence upon memory consolidation. 

 

According to the dual process hypothesis, nREM sleep and REM sleep would act 

independently from each other, thus promoting different memories (Gais and Born, 

2004; Rauchs et al., 2005; Born and Wilhelm, 2012; Rasch and Born, 2013). Based on 

the difference between the first and second part of the night, respectively represented 

by a higher amount of nREM sleep and REM sleep, the dual process hypothesis posits 

that nREM sleep would be the support of declarative memory, whereas REM sleep 
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would promote non-declarative memory. Such a paradigm of separation was mostly 

tested by studies that used sleep deprivation protocols (Barret and Ekstrand, 1972; 

Plihal and Born 1997; Wagner et al., 2002). Technically, depending on the type of 

memory tested, the participants were selectively deprived during the first or second 

part of the night to promote a majority of nREM or REM sleep. At this stage, it is crucial 

to raise how sleep deprivation is not without side effects, susceptible to alter the 

trustfulness of the conclusion from studies using this method. Indeed, numerous 

studies revealed how sleep deprivation could impair not only concentration, vigilance, 

and mood, but also the immune system, working memory system, and circadian 

rhythms like glucocorticoids (Durmer and Dinges, 2005; Killgore, 2010; Davies et al., 

2014). A less outright and more subtle approach raised the hypothesis whereby both 

nREM and REM sleep could be involved in declarative memory consolidation but not 

the same aspects. Concretely, nREM sleep would be related to the semantic and 

episodic component of the memory, REM sleep would be associated with the emotional 

one. This approach was supported by numerous studies that reported an important 

influence of REM sleep in emotional memory (Groch et al., 2013), irrespective of 

whether the type of material was words (Wagner et al., 2001) or pictures (Hu, and 

al., 2006; Nishida et al., 2009). Interestingly, REM sleep benefits upon emotional 

memory were sometimes found to last for years (Wagner et al., 2006) (for review, 

see Genzel et al., 2015). 

 

In line with the complementary roles of nREM and REM sleep, the sequential 

hypothesis, presented as an alternative, suggested that the combination and sequence 

of nREM and REM sleep stages are vital for the overall benefits of sleep (Giuditta, 

1977, 1985; Giuditta et al., 1995) (for review, see Giuditta, 2014). The sequential 

hypothesis takes its origins from a preliminary assumption whereby nREM sleep and 

especially SWS, would be strictly associated with physiological synaptic restoration 

(Walker and Berger, 1980; Shapiro et al., 1981) and REM sleep with learning and 

memory acquisition (Fishbein and Gutwein, 1977; Pearlman, 1979). At first sight, this 

perception of sleep stages makes sense. Indeed, it has been observed that the 

concentration of brain pyruvate and lactate tended to change depending on the degree 

of intensity of waking activity (Horne, 1981). Secondly, ontogenetic observations 
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revealed the interesting trend whereby REM sleep proportion was much higher in 

newborn humans than adults, suggesting that REM sleep would play a crucial role in 

synaptic formation and brain development (Roffwarg et al., 1966). On that basis, the 

sequential hypothesis went further by proposing the concept of "two step mechanism 

of memory processing" (Ambrosini and Giuditta, 2001). Concretely, (1) nREM sleep, 

and especially SWS, would be involved in the synaptic downscaling, resulting in the 

removal of irrelevant memory traces. (2) REM sleep would promote the integration 

and consolidation of newly acquired memories. The degree of memory consolidation 

efficiency would be the result of that cyclic nature of the interactions between nREM 

and REM sleep. Concretely, overall benefits upon memory consolidation would result 

from a repeated and cyclic alternance of nREM sleep and REM sleep stages (Ambrosini 

and Giuditta, 2001). The sequential hypothesis has been supported by numerous 

studies in rats (Ambrosini et al., 1992, 1995) and humans (Stickgold et al., 2000; 

Mednick et al., 2003). 

 

This preliminary introduction was important to understand how the perception of sleep 

progressively moved from a “passive stand-by mode” to a crucial period for memory 

and the consolidation process. Decades of questions and research from various fields 

(clinical, biology in humans and animals) led to a convergence between the cognitive 

mechanisms (standard model versus multiple trace transformation theory) and the 

physiological manifestations of sleep stages in nREM and REM sleep (dual process 

versus sequential hypothesis) to propose a global framework of memory consolidation. 

At this stage, a brief summary about these last two models of sleep stages is matter 

of importance since they can be reasonably considered as the cornerstone of the most 

recent and promising technics of investigation of sleep in memory integration (cf. infra 

- 4.3 - Sleep and neural replay). 

 

The dual process hypothesis has significantly advanced understanding of memory 

consolidation by proposing that non-rapid eye movement (nREM) sleep and rapid eye 

movement (REM) sleep play distinct and complementary roles. This approach, still 

ongoing debate, was crucial by highlighting the unique contributions of different sleep 

stages to memory processing. However, this hypothesis was not without a major 
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limitation. Indeed, by treating nREM and REM sleep as dual and independent 

processes, the dual process hypothesis overlooks the intricate interplay between these 

stages. This limitation was addressed by the sequential hypothesis of memory that 

posited a dynamic interplay between nREM and REM sleep, where memories would 

be initially processed and stabilized during nREM sleep and subsequently consolidated 

during REM sleep. However, and despite its advances, the sequential hypothesis does 

not really answer about the crucial question about the specific mechanisms in nREM 

or REM sleep that could contribute to the progressive consolidation of memory. In the 

early 2000th, two models were proposed to fill this gap: the active system consolidation 

driven by a physiological approach and the synaptic homeostasis hypothesis, focusing 

on the biology. 

 

3.3.3 - Cognitive models of SWS: Focus on Slow oscillations 

 

Building on the foundational models of memory transfer from hippocampus and 

neocortex and the role of nREM sleep proposed by the dual process hypothesis, recent 

research has introduced the Active Systems Consolidation (ASC) model. According to 

the ASC model, during sleep, memories would be repeatedly reactivated in the 

hippocampus and progressively transferred to the neocortex through a highly 

synchronous brain activity. It is important to raise that ASC (Figure 4) posits that 

only SWS would be involved in the consolidation of declarative memory (Marshall and 

Born 2007; Diekelmann and Born 2010; Born and Wilhelm, 2012; Rasch and Born, 

2013). Concretely, newly acquired events during wake would be encoded within both 

hippocampus and neocortical areas. Subsequently, SWS would foster the reactivation 

of these events and their gradual distribution from temporal to neocortical regions for 

a long-term consolidation. The transfer would be driven by a highly synchronous 

activity, including the neocortical oscillations, the thalamo-cortical spindles phase- 

locked with the SO up-phase, and the sharp wave ripples from the hippocampus 

phase-locked with the spindles' trough. ASC model is supported by a large body of 

studies that revealed the presence of the SO timeframe representation in the visual 

cortex or in neocortical regions (Ji and Wilson 2007; Euston et al., 2007). 
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Figure 4: Representation of the active system consolidation during sleep. Newly formed declarative 
memories during wake are temporarily stored in hippocampus (green) and progressively transferred 

to the neocortical areas (red) for a long-term storage across multiple reactivations. The transfer from 
hippocampus to neocortex is mediated by a synchronous activity occurring during SWS. The dialog 

between hippocampus and neocortex would be controlled by slow wave oscillations (red line), 

whereas ripples (green line) and spindle (blue line) would be involved in memory reactivation. The 
cortico-hippocampal communication is regulated by slow oscillations in the neocortex (red), which 

trigger repeated reactivations within the hippocampus. These reactivations are marked by 
hippocampal sharp wave ripples (green) that coincide with the excitable troughs of sleep spindles 

(blue oscillations), creating a "spindle-ripple interaction." This interaction is embedded within the 

depolarizing up-phase of the slow oscillations, facilitating the transfer of hippocampal memories to 
the neocortical networks and thereby supporting memory consolidation. 

(Source: Rasch and Born, 2013. About sleep’s role in memory – Original source: Born and Wilhelm, 
2012) 

 

Some studies also pointed out an increase of SO, ripples and spindles after encoding 

(Gais et al., 2002; Mölle and Born, 2009) and a causal link with a better memory 

retention (Huber et al. 2004; Clemens et al., 2005; 2006; Girardeau, et al., 2009; 

Girardeau and Zugaro, 2011). Human studies also supported the link between the SO 

and the consolidation of explicit memory by using SO up-state close-loop stimulations 

(Ngo et al., 2013) or targeted-memory reactivation (TMR) (Cairney et al., 2018) (cf. 

infra, chap. 4.3.3 – Promoting reactivation during sleep: emergence of TMR). Tough 

it is important to raise again the fact that ASC model do not incorporates REM sleep 

into the equation of memory consolidation, which sounds like a “step-back” to the dual 

hypothesis, this influential model proposes a rich explanation about the interaction 

between hippocampal and neocortical areas and the brain activity behind it. However, 

ASC was not the unique model that focused on slow oscillations to explain the 

relationship between sleep and memory formation. Indeed, another influential model 
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in the field of memory consolidation is the Synaptic Homeostasis Hypothesis (SHY), 

which offers a different perspective on the role of sleep, based on biology. 

 

The synaptic homeostasis hypothesis (SHY), was proposed by Tononi and Cirelli 

(Tononi and Cirelli, 2003, 2006) (Figure 5). SHY is based on the postulate that during 

wake, encoding process would result in a synaptic strengthening, illustrated by a 

progressive potentiation of these synapses, and thus, energy consumption. Hence, 

during SWS, SO would serve the crucial function in downscaling potentiated synapses 

that would return to an acceptable basal potentiation in terms of energetic cost and 

tissular volume (for review. see Bertran et al., 2013). In this view, downscaled 

synapses would be operational again for future encoding. The second crucial point is 

that the downscaling would be proportional to the level of potentiation, in a sense that 

synapses would keep traces of their "experience". SHY was supported by histological 

studies that revealed the relation between SO and long-term depression (LTD) 

(Barrionuevo et al., 1980; Mascetti et al., 2013). Although most of the studies that 

supported SHY are in animals (Vyazovskiy et al., 2008, 2009; Tononi et Cirelli, 2014), 

elements of proofs were also found in neuroimaging studies in humans (Takashima et 

al., 2006; Gais et al., 2007). 

 

The interesting approach from SHY comes from the fact that it appears “against the 

tide”. Indeed, the biological approach focusing on synaptic homeostasis instead of 

memory consolidation sounds like an antagonist model. Indeed, the question here is 

not even to understand how nREM sleep or REM sleep could contribute to the 

formation of memory. Slow oscillations would only serve for the preservation of 

synaptic mechanisms.  

 

Building upon the presentation of SHY and ASC models, both the Active Systems 

Consolidation (ASC) model and the Synaptic Homeostasis Hypothesis (SHY) 

underscore the importance of sleep and especially the slow oscillations. However, they 

diverge in their core mechanisms and emphases. 
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Figure 5: SHY. SWS would foster synaptic downscaling of neurons involved during encoding. One 

must point out that after sleep, the strength of the potentiation is still maintained. 

(Source: Tononi, G., & Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep medicine 
reviews, 10(1), 49-62.) 

 

Indeed, the ASC model focuses on the reactivation of memory traces and the 

subsequent transfer from the hippocampus to the neocortex, highlighting a process 

of selective strengthening and integration. Comparatively, SHY model emphasizes a 

global synaptic downscaling process during sleep, which is thought to maintain overall 

synaptic efficiency and neural homeostasis. These differences raise a passionate 

debate in the field about whether sleep's primary function in memory consolidation is 

to selectively enhance specific memories or to ensure the overall stability and 

functionality of neural networks through synaptic renormalization (Sara, 2017; Poe, 

2017). To conclude, it is also possible to extract converging points between ASC and 

SHY models. Indeed, an MRI study from Mascetti (Mascetti et al., 2013) pointed out 

that pre/post sleep contrast revealed an activation of new brain areas after sleep, 

correlated with performances, suggesting a reorganization of mnesic traces, in line 

with the ASC. On the other hand, the results also revealed that the reactivation of 

brain areas involved in the encoding process was proportional to the amount of SO, 

in line with the SHY. On that basis, it is not excluded that downscaling and 

consolidation both occur at the same time during sleep, but within different brain 
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regions, suggesting that memory processes during sleep may be heterogeneously 

distributed within the brain. 

 

4 - Sleep and relational memory 

 

The previous section has raised how the early 2000th were the stage for intense and 

passionate debate about the cognitive dynamics behind the process of memory 

consolidation, how sleep could contribute to consolidate memory, and more 

specifically, what sorts of physiological mechanisms could interact and promote it. 

Through the presentation of the dual process and the sequential hypothesis, the ASC 

and SHY models, the research scope of field has been shown sometimes polarized 

with the antithetical points of view between the role of nREM or REM sleep, sometimes 

converging with the ASC and SHY models that both highlighted the role of slow 

oscillations during sleep but for different reasons. However, science history has often 

proven that between the extreme, the “truth” (assuming that truth itself exists), or 

better said, the reason, often lies somewhere in between. Said differently, it is 

reasonable to expect a situation, a model, that could be susceptible to bind the concept 

of the mutual role of nREM sleep and REM sleep with complementary mechanisms, 

the concept of transfer and reactivation of memory, and the downscaling or the 

transfer promoting role of slow oscillations. However, such a purpose needs to modify 

the point of view associated with memory and consolidation. 

 

4.1 - Sleep and cognitive flexibility 

 

Over the previous sections, memory was presented as a material, immutable, limited 

and almost measurable. Indeed, according to the previous models, an event, 

sometimes called engram, would be experienced during wake, temporarily stored in a 

compartment most of the time called hippocampus, and finally, transposed into 

another one during the night, called neocortex. While it sounds reasonable to raise 

the extreme simplicity of this presentation, it also sounds crucial to highlight that in 

such a scenario, the brain would not differ from a simple hard disk, a computer 
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(McGaugh, 1966). However, decades of intensive research (for review. see LeDoux, 

2022) have proven that beyond the conception of memory consolidation, events could 

also experience different types of modulation, like disruption (Briggs et al.,2007; 

Briggs and Riccio, 2007), enrichment (Lee, 2009; Rudy et al., 2002) or distortion 

(Loftus et al., 2017).  

 

This conception of memory allows to reconsider it as modular, a reflect of cognitive 

flexibility, namely adaptive strategies applied to face with continuously changing 

environments and unusual situations. Cognitive flexibility can be described as part of 

a more global concept, namely creativity, which can be defined as the ability to 

produce something new, original, and appropriate to solve an issue (Sternberg, 1995; 

Dietrich, 2004; Runco, 2004). The cognitive flexibility relies on the ability to manipulate 

episodic and semantic representations, or schemas. A schema can be defined as 

ensembles of “cognitive features”, or gist, that events have in common with each 

other (Zeithamova et al., 2012, Preston and Eichenbaum, 2013) (Figure 6) and can 

be interpreted as a “cognitive stereotype” that aims to categorize and structure the 

environment. Since a simple example is most of the time more comprehensive than 

exhausting definitions, one can imagine someone experiencing for the first time a 

birthday and Christmas parties. These events, rare in time (once a year) will be 

considered as two different schemas, with specific codes or rules (maybe a dress code, 

cooking specific recipes…) and rituals (music, gifts…) (Figure 6). However, these 

schemas also share codes and rituals similarities. These codes or rituals are called 

“gist”. In this example, common gists appear, like “MUSIC” and “GIFT”. Now, if a new 

experience that shares the gist “party” with birthday and Christmas celebration occurs, 

like a “cocktail party”, maybe that same person will expect to receive presents. Beyond 

the potential deception, that person will have to use its adaptive cognitive flexibility 

and create a new schema called “cocktail party”, containing specific codes (alcohol, 

dress code…) to avoid experiencing a similar deception next time. 
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Figure 6: Schematic representation of the schema building and the gists. Here, “MUSIC” and “GIFT” 
are two gists shared by the cognitive schemas “CHRISTMAS PARTY” and “BIRTHDAY PARTY”. 

However, only “MUSIC” is associated with the new schema “COCKTAIL PARTY”. This distinction leads 

to the creation of one specific schema: “PARTY”. 

 

The cognitive process as well as the physiology behind the formation of a new 

schemas susceptible to share gist with each other were integrated into the so-called 

framework of sleep “Information overlap to abstract” (iOtA). The model iOtA designed 

by Lewis’ team (Lewis and Durrant, 2011) posits that during SWS, experiences that 

share a lot of common components (gists) would be strengthened, resulting in the 

formation of new schemas, whereas experience that only comprise of idiosyncratic 

representations would be downscaled (Figure 7). A global comprehension of the key 

points of the model requires to break it. 

Information Overlap (iO): 

During wake, new information that often overlaps with previously stored knowledge 

can be encoded. This overlap is detected and marked for further processing during 

sleep. This marking can be described as a synaptic tagging whereby specific synapses 

in charge of encoding overlapping events are tagged for further strengthening or 

modification during subsequent nREM sleep, especially SWS. During this stage, the 

hippocampus and neocortex interact to reorganize and integrate new memories. 

To abstract (tA): 

During SWS, the interaction between hippocampus and neocortex would lead to the 

formation of more generalized and abstract representations. This involves integrating 
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new information with existing knowledge and extracting commonalities, which 

enhances the brain’s ability to understand and predict the world. The result is the 

formation of new schemas, cognitive frameworks that help organize and interpret 

information.  

 

 

Figure 7: Schematic representation of the iOtA model. Here, memories that shares common events 

are strengthened whereas unitary events are downscaled. This transformation of memory is assumed 
to lead to schema formation. Circles represent replayed memories. Overlapping areas represent the 

relationship between new and old memories. (Source: Lewis and Durrant, 
2011. Overlapping memory replay during sleep builds cognitive schemata). 

 

The key mechanism of support is the reactivations of brain areas involved in the 

formation of the event during wake and the neural replay mediated by the 

hippocampo-neocortical connection (Laroche et al., 2000; Colgin, 2011; Fell and 

Axmacher, 2011; Sharon et al., 2011), especially the medial prefrontal cortex (mPFC) 

(Grossberg, 1987). 

 

The iOtA model was later extended to the "Broader Information Overlap to Abstract" 

or BiOtA (Lewis et al., 2018) in order to provide a more comprehensive framework of 

interaction between nREM sleep and REM sleep in the integration of memory (Figure 

8). A crucial novelty here is the implication of REM sleep in the transformation and 

integration of newly formed representations, resulting in enriched representations. 

This modulation would be possible due to the high level of ACh that fosters high levels 
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of calcium (Ca2+) influx and PGO waves (Lewis et al., 2018). 

Here again, it is required to split the concepts for a full comprehension. 

Broader Information Overlap (bIO): 

BiOtA model extends the detection of overlapping schema not only for declarative and 

procedural memories but also across different types of cognitive processes and 

domains, including emotional experiences, skills, and various types of learning. 

Concretely, sleep would promote the integration of information across different 

cognitive domains, enhancing the brain's ability to form more complex and abstract 

representations. Moreover, while SWS keep being crucial for declarative memory 

consolidation and integration, it would also play a role in cognitive functions like 

problem-solving and planning by allowing the brain to process and integrate complex 

information. However, the major difference from iOtA is the integration of REM sleep 

as the cornerstone of synaptic plasticity and integration of memory. 

 

 

Figure 8: Schematic representation of the BiOtA model. (a) During wake, the representation of the 

semantic knowledge about space is shared between teaching lessons, books, and TV. (b) A new 
representation of the atom with concentric circles will restructure the representation of space during 

REM sleep. (c) At the functional level, the replay induced by the hippocampal and neocortical dialog 
during SWS leas to the overlapping of newly formed gists and old ones that will potentiate 

representations shared between old and new gists whereas unitary representations will be 

downscaled. (d) During REM sleep, PGO waves and high level of ACh fosters the detections of 
similarities between gists and the formation of new schemas. These new representations are 

assumed to promote the emerging of new concepts and semantic knowledge. 
(Source: Lewis and al., 2018. How Memory Replay in Sleep Boosts Creative Problem-Solving). 
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This integration echoes findings about REM sleep that has been shown to promote the 

secretion of “Brain-Derived Neurotrophic Factor” or BDNF, involved in the 

neurogenesis process. These results were both found in rodent (Ambrosini and 

Giuditta, 2001; Giuditta, 2003) and human studies (Ficca et al., 2000; Gais et al., 

2000; Stickgold et al., 2000). In addition to procedural and emotional memory 

consolidation, REM sleep would support creativity, problem-solving, and the 

abstraction of complex patterns. Indeed, REM sleep has been shown  to be involved 

in a wide range of cognitive skills, comprising of foreign language learning (De Koninck 

et al., 1989), studying (Smith and Lapp, 1991; Meienberg, 1997), but also semantic 

(Meienberg, 1977; De Koninck, 1991; Smith and Lapp, 1991), visual (Zimmerman et 

al., 1970), motor (Buchegger and Meier-Koll, 1988, Buchegger et al., 1991), and 

auditory memory (Verschoor et al., 1984), was shown to play a crucial role in memory 

and cognitive reshaping (Schacter et al., 2012; Schlichting and Preston, 2015) or in 

executive functions abilities like mental flexibility, inhibition and planification (Postle, 

2006; Ranganath and Blumenfeld, 2009; Llewellyn, 2016; Schönauer et al., 2018). 

To Broader Abstraction (tBA): 

Importantly, sleep is assumed to facilitate not only the abstraction of overlapping 

information within the same domain but also across different domains. This leads to 

the formation of more generalized and versatile cognitive frameworks. The 

consequence is the formation of more complex schemas, which are necessary for 

higher-order cognitive functions like critical thinking, creativity, and innovation. 

 

BiOtA model can be perceived as a global integration of SHY and ASC models by 

incorporating elements from both theories. From ASC, BiOtA model integrates the idea 

that specific experiences are reactivated during SWS, leading to the strengthening and 

integration of important memories from the hippocampus to the neocortex. From SHY, 

the model also acknowledges the global synaptic downscaling that occurs during SWS 

from synapses that support the encoding of idiosyncratic elements, which helps 

maintain synaptic balance and overall brain homeostasis. However, BiOtA extends the 

simple concept of consolidation by emphasizing the abstraction of overlapping 

information, and the progressive integration which helps in forming generalized 

concepts and schemas.  
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4.2 - Focus on transitive inference 

 

The role of sleep in enhancing cognitive schemas for the development of more 

adaptable and enriched mental representations is widely recognized, though the 

underlying mechanisms remain unclear. The familiar advice to "sleep on it" when faced 

with perplexing problems is not without merit. After a full night's rest, problems tend 

to be approached with a fresh perspective, replacing emotions and uncertainty with 

analytical clarity and insight (Bowden et al., 2005; Luo and Knoblich, 2007; Kumaran, 

2013). This insight is closely linked to a holistic cognitive function known as transitive 

inference (TI), which involves the ability to form new conclusions or strategies based 

on given premises. As an example, assuming a premise A “do my homework” related 

to the heuristic B “pass my exam” and C “being graduated”, it is possible to “jump” 

from A to C and infer that if “I do my homework, I will be graduated”. At the more 

experimental level, TI is usually assessed by using series of items that are 

hierarchically related (Figure 9).  

 

 

Figure 9: Representation of the overall concepts from transitive inference. Premise 
pairs refer to combinations of successive items within a hierarchy. Inference pairs 
are built upon distant items. In a series from A to F, pairs that comprises of A and 
F (e.g., AB or CF) are called anchor pairs and are usually separated from other pairs 
as there are usually associated with a higher accuracy due to the fact that A is 
always dominant and F is always submissive. 
(Source: Ellenbogen et a., 2007. Human relational memory requires time and sleep.) 
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Within a series of items (e.g., A.B.C.D.E), the participants are expected to learn 

associations about overlapping premise elements (AB, BC, CD, DE) with trial error 

reinforcement. If A and B are presented, participants are expected to guess that A is 

dominant and B submissive, but without being informed about the hierarchy. In a 

second time, new pair associations are presented (inference pairs) (e.g., A-C) and 

participants are expected to infer the hierarchy between A and C. Regarding the 

impact of sleep on TI, a notable behavioural study investigated this aspect (Ellenbogen 

et al., 2007). The results revealed an increase of performance at delayed session 12 

hours after learning, supporting the idea that time is essential for creating relational 

memory. Interestingly, the results also showed an increase after 24 hours but only for 

inference pairs with two degrees of distance (e.g., B-E) compared to one degree only 

(e.g., B-D). This distance effect is known as the symbolic distance effect (SDE) name. 

The SDE is supported by a large body of studies from multiples fields of research using 

colours (Trabasso et al., 1975), numbers (Shepard et al., 1975), or even behaviour 

(Potts, 1972). According to numerous studies, the reason of the presence of SDE 

would depend more on how individuals perceive the elements (Potts, 1974; Moyer 

and Bayer, 1976; Hamilton, 1978; Scarf and Colombo, 2008) than real distance 

between these elements. More precisely, the way an element is perceived by its 

components (shape, colour, size...) would define its position within the hierarchy. The 

results from Ellenbogen' study were replicated and confirmed by a study that did not 

only support the sleep and SDE effects on TI observed in Ellenbogen' study 

(Ellenbogen et al., 2007) but also revealed a significant improvement of TI accuracy 

when training was associated with reinforcement and feedback (+31.08% for the 

sleep group and 23.07% for the wake group) (Werchan and Gomez, 2013). 

 

At the functional level, parietal (Goel et al., 2009), temporal (Heckers et al., 2004; 

Greene et al., 2006; Goel et al., 2009) and neocortical brain regions (Goel et al., 2009; 

Wendelken and Bunge, 2010; DeVito et al., 2010; Koscik and Tranel, 2012) were found 

to be engaged in relational memory processing. If the idea whereby neocortical - in 

particular the rostrolateral prefrontal cortex (RLPFC) is engaged in relational memory 

is widely accepted, surprisingly, the conclusions about the implication of the 

hippocampus appeared less clear. Indeed, a study run by Wendelken and Bunge in 
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2010 did not find any engagement from hippocampus in TI process. In 2020, a study 

that aimed to assess the role of hippocampus during logical reasoning and belief bias 

based on age, compared accuracy from "young" versus "old" groups. A significant 

activation was found within the hippocampus during logical processing but only for 

the "old" condition (Ziaei et al., 2020). Numerous studies have provided insightful 

explanations about the conditional involvement of hippocampus in cognitive flexibility. 

As an example, the level of awareness of the hierarchy between items was found to 

influence hippocampus activation (Martin and Alsop, 2004; Greene et al., 2006; Libben 

and Titone, 2007; Lazareva and Wasserman, 2010), although the definition and 

assessment of awareness was shown to differ between the studies. Level of awareness 

was not only shown to predict hippocampus activation but also behavioural 

performance (Martin and Alsop, 2004). In this study, after being evaluated by a 

questionnaire, the participants defined as "aware" exhibit a higher accuracy compared 

to the "less aware" group (Martin and Alsop, 2004). Similar findings about the level of 

awareness (Lazareva and Wasserman, 2010) as well as the efficiency of the strategy 

used (Libben and Titone, 2007) and the positive effects upon accuracy were 

presented. 

 

4.3 - Sleep and neural replay 

 

Excepted dissenting voices (Vertes, 2004; Vertes and Siegel, 2005), it is widely 

accepted that sleep and memory consolidation are heavily interrelated. In view of the 

multiple hypothesis and models proposed to explain such a relationship, it is 

reasonable to admit that the exact reasons why memory consolidation is fostered by 

sleep is still unclear. However, and although these models are competing or 

complementary with each other, they all share the same position about the critical 

importance of memory reactivation. 

  

4.3.1 - Origins of neural replay during sleep 

 

In 1989, Pavlides and Winson demonstrated that hippocampal place cells activity 

coded for space and orientation when rats were placed in a novel environment 
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(Pavlides and Winson, 1989). They also noticed an increase of firing rate during sleep 

from place cells involved during wake. The concept of replay during sleep emerged. 

However, it is in 1994 that Wilson and McNaughton experiment in rodent place cells 

raised the concept of representations (Wilson and McNaughton, 1994). Concretely, 

they revealed that place cells coding during wake resulted in a modulation of the firing 

patterns within pyramidal cells that could be detected during SWS (Figure 10). From 

a recording of 42 random place cells, it also appeared that cell pairs that tended to 

fire together before sleep also fired together after sleep. 

 

 

Figure 10: Representation of the concept of replay. Patterns of spatial exploration encoded within 

place cells during wake are replayed during SWS and REM sleep. 
Source: Sadowski et al., 2011. Ripples Make Waves: Binding Structured Activity and Plasticity in 

Hippocampal Networks.) 

 

Decades of research have completed Wilson and McNaughton's findings. As an 

example, it has been observed that the replay of sequential patterns during SWS was 

a compressed version of the firing observed during wake (Lee and Wilson, 2002; Ji 

and Wilson, 2007). Spontaneous reactivation of firing patterns was also shown to 

decrease after learning (Battaglia et al., 2005). At the electrophysiological level, firing 

replay and subsequent transfer were shown to mainly depend on the ripples 

(Girardeau et al., 2009; Girardeau et al., 2014) as their suppression was shown to 

impair memory consolidation (Girardeau et al., 2009). Although the research field 

about sleep and memory replay is mostly covered by research on SWS, REM sleep has 
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also been shown to play a role in memory replay and consolidation, but at a more 

subtle and indirect level than ripples during SWS. Indeed, it has been shown that the 

occurrence of spindles and ripples during SWS was correlated with the number of 

changes of firing rate within the hippocampus during REM sleep episodes following 

SWS (Grosmark et al., 2012; Miyawaki and Diba, 2016) (for review, see Tang and 

Jadhav, 2019). While Tang and Jadhav only focused their analysis on the homeostatic 

role of REM sleep, raising the possibility that "the synaptic homeostatic regulation 

implemented during REM sleep may be initiated by ripples and spindles during 

preceding nREM sleep", it is interesting to notice that the selective inhibition of 

GABAergic neurons of the medial septum, said to be the source of theta rhythm during 

REM sleep led to spatial and contextual memory impairment (Boyce et al., 2016). In 

this view, and since hippocampal firing changes during REM sleep are correlated with 

spindles and SRWs occurrence during SWS, it raises the possibility that depending on 

how relevant an event is (Wilhelm et al., 2011; Oudiette et al., 2013), this event would 

be transferred from hippocampus to neocortical areas in its "rough" shape, while its 

specific components (emotional, contextual and spatial) would be consolidated and 

integrated during REM sleep. 

 

4.3.2 - Findings in humans 

 

Due to understandable methodological constraints, human studies that investigated 

traces of memory replay in humans have focused their attention on less invasive 

designs such as fMRI and positron emission tomography (PET) scans. In this view, 

numerous studies have provided results showing an increase of brain activation during 

subsequent sleep (Maquet et al., 2000; Peigneux et al., 2004; Bergmann et al., 2012). 

In one of these, the results did not only show a hippocampal reactivation after sleep 

but also a correlation between post-sleep performance and the magnitude of the 

reactivation (Peigneux et al., 2004). Human studies provided evidence that replay 

during sleep could enhance memory formation, although it must be admitted that 

brain imaging studies tend to suffer from low temporal resolution (Kim et al., 1997; 

Ravi and Goodyear, 2001), impeding characterization of memory replay and its 

mechanisms (Schreiner and Staudigl, 2020). EEG studies however, can provide strong 
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time resolution. Nevertheless, they are strongly limited by their poor spatial resolution 

and the depth of the signal recording, at least for the classic surface EEG devices. 

These limitations have been resorbed using intracranial EEG (iEEG) recording (Zhang 

et al., 2018; Jiang et al., 2019; Jiang et al., 2020; Creery et al., 2022). The classic 

paradigms used with iEEG are visual-spatial memory tasks where participants were 

instructed to learn sequences of pictures (Zhang and al., 2018) or place them correctly 

in a grid (Creery et al., 2022). Among the main findings, an increase of gamma range 

(30-90 Hz) in the medial temporal regions, correlated with the performance, has been 

often raised (Zhang et al., 2018; Creery et al., 2022). Although iEEG study provided 

breakthrough in terms of EEG neural markers of memory replay, their major limitations 

come from their poor sample size range, from 5 participants (Creery et al., 2022) to 

20 in the best scenario (Jiang et al., 2019; Jiang et al., 2020), which poses the issue 

of the lack of statistical power and thus the question of the reproducibility. The second 

main limitation is about the clinical content of the studies. Indeed, the individuals 

enrolled in the iEEG are epileptic patients (Zhang et al., 2018; Jiang et al., 2019; Jiang 

et al., 2020; Creery et al., 2022). As the epilepsy can be described as a maladaptive 

neural plasticity (Scharfman, 2002) and as the hippocampal seizures are the most 

common expression, biased EEG signal during recording in these regions cannot be 

completely excluded. 

 

4.3.3 - Promoting reactivation during sleep: emergence of TMR 

 

As mentioned earlier, numerous findings provided insightful elements about the 

importance of neural replay as the representation of reactivation of networks 

previously involved during encoding and reinforced during sleep, leading to the 

progressive long-term integration of memory (for review, see Sara, 2010). On that 

basis, a promising technique known as "Targeted Memory Reactivation" (TMR) was 

proposed and applied to reproduce the spontaneous neural reactivation and 

consequently enhance sleep-related benefits. Although a TMR protocol may vary in 

terms of cueing stimuli and material to consolidate, it always comprises of three steps 

(Figure 11): (1) Encoding of sensory-cued materials that can be olfactory (Rasch et 

al., 2007), or auditory (Rudoy et al., 2009; Tamminen et al., 2017; Goldi and Rasch, 
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2019) during wakefulness. (2) During sleep, the same cue is presented to induce 

spontaneous reactivation of the neurons engaged during encoding. (3) Recall accuracy 

is assessed by comparing the cued and non-cued materials. 

 

 

Figure 11: Schema representing the main concept of the TMR. Firstly, a material is learnt and 
associated with a specific cue (odour, tactile stimulation, or sound). Secondly, the stimulus is 

replayed, resulting in a reactivation of the material learnt before sleep, and the strengthening of the 
neuro networks involved. 

(Source: Paller, Ken. (2018). Do House-Elves Clean Your Brain While You Sleep?. Frontiers for Young 

Minds. 6). 

 

TMR has been mostly used in protocols that assessed memory consolidation 

(Fuentemilla et al., 2013; Sterpenich et al., 2014; Cairney et al., 2018; Goldi et al., 

2019). However, this method has also been applied for grammatical generalization 

(Batterink and Paller, 2017), language acquisition (Batterink et al., 2017; ss al., 2018), 

classical music (Gao et al., 2020), procedural (Cousins et al., 2014; Rakowska et al., 

2021) or emotional memories (Cairney et al., 2014; Pereira et al., 2023). 

 

4.3.3.1 - Application of TMR during SWS 

 

While cueing during sleep was already applied since the early 1950s (Fox and Robbin, 

1952), it wasn't until the early 2000s that research on TMR experienced significant 

growth. This increase of interest was notably marked by two influential studies (Rasch 

et al., 2007; Rudoy et al., 2009) which provided robust behavioural evidence of the 

benefits of TMR during SWS. In Rasch et al.'s study, participants have been tested 
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with an object-location memory task associated with the exposure to an olfactory 

stimulus, specifically the odour of a rose. Following re-exposure to this odour during 

SWS, a notable enhancement in memory was observed, especially when the odour 

was presented during both the learning phase and SWS. Interestingly, TMR application 

of odour only during learning or when the exposure during learning did not precede a 

sleep phase was shown to act as a distractor, leading to an impairment of memory. 

In hindsight, olfactory cues offer advantages: firstly, it is less disruptive to sleep 

compared to auditory cues (Carskadon and Herz, 2004), and secondly, it directly 

involves the medial lateral cortex, a pivotal region for associating sensory elements 

with events and their integration within the hippocampus, particularly with regards to 

odours (Zelano and Sobel, 2005; Herz, 2016). However, despite this study offered 

compelling evidence for the benefits of TMR in memory retention, the choice of an 

olfactory cue may also raise concerns about its specificity, namely its potential to only 

trigger contextual memory related to the task. This apprehension was addressed in a 

subsequent study (Rudoy et al., 2009) that also used an object-location memory task. 

In this study, some items were associated with semantically related sounds, such as 

a "meow" sound linked to a picture of a cat. Following a 75-minute nap, the post- 

sleep assessment revealed a significantly lower error rate for the cued items compared 

to the uncued condition. However, a concern arising here is the duration of sleep, in 

a sense that participants only experienced a nap rather than a full night's sleep. This 

factor can impact the number of SWS and REM sleep cycles, which are presumed to 

contribute to memory consolidation (Batterink et al., 2017). 

 

The exploration into the neural mechanisms underlying the benefits of TMR on 

memory consolidation has been tackled within the realm of imaging research (Berkers 

et al., 2018; Shanahan et al., 2018). In an analysis of data derived from Rudoy et al.'s 

work (as mentioned earlier), one study revealed interesting findings: the visual cortex 

displayed activity akin to that observed during the initial learning phase (Berkers et 

al., 2018). Notably, this activation was associated with an increased connectivity with 

crucial brain regions such as the hippocampus, parahippocampal gyrus, thalamus, and 

medial prefrontal cortex, all known for their roles in memory consolidation (as 

previously mentioned). In a separate investigation using an object-location memory 
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task alongside simultaneous EEG-fMRI recording, another study found a robust and 

positive correlation between the reactivation of the fusiform gyrus and the 

ventromedial prefrontal cortex (vmPFC) with recall accuracy (Shanahan et al., 2018). 

As mentioned earlier, the vmPFC plays a critical role in memory consolidation. 

Moreover, the reactivation of the fusiform gyrus is in line with its known implication in 

visual recognition processes, particularly regarding facial recognition. 

 

While most studies applying TMR during SWS have shown positive effects, some have 

reported negative impacts, ranging from a lack of effect (Wilhelm et al., 2020; 

Beijamini et al., 2021) to significant disruptions in consolidation (Simon et al., 2018). 

Ineffectiveness in applying TMR has been observed across various materials or tasks, 

including problem-solving (Beijamini et al., 2021), word (Wilhelm et al., 2020), or 

object consolidation (Simon et al., 2018). For instance, in the case of problem-solving 

(Beijamini et al., 2021), the study aimed to determine if TMR could enhance 

completion of a video game and whether its effects were influenced by the sleep stage 

during which the stimulation occurred (SWS, REM sleep, or wakefulness). While most 

participants with a period of offline sleep displayed significantly improved game 

completion compared to those in the wake offline condition, the difference 

disappeared when TMR was applied. Interestingly, the ability to complete the game 

became equivalent between wake and sleep conditions, irrespective of the sleep stage. 

Surprisingly, it seemed that only the wake condition benefited from TMR, a conclusion 

diverging from Rasch's findings about TMR and wakefulness (Rasch et al., 2007). This 

discrepancy might be related to the concept of prior knowledge, a notion that will be 

detailed later (cf. infra, chap. 4.3.4 – Factors of influence). Wilhelm's study, 

highlighting the persistent lack of TMR effect even after a week, raises two primary 

concerns. Firstly, the participants were aged between 11 and 13 years old, potentially 

introducing biases such as circadian desynchronization due to social life and 

physiological changes, especially in brain areas like the frontal and prefrontal regions 

that continue maturing until the late 20s. Secondly, TMR was applied during nREM 

sleep without distinguishing between stage 2 or SWS, raising the question about the 

potential lack of specificity in the stimulation process. While inconsistent findings in 
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the TMR field might stem from various factors (such as human factors, material types, 

  

statistical variability), the discussion about the participant's prior level of knowledge 

before TMR (Cairney et al., 2016; Groch et al., 2017) and the specificity of the 

stimulation process (Goldi et al., 2019; Santamaria et al., 2022; Wang et al., 2022) 

will be delved into later as these factors could play a crucial role in determining the 

efficiency of TMR (cf. infra, chap. 4.3.4 – Factors of influence). 

 

4.3.3.2 - Application of TMR during REM sleep 

 

Traces of TMR application during REM sleep are notably scarcer compared to studies 

focusing on SWS, although not entirely absent. The main reason about the difference 

between the presence of TMR during SWS and during REM sleep in research lies in 

the challenges of precisely applying TMR (cf. infra, chap. 4.3.4 – Factors of 

influence) and executing it during the early morning hours when REM sleep is most 

prevalent, all without disturbing the participants' sleep by waking them up. Lastly, it 

is reasonable to lie the absence of studies in REM sleep by the numerous unsuccessful 

results that emerged. Indeed, this field of research is mainly represented by 

unsuccessful results from emotional memory (Sterpenich et al., 2014; Rihm and 

Rasch, 2015; Lehmann et al., 2016) or procedural skills (Laventure et al., 2016; 

Koopman et al., 2020b). However, there is an exception in the study of emotional 

memory and TMR during REM sleep that revealed positive findings (Sterpenich et al., 

2014). In this study, participants underwent fMRI while encoding a series of faces 

associated with specific emotional valences (neutral or negative). Half of these 

pictures were cued with sounds, and TMR was administered during REM sleep or stage 

2 of sleep. The post-sleep assessment revealed that participants exhibited higher 

accuracy when TMR was applied during REM sleep compared to stage 2 sleep or 

compared to a control condition without sounds. Functionally, a positive correlation 

was observed between accuracy and medial temporal activation among the group 

exposed to TMR during REM sleep. 
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4.3.3.3 - Application of TMR in the specific case of transitive inference 

 

As previously discussed, reactivation during sleep is not only presented as a key 

mechanism used to foster memory consolidation but also to facilitate the integration 

and restructuring of both old and new memories, contributing to schema restructuring 

and enriched representations. This restructuring is thought to aid individuals in 

employing Transitive Inference (TI), enabling them to infer and solve problems based 

on given premises. In the field of TMR and memory research, only a recent paper 

aimed to explore whether TMR during Slow-Wave Sleep (SWS) could enhance TI 

ability (Santamaria et al., 2022; preprint version). This study is remarkable by the way 

the TMR was applied at a high level of specificity. Indeed, while the studies 

commented in the previous sections barely attempted to distinguish TMR application 

during REM versus SWS, Santamaria’ study investigated whether TMR application 

during up-phase versus down-phase of SO could lead to specific effects. Such a choice 

of specificity is supported by the fact that SO up-phase are known to drive the 

thalamo-cortical spindles, known to play a role in the reactivation (Rasch and Born, 

2013). The second reason comes from close-loop TMR studies that exhibit stronger 

evidence of TMR benefits when applied during up-phase, compared to the down-phase 

(Shimizu et al., 2018; Goldi et al., 2019). Finally, this study also differs by its analysis 

of long-term sleep benefits after 2 weeks, instead of 12 hours or a couple a day of 

delay. The paradigm is a classic TI task where the participants had to learn 3 lists of 

items comprising of faces, objects or scenes. After they were tested, they went to 

sleep and brain activity was recorded by EEG. TMR was applied during the up-phase, 

or the down-phase, whereas the last series of item did not receive TMR. Finally, the 

participants were tested immediately after sleep and two weeks later. At the 

behavioural level, the results from the session after sleep revealed a significant and 

higher accuracy for the inference pairs in the UP condition, compared to the control 

or down-phase condition. Moreover, TMR benefits were shown to persist after two 

weeks. 
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4.3.4 - Factors of influence 

 

Like many fields of research, results from TMR and memory have yielded conflicting 

outcomes, revealing positive impact (Santamaria et al., 2022), lack of effect (Wilhelm 

et al., 2020; Beijamini et al., 2021), or complete disruption of consolidation (Simon et 

al., 2018). As raised in the previous section, the recent results from Santamaria et al. 

highlighted how TMR benefits might rely on the specificity of methodology applied for 

its application (Santamaria et al., 2022). At the electrophysiological level, recent 

studies have raised the possibility that TMR benefits might depend on the phase of 

stimulation during SWS (Goldi et al., 2019; Santamaria et al., 2022). In a recent study, 

Goldi and al. aimed to investigate whether TMR applied during SO up-state or down- 

state could improve the consolidation of declarative memory in a classic word-pair task 

paradigm (Goldi et al., 2019). Interestingly, they also aimed to understand how the 

percentage of REM sleep spent could modulate the interaction between the phase of 

stimulation and the TMR effect. At the behavioural level, the results exhibited 

contrasting findings as no difference was shown between the up-state or down-state 

stimulation. However, a significant difference was found between the control condition 

(without stimulations) and the up-state cueing one only. Surprisingly, the results also 

revealed a negative correlation between the accuracy and the time spent in REM sleep, 

excepted for the down-state cueing condition. At the electrophysiological level, the 

up-state condition revealed a higher and significant difference in the theta and 

spindles band between the remembered and non-remembered words. This finding is 

partially in line with Santamaria an al. results that revealed a difference in the spindles 

band for the up-phase stimulation, and a difference between down versus up in the 

theta band. However, no difference was shown in the down-state cueing condition, 

raising the possibility that TMR applied during SO down-state phase may disrupt the 

theta and spindles activities, two frequency bands that were shown to promote 

memory consolidation, as mentioned earlier. Finally, the contrast between up and 

down-state conditions for the remembered words revealed a significant and higher 

spindle activity for the up-state one. As a conclusion, if the main results support the 

assumption whereby the phase of stimulation may play a crucial role in TMR efficiency, 

the interesting finding about REM sleep’s modulatory effect raises the question of its 
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role in the consolidation. One the one hand, REM sleep has been found to play a role 

in declarative memory consolidation (Grosmark et al., 2012; Boyce et al., 2016; 

Miyawaki and Diba, 2016). On the other hand, SO during SWS have been shown to 

promote the hippocampal-neocortical transfer of memory. 

 

Building on it, it is reasonable to posit that down-state TMR application might have a 

disruptive effect on the transfer of memory due to alteration of spindles during SO but 

not on the consolidation process that occur during REM sleep. However, due to the 

spindle’s disruption, this consolidation would take place in the hippocampus instead of 

the neocortex. Further replications are needed to clarify the role of the phase 

stimulation upon TMR related-benefits (short term versus long term consolidation, 

brain areas involved…). Among the factors assumed to modulate TMR benefits, the 

level of prior knowledge before its application has recently been investigated (Cairney 

et al., 2016; Groch et al., 2017). In their research, Cairney et al. aimed to investigate 

whether being active during learning could impact TMR benefits, and whether those 

benefits may depend on prior knowledge before sleep. After they were trained in a 

picture location task with cueing sounds, the participant went to sleep for a nap. TMR 

was subsequently applied during SWS. Post-sleep results revealed a strong and 

significant difference between TMR and no-TMR, but only for the participants that 

exhibited a low-accuracy prior sleep. Interestingly, the TMR benefit for the low- 

encoding group was shown to be mediated by the time spent in SWS. The findings 

from Cairney et al. study was not only confirmed by the same type of tasks (Creery et 

al., 2015; Tambini et al., 2017) but also by designs based on motor tasks (Koopman 

et al., 2020b). Intuitively and statistically, increase of TMR benefits with poor-prior 

knowledge can be explained by the fact that an already high performance would lead 

to a ceiling effect, without enough leeway for improvement. Hence, applying TMR 

would result in an absence of significant benefits. However, the potential positive 

relationship between poor prior knowledge and TMR benefits poses a dilemma. 

Indeed, while a weak encoding before sleep might maximize TMR benefits, it might 

also result in an increased memory decay at long-term. Indeed, Ebbinghaus’ findings 

(Ebbinghaus, 1885) and its recent replication (Murre and Dros, 2015) revealed that 
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weaker encoding associated with less repetition was associated with a higher 

probability of memory loss. Building on this, further investigations are crucial to find 

the best trade-off between an encoding rate that could benefit from TMR effect on 

the one hand, and lead to a long-term consolidation on the other hand. 

 

5 - Problematic 

 

Although it still remains reasonable to declare that the reason why individuals spend 

a third of their life sleeping is unclear, decades of research have proven that sleep is 

not a uniform and stand-by mode stage, but instead, consists of specific stages 

characterized by specific brain activities. At the cognitive level, the research field about 

sleep's role in memory have brought compelling evidence about a strong relationship 

between sleep and various types of memories. More specifically, recent findings 

managed to go beyond the classic and dichotomic question about sleep's role in 

memory forgetting or consolidation, to propose a novel approach supported by the 

concept of memory integration. Based on the key concept of reactivation, sleep has 

been shown by studies in animals and humans, to play a crucial role in the integration 

of events and their reorganization. At the electrophysiological level, the concept of 

reactivation has been illustrated by specific and highly synchronized brain patterns, 

that have been shown to promote memory integration, especially during SWS, 

although it appears more and more undeniable that REM sleep and SWS both play a 

complementary role in memory formation. Recently, a promising technique that aimed 

to foster memory reactivation known has TMR has pushed the research boundaries. 

By associating cueing stimuli like sounds, odour or touch, with a specific material to 

learn and re-presenting it during sleep, the TMR has promoted the usual and biased 

selective sleep deprivation phasing-out, leading to successful memory boosting. 

However, the tantalizing advances in the field of sleep research should not trump the 

lack of knowledge that still remains. Indeed, sleep benefits as well as TMR-related 

benefits in transitive inference are still unclear. Moreover, little is known about the 

electrophysiological neural correlates susceptible to explain these benefits. Further 

investigations are also needed to understand the phase-lock dependence of TMR 
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during SWS. Finally, the question about the evolution of sleep and TMR-related 

benefits upon transitive inference as well as the potential changes of neural correlates 

over time has not yet been solved. 

 

6 - Research objectives 

 

The overall objective of the present thesis is to deepen understanding of how sleep 

influences transitive inference abilities and how TMR can enhance this effect. A 

secondary goal is to explore the neural mechanisms underlying transitive inference 

during SWS and REM sleep, particularly examining brain frequencies and their 

interactions in relation to transitive inference-related brain regions. Additionally, this 

thesis aims to investigate the effects of TMR on cognitive flexibility by replicating 

laboratory conditions in a real-life setting through a home-based experimental design. 

 

Chapter 2 will assess the progression of sleep-related benefits on transitive inference 

in a remote study where testing sessions occur 12 hours and one week after learning. 

Participants in the wake group will be trained in the morning and tested on the same 

day in the evening, while those in the sleep condition will be trained in the evening 

and tested the following morning to prevent potential biases from sleep deprivation. 

In chapter 3, the focus will be on applying TMR during REM sleep using a remote 

home-based device to examine its effects on transitive inference. This section will 

involve short-term (12 hours after training) and long-term (one week after training) 

testing sessions. An analysis of theta and gamma coupling, known for aiding memory 

integration during REM sleep, will be conducted to explore the neural underpinnings 

of transitive inference during this sleep stage. Due to the COVID-19 pandemic 

restrictions, both the experimental designs in Chapters 2 and 3 will be conducted 

remotely. 

Lastly, chapter 4 will feature a TMR study conducted in laboratory conditions, 

primarily focusing on SWS-related benefits through targeted stimulation during slow 

oscillations (SOs). This study will delve into delta and spindle dynamics as well as delta 

and gamma frequency coupling to assess their potential as neural correlates of 
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transitive inference. Phase-preference investigation will also be conducted to gain 

insight into the mechanisms underlying TMR benefits. These investigations will 

consider the time lapse between encoding and transitive inference testing, examining 

short-term (12 hours after sleep) and long-term effects (one week after sleep). 
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Abstract 

 

Decades of research have provided strong evidence about the positive sleep influence 

on numerous cognitive processes, especially memory consolidation. Recently, it has 

been posited that sleep could also play a role in relational memory, a type of memory 

that could result from the reorganization of episodes, which in turn could promote 

new associations between memories, and thus, foster rule guessing or the occurrence 

of adaptive strategies to solve issues. Building on these assumptions, transitive 

inference, or the ability to deduce a relational statement (AC) based on shared 

similarities between premises (AB and BC) has recently been assumed to be improved 

by sleep. However, little is known about this relationship. The present study aimed to 

further knowledge about sleep's role in consolidation and relational memory but also 

about the long-term persistence of these potential benefits. For that purpose, 

participants were enrolled in a transitive inference (TI) protocol comprising of a 

consolidation and transitive inference testing sessions. Overall, main findings revealed 

that a full night of sleep after learning was associated with a positive effect on accuracy 

for both recall and TI accuracy. Moreover, a protective effect from memory decay 

between testing 12 hours after learning and testing at follow-up after a week was 

observed but only for the recall accuracy, namely the consolidation component. Taken 

together, the present findings suggest that whether sleep could contribute to the 

formation and integration of memory is not a forgone conclusion but may depend on 

the cognitive process engaged in specific situations. Building on these positive 

behavioural results, further research is needed to understand the cognitive factors and 

functions behind the positive relationship between sleep and relational memory. 
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1 - Introduction 

 

Decades of research have established a global consensus regarding the positive effects 

of sleep on the consolidation and enhancement of declarative memory (Marshall and 

Born, 2007; Diekelmann and Born, 2010; Born and Wilhelm, 2012; Rasch and Born, 

2013). Although the exact mechanisms behind the strengthening of memory traces 

and the facilitation of their retrieval and recall, reported in numerous sleep studies 

(Gais et al., 2002; Huber et al. 2004; Girardeau et al., 2009; Mölle and Born, 2009; 

Sara, 2017; Cairney et al., 2018) still remain unclear, recent research has provided 

elements about a mutual contribution from slow-wave sleep (SWS) and rapid-eye 

movement (REM) sleep that would be respectively involved in the abstraction of gists 

or hidden rules, leading to the formation of semantic schemas or representations, and 

the restructuration of shared semantic representation between new and old memory 

traces, leading to the formation of new memories (Lewis and Durrant, 2011; Lewis et 

al., 2018). Described by two complementary cognitive models, namely the 

“information overlap to abstract” (iOTA) and “broader form of the information overlap 

to abstract” (BiOtA) frameworks, memory traces would be progressively integrated 

following a two-steps process. (1) Overlapping memories replayed in the neocortex 

and controlled by the hippocampus would be submitted to Hebbian plasticity, leading 

to the extraction of similarities between events replayed close together in time. 

Although memory decay may affect traces recently encoded because of synaptic 

downscaling (Tononi and Cirelli, 2006) or long-term depotentiation (Poe et al., 2000), 

overlapping similarities between some of these may remain. (2) Semantic similarities 

between events that are replayed during REM sleep by the cortex and triggered by 

ponto-geniculo-occipital waves would be detected and restructured with novel 

associations to create new memories and knowledge. Interestingly, it has been posited 

that the process of transformation and reorganization of memory traces would be the 

starting point of relational memory building, a cognitive function that supports abilities 

to guess hidden rules (Sio et al., 2013; Wagner et al., 2004) or use adaptive strategies 

(Beijamini et al., 2014; Lewis et al., 2018).  
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In the field of relational memory, transitive inference (TI) represents a complex 

cognitive function that involves deducing a relational statement (A>C) based on 

shared similarities between premises (A>B and B>C). For instance, one can infer that 

"smoking kills (AC)" by recognizing that smoking habits (A) increase the risk of 

developing heart disease and lung cancer (B), which in turn increase the risk of death 

(C). The association between sleep and TI is evaluated through a standardized three- 

step paradigm. A series of items (pictures of objects, faces, landscapes...) 

hierarchically ordered (e.g., A > B > C > D > E) is split by pairs of adjacent items (A 

> B; C > D...) called premise pairs. The participants are instructed to (1) learn the 

relationship between items within the pairs by trial-error reinforcement but without 

being informed about the hierarchy. During the night (2), sleep promote inference by 

creating new chains of associations between items (AC, BD, DE…). After sleep (3), the 

participants are tested on these new associations of pairs (inference pairs) to assess 

sleep's role in TI. Such type of paradigm was tested in a seminal study that found a 

significant difference in TI ability between sleep and wake groups, 12 hours after the 

learning session (Ellenbogen et al., 2007). Interestingly, the sleep group was shown 

to exhibit a higher accuracy as distance between pairs increased, but only after 24 

hours of retention. Importantly, not only cognitive research but also the clinical field 

has shown sleep benefits on TI and a correlation with a reduction of age-related 

memory decline (Golkashani et al., 2021). 

 

However, numerous studies were shown to exhibit an absence of benefits from sleep 

upon cognitive flexibility were challenged by numerous contradictory findings (Morgan 

and Stickgold, 2017; Talamini et al., 2022). In a study that aimed to compare sleep 

versus incubation effects on riddles, visual change detection and anagrams did not 

find any sleep benefits regardless of the task (Brodt et al., 2018). Only a positive 

incubation effect was found for riddles tasks. Similarly, a study that compared sleep 

versus incubation benefits on magic tricks and insight problems (Schönauer et al., 

2018) did not find significant difference between sleep wake benefits. An interesting 

study that aimed to compare sleep versus wake benefits on case of murder solving 

through a video-game, for which participants were tested on multiple criteria such as 

reasonableness, consistency, story recall, fluency, flexibility, originality and elaboration 
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skills (Hołda et al., 2020) did not provide any sleep benefits, regardless of the criteria 

assessed.  

 

Several studies that aimed to address the questions about sleep and relational memory 

reported that task difficulty may drive TI ability, with greater benefits from sleep 

observed as the task became more challenging (Sio et al., 2013). At the cognitive 

level, monitoring associated with the presence of feedback and reinforcement at 

learning has been shown to promote TI and increase sleep benefits (Werchan and 

Gomez, 2013). Furthermore, metacognitive skills, such as awareness of the 

hierarchical structure and the implementation of strategic approaches during the 

learning process, have been identified as drivers of sleep-related benefits (Martin and 

Alsop, 2004; Lazareva and Wasserman, 2009). Moreover, and based upon 

Ellenbogen's findings regarding delayed sleep benefits on TI accuracy (Ellenbogen et 

al., 2007), time between learning and testing was shown to play a crucial role to reveal 

sleep benefits. Indeed, in a recent study (Cousins et al., 2021), participants were 

trained to memorize factual knowledge, followed by a period of offline retention of 

either 12 hours of sleep or wakefulness. Subsequently, participants were tested on 

their retained knowledge immediately after the offline period, after 2 hours, and after 

1 week. Interestingly, only the testing session after 1 week revealed a significant 

benefit for the sleep group, indicating that the advantages of sleep on TI may take 

time to occur. 

 

Building on these observations, the overall objective of this experiment was to further 

knowledge about the potential modulatory effect of sleep upon transitive inference 

and at lower scale, upon memory consolidation by comparing premise pairs accuracy 

between sleep and wake groups. Moreover, the second objective was to challenge the 

question of the interaction between sleep and time required to observe potential 

benefits. Concretely, the study aimed to compare how a full night of sleep could 

promote transitive inference compared to a similar period of wake and finally, evaluate 

the evolution of sleep benefit after a week. Using a classic TI paradigm that comprised 

of 2 sets of fictive objects, faces and landscapes, the main hypothesis posited that 

after a full night of sleep, the participant could exhibit a higher accuracy for the 
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premise pairs, but also for the inference pairs. Finally, a protective effect from memory 

decay was expected after a week, illustrated by a less negative evolution rate (ER). 

 

2 - Methods 

2.1 - Participants 

 

Forty-two healthy students (20 F and 22 M) aged between 18 and 30 (26 ± 3) were 

recruited in the study via social networks. None of them had sleep disorders (measured 

by the Insomnia Severity Index - ISI) (Morin, 1993), visual or hearing problems. The 

anamnestic data analysis confirmed that the participants did not suffer from clinical 

anxiety or depression (evaluated with the Hospital Anxiety and Depression Scale - 

HADa and HADd) (Zigmond and Snaith, 1983). The experiment was approved by the 

Cardiff University Internal Review Board and all participants gave written informed 

consent before participation (No. EC.20.01.14.5935R2A). 

 

2.2 - Presentation of the items 

 

The material consisted of a set of 9 black and white faces, objects or scenes (Horst 

and Hout, 2016) (for example of stimuli, see Supplementary section S1, cf. 

infra). Each item was given a rank to create 3 blocs made of 3 faces, 3 objects and 

3 landscapes, hierarchically arranged (e.g., item A > item B >...n) (Figure 1a). Each 

block was used to build 8 premise pairs (PP) and 28 inference pairs (IT) (Figure 1d). 

 

2.3 - Experimental procedure 

 

Participants were split into two conditions; sleep or wake, and completed three 

sessions (Figure 1e): (1) a learning-session before sleep where participants were 

trained on premise pairs, (2) a testing session 12 hours following sleep or wake to test 

them on the premise and inference pairs and (3) a follow-up seven days after to assess 

long-term memory changes across time. The experiment was designed with 

Psychopy© and conducted online with Pavlovia©. Each session was performed 
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remotely. Although the participants were instructed to run all the tasks autonomously, 

they were given the possibility to contact by chat the experimenters while they 

performed. Moreover, each task was preceded by a practice session. The sleep group 

started session 1 between 8 and 10 p.m. and session 2 between 8 and 10 a.m. after 

12 hours of sleep whereas the wake group started session 1 between 8 and 10 a.m. 

and session 2 between 8 and 10 p.m. after 12 hours of wake. Finally, participants 

were asked to perform each session in a quiet room. For visibility and practical 

purpose, mobile phones were not allowed for training and testing sessions. 

 

 

FIGURE 1 (a) Schematic representation of a series of items. F, O and S respectively stand for 
“faces”, “objects” and “scenes”. The red items (A and I) are called “anchors” items and were removed 

from the final data analysis. (b) Schematic representation of a trial. The presentation of each item 
is always vertical and the participant is instructed to press UP or DOWN key to select which item is 

supposed to “cover” a happy smiley. (c) Detailed representation of a training session during the 

session 1. (d) Presentation of the premise and inference pairs. Probe pairs with a green background 
were used for data analysis whereas the red ones (anchors) were excluded as the first and last pairs 

are respectively always dominant or submissive. (e) Schematic representation of the experimental 
design. 

Figure adapted from Jensen and al., 2019 (Figure 1) 

 

Before the training session started, a series of item was created for each participant 

(Figure 1a). The creation was pseudo randomized to avoid overlapping between 

types of items (e.g., Object Scene Face Scene Face Object but not O.S.F.F.O.S). Given 

the fact that there is 6 ways to choose the initial position of face, object, scene, and 
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for each pattern, 3! (factorial 3 = 3*2*1) to arrange each face, object and scene 

position, the number of different sets given was 64 = 1296 sets, ensuring a different 

set for each participant. 

 

The first session started with a learning procedure where each item was presented for 

2.5 seconds and followed by a fixation cross for 1.5 sec. (Figure 1c). Precisely, the 

participants were shown a white background screen with a series of instructions in 

black color: “TRAINING SESSION:  a series of pictures will appear in the screen one 

by one”, “please watch the sequence and try to remember as many pictures as 

possible”. The instructions were followed by the message “GET READY” in red and a 

countdown of 3 seconds. Building on the series created, the nine items were presented 

one by one, each item separated by a red fixation cross for 1.5sec. The participants 

were instructed to watch the sequence carefully and try to remember the items. 

 

After the presentation, the participants were informed that a series of items previously 

presented would be displayed by pair. An example of a pair was displayed vertically 

with one item at the top and a second one below. The two items were separated by 

a picture of “UP KEY” arrow below the item on top, and a “DOWN KEY” arrow on top 

of the second item (Figure 1b). On the right, a picture of a happy yellow smiley and 

a blue question mark were displayed. The participants were given the instruction to 

press "UP" or "DOWN" key to choose and guess which item could be associated with 

the happy smiley. They were also informed that first trials would be pure guessing but 

by trial-error reinforcement, the task would become easier. The reason of the presence 

of the smiley and the instructions given served the purpose of making participants 

learning the hierarchy among the premise pairs without being aware of it. Again, each 

pair was presented in a pseudo-randomized order to avoid overlapping type of 

adjacent pairs (e.g., a face followed by another face). The participants were informed 

about the fact that for each trial, they would receive the correction that would take 

the shape of the pair previously displayed and a green square around the correct item 

for 3 seconds. After each answer, the participants were given a preliminary negative 

or positive feedback. Precisely, after a trial, the pair and the happy smiley disappeared. 

Then, a positive response led to a big yellow happy face smiley whereas a negative 
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one revealed a red angry smiley. The feedback was followed by the presentation of 

the pair and the correct response, irrespective of the correctness of participants' 

response. Finally, the participants were also informed about the fact that a minimum 

accuracy was expected to pass the test (without knowing the percentage) or a certain 

number of set trials. 

 

The first testing session stopped after participants reached at least 80% of accuracy 

twice in a row or after 10 sets of trials. After 5 min of distracting typing task, the 

testing session without feedback started (Figure 1e). Similarly to the previous 

session, the participants were informed and instructed to find the correct association 

between a specific item from the pair they were previously presented and the smiley. 

Concretely, this session was similar to the first one excepted the absence of feedback 

and the order of presentation. The session ended after participants reached 80% 

accuracy twice in a row, or after 10 sets of trials. After session 1, the sleep and wake 

group were respectively allowed to go to bed or to go back to their daily routine. 

 

Session 2 started after 12 hours of wake (from 8-10 AM where testing session 1 ended 

to 8-10 PM the same day) or after 12 hours that contained a full night of sleep (from 

8-10 PM where testing session 1 ended to 8-10 AM the next day) (Figure 1e) 

depending on the group condition. Again, similar instructions were given. The main 

difference however, was the presence of inference pairs. More precisely, participants 

were tested on their ability to recall the premise pairs learnt before, but also on new 

indirect inferential item associations (Figure 1d) varying in distance degree, for a 

total of 8 premise and 28 inference pairs presented in normal and reversed order (e.g., 

AB; BA for the premise pairs or BD; DB for the inference pairs). The testing phase was 

repeated 3 times, always with a different pair ordering. For experimental purpose, the 

participants were not informed about the presence of new pairs associations 

(inference pairs). 

 

A week after session 2, participants were asked to repeat the same sequence. For this 

session 3, the pairs presented were similar but displayed in a different order. 
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2.4 - Data analysis 

 

In order to prevent bias resulting from ceiling effects and to account for variability 

among participants, the global average across trials was used, even though each 

participant achieved the required 80% accuracy threshold to pass Session 1. 

Concretely, using the accuracy from the last set of trial would result in a ceiling effect 

as all the participants reached at least 80% of accuracy, thus leading to a narrow 

range of variability. In order to avoid it and since a participant that reaches 80% of 

accuracy twice in a row after 2 sets of trials differs in terms of encoding strength from 

another that would reach 80% but after 10 sets of trials, the overall mean between 

all sets of trials was used to take that difference into account. 

 

Additionally, in the analysis, anchor pairs were excluded, and only probe pairs were 

considered for calculating accuracy. Anchor pairs, which consist of the first or last item 

in the hierarchy, were omitted because they tend to be easier to remember due to 

their consistent dominance or submissiveness. 

 

The data analysis was preceded by a computational detection of features of interest. 

This process aimed to extract useful information from large data sets and avoid noisy 

features. The computational approach was a wrapper method, where a global model 

was calculated and trained based on the features from the dataset. Depending on 

their ability to explain the variance of the computed model, the features are saved or 

removed from the model by backward elimination. For that purpose, the method 

BORUTA was chosen (see Prabhakaran, 2017 for detailed explanations about 

BORUTA application with Rstudio). BORUTA is a feature selection algorithm used 

in machine learning to identify the most important features for a given model. It 

operates by iteratively comparing the importance of real features with that of random 

features (shadows). This approach is based on the concept of random forest, which 

aims to capture the important features that can explain a particular outcome. The 

algorithm consists of two steps: 

(1) The dataset is duplicated and a random forest classifier is trained to detect the 

important features by assigning a score for the mean decrease in impurity for each 
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feature. A high score is associated with high importance. Three categories are formed. 

The "shadow min" includes the features with a low importance score, the "shadow 

mean" includes the features that are close to chance. Finally, the "shadow max" 

includes the features with high importance. 

(2) The algorithm compares the importance of the duplicated features with that of the 

real dataset. After a certain number of iterations, a real feature is retained if it has a 

higher z-score than its shadow. 

 

The importance score for each feature in the BORUTA analysis is derived from the 

importance measure provided by a random forest model. Random forest models, in 

turn, provide importance scores for each feature based on how much they improve 

the model's performance when they are included. A positive importance score 

indicates that the feature contributes positively to the predictive performance of the 

model. The higher the score, the more important the feature is deemed to be. A 

negative importance score implies that the feature detracts from the model's 

performance. This might seem counterintuitive, but it can occur for several reasons: 

1/ The feature might be adding noise to the model, reducing its accuracy. 

2/ The feature could be correlated with other features (multicollinearity), leading to 

unstable importance scores. 

3/ The feature might interact poorly with other features (interaction effect) in a way 

that negatively impacts the model's overall performance. 

 

The parsimony and the quality of the models were assessed with the Mallow Cp (see 

Bobbitt, 2021 for detailed explanations about Mallow Cp calculation with 

Rstudio), a variant of AIC (Akaike Information Criteria) developed by Colin Mallows. 

Technically, the likelihood of a given model can be increased by adding more 

parameters. Thus, the more parameters used, the more informative the model. 

However, because the coefficient used (R²) is a square, it cannot decrease as more 

parameters are added, which can improve the explanatory power of a model due to 

chance rather than the efficiency of its parameters. To limit this bias, the Mallow Cp 

was applied to assess the fit of the regression models on the basis of the features 

detected by BORUTA. The main objective here was to detect the most precise and 
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accurate model that would need the lowest number of predictors to reach that 

precision. Among multiple models available, the one that exhibits the lowest Cp value 

is the most precise. Mallow Cp is calculated as follows: 

Mallow Cp = (SSEp / MSEF) - (N - 2P) 

. SSEp = Sum of square errors for the potential model 

. MSEF= Mean square error of the full model 

. P = number of predictors. The penalty N-2P represents the cost for a model that 

incorporate high number of predictors. 

This method is consistent with the concept of parsimony, which aims to find a trade- 

off between the explanatory power of a model and its ease of use. 

 

The magnitude of the difference between means was described by using the Hedge’s 

g. This effect size is the non-biased equivalent of the Cohen’s d but for small sample 

size (n < 50). The formula used to calculate Hedge’s g was: 

Hedge g = (M1 - M2/ SD pooled) * (N - 3 / N - 2.25) * ((√N - 2) / N) 

. M1 - M2 represent the mean difference. 

. SD pooled is the weighted standard deviation 

 

Finally, the adjusted R² was used as a coefficient of determination (see Bobbitt, 

2020 for detailed explanations about adjusted R² calculation with Rstudio). 

This coefficient is consistent with the use of the AIC, as it captures the degree of 

parsimony of the model used. Technically, a malus is added to the R² if a predictor 

improves the model by less than chance. This process aims to avoid a natural increase 

in the R² value when predictors are added to the model, since the coefficient cannot 

decrease (a square is always positive). However, the penalty is reduced if a predictor 

is found to increase model accuracy more than by chance. The adjusted version of the 

R² is always lower than its biased version.  

The formula is presented as follows: 

Adjusted R² = 1 - (1 - R²) (N - 1) / N - p - 1 

. N = sample size 

. p = number of predictors 
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3 - Results 

 

As described earlier in the Methods section, the participants were trained on three sets 

of items, namely faces, objects, and landscapes. The objective behind this decision 

was to investigate the potential impact of item type on the relationship between sleep 

and cognitive processes such as consolidation and transitive inference. However, a 

preliminary analysis revealed that there was no significant effect of item type (F(2, 

123) = 1.392, p = 0.103). Therefore, based on these findings, the accuracy data from 

each type of item were combined and averaged together. 

 

3.1 - Feature detection 

 

To ensure the experimental integrity of the study but also given the time period of 

data collection during the COVID-19 pandemic, several anamnestic factors were 

controlled. Factors such as chronic insomnia, clinical depression, and anxiety were 

accounted for to prevent any impairment of participants' abilities during the tasks. 

Anamnestic and experimental features were transformed into predictive factors to 

assess premise and inference accuracy. The BORUTA feature detection process 

included seven anamnestic (e.g., age, sex, ISI) and experimental (time, condition) 

features that could explain the variations in premise and inference accuracy among 

participants as follows: 

. Age of the participants 

. Gender (Male or Female) 

. ISI, a self-screening questionnaire score that aims to assess the severity of insomnia  

. HAD.a, a self-screening questionnaire score that aims to assess the severity of anxiety 

. HAD.d, a self-screening questionnaire score that aims to assess the severity of depression 

. Condition (sleep group versus wake group) 

. Time (Session 1 / 2 and 3 for the premise and Session 2 / 3 for the inference pairs). 

 

For both premise and inference accuracy, the maximum number of iterations was 400 

to ensure a trade-off between complete attribution and time- processing. The results 

revealed that all the features were attributed (to drop versus to keep) before the 
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program reached the maximum number of iterations. 

 

 

Figure 2: Representation of the features of interest for premise and inference pairs, sorted by 
degree of importance. (a) Premise pairs accuracy is mostly explained by the time feature. Each 

feature of interest is strongly higher than randomness effect represented by the shadows (blue 

boxplots) (b) The same features for the inference pairs accuracy were found but after 312 iterations, 
which is explained by the small difference between features selected and the max shadow effect. 
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For the premise part, the BORUTA analysis stopped after 17 iterations and identified 

five features of interest (ISI, HAD.a, HAD.d, condition, time), which exhibited 

significantly higher Mean Decrease Accuracy (MDA) than the shadows (representing 

randomness). Two features (age, gender) had higher MDA than the average shadow 

effect but did not exceed the maximum randomness effect, so they were dropped 

from further analysis (Figure 2a). The same procedure was applied to the inference 

part (Figure 2b), where three features (age, gender, HAD a) were rejected, and four 

features (ISI, HAD a, condition, time) were considered as features of interest. Notably, 

compared to the 17 iterations in the premise part, the inference part required 312 

iterations, which was close to the maximum limit. This is reflected in the MDA exhibited 

by the features of interest, which were nearly equivalent to the MDA from the 

maximum shadow effect, except for the "condition" feature. 

 

Building on BORUTA analysis, both premise and inference accuracy were found to be 

influenced by anamnestic factors like the ISI and HAD scores. It cannot be excluded 

that the sanitary context may have increased the already well-known effect of 

insomnia and anxiety upon cognitive skills, especially memory consolidation. More 

importantly, and although both condition and time features appeared to play a crucial 

role on premise and inference accuracy, it is interesting to notice that time appeared 

to be the main source of explanation of the variation of premise pairs accuracy, 

whereas the transitive inference accuracy was mostly explained by the sleep versus 

wake condition. Finally, and building on the main objective of the present study, the 

features “Condition” and “Time” were selected to create the future combinations of 

models susceptible to explain the accuracy for the premise and inference pairs. 

 

3.2 - Comparative analysis of model’s accuracy and parsimony 

 

Building on the detection features of interest from BORUTA, the selected features 

were used to compare different parsimonious models susceptible to explain the 

accuracy with a high explanatory power and degree of generalization. Concretely, a 

series of combinations between the selected features found with BORUTA was 

performed to detect which one could predict in a best way the variability of accuracy 
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for both premise and inference pairs. 

 

For that purpose, the function ols_step_all_possible from the Rstudio package Olsrr 

was used to compute and test all possible combinations of features susceptible to 

build a statistical model. For each model, the rank, the predictors included, the R², 

Adj. R² and Mallow’s Cp were given. Given the main objective of the study that 

consisted in evaluating sleep’s role upon premise and inference abilities, the model 

“premise pairs accuracy ~ condition” was chosen as the baseline model for the 

premise pairs and “inference pairs accuracy ~ condition” for the inference pairs 

condition. As a precision, the sign (~) can be defined as “explained by”. Finally, the 

best model among the combinations was extracted and compared to the baseline 

(Figure 3). 

 

 

Figure 3: Representation of the comparisons between the baseline and the most parsimonious 
model for premise and inference pairs. For each model, the adj. R² and Mallow’s Cp were extracted 

and compared. A combination between a small Mallow’s Cp value and a high adj. R² coefficient is 

associated with a highly parsimonious and accurate model. 
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For the premise pairs, the following model was assessed: 

Premise pairs accuracy ~ condition + HAD a + HAD d + ISI + time 

namely, how premise pairs accuracy variability can be explained by the experimental 

condition, and/or the degree of anxiety…Gender feature was excluded because the 

unequal proportion between males and females and the age because of irrelevancy. 

Indeed, because of the narrow range (from 18 to 30 years old) of values, this feature 

was considered as not relevant for any deeper analysis. On that basis, 31 different 

combinations were proposed. The most parsimonious and unbiased model extracted 

contained the condition (sleep/wake) and the time (Session 2 and Session 3) as 

regressors. Compared with the baseline, the Adj. R² and Mallow’s Cp appeared 

significantly greater (baseline Adj. R² = 0.06, model Adj. R² = 0.36; baseline Mallow’s 

Cp = 68.11, model Mallow’s Cp = 7.64). The strong and significant difference between 

the model chosen and the baseline was confirmed by the F test (F(, 124) = 29.857, p 

= 2.788e-11).  

 

For the inference pairs, the following model based on BORUTA feature detection was 

assessed: 

Inference pairs accuracy ~ condition + HAD a + ISI + time 

Based on the number of regressors, 15 different combinations were proposed. Here 

again, the model that integrated both time and condition appeared to be the most 

parsimonious and unbiased model. However, the comparison of the coefficients 

revealed similarities between the models (baseline Adj. R² = 0.47, model Adj. R² = 

0.50; baseline Mallow’s Cp = 4.65, model Mallow’s Cp = 0.72), excepted for the 

Mallow’s Cp, 6.5 times higher for the baseline (Figure 3). Consequently, and although 

an Adj. R² almost similar, the F test revealed a significant difference between the two 

models (F(, 82) = 6.101, p = 0.0156). 

 

In conclusion and despite of different trends between premise and inference pairs 

accuracy, the anamnestic factors that appeared as good candidates were dropped 

from the final model building. In comparison, the interaction between experimental 

condition (sleep/wake) and session time (12 hours after learning/ 7 days after 

learning) appeared to be the most parsimonious predictors of accuracy. 
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3.3 - Increase of memory consolidation after sleep 

 

To assess the relationship between sleep and memory, the absolute means and 

evolution rates were compared over time between the learning phase and both testing 

and follow-up session. Contrary to many studies assessing relational memory, the 

statistical analysis was performed on both premise and inference pairs to investigate 

about potential changes in sleep benefits according to whether the cognitive process 

involves recall for premise pairs, or transitive inference for inference pairs. 

 

Data from the baseline revealed that sleep and wake groups reached the same 

performance (Figure 4).  

 

 

Figure 4: Accuracy for the premise pairs at learning, testing after 12 hours and after 7 days (N = 

21 participants per groups, 42 per session). Dots and thick black lines are minimalist boxplot 
representations. Black squares and numbers are means and error bars are CI. ns = non-significant. 

 

Moreover, each group exhibited a decrease of accuracy after 12 hours of retention. 

However, a significant and strong protective effect was found across time for the sleep 
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group. Changes in sleep benefits over time was quantified by a 2*3 ANOVA 

(sleep/wake and Session 1, 2 and 3) that revealed a significant effect of the condition 

in favour of sleep (F(1, 82) = 13.526, p = 0.0003), as well as a significant session 

time effect (F(2, 123) = 31.028, p = 1.38e-11) and finally, a significant interaction 

between both features (F(2, 123) = 3.392, p = 0.036). Post-hoc comparison between 

sleep versus wake conditions revealed a significant protective effect of sleep (t(62) = 

4.09, p = 0.0001, 95% CI [2.109, 10.45]; Hedge's g = 0.527, 95% CI [0.88, 0.171] 

Table 1). In the short-term, the steep fall observed in the wake group (-16.88% of 

accuracy) was offset by a strong protective sleep effect in the sleep group (-6.49% of 

accuracy). The difference of evolutive direction is reflected by a significant difference 

between sleep and wake at session 2 (t(20) = 3.00, p = 0.007, 95% CI [2.312, 15.38]; 

Hedge's g = 0.828, 95% CI [0.191, 1.466] Figure 4). 

 

At long-term level, the same trend was observed between session 2 and 3 seven days 

after. Although a slight reduction gap was observed, the changing dynamics between 

session 2 and 3 for the sleep group exhibited a much lesser negative rate (-9.72%) 

compared to the wake group (-14.06%). Again, a significant difference of absolute 

mean between the two groups was noticed (t(20) = 9.976, p = 0.0006, 95% CI 

[4.793, 15.16]; Hedge's g = 1.18, 95% CI [0.517, 1.843]) (Figure 4). Given the group 

differences found between sleep and wake, it can be reasonably admitted that sleep 

benefits on memory consolidation is reliable. Moreover, such a benefit, that took the 

form of a protective effect, tended to preserve memory against decline over the long- 

term. A summary of the main findings is presented Table 1 (cf. infra). 

 

3.4 - Sleep rather than wake promotes transitive inference 

 

As analyzed above, sleep versus wake benefits in transitive inference abilities were 

assessed by comparing the absolute means within sessions and the evolution rates 

between testing and follow-up sessions. Moreover, a regression analysis was 

performed between the accuracy at learning and the accuracy at testing after sleep 

or wake to assess whether pre-sleep or wake state could predict inference abilities. 
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Figure 5: Accuracy for the inference pairs after 12 hours and after 7 days (N = 21 participants per 
groups, 42 per session). Dots and thick back lines are minimalist boxplot representations. Black 

squares and numbers are means and error bars are CI. ns = non-significant. 

 

Overall, the results revealed a significant relationship between premise pair accuracy 

at learning and inference abilities after 12 hours of incubation for the sleep group 

(adj.R² = 0.172, p = 0.047) but not the wake group (adj.R² = 0.002, p = 0.775) 

(Figure 5). 

 

Knowing that both groups exhibited an equivalent performance at learning (77% of 

accuracy each), the difference between regression results cannot be explained by any 

difference in encoding or at bigger scale, a forgetting curve that could be more 

pronounced for one group. Hence, and despite of a quite small effect size (17.2%), it 

can be reasonably accepted that this preliminary result provides evidence of sleep’s 

role in relational memory. In line with these findings the 2*2 ANOVA (sleep/wake and 

Session 2, 3) revealed a strong effect of condition (F(1, 82) = 78.432, p = 1.68e-13) 

and session-time (F(1, 82) = 6.033, p = 0.0162) but no interactions. The comparison 

of accuracy at testing revealed a significant difference between the sleep and wake 
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groups (t(20) = 5.94, p = 8.25e-6, 95% CI [1.393, 7.82]; Hedge's g = 1.99, 95% CI 

[1.246, 2.744] Figure 5). The same significant trend appeared at follow-up testing 

(t(20) = 4.71, p = 0.0001, 95% CI [2.805, 7.32]; Hedge's g = 1.82, 95% CI [1.094, 

2.55] Figure 5). Interestingly, the evolution rate between session 2 and 3 for both 

groups exhibited a slight decrease but without any significant changing dynamics 

between sessions (-4.16% for sleep group and -6.66% for wake group). Compared 

with the trend from the premise pairs that revealed a steep fall for the wake group 

but not for the sleep group, it can be assumed that the nature of sleep benefits may 

vary depending on the type of memory process engaged. The main findings about 

sleep’s role in transitive inference are presented Table 2 (cf. infra). 

 

3.5 - Main findings about sleep benefits in this experiment 

 

The main objective through the comparison between sleep’s influence in memory 

retrieval for premise pairs and transitive inference for the inference pairs was to 

determine whether the type of pairs could have an impact on the level and the nature 

of that influence. More precisely, a ceiling effect at encoding stage was created to 

analyze how sleep could on the one hand, promote memory recall and/or transitive 

inference and on the other hand, how sleep could preserve these benefits against 

decline across a long-time period (seven days). 

 

Table 1 Sleep’s role on premise pairs accuracy 

  Statistical results 

Factors (ANOVA) p-value Hedge g 

Session 1.38e-11 - 

Condition 0.0003 - 
Session * condition 0.036 - 
Condition (t-test)   
Sleep versus wake 0.0001 0.527 
Session (t-test Holms)   
Learning 1 vs Testing 5.54e-8 0.818 

Testing vs follow-up 2.58e-7 0.734 

Interaction (t-test Holms)   
Sleep vs Wake - Learning 0.993 0.002 
Sleep vs Wake - Testing 0.007 0.828 
Sleep vs Wake - Follow-up 0.0006 1.18 
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Overall, premise pair accuracy revealed that sleep not only fostered recall but also 

tended to preserve it across time against memory decline. Indeed, wake after 

encoding lead to a lower level of accuracy after 12 hours but also to a massive 

decrease across time (-22% after a week) compared to sleep (-12%). In comparison, 

transitive inference accuracy revealed a slightly different influence of sleep. Although 

all the participants performed above chance, sleep after encoding leaded to a much 

higher accuracy (72%) compared to wake (60%). 

 

Table 2 Sleep’s role on inference pairs accuracy 

  Statistical results 

Factors (ANOVA) p-value Hedge g 

Session 1.68e-13 - 

Condition 0.0162 - 
Condition (t-test)   
Sleep versus wake 4.4e-9 1.86 

Session (t-test Holms)   
Testing vs follow-up 0.0004 0.38 
Interaction (t-test Holms)   
Sleep vs Wake - Testing 8.01e-6 1.99 

Sleep vs Wake - Follow-up 1.02e-4 1.82 

 

However, whether wake or sleep followed encoding did not influence the level of 

preservation against decline across time. Indeed, despite a decrease of accuracy more 

pronounced for the wake group compared to sleep, the difference of evolution rate 

after a week appeared to vary by only 2.5%. 

 

As a conclusion, it can be assumed that if sleep benefits in global memory abilities is 

constant irrespective of the type of memory, whether sleep plays a role in the 

preservation against decline across time strongly varies with the type of memory and 

the cognitive component engaged in the process of memory transformation or 

consolidation. 

 

3.6 - Classification of sleep’s role in consolidation and inference 

 

Building on the findings that revealed a significant effect of condition (sleep versus 
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wake) and time (Session 1 versus Session 2 versus Session 3) for the premise and 

inference pairs, the present section aimed to determine to what extent the results 

were due to chance. For that purpose, a binary logistic classification has been applied. 

Through the analysis of premise pair accuracy, the objective was to evaluate potential 

sleep benefits upon memory consolidation process at short and long-term. At short- 

term, the evolution rate ((Final value – Initial value) / Initial value) between learning 

and testing after 12 hours was used as a predictor to test the probability of belonging 

to the sleep or wake group. The same procedure but between session 2 and 3 was 

applied to test the long-term evolution. Finally, the potential benefits of sleep for 

transitive inference skills were evaluated at short and long-term. The short-term 

period was evaluated by using the absolute mean value at session 2 as a predictor of 

the probability to belong to the sleep or wake group. The long-term evolution was 

evaluated by using the evolution rate between session 2 and 3. 

 

3.6.1 - Sleep benefits upon consolidation at short and long-term 

 

The relationship between sleep and short-term consolidation was evaluated via the 

following model: glm(condition ~consolidation.r, family=binomial(link = "logit"). 

Condition output referred to the group “sleep” and “wake” and the predictor 

“consolidation.r” to the evolution rate between learning and immediate testing after 

12 hours of sleep or wake. 60% of the data was extracted to train the model. The 

testing upon the 40% of remaining data revealed a strong level of corrected (accuracy 

= 0.76) and a good capacity to discriminate between classes (AUC =0.78, 95% CI 

[0.65, 0.93]. The result revealed a significant association between the binary output 

and the predictor (p = 0.007) (Figure 6a). Concretely, the logistic regression 

identified that higher level of consolidation rate was associated with a higher 

probability of sleep occurrence between learning and testing (OR = 1.22, 95% CI 

[1.04, 1.56]. 
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Figure 6: Logistic relationship between the consolidation rate at session 2 as a predictor of sleep 
versus wake. (a) The probability of sleep occurrence versus wake is predicted by the consolidation 

rate ((testing - learning) / learning) at testing session for the premise pairs. (b) Sleep occurrence is 

predicted by the evolution rate of consolidation across the week. Vertical black dashed line represents 
a null consolidation rate, namely the absence of difference of accuracy between testing at learning 

and testing at session 2. Horizontal black dashed line represents a probability of 50% of chance, or 
the random effect. A flat trend from the red line is associated with random effect whereas a sigmoid 

curve represents a high model accuracy. 

 

The same procedure was applied for the long-term consolidation. Here, the model 

used was glm(condition ~long.term.r, family=binomial(link = "logit"). Condition 

output still referred to the group “sleep” and “wake” and the predictor “long.term.r” 

to the evolution rate between testing 12 hours after learning and the follow-up session 

that occurred 7 days after. After being trained on 60% of the data, the testing upon 

the 40% of remaining data points revealed poor accuracy (accuracy = 0.52) as well 

as a low and volatile capacity to discriminate between classes (AUC =0.57, 95% CI 

[0.36, 0.71], close to randomness. The inaccuracy of the model is illustrated by the 

non-significant association between the binary output and the predictor (p = 0.242) 

(Figure 6b). Here, a higher level of consolidation rate did not appear to be modulated 

by the probability of sleep after learning (OR = 1.04, 95% CI [0.98, 1.15]. 

  

As a conclusion, and in line with the well-established positive relationship between 

sleep and memory consolidation, testing 12 hours after learning has pointed out the 

strong modulatory effect of sleep upon consolidation process. However, and despite 

a significant and strong effect size observed after comparing sleep versus wake at 

follow-up testing (Figure 4), the same trend has not been observed while performing 

logistic classification, raising the possibility that long-term benefit from sleep might be 

due to chance. The main findings are presented Table 3 (cf. infra). 
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3.6.2 - About sleep’s role in transitive inference at short and long-term 

 

The following analysis aimed to evaluate how higher level of inference accuracy could 

predict the sleep onset probability at short and long-term. The first relationship 

between short-term inference accuracy and sleep was built on the following model: 

glm(condition ~inference.r, family=binomial(link = "logit"). The “condition” output 

illustrate the binary probability (sleep versus wake) and “inference.r” the absolute 

mean of inference accuracy 12 hours after learning. Here, the model was trained by 

extracting 60% of the data. The 40% of remaining data was used to test the model, 

which appeared to exhibit an excellent positive rate (accuracy = 0.81) associate with 

a capacity to discriminate between classes that almost reached perfection (AUC =0.91, 

95% CI [0.81, 1]. The main findings revealed a significant association between the 

binary output and the predictor (p = 0.0166) (Figure 7a). Precisely, the logistic 

regression identified that higher level of inference rate was associated with a higher 

probability of sleep onset between learning and testing (OR = 1.32, 95% CI [1.11, 

1.77].  

 

Finally, the binary classification was also applied at long-term. The model used 

comprised of the following parameters: glm(condition ~long.term.r, 

family=binomial(link = "logit"). Condition output referred to the group “sleep” and 

“wake” and the predictor “long.term.r” to the evolution rate between testing 12 hours 

after learning and the follow-up session that occurred 7 days after. 

 

The model was also trained on 60% of the data and tested on the 40% that remained. 

In line with the findings about long-term sleep benefits upon consolidation, the model 

appeared to reveal a level of correctness particularly poor (accuracy = 0.42) lower 

than chance, but interestingly associated with a decent ability to discriminate between 

classes (AUC =0.62, 95% CI [0.45, 0.79]. 
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Figure 7: Logistic relationship between the inference accuracy at session 2 as a predictor of sleep 

versus wake. (a) The probability of sleep occurrence versus wake is predicted by the accuracy at 
testing session for the inference pairs. (b) Sleep occurrence is predicted by the evolution rate of 

consolidation across the week. Vertical black dashed line represents a null consolidation rate, namely 

the absence of difference of accuracy between testing at learning and testing at session 2. Horizontal 
black dashed line represents a probability of 50% of chance, or the random effect. A flat trend from 

the red line is associated with random effect whereas a sigmoid curve represents a high model 
accuracy. 

 

The difference between accuracy and AUC can be easily explained by the fact that the 

model is able to discriminate between positives and negatives but not true or false 

values, which indicates a high level of bias. Finally, and unsurprisingly, the inaccuracy 

of the model is illustrated by the non- significant association between the binary output 

and the predictor (p = 0.825) (Figure 7b). The logistic classification revealed that 

higher level of inference accuracy 7 days after learning did not depend on sleep onset 

after learning (OR = 1.01, 95% CI [0.89, 1.14]. 

  

As a summary, the findings from the logistic classification revealed that inference 

accuracy similarly to consolidation, appeared to predict with a high level of precision, 

whether the participants slept before testing, but only at short-term. The trend is in 

line with the behavioural comparison (Figure 5) for which the evolution rate between 

testing and follow-up appeared to be particularly low. The main findings are presented 

Table 3 (cf. infra). 
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Table 3 | Binary classification of accuracy and sleep onset probability 

Statistical results 

Output Predictor p-value Odd ratio Accuracy AUC 

Premise pairs accuracy 
Sleep vs. wake ER (12 hours) 0.007 1.22 0.76 0.78 
Sleep vs. wake ER (7 days) 0.242 1.04 0.52 0.57 

Inference pairs accuracy 
Sleep vs. wake µ (12 hours) 0.016 1.32 0.81 0.91 
Sleep vs. wake ER (7 days) 0.825 1.01 0.42 0.62 

 

4 - Discussion 

 

Sleep, an essential physiological process, has long been acknowledged for its 

significant role in the consolidation of memories and numerous cognitive functions like 

executive functions or mood. However, the precise mechanisms by which sleep 

protects against long-term memory decay remain unclear, as does its impact on 

transitive inference, a specific type of relational memory that involves inferring novel 

relationships based on associations between existing knowledge. Therefore, the 

objective of this study was to contribute to existing knowledge by investigating the 

potential modulatory effect of sleep on transitive inference and memory consolidation 

at short and long-term intervals. 

 

The study assessed the accuracy of premise pairs and inference ability after a full 

night of sleep and after one week. Additionally, a binary logistic classification was 

employed to gather additional information on the potential influence of sleep as a 

determinant factor in memory consolidation and inference. Consistent with the 

literature, the findings revealed a significantly higher consolidation rate after sleep 

compared to wakefulness. Furthermore, sleep onset after learning was associated with 

reduced long-term memory decay. Evaluation at short-term revealed a similar trend 

for inference pairs. However, intriguingly, there were no group differences in the rate 

of evolution between the short and long-term assessments. The logistic classification 

analysis aligned with the behavioural results, revealed a positive odds ratio and strong 

model accuracy in the short-term, but only marginal and nonsignificant trends in the 

long-term, even for the premise pairs, raising questions about the persistence of sleep 
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benefits over time. 

 

Several limitations of this study should be considered. Firstly, it is important to note 

that data collection took place during the initial stages of the COVID-19 pandemic, a 

period characterized by stress and potentially depressive factors related to sanitary 

measures and the overall context (see "Features of interest" section). Numerous 

studies have retrospectively highlighted significant impairments in mood, sleep quality, 

and cognitive functions during the pandemic. Therefore, generalizing the present 

findings to different contexts should be approached with caution. Secondly, in line 

with the pandemic context, the study was conducted remotely. Despite providing 

participants with guidance and requesting them to perform the task in a quiet room, 

replicating laboratory conditions at home posed challenges, and thus, it cannot be 

excluded that the participants' accuracy may have suffered from sources of 

disturbance. Another limitation pertains to the lack of physiological markers for 

memory consolidation and transitive inference. Due to the remote nature of the study, 

no EEG recordings were included. Consequently, despite the significant and robust 

results, the behavioural findings lack support from EEG markers like spectral, time 

frequency markers or cross-frequency coupling analysis. Finally, the small sample size 

may have impacted the classification. While 21 participants per group is typically 

sufficient to detect significant behavioural trends, logistic regressions requires splitting 

the dataset, using 80% for model training and 20% for testing. In this study, a 60% 

threshold was chosen, potentially leading to pitfalls due to insufficient training data 

and limited testing data. These limitations, though not exhaustive, should be taken 

into account in future studies. 

  

In conclusion, both memory consolidation and transitive inference abilities appear to 

be strongly dependent on the onset of sleep following learning. However, future 

studies seeking to enhance understanding of long-term effects and applications in 

home settings should consider incorporating supervised technologies in their 

protocols. These technologies could include remote EEG tools, simple training 

programs that offer guidance on improving sleep hygiene based on participants' sleep 

disturbance reports, sleep monitoring to identify optimal sleep phase onset, and 



84 
 

assistance in managing mood disorders. Advancing knowledge of why the saying "to 

sleep on it" holds true could have implications in various fields, such as professional 

environments that require creativity or teaching methods based on self-monitoring. 
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5 - Supplements 

 

 

S1: Representation of a sample from the pictures used during the experiment. Objects from the 
database were selected because of their imaginary shape. The faces and landscapes were selected 

for their neutral content, reinforced by the white and grey colors. 
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Chapter 3: TARGETED MEMORY 
REACTIVATION DURING REM SLEEP: 

THETA-GAMMA COUPLING AS A 
BIOMARKER OF TRANSITIVE 

INFERENCE 
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Abstract 

 

Sleep has long provided evidence about its crucial role in cognition, especially memory 

consolidation. Recently, numerous findings have also proven sleep benefits upon its 

ability to reorganize memory to promote new associations, which in return could play 

a role in the emergence of inference, adaptive strategies and issue solving. However, 

the question about which stage could be involved in the process of cognitive flexibility 

is unclear. According to the BiOTA model, REM sleep would be crucial in this process, 

promoting the association between old and new memories boundaries. Building on 

this assumption, the present study aimed to test with a transitive inference task at 

short and long-term, associated with a TMR stimulation protocol during REM sleep to 

investigate how it could improve ability to infer. Moreover, a cross-frequency coupling 

approach based on theta phase and low gamma amplitude was performed to 

investigate about EEG correlates susceptible to explain TMR benefits. Behaviourally, 

the main findings revealed a significant effect of TMR during REM on accuracy but 

only after a week, suggesting that memory remodeling is not an immediate process 

but requires time. At the EEG level, TMR application during REM was shown to increase 

the strength of the signal coupling. However, MI did not appear to correlate with 

transitive inference accuracy. Taken together, these findings provide for encouraging 

results about sleep's role in cognitive flexibility and TMR mechanisms upon brain signal 

processing. 
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1 - Introduction 

 

Decoding environment, often made of relentless stream of various situations and 

interactions implies the use of stereotypical thinking and generalizations. However, in 

some situations for which this approach is inaccurate, monitoring processes involving 

executive functions like planning or inhibition (Miyake et al. 2000) or deeper, flexible 

and adaptive strategies like heuristics are required. 

 

Among these strategies, transitive inference (TI) is a widely used holistic cognitive 

function defined by the ability to build new assumptions (AC) or strategies based on 

premises (AB and BC). As an example, in a situation where (A) "I need to take my car 

to go to my job interview" tempered by the issue (B) "I might be late due bad traffic" 

implies (C) "If I arrive late, I will miss this job opportunity", it appears crucial to infer 

that using a car in this situation (AC) is inaccurate. Due to the multiple expressions of 

cognitive flexibility like reasoning, inhibition, mental flexibility, or planning, a full 

comprehension of cognitive flexibility mechanisms appears quite challenging. 

However, decades of research have brought the hypothesis whereby the insight 

resulting in the associations between distant premises in TI would be fostered by sleep 

(Bowden et al., 2005; Luo et Knoblich, 2007; Kumaran, 2013). Represented by the 

cognitive iOTA and BiOTA models, sleep is assumed to promote the formation of new 

connections between past and recent events that shares characteristics (Lewis et al., 

2018), improvement of issue-solving skills (Sanders et al., 2019), rule comprehension 

(Batterink et al., 2014) and inferential reasoning (Ellenbogen et al., 2007; Werchan et 

Gómez, 2013; Behrens et al., 2018; Aly et al., 2021, 2022). However, positive effects 

from sleep upon cognitive flexibility like transitive inference were challenged by 

numerous contradictory findings. Indeed, a study that aimed to compare sleep versus 

incubation effects on riddles, visual change detection and anagrams did not find any 

sleep benefits regardless of the task (Brodt et al., 2018). Only a positive incubation 

effect was found for riddles tasks. The same negative findings were sown in a study 

that compared sleep versus incubation benefits on magic tricks and insight problems 

(Schönauer et al., 2018). In an interesting study that aimed to compare sleep versus 



89 
 

  

wake benefits on case of murder solving through a video-game, the participants were 

tested on multiple criteria such as reasonableness, consistency, story recall, fluency, 

flexibility, originality and elaboration skills (Hołda et al., 2020). However, the study 

did not find any sleep benefits, regardless of the criteria assessed. 

 

Separately, the field of research about sleep's role in memory formation has brought 

numerous findings about memory replay, a key-mechanism of spontaneous 

reactivation of neural networks engaged during wakefulness emerged (Buzsáki, 1989; 

Rudoy et al., 2009; Diekelmann and Born, 2010; Paller et al., 2021) that would 

promote memory consolidation and reorganization. On that basis, a promising 

technique known as "Targeted Memory Reactivation" (TMR) was proposed and applied 

to reproduce the spontaneous replay and thus, promote neuronal reactivations and 

consequently enhance sleep-related benefits. A typical TMR paradigm comprises of 

three main steps: (1) Encoding of sensory-cued materials, olfactory (Rasch et al., 

2007) or more often auditory (Rudoy et al., 2009), during wakefulness. (2) During 

sleep, the same cue is presented to induce spontaneous reactivation of the neurons 

engaged during encoding. (3) Recall accuracy is assessed by comparing the cued and 

non-cued materials. 

 

At the behavioural level, TMR application during REM sleep was shown to significantly 

improve rule abstraction but only a week after learning (Pereira et al., 2023), which 

has been described as a potential illustration of "slow form of plasticity". Interestingly, 

the authors that also applied TMR during SWS did not find any significant effect at 

short as well as long term. A source of explanation may come from a potential lack of 

cueing precision since no considerations were taken between cueing at up-phase or 

down-phase. However, cueing during slow-oscillations up-phase was shown to 

increase the percentage of spindles and reduce forgetting rate (Ngo and Staresina, 

2022). On that basis, a recent study that aimed to further knowledge about the SO 

up-state versus down-state TMR cueing application during SWS (Santamaria et al., 

2023) revealed significant and positive immediate TI benefits after TMR application at 

SO up-phase, that were shown to persist over two weeks. However, positive effects 
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from sleep and/or TMR were challenged by numerous contradictory findings. 

Nevertheless, TMR has not always been found to improve TI (Beijamini et al., 2021). 

In a study that aimed to compare sleep versus wake benefits in a first experiment and 

TMR benefits during SWS versus REM sleep versus wake. Main findings revealed a 

significant sleep benefit compared to wake in issue solving score, but did not find any 

TMR benefits on issue solving regardless of the sleep stage cued (Beijamini et al., 

2021). 

 

Findings from sleep-related benefits upon TI and TMR modulative effects clearly 

highlight the diverging and unclear content of the relationship between these three 

components. Moreover, it also appears that furthering knowledge about the EEG 

dynamics behind sleep and TMR effects is not only a challenging but also a crucial aim 

to further knowledge about the interaction between the brain regions behind the 

process of TI. On that basis, the present study aimed to understand the relationship 

between sleep, TMR and TI. Using a home-based headband (Zmax), this study aimed 

to evaluate the impact of TMR application during REM sleep on TI ability at both short 

and long term. As a second objective, this study aimed to further knowledge about 

the unclear EEG dynamics during REM sleep susceptible to modulate cognitive 

flexibility required during transitive inference. 

 

REM sleep stage is mostly represented by ponto-geniculo-occipital (PGO) activity 

(Callaway et al., 1987; Datta and Hobson, 1994) for which their potential contribution 

in memory formation and synaptic maturation is still debated (Amzica and Steriade, 

1996; Li et al., 2017). Moreover, REM sleep is characterized by a complete muscle 

atonia expected distal twitches (Peever and Fuller, 2016), and body dysregulations 

like variations of temperatures or heartbeat dysregulation (Siegel, 2005). Although 

REM sleep's functions are still debated, abnormal PGO-waves patterns have been 

observed in epilepsy (Frauscher et al., 2018) and Parkinson (Fernández-Mendoza et 

al., 2009) disease. Finally, REM sleep alteration was shown to be associated with 

emotional dysregulation (Galbiati et al., 2020). In the field of transitive inference, REM 

sleep implication and its biomarkers has been poorly investigated. In a study where 

participants were tested on their ability to detect the tonality of melodies, REM sleep 
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percentage, in line with a recent study (Pereira et al., 2023) was associated with an 

increase of schema construction and higher degree of immediate recognition after 

sleep (Durrant et al., 2015). interestingly, the recognition of tonal melodies (i.e., built 

upon schemas) was significantly and positively correlated with central and frontal 

theta activity. REM sleep frontal theta role in issue solving and schema formation has 

also been supported by a recent study where participants were asked to solve the 

tower of Hanoi test (van den Berg, 2023). Post-sleep testing revealed a significant 

difference between the control condition and the one where participants were given 

the possibility to elaborate strategies in the range of theta and spindle bands. 

 

Studies in humans about REM sleep correlates of memory integration mainly focused 

on theta activity (Hutchison and Rathore, 2015; Sopp et al., 2017; Pereira et al., 2023; 

van den Berg, 2023). However, and although studying a single frequency band, like 

theta alone, might provide information about the involvement of that specific 

frequency range in a given cognitive process, the coupling between different 

frequency bands, can offer additional insights into the dynamic coordination and 

communication between different neural circuits during complex cognitive tasks, thus 

providing a more nuanced understanding of the interactions between different brain 

oscillations and offering insights into the complex dynamics of neural processing 

during various cognitive functions. Over decades of REM sleep research, theta gamma 

coupling appeared as a reliable biomarker of memory processing, in rodents (Bragin 

et al., 1995; Lisman, 2005; Colgin et al.,2009; Belluscio et al., 2012; Tort et al., 2013) 

but also in humans (Canolty et al., 2006; Axmacher et al., 2010; Koster, 2018). 

 

Numerous brain areas are implied in the theta-gamma coupling, namely the medial- 

temporal regions (Pesaran et al., 2002; Bauer et al., 2007), the entorhinal cortex 

involved in various cognitive functions, including spatial navigation and memory 

(Fernández-Ruiz et al., 2021), major interface between the hippocampus and 

neocortex often referred to as the hippocampal-cortical loop (Neske and Connors, 

2016). Theta oscillations were shown to promote associative binding, memory 

integration between old and recent memories (Clouter et al., 2017) or visual 

perception (Köster et al., 2017). Gamma oscillations are implied in the promotion of 
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perception of visual hierarchies (Bosman et al., 2012) and working memory (Kaiser et 

al., 2003; Daume et al., 2017). Although theta-gamma coupling studies are not 

common in humans, recent findings about theta-gamma phase-amplitude coupling 

(PAC) revealed its role in the promotion, maintenance, ordering and binding of 

information within neuronal networks in the neocortex (Canolty et al., 2006), 

successful episodic memory encoding (Staudigl, 2013; Heusser et al., 2016) and long- 

term potentiation (LTP) in hippocampus (Pavlides and al., 1988). Nevertheless, theta- 

gamma coupling role in the integration of premises and the emergence of TI has never 

been experimented so far. Furthering the comprehension of REM sleep’s implication 

in memory integration through a reliable neural correlate appears crucial to improve 

the general knowledge about sleep’s role in memory integration. 

 

Building on this, the present study aims to further knowledge about sleep’s role in 

transitive inference emerging at short and long-term and how sleep-related benefits 

might be modulated by TMR during REM sleep. As a second objective, this study aims 

to investigate the EEG dynamics following TMR application during REM sleep following 

encoding, to improve the comprehension about TMR and REM sleep implications in 

the memory integration and the emergence of TI. 

 

For that purpose, 32 participants were recruited and tested in a transitive inference 

protocol at short (12 hours after sleep) and long-term (a week after sleep). Since REM 

sleep benefits were shown to be delayed on time (Pereira et al., 2023), the behavioural 

hypothesis assumes a higher accuracy after TMR application compared to a control 

situation but only at long-term. Moreover, the modulation index (MI), main coefficient 

of coupling strength between a phase and a specific amplitude is assumed to 

correlated with long-term accuracy. Firstly, at the EEG level, premise learning is 

assumed to promote the emergence of theta-gamma coupling during REM sleep. 

Secondly, a higher theta-gamma PAC modulation index is expected after using TMR 

during REM sleep. 
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2 - Methods 

2.1 - Participants 

 

Thirty-two healthy students (31 females), right-handed and between 18 and 30 (23 ± 

2.4) were enrolled in this study. Ten participants were tested in France and 22 in 

Wales. The experiment was presented in English and dispositions were made to ensure 

that French participants were fluent enough to understand the instructions and the 

protocol. Data from four participants were excluded from the final analysis as they did 

not reach the minimum criteria of accuracy (cf. infra). None of them had known sleep 

disorders (screened by the Insomnia Severity Index) (Morin, 1993), vision or hearing 

problem. None of the participants was taking any medication at the time of the 

experiment and none had a history of any neurological or psychiatric disorders. Based 

on the anamnestic data collection, participants did not report any clinical level of 

anxiety or depression (screened by the Hospital Anxiety and Depression scale) 

(Zigmond et Snaith, 1983). The ISI is a self-rated questionnaire that comprises of 7 

questions. The score varies from 0 to 28 where higher scores are associated with 

higher levels of insomnia. For the purpose of this study, the threshold of 14 was 

chosen as it refers to the subthreshold category of people suffering from insomnia 

disorder (before the moderate stage). The HAD is also a self-rated questionnaire that 

comprises of 14 items that range from 0 to 3 for a total of 21. The 14 items are equally 

divided into 2 sets of questions designed to evaluate anxious or depressive symptoms. 

For the purpose of the study, participants had to reach a score lower than 7, which 

refers to the absence of symptomatology. From the day before the experiment to the 

learning session, the participants were instructed to abstain from caffeine or alcohol. 

The present study was approved by the internal review board of the University of 

Cardiff and all the participants gave written informed consent before participating. 

After completion of the experiment, the participants received a 25£ reward (30€ for 

the French one). 
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2.2 - Item and sounds presentation 

 

The items consisted of a series of 6 objects pictures hierarchically ordered (e.g., item 

A > item B >...n) (Figure 1a) leading to the creation of 5 premise pairs (PP) and 10 

inference pairs (IP). Precisely, 6 imaginary items were collected from a database 

(Horst and Hout, 2016) (for example of stimuli, see Supplementary section S1, 

cf. infra). For purpose of neutrality, the background has been removed and the 

contrast modified so that items only contained grey scales and white colors. On that 

basis, 6! (factorial 6) sets were created, leading to a potential of 720 sets, ensuring a 

different series of items for each participant. 

 

The sounds consisted of 3 sounds of 2 seconds used during the learning phase and a 

shorter version (200 milliseconds) for the TMR. These sounds were selected for their 

relative semantic proximity with the items (relativeness is justified by the fact that 

items are imaginary). For example, an object that looked like a dog toy was associated 

to a squishy sound. Finally, the 3 short sounds (one per targeted item) were pooled 

together and repeated to create a time series of 9 sounds (3 sounds *3 repetitions) 

each separated by 2 seconds. The reason is because the Zmax device was not 

designed to play different sounds. Hence, it has been decided to pull the different 

sounds to create a unique one that would contain 3 different tones. 

 

2.3 - Stimulation device presentation 

 

The Hynodyne Zmax© is a headband EEG device designed for lucid-dreaming. The 

central box is secured with a Velcro strap headband that allows multiple head sizes. 

The box is connected to a 2 biocompatible hydrogel channels set with 4 metallic snaps. 

The 2 electrodes (F7-Fpz F8-Fpz) are referenced to Fpz. The band width ranges from 

0.1 to 128 Hz which theoretically allows a full frequency spectrum recording (from 

delta waves - 0.1 to 4Hz to gamma waves 30Hz+). The sample rate is set to 

256/seconds by default. The device comprises of a 3D accelerometer that can detect 

head and body movements, captors of temperature and heartbeat. The proprietary 

algorithm is designed to detect REM sleep episodes but can also provide for sleep 
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hypnograms with a 30-s epoch resolution differentiating between four sleep stages 

(N1, N2, N3, REM). The Zmax is connected to the computer program by a Bluetooth 

connection. The Zmax is provided with a software that allows brain recording, sleep 

study settings, data saving and EDF data type export. 

  

2.4 - Experimental procedure 

 

Since the study occurred during the pandemic, the study was designed to be 

performed remotely for safety purpose. As a within subject experiment, the 

participants were trained and tested with TMR and no TMR items. The study comprised 

of 3 sessions (Figure 1e): (1) a learning- session before sleep where participants 

were trained on premise pairs, (2) a testing session 12 hours following sleep where 

they were tested on the inference pairs only and (3) a follow-up seven days after to 

assess long-term memory changes across time. The tasks were built on Psychopy© 

and conducted online on Pavlovia©. For sanitary purpose, each session of the 

experiment was performed remotely with a guidance by chat and/or visuo-call 

(Zoom©) and practice trials. A full and comprehensive list of instruction was sent to 

the participants to install the software that would deliver cueing sounds and record 

brain activity. If needed, a guidance by Zoom© was proposed to confirm that each 

participant was ready before the task starts. The learning session was scheduled for 

9 p.m., and the post-sleep and follow-up testing at 9 to 10 a.m. respectively 12 hours 

and a week after learning. The participants were asked to perform each session in a 

quiet room. Similarly to the previous chapter, the participants were instructed to use 

a computer or laptop to run the different tasks and mobile phones were not allowed. 

 

The first session consisted in learning items, sounds and their association. As for the 

chapter 2, the participants were instructed to watch carefully the screen as object 

items were presented one by one for 2.5 sec., each separated by a red fixation cross 

for 1.5 sec. (Figure 1c). The sequence was repeated twice. Similarly, the long version 

of the sounds was also presented twice, followed by the short version. In a second 

time, the participants were tested on their ability to associate the sounds and items. 

For that purpose, the long version of the sound was presented alone, followed by the 
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associated item and two distractors. The 3 items were presented left, centered and 

right. For each trial, the participant was instructed to press left, space (centered item) 

or right key to select the correct association of item and sound without any time 

limitation. The position of the correct item was randomized for each set of trial. 

Answered was followed by the correct association represented by a green square 

surrounding the picture. After the participant reached 100% of accuracy, the task was 

repeated with the 200ms. sounds without feedback. Again, 100% of accuracy was 

required. 

 

 

FIGURE 1 (a) Schematic representation of a series of items. O letter refers to “objects”. The red 

items (A and F) are called “anchors” items and were removed from the final data analysis. (b) 
Schematic representation of a trial. The presentation of each item is always top/down and the 

participant is instructed to press UP or DOWN key to select which item is supposed to “cover” a 
happy smiley. (c) Detailed representation of a session period. The top and down sequence 

respectively represent the training and testing during the session 1. (d) Presentation of the premise 

and inference pairs. Probe pairs with a green background were used for data analysis whereas the 
red ones (anchors) were excluded as the first and last pairs are respectively always dominant or 

submissive. The purple letters represent items for which TMR was applied. (e) Schematic 
representation of the experimental design. Each session was performed remotely. 

Figure adapted from Jensen and al., 2019 (Figure 1) 

 

Following item/sound association learning task, the participants were trained on the 

premise pairs. Again, they were informed about the content of the session. Concretely, 

the series of 6 items was divided into a set of training premise pairs (Figure 1d). 

Each pair was presented centered and vertically, with one item at the top and a second 

one below. The two items were separated by a picture of “UP KEY” arrow below the 

item on top, and a “DOWN KEY” arrow on top of the second item (Figure 1b). On 

the right, a picture of a happy yellow smiley and a blue question mark were displayed. 

The participants were given the instruction to press "UP" or "DOWN" key to choose 



97 
 

and guess which item could be associated with the happy smiley. They were also 

informed that first trials would be pure guessing but by trial-error reinforcement, the 

task would become easier. The reason of the presence of the smiley and the 

instructions given served the purpose of making participants learning the hierarchy 

among the premise pairs without being aware of it. Each training set contained a 

top/down pair association of item and the reversed version (e.g., the pair with the 

item A and B was presented and A at the top and B at the bottom and reversely). 

Here again, the pairs presentation was pseudo randomized, not to avoid item type 

overlapping presentation but to ensure that one item could not be followed the second 

one from the series (e.g., C-B; BC). After each trial and depending on the correctness 

of the answer given, the participants were given feedback that took the shape of a 

yellow happy or red angry smiley. After each feedback, the correct response was 

presented. Importantly, the participants were asked to reach at least 66% of accuracy 

twice in a row or before 10 sets of trials (Figure S1). The reason behind the decision 

to decrease the accuracy minimum required from 80% to 66% was due to the context 

of pandemic during which recruitment was particularly challenging and experimental 

mortality quite frequent. However, in order to consider the degree of variability of 

encoding between participants (it was assumed here that the strength of encoding 

between a participant performing correctly twice in a row would be different from 

another one for which 10 presentations would have been needed to perform 

correctly), the global averaged accuracy across trials was used. After a distraction task 

where the participants were shown a cooking video tutorial, the testing session started 

but without feedback (Figure 1e). Excepted a different order of presentation and the 

absence of feedback, the procedure was the same as well as the score of accuracy to 

reach to complete the task. 

 

After the completion of the task, the participants were given the possibility to sleep. 

Before going to bed, they were instructed to put the Zmax headband, used to record 

brain activity and deliver auditory stimuli during REM sleep. The wire-up was remotely 

supervised in order to provide for guidance. Further instructions were also provided 

about how to turn off the device correctly, but also about data saving and sending. 
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During sleep, TMR was applied during REM sleep for all the participants using the 

laptop that they were instructed to put close to the bed. For that purpose, half of the 

short version of the sounds learnt during wake were pooled together and separated 

by a 2 sec. silence. This series was repeated as many times as possible. Due to 

intellectual properties, the lab did not get access to the algorithm used to detect and 

deliver cueing sounds. Hence, the criteria used to detect REM sleep and the number 

of repetitions were not controlled a priori. A manual inspection of the signal and the 

time of cueing sound permitted to confirm the absence of false positive cueing, 

namely, cueing sounds without justification. In the morning, the participants were 

instructed to stop the recording and send it to the examiners following a series of 

instructions given the day before. Any missing recording or issue with TMR cueing 

sounds during the night led to the exclusion of the participant. Due to 3 missing 

recordings and 1 technical issue about TMR, 4 participants were excluded from the 

final analysis of the present study. 

 

The session 2 started around 10 am after 12 hours of sleep (Figure 1e). Although 

the instructions given were similar to the learning phase before sleep, the task 

comprised of premise and inference pairs. More precisely, participants were tested on 

their ability to recall the premise pairs learnt before sleep, but also on new item 

associations (Figure 1d) varying in distance degree, for a total of 10 premise and 20 

inference pairs (e.g., AB; BA for the premise pairs or BD; DB for the inference pairs). 

The testing phase was repeated 3 times, always with a different pair ordering. 

 

A week after the session 2, participants were asked to repeat the same sequence. For 

the session 3, the pairs were presented in a different order compared to session 2. 

 

2.5 - Creation of time frequencies and EEG pre-processing 

 

Datasets were extracted from participants EDF folders. Each folder contained a marker 

file with time duration of REM sleep and TMR. Periods of REM sleep and TMR were 

inspected visually. On that basis, the decision to select a 2 minutes duration of time 

series was based on the minimal amount of REM sleep and TMR application that all 
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the participants shared in common. EEG preprocessing was performed using EEGLAB 

(version 2022.0) toolbox from MATLAB. Due to the limited number of channels (F7 

and F8) referenced to Fpz, no re-referencing was performed. The data were down 

sampled to 256Hz. A high-pass filter at 0.1 and a low-pass filter at 40 Hz was applied. 

The data was segmented into epochs of 2 seconds starting 500 Ms before stimulus 

onset and 1500 Ms after. Each trial was visually inspected and those that contained 

artifacts were manually removed. On that basis, two conditions were differentiated on 

a behavioural effect into "control" and "TMR". The condition "control" referred to the 

REM sleep portions that did not receive TMR stimulations while "TMR" condition 

referred to the portions of REM sleep for which the TMR cueing sounds were applied. 

Time-frequency analysis was performed using EEGLAB study while phase amplitude 

coupling (PAC) and epoch analysis were performed using Python. MNE package was 

used to import, visualize and analyze EEG, matplotlib.pyplot, SciPy and Tensorpac 

were used to plot the comodulograms, calculate the modulation index (MI) and 

perform the epochs t-test comparisons. 

 

2.6 - Calculation of accuracy 

 

Anchor pairs were excluded from the final calculation of the accuracy, and only probe 

pairs were considered for calculating accuracy. Anchor pairs, which consist of the first 

or last item in the hierarchy, were omitted because they tend to be easier to remember 

due to their consistent dominance or submissiveness. 

 

2.7 - Selection of features of interest 

 

The data analysis was preceded by a computational detection of features of interest. 

This process aimed to extract useful information from large data sets and avoid noisy 

features. The computational approach was a wrapper method, where a global model 

was calculated and trained based on the features from the dataset. Depending on 

their ability to explain the variance of the computed model, the features are saved or 

removed from the model by backward elimination. For that purpose, the method 

BORUTA was chosen (see Prabhakaran, 2017 for detailed explanations about 
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BORUTA application with Rstudio). BORUTA is a feature selection algorithm used 

in machine learning to identify the most important features for a given model. It 

operates by iteratively comparing the importance of real features with that of random 

features (shadows). This approach is based on the concept of random forest, which 

aims to capture the important features that can explain a particular outcome. The 

algorithm consists of two steps: 

(1) The dataset is duplicated and a random forest classifier is trained to detect the 

important features by assigning a score for the mean decrease in impurity for each 

feature. A high score is associated with high importance. Three categories are formed. 

The "shadow min" includes the features with a low importance score, the "shadow 

mean" includes the features that are close to chance. Finally, the "shadow max" 

includes the features with high importance. 

(2) The algorithm compares the importance of the duplicated features with that of the 

real dataset. After a certain number of iterations, a real feature is retained if it has a 

higher z-score than its shadow. 

 

The importance score for each feature in the BORUTA analysis is derived from the 

importance measure provided by a random forest model. Random forest models, in 

turn, provide importance scores for each feature based on how much they improve 

the model's performance when they are included. A positive importance score 

indicates that the feature contributes positively to the predictive performance of the 

model. The higher the score, the more important the feature is deemed to be. A 

negative importance score implies that the feature detracts from the model's 

performance. This might seem counterintuitive, but it can occur for several reasons: 

1/ The feature might be adding noise to the model, reducing its accuracy. 

2/ The feature could be correlated with other features (multicollinearity), leading to 

unstable importance scores. 

3/ The feature might interact poorly with other features (interaction effect) in a way 

that negatively impacts the model's overall performance. 
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2.8 - Model selection and calculation of parsimony 

 

The parsimony and the quality of the models were assessed with the Mallow Cp (see 

Bobbitt, 2021 for detailed explanations about Mallow Cp calculation with 

Rstudio), a variant of AIC (Akaike Information Criteria) developed by Colin Mallows. 

Technically, the likelihood of a given model can be increased by adding more 

parameters. Thus, the more parameters used, the more informative the model. 

However, because the coefficient used (R²) is a square, it cannot decrease as more 

parameters are added, which can improve the explanatory power of a model due to 

chance rather than the efficiency of its parameters. To limit this bias, the Mallow Cp 

was applied to assess the fit of the regression models on the basis of the features 

detected by BORUTA. The main objective here was to detect the most precise and 

accurate model that would need the lowest number of predictors to reach that 

precision. Among multiple models available, the one that exhibits the lowest Cp value 

is the most precise. Mallow Cp is calculated as follows: 

Mallow Cp = (SSEp / MSEF) - (N - 2P) 

. SSEp = Sum of square errors for the potential model 

. MSEF= Mean square error of the full model 

. P = number of predictors. The penalty N-2P represents the cost for a model that 

incorporate high number of predictors. 

This method is consistent with the concept of parsimony, which aims to find a trade- 

off between the explanatory power of a model and its ease of use. 

  

2.9 - Selection of unbiased effect sizes 

 

The magnitude of the difference between means was described by using the Hedge’s 

g. This effect size is the non-biased equivalent of the Cohen’s d but for small sample 

size (n < 50). The formula used to calculate Hedge’s g was: 

Hedge g = (M1 - M2/ SD pooled) * (N - 3 / N - 2.25) * ((√N - 2) / N) 

. M1 - M2 represent the mean difference. 

. SD pooled is the weighted standard deviation 
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Finally, the adjusted R² was used as a coefficient of determination (see Bobbitt, 

2020 for detailed explanations about adjusted R² calculation with Rstudio). 

This coefficient is consistent with the use of the AIC, as it captures the degree of 

parsimony of the model used. Technically, a malus is added to the R² if a predictor 

improves the model by less than chance. This process aims to avoid a natural increase 

in the R² value when predictors are added to the model, since the coefficient cannot 

decrease (a square is always positive). However, the penalty is reduced if a predictor 

is found to increase model accuracy more than by chance. The adjusted version of the 

R² is always lower than its biased version. The formula is presented as follows: 

Adjusted R² = 1 - (1 - R²) (N - 1) / N - p - 1 

. N = sample size 

. p = number of predictors 

 

2.10 - Use of robust regressors 

 

Due to the variability of the data observed, the classic ordinary least squares (OLS) 

estimator used to compute linear regression was associated with a robust regression 

estimator, the Theil-sen estimator. Instead of relying on every single data point equally 

like OLS does, the Theil-Sen estimator calculates the slopes and intercepts from 

various subgroups formed by combinations of a few data points. For instance, while 

estimating an intercept, the number of points in each subgroup (denoted as 'p') should 

be at least as many as the number of features ongoing dealing with, plus one. Once 

these slopes and intercepts are calculated, the final values are determined as what's 

called the 'spatial median' of all these different slopes and intercepts. 

 

2.11 - EEG analysis 

 

After being decomposed into epochs of 2 seconds, the EEG datasets were analyzed to 

extract the average time-frequency of each condition. The results were statistically 

compared to detect frequency of interests (theta and gamma range) susceptible to 

emerge from the TMR condition. On that basis, a PAC analysis was performed to detect 

coupling between the theta phase (4-8 Hz) and the gamma amplitude (30-40 Hz). PAC 
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strength was quantified by extracting the modulation index (MI). MI is a robust and 

reliable marker of coupling that ranges from 0 to 1, where higher coefficients are 

associated with a stronger coupling. 

 

2.11.1 - Time frequency 

 

The event-related spectral perturbation (ERSP) was performed using EEGLAB toolbox 

from MATLAB. The oscillatory power was obtain using a continuous wavelet 

transformation (Complex Morlet Waveform, 3 0.8 cycles). Concretely, the wavelet 

used to measure the amount and phase of the data in each successive, overlapping 

time window started with a 3 cycles wavelet (Hanning-tapered window applied). Then, 

the number of cycles in the wavelets used for higher frequencies expanded to reach 

20% (1 minus 0.8) of the number of cycles in the equivalent FFT window at its highest 

frequency. The cycle number was chosen to propose a trade-off between a high 

frequency resolution and time resolution, as higher cycles tend to respectively increase 

the frequency and decrease the time resolution. Range of frequency was set to 0.5 to 

40 Hz, resulting in a range of frequency analyzed from 3Hz to 40 Hz. Significant 

differences were performed with a permutation-based t-test with multiple comparison 

correction, n = 1000 randomizations and a statistical threshold set to 0.05. 

 

2.11.2 - Phase-amplitude coupling (PAC) analysis and modulation index (MI) 

 

Phase-amplitude analysis (PAC) was performed with Tensorpac from Python in a 

three-steps process. The phase and amplitude range chosen were respectively 1-10 

Hz and 1-40 Hz. First, the Tort PAC method (Tort et al., 2008; 2010) was chosen to 

compute PAC, as this approach is known to exhibit a robust tolerance to noise and 

sensitivity to modulation width (Kramer et al., 2008; Amiri et al., 2016). Secondly, a 

surrogate computation using swap amplitude time blocks was performed. Concretely, 

amplitude values were shuffled within time blocks across trials. Using this approach 

helped to preserve the trial structure of the datasets for further analysis (significant 

amplitude t-test permutation by epoch). Moreover, it also provided a conservative 

estimate of PAC. As a final step analysis, a correction was applied using the dynamic 
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definition method. This method aimed to define frequency pairs based on the data 

characteristics or statistical criteria, a flexible method that adapts the properties of the 

dataset and provides for a strong ability to capture unexpected or nuanced couplings. 

 

3 - Results 

3.1 - Detection of features of interest 

 

The first step started with a detection of features susceptible to explain the variation 

of inference accuracy within the participants. Since the depression score was shown 

to exhibit a narrow range of values, this feature was excluded to the analysis to avoid 

potential overestimations of shadow min boundary. Otherwise, the chronic insomnia 

and clinical anxiety anamnestic features were included as well as the session (session 

2 versus session 3), the condition (control versus TMR), the premise pairs accuracy 

by pairs (AB, BC, CD…), the number of stimulation and finally the Modulation index 

(Figure 2). Although the maximum number of iterations was set to 800, only 335 

were needed to classify the features. 
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Figure 2: Classification of features of interest for inference pairs, sorted by degree of importance. 

The classification ended after 112 iterations. The three main features detected are the MI, the 
session time and the presence or not of TMR, each significantly higher than randomness effect 

represented by the shadows (blue boxplots). 

 

BORUTA classification ended with the modulation index, the session and finally the 

condition features as best candidates to explain TI accuracy, with a significantly higher 

Mean Decrease Accuracy (MDA) than the shadows (representing randomness). On 

that basis, the following features were selected to create the combinations of models 

susceptible to explain the accuracy for the inference pairs: 

. MI (The degree of associations between two brain waves, here theta and gamma) 

. Session (Session 2 after sleep and session 3 for the follow-up) 

. Condition (TMR versus no TMR) 

  

3.2 - Comparison of model’s parsimony 

 

Based on the feature detection, a multi-model comparison was performed with the 

selected factors. The aim here was to assess the degree of parsimony of each model 
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to detect the one susceptible to propose the best trade-off between a high level of 

generalization and explanatory power (Figure 3). 

 

The function ols_step_all_possible from the Rstudio package Olsrr was used to 

compute and test all possible models. Concretely, the following model inference pairs 

accuracy ~ TMR (YES vs NO) was chosen as the baseline model. During the process, 

all possible combinations were performed and compared by their predictors, namely 

the R², Adj. R² and Mallow’s Cp. The multi-model comparison revealed 7 

combinations. The baseline model analysis revealed a small explanatory coefficient 

(Adj. R² = 8.4%) associated with a decent Mallow’s Cp (M. cp = 4.03). On that basis, 

the “session” feature was shown to improve the model (baseline + singularity), which 

exhibited a higher explanatory coefficient (Adj. R² = 9.1%) but associated with a 

higher Mallow’s Cp (M. cp = 5.28.2) (F(1, 109) = 0.75, p = 0.387). Finally, the model 

3 was created by adding the “MI”, associated with a higher power of explanation (Adj. 

R² = 14.7%) and a more parsimonious accuracy (M. cp = 2.75) (F(1, 109) = 3.28, p 

= 0.071). On that basis, the model 3 was retained as the best model. 
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Figure 3: Graphical representation of model comparison between the baseline and the most 

parsimonious models for inference pairs. For each model, the adj. R² and Mallow’s Cp were extracted 

and compared. An association between a small Mallow’s Cp value and a high adj. R² coefficient is 
required to detect the most parsimonious and accurate model. 

 

3.3 - TMR benefits on transitive inference are delayed in time 

 

After sleep, comprising of TMR during REM or no stimulations, participants were tested 

on their delayed abilities to infer about new item associations 12 hours after learning 

and after a week (see methods). The absolute mean and the evolution rate between 

session 2 and 3 are presented table 1. 

 

Firstly, a 2*2 ANOVA was performed to detect whether the session time (session 2 

and session 3) by the TMR application (Yes versus No) could predict inference 

accuracy. The results revealed a condition (F(1, 82) = 78.432, p = 1.68e-13) and 

session-time (F(1, 82) = 6.033, p = 0.0162) but no interactions. Overall, the main 

findings revealed a positive but non-significant impact of TMR upon TI accuracy at 

session 2 (Figure 4), meaning 12 hours after sleep (t(27) = 8.89, p = 0.157, 95% CI 



108 
 

[-3.64, 21.43]; Hedge's g = 0.31, 95% CI [0.22, 0.83]). However, mean comparison 

at session 3 (Figure 4) revealed a strong and significant positive effect of TMR upon 

TI accuracy (t(27) = 26.17, p = 0.0008, 95% CI [11.91, 40.44]; Hedge's g = 0.97, 

95% CI [0.41, 1.53]). Interestingly, comparison of the evolution rate between session 

2 and 3 for both groups revealed a slight decrease but without any significant changing 

dynamics between sessions (-8.1%) for the NTMR group after a week. However, a 

delayed massive boost of performance was observed for the TMR group (+22.4%). If 

it is reasonable to suggest that applying TMR during REM may be associated with a 

delayed cognitive flexibility that would be the results of potential phenomenon of 

neural reorganization, it is also reasonable to notice that the positive evolutive trend 

observed could be the results of extreme values due to the small amount of inference 

pairs presented (6 pairs presented 3 times). The narrow range of response variability 

is highlighted by the sparse distribution curve. 

  

 

Figure 4: Accuracy for the inference pairs after 12 hours and after 7 days (N = 28 participants per 

groups). Dots and thick back lines are minimalist boxplot representations. Black squares and 
numbers are means and error bars are CI. ns = non-significant. 
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3.4 - EEG time-frequency comparison 

 

To investigate word-elicited EEG activity, a time-frequency analyses on EEG epochs, 

then averaged across conditions and participants was performed. Via a cluster-based, 

two-tailed one-sample permutation test (1,000 randomization and a statistical 

threshold of 0.05) against zero across time points and frequency bands, three 

significant cluster, including an earlier delta-theta-alpha cluster (1–12 Hz) and a later 

alpha-sigma-beta cluster (9–25 Hz) were identified. For EEG responses (control versus 

TMR), the delta-theta cluster from -500 Ms to -300 Ms, the theta cluster from -500 to 

0 Ms preceding stimulus onset, and finally the gamma cluster from 500 Ms to 800 Ms 

following stimulus (Figure 5c) were examined. 

 

 

Figure 5: EEG differences between control TMR conditions. (a) Time-frequency ERSP control map 
across all participants. An increase of power can be observed around 700 ms following stimulus 

onset in the theta and sigma range. (b) Time-frequency ERSP TMR map across all participants. As 
well as control condition, the same cluster can be observed but at a much higher power. Additionally, 

a cluster in the low gamma range (35 Hz) appeared. (c) Permutation t-test map between condition. 
Although the main visual changes appeared after stimulus onset, the clusters of significant 

differences were detected around 500 Ms before stimulus onset, excepted for the gamma frequency. 

 

Via a cluster-based, two-tailed one-sample permutation test (1,000 randomization and 

a statistical threshold of 0.05) against zero across time points and frequency bands, 

three significant cluster, including an earlier delta-theta-alpha cluster (1–12 Hz) and a 

later alpha-sigma-beta cluster (9–25 Hz) were identified. For EEG responses (control 

versus TMR), the delta-theta cluster from -500 Ms to -300 Ms, the theta cluster from 

-500 to 0 Ms preceding stimulus onset, and finally the gamma cluster from 500 Ms to 

800 Ms following stimulus (Figure 5c) were examined. 
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These identified clusters were analyzed in the following analysis using Event-related 

desynchronization/synchronization (ERDS) components, relative power decreases or 

increases of electroencephalogram (EEG) in a specific frequency band (Figure 6). A 

paired sample t-test revealed a significant difference for the delta-theta cluster (t(77) 

= 2.06, p = 0.042, 95% CI [-0.01, 0.67]; Hedge's g = 0.02, 95% CI [-0.31, 0.31]), 

the theta cluster (t(77) = 2.24, p = 0.021, 95% CI [-0.03, 0.67]; Hedge's g = 0.01, 

95% CI [-0.32, 0.3]), and the gamma cluster (t(77) = 2., p = 0.029, 95% CI [0.01, 

0.58]; Hedge's g = 0.01, 95% CI [-0.31, 0.34]) (Figure 6). 

 

 

Figure 6: ERDS percentage of power changes for the delta, theta and gamma clusters (N = 28 
participants per groups). Dots and thick back lines are minimalist boxplot representations. Black 

squares and numbers are means and error bars are CI. ns = non-significant. 

 

Taken together, these findings suggest a benefit from TMR application in the power 

increase of delta, theta and gamma range. These results are in line with the rhythmic 

slow activity often coupled with gamma frequency and that can be observed in both 

humans (Bodizs and al., 2001; Clemens and al., 2009) and rodents (Bland and 

Whishaw, 1976). Although RSA implication is unclear, multiple findings suggest a 
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crucial role in memory integration (Bódizs and al., 2001; Nuñez and Buño, 2021). A 

summary of the results is presented Table 1. 

 

3.5 - Theta-gamma PAC modulated by TMR 

 

The next step of the analysis aimed to examine changes in phase-amplitude coupling 

(PAC) between theta and low-gamma frequency (Figure 7), by comparing the 

modulation index (MI) between conditions (Figure 8). For that purpose, the theta 

phase (4-8 Hz) on low-gamma (30-40 Hz) was extracted from participant’s sleeping 

brain activity after learning premises. 

  

 

Figure 7: PAC representation averaged between participants. (a) Cross frequency spectrogram for 

the control group reveals a delta (2-4 Hz) and low theta (4-6 Hz) phase-locked with a large sigma 

(13-15 Hz), beta (15-20 Hz) and low gamma range (32-40 Hz). (b) After TMR application, coupling 
dynamics tends to decrease for the delta and sigma frequencies but to increase in the low theta 

and gamma range. Modulation index between phase and amplitude is averaged by participants. 
Black square represented by the dotted lines represents the region of interest. 

  

Due to the aim of the study, the potential coupling between delta and spindle activity, 

though interesting due to its supposed role in memory formation during SWS has not 

been considered for further analysis. Instead, the PAC analysis aimed to focus to the 

coupling between theta and gamma activity. PAC value has been extracted for all the 

participants in the range of 4-6 Hz for the theta phase and 30-35 Hz for the gamma 

amplitude and then averaged by conditions. PAC values were computed in a three- 

step process (see methods) using Python Tensorpac package that comprised the Tort 

PAC approach, a swap amplitude time block surrogate computation and finally a 
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dynamic definition correction. Though a small MI value (Figure 8), the paired t-test 

analysis performed between conditions revealed a strong significant difference (t(27) 

= 5.18, p = 1.87e-05, 95% CI [0.3, 8.57]; Hedge's g = 1.49, 95% CI [0.89, 2.09]). A 

summary of the results is presented Table 1. Next and final part of PAC analysis 

aimed to investigate about how applying TMR could modulate gamma phase 

distribution over theta band. For that purpose, a permutation t-test was performed at 

p < 0.05 threshold with n = 1000 randomizations. Again, the time period for which 

TMR was applied exhibited a stronger coupling between theta and gamma range 

(Figure 9b) compared to the control condition (Figure 9a). 

  

 

Figure 8: MI representation averaged between participants. Phase theta (4-6 Hz) and low gamma 

amplitude (30-35 Hz) is significantly modulated by TMR application during REM sleep. Black squares 
and numbers are means and error bars are CI. ns = non-significant. 

  

However, and surprisingly, gamma frequencies from TMR condition appeared to be 

preferentially and significantly phase-locked to the down-state of the theta phase 

(from 90° to 225°) whereas gamma from the control condition revealed a significant 
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phase-locking to the up-state (from 270° to 45°) of theta frequency (Figure 9c). 

Finally, a PAC time analysis using a permutation t-test was perform to detect any 

dynamic strengths of coupling between epochs (Figure 9c). Firstly, the amplitude 

frequency range confirmed the theta phase coupling with low gamma amplitude (28 

to 36 Hz). Secondly, and despite a small number of significant epochs between 

condition, the significance appeared to be uniformly distributed over epochs. However, 

and interestingly, the gamma range was shown to progressively decrease over epochs. 

  

 

Figure 9: Phase-preference between theta and low gamma amplitude. (a) Phase- preference 

between theta phase and gamma amplitude for the control condition. (b) Phase-preference 
between theta phase and gamma amplitude for the TMR group. (c) Representation of significant 

difference of phase-preference between conditions (left) and temporal comparison between epochs 

(right). 
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However, and interestingly, the gamma range was shown to progressively decrease 

over epochs. This observation is in line with the different but complementary 

assumptions whereby a reduction of gamma oscillation would be the reflect of neural 

habituation (Moldakarimov et al., 2010) or an increase of successful progressive 

memory integration (Madhavan et al., 2015). This interpretation is also in line with the 

time-frequency analysis that revealed a significant gamma cluster around 650 Ms after 

TMR cueing sound. Hence, it is reasonable to assume that progressive decrease in 

gamma band would be the illustration of a progressive integration of premise pairs 

over epochs. 

 

3.6 - Theta-gamma PAC and TMR benefits in transitive inference 

 

So far, TMR application during REM sleep has been shown to promote coupling 

between theta and gamma frequencies and increase the strength of it. Moreover, at 

the behavioural level, TMR appeared to promote transitive inference abilities, leading 

to a higher performance compared to control condition, especially after a week. 

Building on these findings, the last part of the present analysis aimed to assess 

whether the strength of coupling represented by the modulation index could predict 

TI accuracy at short and long term. Because of a high degree of variability, the classic 

linear approach based on the ordinary least squares (OLS) estimator has been 

associated with the Theil-Sen estimator, much robust against outliers (see methods). 

Its standout feature is its ability to handle roughly up to 29.3% of corrupted or outlier 

data points in a simple linear regression scenario. More specifically, Theil-sen estimator 

finds the 'middle ground' among many slopes and intercepts calculated from different 

smaller groups of data points, rather than solely relying on all data points equally like 

OLS. 

 

The preliminary results based on the model accuracy ~ MI + condition + session 

revealed a global significant relationship (F(3, 108) = 4.99, adj.R² = 0.097, p = 0.002). 

However, none of the features, taken separately, manage to predict the accuracy 

(condition P.value = 0.104; session P.value = 0.388) excepted the MI (p = 0.0735) 

close to significance. Since Theil-sen regression only fits with bivariate models, the 
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global model was split by condition and session, resulting in four different models 

(Figure 10). 

  

 

Figure 10: Representation of the relationship between the MI, representing the strength of 

coupling between theta and gamma frequency, and the transitive inference accuracy per sessions 

and conditions. Plain and red dashed lines respectively represent the linear (OLS) and Theil-sen 
estimators. (a) Relationship after sleep for the control group. Due to its robustness, the Theil-sen 

regression revealed the negative and surprising relationship between MI and TI accuracy. (b) 
Relationship after sleep for the TMR. The flat trends revealed by OLS and Theil-sen approach is in 

line with the huge variability of the data. (c) Relationship at follow-up for the control group. (d) 
Relationship at follow-up for the TMR group. 

 

Theil-sen regression clearly revealed its robustness against outliers when assessing 

the relationship between MI and accuracy after sleep for the control condition. Indeed, 

although the classic linear fitting line revealed a positive trend, the Theil-sen one (red 

dashed line) revealed a negative relationship (Figure 10a). On that basis, no 

significant relationship was found (F(1, 26) = 0.168, adj.R² = 0, Pseudo R² = 0, p = 

0.685, Theil-sen p = 0.115). In line with the control group, the TMR condition did not 

reveal a significant relationship between MI and TI accuracy (Figure 10b) (F(1, 26) 

= 0.036, adj.R² = 0, Pseudo R² = 0, p = 0.851, Theil-sen p = 0.118). Interestingly, 

a significant relationship was found at follow-up for the control group (Figure 10c), 
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assuming a positive delayed effect of sleep (F(1, 26) = 5.569, adj.R² = 0.14, Pseudo 

R² = 0.13, p = 0.026, Theil-sen p = 0.023). Though a lower relationship found by the 

Theil-sen estimator compared to the OLS one, their observation reached the same 

conclusion, suggesting a strong trustfulness of the results. Finally, and surprisingly, 

the positive relationship found in the control group did not appear in the TMR group 

(F(1, 26) = 0.689, adj.R² = 0, Pseudo R² = 0.01, p = 0.413, Theil-sen p = 0.059) as 

shown by the flat trend revealed by the Theil-sen estimation (Figure 10d), though a 

p-value close to significance. A summary of the results is presented Table 2. 

 

4 - Summary of the main findings 

 

The present section aims to present a brief summary of the behavioural and 

electrophysiological findings from this study (see Table 1). Negative findings, non- 

significant p-values or marginal effect size are represented in red. TS.p represents the 

p-value calculated on the basis of Theil-sen estimator. Ps.R is the pseudo R² calculated 

with the Theil-sen approach. 

 

Table 1 | Summary of the behavioural and EEG findings 
Statistical results 

Test procedure P-value Effect size 
Behavioural findings   
ctrl vs. TMR S2 p = 0.157 Hedge’s g = 0.31 
ctrl vs. TMR S3 p = 0.0008 Hedge’s g = 0.97 
ER ctrl S2.S3 - -8.1% 
ER TMR S2.S3 - +22.4% 
Electrophysiological findings (Modulation index) 
ctrl vs. TMR delta p = 0.042 Hedge’s g = 0.02 
ctrl vs. TMR theta p = 0.021 Hedge’s g = 0.01 
ctrl vs. TMR gamma p = 0.029 Hedge’s g = 0.01 
MI ctrl vs. TMR p = 1.87e-05 Hedge’s g = 1.49 
Electrophysiological correlates of transitive inference accuracy 
Accuracy ~ MI (ctrl S2) p = 0.685, TS.p = 0.115 adj.R² = 0, Ps.R² = 0 
Accuracy ~ MI (TMR S2) p = 0.851, TS.p = 0.118 adj.R² = 0, Ps.R² = 0 
Accuracy ~ MI (ctrl S3) p = 0.026, TS.p = 0.023 adj.R² = 0.14, Ps.R² = 0.1 
Accuracy ~ MI (TMR S3) p = 0.413, TS.p = 0.059 adj.R² = 0, Ps.R² = 0.01 
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5 - Discussion 

 

Sleep, an indispensable physiological process, has long been recognized for its 

significant role in memory consolidation and various cognitive functions, including 

executive functions and mood regulation. However, the precise mechanisms 

underlying protective sleep effect against long-term memory decay and its impact on 

transitive inference, a specific form of relational memory involving the deduction of 

novel relationships from existing knowledge associations, remain unclear. Thus, the 

aim of this study was to contribute to the existing body of knowledge by investigating 

the potential modulatory effect of sleep on transitive inference and memory 

consolidation over both short and long-term intervals. For that purpose, targeted- 

memory reactivation (TMR) was applied during Rapid Eye Movement (REM) sleep, a 

sleep stage thought to play a pivotal role in memory reorganization according to the 

BiOTA model. A secondary objective was to identify neural correlates that might 

explain the potential cognitive benefits of sleep. While numerous studies have 

provided valuable insights through methods such as Event-Related Potentials (ERPs), 

time-frequency analysis, and EEG representational similarity analysis (RSA), the 

present study aimed to investigate about cross-frequency coupling between theta and 

gamma activity in humans, a coupling known to play a crucial role in memory 

integration (Canolty et al., 2006; Axmacher et al., 2010; Koster, 2018). To do so, this 

study evaluated participants' inference accuracy after a full night of sleep and after 

one week to gain insights into the evolution of sleep-related benefits on accuracy over 

short and long-term intervals. On that basis, the strength of coupling, represented by 

the theta/gamma modulation index was extracted and used as the primary predictor 

of accuracy variability between participants and across different sleep conditions. MI 

was then tested as a potential correlate of TI accuracy at short and long-term using 

OLS and Theil-sen estimator. 

 

Firstly, behavioural findings from TMR condition revealed an interesting increase of 

transitive inference accuracy compared to immediate testing after sleep, a week after 

learning. Such a delayed effect did not appear in the control condition. Importantly, 
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sleep-related benefits did not appear to promote TI higher than chance, irrespective 

of the testing session. These findings go against the sleep benefits upon TI (Bowden 

et al., 2005; Luo et Knoblich, 2007; Kumaran, 2013) and the memory integration 

promoting effects of theta/gamma coupling (Canolty et al., 2006; Axmacher et al., 

2010; Koster, 2018) raised in the literature. Hence, it becomes reasonable to suggest 

that the mixed combination between cued and uncued items might have impaired to 

spontaneous associations between premise pairs, leading to a loss of sleep benefits. 

  

On the other hand, the increase of theta/gamma coupling in the TMR condition might 

explain the behavioural benefits observed after sleep and at greater extent after a 

week. Although the exact reasons of such a difference between TMR and sleep are 

unclear, it is possible to posit that TMR provided a support of relational memory 

process, thus providing a “compensation” against the impairment of sleep benefits. 

Taken together, these findings are in line with the iOtA and BiOtA models presented 

by Lewis et al., (Lewis and Durrant, 2011; Lewis et al., 2018) in which overlapping 

memory representations are stored for a future integration. Here, the mixed 

combination between cued and uncued premise pairs might have affected overlapping 

between premise representations, resulting in weaker boundaries between these 

representations. The second model, in line with the promoting effects of theta/gamma 

coupling (Canolty et al., 2006; Axmacher et al., 2010; Koster, 2018) in memory 

integration, posits that REM sleep would promote integration of overlapping 

representations. Here, it can be proposed that due to the weak associations between 

representation, spontaneous theta/gamma coupling observed in the control condition 

(without TMR) might not have been high enough to induce memory integration, 

contrarily to TMR-related benefits upon the theta/gamma coupling that compensated 

the altered boundaries between representations, leading to their integration. Although 

these conclusions might appear speculative, they provide founded and insightful 

information about the process of integration of memory overlapping during sleep and 

the mechanisms involved. However, the reason why significant TMR benefits only 

appeared after a week are unclear, excepted potential illustration of "slow form of 

plasticity" as raised by Pereira et al., (Pereira et al., 2023). At the EEG level and as 

expected, time-frequency analysis, revealed significant theta gamma clusters 
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respectively 200 Ms before and 500 Ms after stimulus onset. Here again, the lack of 

physiological analysis makes the interpretation quite challenging. However, a potential 

progressive integration of hierarchy between items, promoted by TMR, leading to a 

subsequent gamma activity is in line with the theta gamma coupling interaction 

discussed in the literature (Bosman et al., 2012; Clouter et al., 2017; Köster et al., 

2017). Moreover, a deeper EEG analysis of cross frequency between theta and gamma 

activity revealed a significant effect of TMR on the strength of coupling for the theta 

and low gamma range (around 35 Hz). Specifically, the modulation index, a marker of 

coupling strength, increased with TMR application. Surprisingly, the amplitude of 

gamma signal appeared to progressively decrease, as a potential sign of neural 

habituation (Moldakarimov et al., 2010) or integration of memory (Madhavan et al., 

2015). Surprisingly, EEG coupling did not appear to vary in terms of strength but also 

in terms of characteristics and typology as gamma amplitude appeared to be phase- 

locked to the up-phase of theta band for the control condition, and phase-locked to 

the up-phase of theta for the TMR condition. At this stage, no convincing explanations 

can be provided to explain the reasons about this difference, and the consequences. 

As recent studies have raised the importance of phase-locking during slow-wave sleep 

studies in subsequent memory performance (Ngo and Staresina, 2022; Santamaria et 

al., 2023), it is reasonable to suggest that theta gamma coupling during upon down- 

state could differ in their ability to promote memory integration. Further studies are 

needed to clarify this point. Finally, and at first sight, MI values did not appear as 

convincing neural correlates of transitive inference abilities. However, building on the 

findings from behavioural results and the findings about the difference in phase- 

locking, a plausible scenario can be proposed. Indeed, assuming that the delayed 

behavioural effect observed between conditions is the illustration of a slow plasticity 

phenomenon, the lack of relationship between MI and immediate testing after sleep 

is not surprising. In a second time, whether only control condition revealed a delayed 

relationship between MI and accuracy could be explained by the fact that down-state 

coupling in the TMR condition may have impaired memory integration, as TMR during 

down-state of slow oscillation were reported to do. 

 

Although the present study led to insightful findings about TMR and REM sleep 
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implication in cognitive flexibility through theta/gamma coupling, especially in humans, 

it is essential to acknowledge several limitations of this study. First, data collection 

occurred during the early stages of the COVID-19 pandemic, characterized by stress 

and potential depressive factors related to public health measures and the overall 

context. This context's impact on mood, sleep quality, and cognitive functions should 

be considered when generalizing the findings to different circumstances. Second, the 

study was conducted remotely due to the pandemic, and while participants were 

provided with guidance to create a quiet environment, replicating laboratory 

conditions at home presented challenges, possibly affecting accuracy due to sources 

of disturbance. Another source of limitation may arise from the combined hierarchies. 

Indeed, in order to simplify the task, only one set of items was proposed to the 

participants, comprising of items to be stimulated by TMR or not. This approach differs 

from the traditional transitive inference approach that consists in learning a set of 

items without TMR, and second one with TMR. Consequently, it cannot be excluded 

that the present approach may have impaired the process of rule integration. Resulting 

from the decision to combine TMR and non-TMR pairs within the same set of items, 

only a few pairs were considered as "pure" TMR (CE and EC repeated 3 times) and 

non-TMR (BD and DB repeated 3 times) pairs, namely pairs that comprised two items 

with TMR or without TMR. As a consequence, the continuity of the data became 

impaired and tended to be clustered, resulting in a lack of visibility of the potential 

effects of TMR. Finally, and due to the lack of controlled TMR stimulation provided by 

the remote content of the present study, a small number of epochs has been extracted 

by participants (40 per conditions), leading to a potential source of validity violation. 

 

In summary, and despite of these limitations, cross-coupling EEG analysis of TMR 

benefits during REM sleep has yielded valuable insights into the role of sleep benefits 

in memory consolidation and cognitive adaptability. Significantly, a remote TMR 

application during REM sleep has, for the first time, demonstrated its capacity to 

capture variations in performance in the realm of sleep research and home-based TMR 

protocols. With its ability to capture the advantages of sleep using simple, home-based 

devices equipped with a limited number of channels, TMR protocols present a novel 

and promising perspective for TMR applications in real-life scenarios. Indeed, in a 
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world where approximately 62% of adults feel they do not get enough sleep, it is 

reasonable to imagine a future where a straightforward MI coefficient, easier to 

interpret than a complete EEG analysis, administered following a full night of sleep, 

could monitor and potentially enhance sleep habits, optimize the onset of sleep 

phases, and provide valuable support in managing mood disorders. 

 

6 - Supplements 

 

 

S1: Presentation of the items used for the purpose of this study. (a) This imaginary item was 

extracted from a database. The background has been removed and the contrast has been changed 
to avoid bias or disturbance for the participant. (b) Presentation of the top/down structure of one 

pair. 
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TABLE 2 | Polysomnographic characteristics 

 Percentage of sleep stage 

Stages Mean (SD) % 
Stage N1 6.49 (3.18) 
Stage N2 57.9 (10.3) 

Stage N3 16.6 (8.4) 

REM sleep 18.9 (8) 
SE 76.5 (13.5) 

 

 

 

S2: Graphical representation of premise pairs accuracy before sleep. The red pairs (AB and EF) are 

called anchor pairs and show a higher accuracy as expected since within this series, these pairs 
benefit from the primacy and recency recall. Moreover, A is always dominant whereas F is always 

submissive. ns = non-significant. 
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Chapter 4: TMR APPLICATION IN 
SWS: DELTA/SPINDLE AND 

DELTA/GAMMA AS MARKERS OF 
TRANSITIVE INFERENCE? 
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Abstract 

 

Although the crucial role of slow-wave sleep in the improvement of memory 

consolidation is globally admitted, the impact upon higher cognitive functions, namely 

transitive inference, as well as the potential benefits of targeted-memory reactivation, 

is still unclear. According to the iOTA model, SWS sleep would play a crucial role in 

the capacity to reorganize events to be consolidated and the idiosyncratic ones to be 

removed. While recent findings have highlighted the importance to consider the phase 

amplitude coupling between delta-gamma and delta-sigma, as well as the phase 

preference of delta oscillations, the present study aimed to investigate about neural 

correlates of cognitive flexibility. On that basis, participants were trained on two sets 

of hierarchically related pictures of imaginary objects. Following training, sleeping 

brain activity was recorded while one series has been reactivated with TMR during 

SWS while the other one served as control. Phase-amplitude coupling strength of 

delta-gamma and delta-spindle, represented by the modulation index was extracted 

as a potential predictor of performance. After being tested on their transitive inference 

ability at short (12 hours after learning) and long-term (7 days after learning), 

behavioural findings revealed a significant TMR-related benefits upon TI accuracy at 

short and long term. However, at the physiological level, neither the delta-gamma 

coupling, nor the delta-spindle one managed to predict accuracy. Taken together, 

these findings provide for encouraging results about sleep's role in cognitive flexibility 

and TMR boosting effect, provide no support for a role of delta-gamma coupling in 

this. 
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1 - Introduction 

 

Being able to focus on multiple high-stakes tasks at once, coming up with a novel idea 

under the pressure of a deadline, taking a new route to avoid bad traffic, create a new 

recipe for dinner because ingredients are missing, cognitive flexibility allows to observe 

a situation and alter decisions to best fit both needs and the current situation at hand. 

Not only a key success in the workplace, cognitive flexibility is part of everyday life. 

Among the helpful cognitive mechanisms that can be used to solve issues, improve 

creativity or promote flexible thinking to adapt to various situations, transitive 

inference (TI) is a widely used holistic cognitive process defined by the ability to build 

new assumptions (AC) or strategies based on premises (AB and BC) and that is 

thought to emerge late in development in humans (Piaget, 1960; Bryant and Trabasso, 

1971). As an example, transitive inference may come into play when dealing with the 

formation of professional or social circles. In the case of a business partnership, it can 

be crucial to guess on basis that a company A has a partnership with the company B 

that itself is competing with the company C, that companies A and C may also compete 

with each other. 

 

While the shape of cognitive flexibility can take multiple expressions such as reasoning, 

inhibition, mental flexibility, or planification, a full comprehension of cognitive flexibility 

mechanisms may appear challenging. However, decades of research have brought 

convincing findings whereby the insight resulting from the associations between 

distant premises in TI would be fostered by sleep (Bowden et al., 2005; Luo and 

Knoblich, 2007; Kumaran, 2013). Recent cognitive models, namely the iOtA and BiOtA 

models, suggest that sleep would promote the formation of new connections between 

past and recent events that shares semantic representations (Lewis and Durrant, 

2011; Lewis et al., 2018), in order to improve issue-solving skills (Sanders et al., 2019), 

rule comprehension (Batterink et al., 2014) and above all, inferential reasoning 

(Ellenbogen et al., 2007; Werchan and Gómez, 2013; Behrens et al., 2018; Aly et al., 

2022). However, and importantly, findings from sleep-related benefits upon relational 

memory have been challenged by numerous contradictory findings. For instance, a 
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study comparing the effects of sleep versus incubation on riddles, visual change 

detection, and anagrams failed to identify any sleep-related advantages across these 

tasks (Brodt et al., 2018). Only riddle tasks showed a positive effect from incubation. 

Similar contradictory results were observed in another study comparing the benefits 

of sleep versus incubation on magic tricks and insight problems (Schönauer et al., 

2018). In an intriguing examination aimed at contrasting the benefits of sleep versus 

wakefulness on solving murder cases within a video game, participants were evaluated 

on various criteria including reasonableness, consistency, story recall, fluency, 

flexibility, originality, and elaboration skills (Hołda et al., 2020). Findings did not reveal 

sleep-related benefits for any of the criteria assessed. 

 

From an EEG perspective, non-rem (nREM) sleep dynamics, especially slow-wave 

sleep (SWS), has long been considered to play an essential role in memory integration 

(Fogel and Smith, 2006; Wilhelm et al., 2014). SWS is mainly represented by slow 

oscillations (SO), spindles and sharp-wave ripples. SOs, which are low-frequency 

oscillations (0.05-4Hz) originating in the cortex (Wilhelm et al., 2014), reflect a back- 

and-forth between hyper-polarized down-states and depolarized neuronal up-states 

(Steriade et al., 1993). The up-phase of the SO, characterized by neuronal 

depolarization, triggers thalamo-cortical spindles, brief oscillations at 9-16 Hz 

(Steriade, 2006), strongly associated with reactivation (Rasch and Born, 2013). 

Intriguingly, precise closed-loop TMR (CL-TMR), where cues were delivered at specific 

SO phases, has revealed distinct impacts on behavioural performance associated with 

the up and down states of the SO (Shimizu et al., 2018; Göldi et al., 2019). These 

beneficial effects are believed to arise from more effective reactivation during that 

particular phase of the oscillation (Rasch and Born, 2013). This, combined with the 

naturally enhanced synchronization of neural firing during up-states (Vyazovskiy et al., 

2009), heightens the likelihood of memory consolidation. An intriguing explanation 

emerged from a study indicating a positive impact of cueing during the up-phase of 

slow oscillations on increasing spindle occurrence, which in turn is linked to a reduced 

rate of forgetting (Ngo and Staresina, 2022). 
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Meanwhile, numerous findings revealed that neuronal firing sequences expressed 

during encoding would be reinstated in subsequent periods of sleep (Wilson and 

McNaughton, 1994) or that reactivation of learning-related brain regions during post- 

encoding sleep (Maquet et al., 2000; Peigneux et al., 2003) would predict subsequent 

post-sleep performance improvement (Peigneux et al., 2004; Yotsumoto et al., 2009). 

On that basis, the hypothesis whereby consolidation could result from neural replay, 

a key-mechanism of spontaneous reactivation of neural networks engaged during 

wakefulness emerged (Buzsáki, 1989; Rudoy et al., 1997; Diekelmann and Born, 2010; 

Paller et al., 2021). Based on the idea of replay, a promising technique known as 

"Targeted Memory Reactivation" (TMR) was proposed and applied to intentionally 

trigger reactivation and thus, promote neuronal reactivations and consequently 

enhance sleep-related benefits. A typical TMR paradigm comprises of three main 

steps: (1) Encoding of sensory-cued materials, olfactory (Rasch and al., 2007) or more 

often auditory (Rudoy and al., 2009), during wakefulness. (2) During sleep, the same 

cue is presented to promote reactivation of the neurons engaged during encoding. (3) 

Recall accuracy is assessed by comparing the cued and non-cued materials. 

 

Cueing benefits during SWS were found in numerous studies (Rasch et al., 2007; 

Rudoy et al., 2009; Fuentemilla et al., 2013; Cairney et al., 2014). In a SRTT study 

where participants were asked to learn motor sequences, TMR during SWS and wake 

revealed subsequent cueing benefits during sleep whereas TMR during wake resulted 

in a poor percentage of motor performance improvement that did not significantly 

differ from the absence of TMR (Cousins et al., 2014). In a face recognition study, 

TMR application during SWS revealed subsequent recognition benefits conditionally 

upon undisturbed sleep (Whitmore et al., 2022). Finally, a world-recall sleep study 

revealed cueing benefits during SWS depending on the phase of stimulation, with an 

increase of performance but only when stimulation occurred on the up-phase of the 

SO (Göldi et al., 2019). In line with this study, a recent one that aimed to further 

knowledge about the SO up-state versus down-state TMR cueing application during 

SWS (Santamaria et al., 2023) revealed significant and positive immediate TI benefits 

after TMR application at SO up-phase, that were shown to persist over two weeks. 

However, in a study comparing the benefits of sleep versus wakefulness in the first 
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experiment and exploring TMR benefits during SWS versus REM sleep versus 

wakefulness in a subsequent phase, a significant benefit was found for sleep compared 

to wakefulness in issue-solving scores. Yet, regardless of the sleep stage cued, no 

benefits from TMR were identified concerning issue-solving (Beijamini et al., 2021). 

 

In the field of memory integration, an increasing interest about gamma oscillations, 

from a physiological perspective, brought several reasons to believe that synchronized 

activity in the gamma-frequency band should have a role in encoding long-term 

memory through the modification of synaptic connections (Jensen et al., 2007). 

Indeed, it has been demonstrated that the timing of synaptic discharges, with respect 

to the phase of ongoing gamma-frequency oscillation, modulates synaptic plasticity 

(Wespatat et al., 2004). This could be explained by an increase in plasticity when a 

synaptic discharge coincides with depolarization provided by a peak in the gamma- 

frequency cycle. Whereas there are few animal studies exploring gamma-frequency 

activity in paradigms of long-term memory, the relationship between long-term 

memory and gamma-frequency activity has been supported by several experimental 

studies in humans. Subsequent memory paradigms using EEG, MEG and iEEG 

recordings have shown that gamma-frequency activity during encoding predicts 

recognition of previously encoded items and successful formation of long-term 

memory (Sederberg et al., 2003; Gruber et al., 2004; Osipova et al., 2006). 

 

Interestingly, gamma frequency has been shown to be coupled with SO (Steriade et 

al., 1996; Grenier et al., 2001). These experiments demonstrated that gamma 

oscillations occur preferentially over the active component of the slow wave ("UP" 

state) characterized by rhythmic cycles of synaptically mediated depolarization and 

disappear during the hyperpolarizing phase ("DOWN" state). A recent study with 

microelectrode LFPs in the human cortex has confirmed that gamma oscillations are 

strongly expressed during SWS and are reliably associated with a marked increase in 

local cellular discharges, suggesting that they were associated with cortical UP states 

(Dalal et al., 2010; Le Van Quyen et al., 2010). Nevertheless, although activities in the 

gamma-range have been observed at the scalp level during a variety of cognitive tasks 
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(Jerbi et al., 2009), evidences of a phasic expression of gamma activities during SWS 

in human macroscopic EEG recordings is challenging (Valderrama et al., 2012). 

 

Although sleep research about TMR during SWS and cognitive flexibility provided 

convincing findings about potential benefits, the exact conditions whereby applying 

TMR could promote transitive inference abilities, in terms of phase-preference, timing 

or duration, is still unclear. Building on this, the present study aims to further 

knowledge about TMR sleep’s role in transitive inference emerging at short and long- 

term. As a second objective, this study aims to investigate the EEG dynamics during 

SWS after learning to improve the comprehension about how gamma oscillations, at 

lesser extent sigma oscillations and their phase-coupling with SO are implied in 

memory integration. For that purpose, 20 participants were recruited and tested in a 

transitive inference protocol at short (12 hours after sleep) and long-term (a week 

after sleep). The behavioural hypothesis assumes a higher accuracy after TMR 

application compared to a control situation irrespective of the time (immediate or 

delayed). Secondly, TMR is assumed to increase the modulation index (MI), main 

coefficient of coupling strength between a phase and a specific amplitude. Finally, the 

MI is expected to correlated with short and long-term accuracy. 

 

2 - Methods 

2.1 - Participants 

 

Twenty healthy students (14 females) from Cardiff University, all right-handed and 

between 18 and 30 (21 ± 1.8) were enrolled in the present study. None of them was 

shown to express sleep disorders (Table 1) (screened by the Insomnia Severity Index) 

(Morin, 1993), vision or hearing problem. None of the participants was taking any 

medication at the time of the experiment and none had a history of any neurological 

or psychiatric disorders. Based on the anamnestic data collection (cf. Supplementary 

1), participants did not report any clinical level of anxiety or depression (screened by 

the Hospital Anxiety and Depression scale) (Zigmond et Snaith, 1983). Only two 
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participants reached a HAD anxiety score higher than 10, considered as a “moderate” 

threshold. The degree of insomnia has been checked by the index of severity insomnia 

(ISI) scale, a self-rated questionnaire that comprises of 7 questions and for which the 

score varies from 0 to 28 where higher scores are associated with higher levels of 

insomnia. For the purpose of this study, the threshold of 14 was chosen as it refers to 

the subthreshold category of people suffering from insomnia disorder (before the 

moderate stage). The HAD is also a self-rated questionnaire that comprises of 14 items 

that range from 0 to 3 for a total of 21. The 14 items are equally divided into 2 sets 

of questions designed to evaluate anxious or depressive symptoms. For the purpose 

of the study, participants had to reach a score lower than 7, which refers to the 

absence of symptomatology. From the day before the experiment to the learning 

session, the participants were instructed to abstain from caffeine or alcohol. The 

present study was approved by the internal review board of the University of Cardiff 

and all the participants gave written informed consent before participating. After 

completion of the experiment, the participants received a 25£ reward. 

 

2.2 - Items and sounds presentation 

 

The items comprised of 16 pictures of imaginary objects, divided into 2 series 

hierarchically ordered (e.g., item A > item B >...n) (Figure 1d). Hence, from each 

series, 7 premise pairs (PP) and 21 inference pairs were created. Among these pairs, 

the anchors (pairs comprising of A and/or H) were excluded from the final analysis 

because of the presence of the first and last item within them. This decision was 

motivated by the fact that since the first and the last items are respectively always 

dominant and submissive, the pairs they are part of are easier to remember. TMR was 

designed by using 8 sounds of 3 seconds visually related to the items (e.g., a squishy 

sound for a “squeeze ball”). From these sounds, shorter versions of 200ms were 

created to be used during the night for the stimulation. The longer versions were used 

during training phase before sleep to recognize and associate the correct item with its 

correct sound. 
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2.3 - Presentation of the EEG setup and the channels 

 

EEG during sleep was recorded using 14 passive electrodes (Brain Vision). Two 

supplementary electrodes were placed 1 cm left and 1 cm below left eye and 1cm 

right and 1 cm above the right one to record the EOG. EMG was recorded using two 

electrodes from each side of the chin. Continuous brain activity was recorded using 

the international 10-20 locations. Fp1/2, F3/4, Fz, C3/4, Cz, P3/4, Pz, O1/2 and Oz 

were amplified with a 0.1-200 Hz bandpass, the impedance was kept below 10KΩ and 

the sampling rate was set to 500Hz. The initial reference chosen was the average 

between the left and right mastoids. Sleep stages were visually identified offline 

according to the standard American Academy of Sleep Medicine (ASSM) criteria (Berry 

and al., 2015). A second sleep scoring process was applied as a comparison measure 

using the automatic sleep scoring algorithm YASA from Python (Vallat and Walker, 

2021). 

 

2.4 - EEG pre-processing and creation of epochs 

 

Datasets were extracted from participants Brain Vision folders. EEG preprocessing was 

performed using EEGLAB (version 2022.0) toolbox from MATLAB. After the import of 

channel location, the left and right EOG channels were removed. The data were down 

sampled to 256Hz. A high-pass filter at 0.5 and a low-pass filter at 40 Hz was applied. 

Re-referencing was performed using Cz channel. The data was segmented into epochs 

of 4 seconds starting 1000 Ms before stimulus onset and 3000 Ms after. Each trial was 

visually inspected and those that contained artifacts were manually removed. On that 

basis, two conditions were created, namely a "control" and "TMR" one. The condition 

"control" referred to the SWS portions that did not receive TMR stimulations while 

"TMR" condition referred to the portions of SWS sleep for which the TMR cueing 

sounds were applied. Finally, independent component analysis was performed to 

detect and remove electrodes for which brain signal would be impacted by unwanted 

artifacts and noise, such as eye movements, muscle activity, or electrocardiographic 

signals. 
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2.5 - EEG analysis 

 

After being decomposed into epochs of 4 seconds, the EEG datasets were analyzed to 

extract the average time-frequency of each condition. The results were statistically 

compared to detect frequency of interests (delta, spindle and gamma range) 

susceptible to emerge from the TMR condition. On that basis, a PAC analysis was 

performed to detect coupling between the delta phase (0.5-4 Hz), spindle activity (13- 

15Hz) and the gamma amplitude (30-40 Hz). PAC strength was quantified by 

extracting the modulation index (MI). MI is a robust and reliable marker of coupling 

that ranges from 0 to 1, where higher coefficients are associated with a stronger 

coupling. 

 

2.5.1 - Time frequency 

 

Time-frequency analysis was performed using EEGLAB study while phase amplitude 

coupling (PAC) and epoch analysis were performed using Python. MNE package was 

used to import, visualize and analyze EEG, matplotlib.pyplot, SciPy and Tensorpac 

were used to plot the comodulograms, calculate the modulation index (MI) and 

perform the epochs t-test comparisons. Time-frequency event-related spectral 

perturbation (ERSP) was performed using EEGLAB study toolbox from MATLAB. The 

oscillatory power was obtain using a continuous wavelet transformation (Complex 

Morlet Waveform, 3 0.8 cycles). Concretely, the wavelet used to measure the amount 

and phase of the data in each successive, overlapping time window started with a 3 

cycles wavelet (Hanning-tapered window applied). Then, the number of cycles in the 

wavelets used for higher frequencies expanded to reach 20% (1 minus 0.8) of the 

number of cycles in the equivalent FFT window at its highest frequency. The cycle 

number was chosen to propose a trade-off between a high frequency resolution and 

time resolution, as higher cycles tend to respectively increase the frequency and 

decrease the time resolution. Range of frequency was set to 0.5 to 40 Hz, resulting in 

a range of frequency analyzed from 3Hz to 40 Hz. Significant differences were 

performed with a permutation-based t-test with multiple comparison correction, n = 

1000 randomizations and a statistical threshold set to 0.05. 
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2.5.2 - Phase-amplitude coupling (PAC) analysis and modulation index (MI)  

 

Phase-amplitude analysis (PAC) was performed with the package Tensorpac from 

Python in a three-steps process. The phase and amplitude range chosen were 

respectively 1-10 Hz and 1-40 Hz. First, the Tort PAC method (Tort et al., 2008; 2010) 

was chosen to compute PAC, as this approach is known to exhibit a robust tolerance 

to noise and sensitivity to modulation width (Kramer et al., 2008; Amiri et al., 2016). 

Secondly, a surrogate computation using swap amplitude time blocks was performed. 

Concretely, amplitude values were shuffled within time blocks across trials. Using this 

approach helped to preserve the trial structure of the datasets for further analysis 

(significant amplitude t-test permutation by epoch). Moreover, it also provided a 

conservative estimate of PAC. As a final step analysis, a correction was applied using 

the dynamic definition method. Concretely, this method aimed to dynamically define 

frequency pairs based on the data characteristics or statistical criteria. It is a flexible 

method that tends to adapt the properties of the dataset and provides for a strong 

ability to capture unexpected or nuanced couplings. 

 

2.6 - Experimental procedure 

 

The study was designed with Psychopy ©. The global procedure comprised of 3 

sessions all occurring in the laboratory (Figure 1c): (1) a learning-session before 

sleep where participants were trained on premise pairs and sound-item association, 

(2) a testing session around 10 to 12 hours following the last learning session and 

that contained a full night of sleep where they were tested on the premise and 

inference pairs and (3) a follow-up seven days after to assess long-term memory 

changes across time. All the sessions were performed on 24’ inches screen monitors. 

Participants arrived around 7PM in the laboratory for the first session. The session 

started with a Karolinska sleep scale (KSS) screening form to check their level of 

alertness. None of them reported high degree of drowsiness (See. supplementary 2). 

 

After they were presented the global task EEG wire-up procedure, the session started 
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with a short presentation of the 16 items (2 series of 8 items). Following this, each 

item was presented again but paired with a sound of 3 sec. duration. After they were 

presented each association twice, the participants were presented a sound only. After 

1.5 sec, a randomized presentation of 3 pictures comprising of the correct item and 

two distractors were displayed. The participants were asked to press left, up or right 

arrow to select the correct sound/item combination. After each trial, feedback with 

the correct item combination (sound + item) was presented. The training was followed 

by two testing sessions, the first one with the long sound versions, and the last one 

with the short versions. For each of the them, the accuracy required to pass the 

sound/item association was 100%. 

 

The learning session started with the presentation of the premise pairs (Figure 1b). 

Each pair was presented alone for 2.5 seconds and followed by a fixation cross for 1.5 

sec. (Figure 1c, 1d). The sequence was repeated twice. The participants were 

instructed to focus on the pairs and try to remember them. In a second time, the pairs 

were presented again in a top/down order and in correct and reverse order (e.g., A/B 

and later B/A). Each pair was associated with a little smiley and question mark on the 

right (Figure 1c). The participants were instructed to press "UP" or "DOWN" key to 

find by trial-error reinforcement which item from the pair could hide a smiley, without 

time-limit response. Using this procedure help them to learn the hierarchical 

relationship between the premise pairs but without being aware of it. Each pair was 

presented in a pseudo-randomized order so that the last item from a pair could not 

precede or follow the first item of the next pair (e.g., C-B; BC). Depending on the 

correctness of the answer given, the participants were given feedback that took the 

shape of a yellow happy or red angry smiley. For each trial, the feedback was 

associated with the correct response that comprised of the correct choice and the 

sound associated with each item. The participants were instructed to reach at least 

80% of accuracy twice in a row or before 10 attempts. After a distraction task where 

the participants were shown a cooking video tutorial, the testing session started but 

without feedback (Figure 1c). Excepted a different order of presentation and the 

absence of feedback, the procedure was the same as well as the score of accuracy to 

reach to complete the task. 
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Figure 1: (a) Schematic representation of a series of objects. The red items (A and H) are called 
“anchors” items and were removed from the final data analysis. (b) Presentation of the premise 

and inference pairs. Probe pairs with a green background were used for data analysis whereas the 

red ones (anchors) were excluded as the first and last pairs are respectively always dominant or 
submissive. (c) Detailed representation of the sessions. The session comprised of an item 

presentation, the sound/pair association training and testing with long (3sec) and short (200ms) 
sound versions. During bedtime, cueing sound were presented during SWS for a total of 80 sound 

presentations. (d) Schematic representation of a trial. The presentation of each item is always 
top/down and the participant is instructed to press UP or DOWN key to select which item is 

supposed to “cover” a happy smiley. 

Figure adapted from Jensen and al., 2019 (Figure 1) 

 

After the completion of the learning session that took approximately 1 hour, the 

participants were given a break time in the lab bedroom and for which they were 

allowed to spend time on a quiet activity until the wire-up started. The wire-up time 

was adapted to fit with participant’s usual bedtime, with a limit around 10.30PM. 

Before the wire-up session started, the participants were given a global explanation 

about the procedure and the global security process. During each overnight, two 

experimenters were presented in the sleep lab, available at any time. For that purpose, 

the participants were given an alarm button-box linked to a speaker in the control 

room with whom they had the possibility to call the experimenters. After a global 

explanation of the wire-up procedure, it started with gel skin-allergy test of 5 min, 

followed by a manual measure of electrode placement and the placement itself. 

Finally, a wake-up time between 7 and 8.30AM was decided with the participants. 

During sleep, TMR was applied with the short sound versions of 200ms during SWS 
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using a semi-automated algorithm detection associated with a pink noise to attenuate 

the impact of the sound and thus prevent from potential awakening. Concretely, brain 

activity was monitored in the control room while the main experimenter stayed awake 

the full night to prevent for any potential issues (cap removal from the participant, 

reference loss signal…) and activate the TMR program. Specifically, the program was 

manually launched after the detection of SWS episodes. On that basis, an algorithm 

designed by a member of the NaPS lab was applied to detect the peaks and throughs 

of slow-oscillations and thus apply TMR. After each SWS episode, the program was 

manually turned-off. The TMR program ended after each sound was repeated 18 

times. The number of repetitions was decided as a trade-off between the number of 

sound presentations required to optimize TMR application (based on pilots and former 

experiments in the lab) and the time needed for this application. 

 

The session 2 started around 10 hours after the participants started to sleep (Figure 

1c). Participant were given a KSS screening questionnaire to assess their level of 

alertness. After the electrode removal, they were given the same instructions as during 

the training session, namely, guessing which item among the pair presented would 

hide the smiley. However, this session comprised of not only premise but also 

inference pairs, namely pairs made of combination of items never presented before 

(Figure 1c). These pairs were varying in distance degrees (Figure 1b), for a total of 

10 premise and 20 inference pairs (e.g., AB; BA for the premise pairs or BD; DB for 

the inference pairs). The testing phase was repeated 3 times, always with a different 

pair ordering. 

 

A week after the session 2, participants were asked to repeat the same sequence. For 

the session 3, the pairs were also presented in a different order top/down and 

reversed. 

 

2.7 - Calculation of accuracy 

 

In order to account for variability among participants, the global average across trials 

was used, even though every participant achieved the required 80% accuracy 
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threshold to pass Session 1. Additionally, in the analysis, anchor pairs were excluded, 

and only probe pairs were considered for calculating accuracy. Anchor pairs, which 

consist of the first or last item in the hierarchy, were omitted because they tend to be 

easier to remember due to their consistent dominance or submissiveness. 

 

2.8 - Selection of features of interest 

 

The data analysis was preceded by a computational detection of features of interest. 

This process aimed to extract useful information from large data sets and avoid noisy 

features. The computational approach was a wrapper method, where a global model 

was calculated and trained based on the features from the dataset. Depending on 

their ability to explain the variance of the computed model, the features are saved or 

removed from the model by backward elimination. For that purpose, the method 

BORUTA was chosen (see Prabhakaran, 2017 for detailed explanations about 

BORUTA application with Rstudio). BORUTA is a feature selection algorithm used 

in machine learning to identify the most important features for a given model. It 

operates by iteratively comparing the importance of real features with that of random 

features (shadows). This approach is based on the concept of random forest, which 

aims to capture the important features that can explain a particular outcome. The 

algorithm consists of two steps: 

(1) The dataset is duplicated and a random forest classifier is trained to detect the 

important features by assigning a score for the mean decrease in impurity for each 

feature. A high score is associated with high importance. Three categories are formed. 

The "shadow min" includes the features with a low importance score, the "shadow 

mean" includes the features that are close to chance. Finally, the "shadow max" 

includes the features with high importance. 

(2) The algorithm compares the importance of the duplicated features with that of the 

real dataset. After a certain number of iterations, a real feature is retained if it has a 

higher z-score than its shadow. 

 

The importance score for each feature in the BORUTA analysis is derived from the 

importance measure provided by a random forest model. Random forest models, in 
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turn, provide importance scores for each feature based on how much they improve 

the model's performance when they are included. A positive importance score 

indicates that the feature contributes positively to the predictive performance of the 

model. The higher the score, the more important the feature is deemed to be. A 

negative importance score implies that the feature detracts from the model's 

performance. This might seem counterintuitive, but it can occur for several reasons: 

1/ The feature might be adding noise to the model, reducing its accuracy. 

2/ The feature could be correlated with other features (multicollinearity), leading to 

unstable importance scores. 

3/ The feature might interact poorly with other features (interaction effect) in a way 

that negatively impacts the model's overall performance. 

 

2.9 - Model selection and calculation of parsimony 

 

The parsimony and the quality of the models were assessed with the Mallow Cp (see 

Bobbitt, 2021 for detailed explanations about Mallow Cp calculation with 

Rstudio), a variant of AIC (Akaike Information Criteria) developed by Colin Mallows. 

Technically, the likelihood of a given model can be increased by adding more 

parameters. Thus, the more parameters used, the more informative the model. 

However, because the coefficient used (R²) is a square, it cannot decrease as more 

parameters are added, which can improve the explanatory power of a model due to 

chance rather than the efficiency of its parameters. To limit this bias, the Mallow Cp 

was applied to assess the fit of the regression models on the basis of the features 

detected by BORUTA. The main objective here was to detect the most precise and 

accurate model that would need the lowest number of predictors to reach that 

precision. Among multiple models available, the one that exhibits the lowest Cp value 

is the most precise. Mallow Cp is calculated as follows: 

Mallow Cp = (SSEp / MSEF) - (N - 2P) 

. SSEp = Sum of square errors for the potential model 

. MSEF= Mean square error of the full model 

. P = number of predictors. The penalty N-2P represents the cost for a model that 

incorporate high number of predictors. 
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This method is consistent with the concept of parsimony, which aims to find a trade- 

off between the explanatory power of a model and its ease of use. 

  

2.10 - Selection of unbiased effect sizes 

 

The magnitude of the difference between means was described by using the Hedge’s 

g. This effect size is the non-biased equivalent of the Cohen’s d but for small sample 

size (n < 50). The formula used to calculate Hedge’s g was: 

Hedge g = (M1 - M2/ SD pooled) * (N - 3 / N - 2.25) * ((√N - 2) / N) 

. M1 - M2 represent the mean difference. 

. SD pooled is the weighted standard deviation 

 

Finally, the adjusted R² was used as a coefficient of determination (see Bobbitt, 

2020 for detailed explanations about adjusted R² calculation with Rstudio). 

This coefficient is consistent with the use of the AIC, as it captures the degree of 

parsimony of the model used. Technically, a malus is added to the R² if a predictor 

improves the model by less than chance. This process aims to avoid a natural increase 

in the R² value when predictors are added to the model, since the coefficient cannot 

decrease (a square is always positive). However, the penalty is reduced if a predictor 

is found to increase model accuracy more than by chance. The adjusted version of the 

R² is always lower than its biased version.  

 

The formula is presented as follows: 

Adjusted R² = 1 - (1 - R²) (N - 1) / N - p - 1 

. N = sample size 

. p = number of predictors 

 

2.11 - Use of robust regressors 

 

Due to the variability of the data observed, the classic ordinary least squares (OLS) 

estimator used to compute linear regression was associated with a robust regression 

estimator, the Theil-sen estimator. Instead of relying on every single data point equally 
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like OLS does, the Theil-Sen estimator calculates the slopes and intercepts from 

various subgroups formed by combinations of a few data points. For instance, while 

estimating an intercept, the number of points in each subgroup (denoted as 'p') should 

be at least as many as the number of features ongoing dealing with, plus one. Once 

these slopes and intercepts are calculated, the final values are determined as what's 

called the 'spatial median' of all these different slopes and intercepts. 

 

3 - Results 

3.1 - Detection of features of interest 

 

The feature detection with BORUTA aimed to detect features the most susceptible to 

explain transitive inference performance over time. For that purpose, the anamnestic 

features, namely KSS (questionnaire measuring the level of alertness), HAD anxiety 

and depression (self-questionnaire respectively measuring the degree of anxiety and 

depression) and ISI (self-questionnaire measuring the degree of insomnia) have been 

assessed, as well as the experimental ones such as the condition (TMR versus control), 

the session (Session 2 or short-term versus Session 3 or Long-term) or the premise 

pairs accuracy before sleep. Finally, the neural correlates represented by the 

modulation index (MI) delta gamma and delta spindle have been taken into account 

(Figure 2). 
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Figure 2: Classification of features of interest for inference pairs, sorted by degree of importance. 

The classification ended after 32 iterations. The main features detected are the HAD anxiety, the 
session, the MI delta gamma, delta sigma, the premise pairs accuracy and the condition, each 

significantly higher than randomness effect represented by the shadows (blue boxplots). 

 

The maximum number of iterations was set to 800. However, only 32 were needed to 

classify the features, highlighting the robustness and efficiency of the algorithm to 

distinguish between relevant and irrelevant features. As shown in the figure 2, most 

of the feature’s values were classified above the shadow’s min features (randomized 

or shuffled copies of the original features used for the classification). Among the 

features that appeared to explain the variability of TI performances, HAD anxiety, the 

session, the MI delta gamma, delta sigma, the premise pairs accuracy and the 

condition were ranked as presented. However, a visual inspection of the best features 

clearly showed that they did not equally explain TI performances. Indeed, with a much 

higher mean of importance compared to others, and in line with the main assumption, 

the condition feature appeared and by far, to be the best feature of explanation 

(Figure 2). 
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3.2 - Comparison of models’ parsimony 

 

The feature selected earlier were compiled in multiple models that aimed to explain 

TI accuracy. The output "accuracy" and the most relevant feature "condition" were 

used as a baseline model (accuracy ~ condition). On that basis, three more models 

were built by adding supplementary features of interest, leading to increase the 

explanatory power of these models but also their level of complexity and potential 

bias. Building on this, a three-steps model selection procedure, based on the principle 

of parsimony was performed. The first step aimed to assess the Adjusted R² metrics 

of the models that addressed the issue of overfitting by penalizing for the inclusion of 

irrelevant predictors. The second step consisted in analyzing the Mallow's Cp that 

aimed to compare the mean squared error of a model to that of the full model (with 

all predictors) and penalize for the inclusion of additional predictors that did not 

significantly improve the model fit. The last step consisted in performing an ANOVA of 

the selected models to detect for any significant differences in their simplicity and 

accuracy. The function ols_step_all_possible from the Rstudio package Olsrr was used 

to compute and test all possible models. The multi-model comparison revealed 31 

combinations. On top of these, as shown below (Figure 3), the baseline model 

exhibited a decent adjusted R² (Adj. R² = 23%) as well as a decent Mallow’s Cp metric 

(M. cp = 24.1). Adding the session condition appeared not only to increase the 

baseline model performance (Adj. R² = 25%) but also its parsimony (M. cp = 22.8).  
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Figure 3: Graphical representation of model comparison between the baseline and the most 

parsimonious models for inference pairs. For each model, the adj. R² and Mallow’s Cp were 
extracted and compared. An association between a small Mallow’s Cp value and a high adj. R² 

coefficient is required to detect the most parsimonious and accurate model. 

 

The last 2 models, respectively represented by the delta/gamma coupling and the 

delta/sigma coupling strength did not appear to strongly improve the model. However, 

adding these features did not reveal a strong and significant decrease of parsimony. 

As both MI coupling are source of interest in the present study, the most complex 

model, namely accuracy ~ condition + session + MI delta/gamma + MI delta/sigma 

was selected for further analysis. Finally, the ANOVA comparison between models did 

not reveal any significant differences between model 1 and 2 (F(1, 77) = 2.69, p = 

0.105), the models 1 and 3 (F(1, 76) = 1.85, p = 0.177) or the models 1 and 4 (F(1,75) 

= 0.87, p = 0.353). 
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3.3 - TMR during SWS promotes long-term TI accuracy 

 

After sleep, comprising of TMR during SWS or no stimulations, participants were tested 

on their delayed abilities to infer about new item associations 12 hours after learning 

and after a week (see methods). The absolute means for session 2 and 3 are 

presented table 1. 

 

The analysis started with a 2*2 ANOVA to detect whether the session time (session 2 

and session 3) by the TMR application (Yes versus No) could predict inference 

accuracy. The results revealed a condition (F(1, 76) = 26.38, p = 2.1e-06) but no 

session effect (F(1, 76) = 2.77, p = 0.100) as well as no interactions although close 

to significance (F(1, 76) = 3.91, p = 0.051). Overall, the main findings revealed a 

positive and significant impact of TMR upon TI accuracy at session 2 (Figure 4), 

meaning 12 hours after sleep (t(19) = 5.29, p = 4.17e-05, 95% CI [11.69, 27.01]; 

Hedge's g = 1.68, 95% CI [0.95, 2.41]). However, no significant difference about TI 

accuracy was found between condition after a week (Figure 4) (t(19) = 1.89, p = 

0.072, 95% CI [-0.87, 18.08]; Hedge's g = 0.64, 95% CI [0.003, 1.29]). Overall, TMR 

appeared to strongly promote TI above chance after sleep compared to control 

condition. However, further analysis did not reveal any maintain of benefits after a 

week despite of a higher accuracy for the TMR condition. If the reasons that led to 

massive delayed decrease of performance for the TMR group (-13%) after a week are 

unclear, it seems clear that the stable performance without any significant changing 

dynamics between sessions (+0.02%) for the control group can be explained by the 

fact that control group did not manage to infer pairs associations above chance at any 

time of the sessions. 
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Figure 4: Accuracy for the inference pairs after 12 hours and after 7 days (N = 20 participants per 
groups). Dots and thick back lines are minimalist boxplot representations. Black squares and 

numbers are means and error bars are CI. ns = non-significant.. 

 

3.4 - EEG neural correlates of TI: time-frequency comparison 

 

The investigation of neural correlates started with a time-frequency analysis of EEG 

epochs in order to detect any clusters of interest in the delta, sigma and gamma range. 

For that purpose, a preliminary topographical comparison was performed to select the 

appropriate channels (Figure 5). For that purpose, the brain activity from stimulus 

onset to 3000ms following stimuli presentation was compared to the baseline, namely 

the averaged brain activity from 1000ms before stimuli to the stimulus onset period. 

A cluster-based, two-tailed one-sample permutation test (1,000 randomization and a 

statistical threshold of 0.05) was performed, revealing F3 and Oz, two channels of 

interest (Figure 5c). Due to the fact that occipital channels are barely involved in the 

frequency of interest of this study, F3 only was selected. 
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Figure 5: Topographical amplitude changes of brain activity power (μV2) for control TMR conditions 

at 1000 ms before stimulus and 3000 ms after stimulus onset. (a) Control condition is significantly 
represented by a parietal and occipital activity in the right hemisphere. (b) Brain activity for the 

TMR condition appears to be driven by frontoparietal regions significantly lateralized in the left 

hemisphere. (c) Permutation t-test between condition revealed F3 (top-left red spot) and Oz (down 
red spot) as channels of interest. 

 

On that basis, a time-frequency analysis was performed. The cluster-based, two-tailed 

one-sample permutation test (1,000 randomization and a statistical threshold of 0.05) 

identified two principal frequency ranges. The control condition (Figure 6a) revealed 

a sigma activity (12-15 Hz) around 15 Hz at 0-100 Ms following stimulus and a low 

gamma range (25-35 Hz) between 500 and 1000 ms after stimulus onset. The TMR 

condition revealed a high delta (3-5 Hz) cluster 200 Ms at both sides of the stimulus 

onset (Figure 6b). Moreover, a long range of low-gamma activity (25-35 Hz) from 0 

to 2000 Ms after stimulus. 

 

Based on the clusters identified, an Event-related desynchronization/synchronization 

(ERDS) changes analysis was performed (Figure 7) to confirm the impact of TMR 

upon delta, sigma and gamma frequency over time. A paired sample t-test revealed a 

non-significant difference for the delta cluster (t(79) = 0.23, p = 0.814, 95% CI [- 

0.02, 0.04]; Hedge's g = 0, 95% CI [-0.31, 0.31]), the gamma cluster (t(79) = 0.91, 

p = 0.371, 95% CI [-0.01, 0.02]; Hedge's g = 0.04, 95% CI [-0.27, 0.4]), but a 

significant difference maintained over time for the sigma cluster (t(79) = 2.11, p = 

0.035, 95% CI [0.01, 0.26]; Hedge's g = 0.33, 95% CI [0.02, 0.64]). A reason 

susceptible to explain the discrepancy between the findings from the time-frequency 

and ERDS analysis is the degree of sensitivity. 
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Figure 6: Electrophysiological differences between control and TMR. (a) Control condition reveals 

an increase of power around 100 ms following stimulus onset in the sigma range. (b) TMR condition 
appeared to increase the delta (3-5 Hz) and low gamma range (35 Hz). (c) Permutation t-test map 

between condition. Main changes appeared after stimulus onset. Clusters of significant differences 
scattered around the stimulus onset were visible in the delta, sigma and low gamma range 

 

Indeed, while time-frequency analysis provides a detailed temporal view of how the 

power in each frequency band changes, this type of analysis is sensitive to changes in 

power across time within a specific frequency band. However, ERDS, is less sensitive 

to rapid changes and may emphasize more sustained changes in power relative to a 

baseline period. Taken together, these findings suggest a benefit from TMR application 

in the power increase of delta, sigma and gamma range. These results are in line with 

the well-known relationship between delta and spindle frequencies, assumed by the 

active system consolidation (ACS) model, to contribute to the consolidation of 

declarative memory (Born and Wilhelm, 2012; Rasch and Born, 2013). 

 

Taken together, these findings suggest a benefit from TMR application in the power 

increase of delta, sigma and gamma range. These results are in line with the well- 

known relationship between delta and spindle frequencies, assumed by the active 

system consolidation (ACS) model, to contribute to the consolidation of declarative 

memory (Born and Wilhelm, 2012; Rasch and Born, 2013). Moreover, the presence of 

delta and gamma could suggest the presence of rhythmic slow activity (RSA) often 

coupled with gamma frequency and that can be observed in both humans (Bodizs and 

al., 2001; Clemens and al., 2009) and rodents (Bland and Whishaw, 1976). 
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Figure 7: ERDS percentage of power changes for the delta, gamma and sigma clusters (N = 20 

participants per groups). Dots and thick back lines are minimalist boxplot representations. Black 
squares and numbers are means and error bars are CI. ns = non-significant. 

 

Although RSA implication is unclear, multiple findings suggest a crucial role in memory 

integration (Bódizs and al., 2001; Nuñez and Buño, 2021). A summary of the results 

is presented Table 1. 

 

3.5 - Theta-gamma PAC modulated by TMR 

 

Since delta and gamma frequencies have been shown to be coupled together (Steriade 

and al., 1996; Grenier and al., 2001), as well as delta and spindles (Born and Wilhelm, 

2012; Rasch and Born, 2013), the next part of the investigation aimed to extract the 

strength of coupling between delta/gamma and delta/sigma frequencies (Figure 8) 

to compare the action of TMR upon their index of modulation (MI) (Figure 9). For 

that purpose, the delta phase (1-4 Hz) on sigma (13-15 Hz) and low-gamma (30-40 

Hz) was extracted from each participant’s brain activity during sleep following premise 
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learning and averaged by conditions. 

 

 

Figure 8: PAC representation averaged between participants. (a) Cross frequency spectrogram for 

the control group reveals a delta (2-4 Hz) phase-locked with a large sigma (13-15 Hz), beta (15-17 
Hz) but no low gamma range (32-40 Hz). (b) After TMR application, coupling dynamics tends to 

decrease for the delta and sigma frequencies but to increase in the low delta and gamma range. 

Modulation index between phase and amplitude is averaged by participants. Black square 
represented by the dotted lines represents the region of interest. 

 

PAC values were computed in a three-step process (see methods) using Python 

Tensorpac package that comprised the Tort PAC approach, a swap amplitude time 

block surrogate computation and finally a dynamic definition correction. A visual 

inspection of the comodulogram from the control condition (Figure 8a) revealed a 

clear delta phase coupled with the sigma frequency range corresponding to the spindle 

activity (13-15 Hz) as well as at lesser extent, the low beta range (16-20 Hz). However, 

the low-gamma range of frequency (top black dotted-line square) did not seem to be 

coupled with the delta frequencies. Comparatively, a clear delta-gamma coupling was 

revealed around 35 Hz for the TMR condition (Figure 8b). Moreover, and despite of 

an evident coupling with the sigma amplitude, the strength of coupling appeared much 

scattered around the range of 13 Hz. 
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Figure 9: MI representation averaged between participants. Only delta/gamma coupling appeared 
to be significantly modulated by TMR. Although delta/sigma coupling strength appeared much 

higher than delta/gamma, a much larger variability can be observed. Black squares and numbers 
are means and error bars are CI. ns = non-significant. 

 

Building on the findings from the comodulograms from each condition, a 2*2 ANOVA 

was performed to detect whether the type of coupling (delta/gamma versus 

delta/sigma) by the TMR application (TMR versus control) could predict the MI 

coupling. The results revealed a coupling effect (F(1, 76) = 301.74, p = 2.e-16) but 

no condition effect (F(1, 76) = 0.015, p = 0.902) (Figure 9). A paired t-test analysis 

performed between conditions revealed a small but significant difference between 

control and TMR for the delta/gamma coupling (t(19) = 2.14, p = 0.044, 95% CI [- 

0.02, 0.01]; Hedge's g = 0.63, 95% CI [-0.27, 0.36]) but not for the delta/sigma 

coupling (t(19) = 1.22, p = 0.235, 95% CI [-0.08, 0.03]; Hedge's g = 0.26, 95% CI 

[-0.36, 0.89]). 
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Overall, PAC analysis revealed an interesting effect of TMR upon the strength of 

coupling between delta phase and sigma or low-gamma amplitude. Indeed, a higher 

delta/sigma coupling was observed for the control condition compared to TMR. The 

TMR condition however, revealed a progressive coupling with the gamma range. 

Taken together, these findings suggest that TMR application during SWS led to shift 

the coupling from sigma to low-gamma range. A summary of the results is presented 

Table 1. 

 

3.6 - Delta-gamma/sigma PAC and TMR impact upon transitive inference 

 

At this stage, physiological analysis has shown an impact of TMR during SWS in the 

strength of coupling between delta and gamma or sigma frequencies. Moreover, at 

the behavioural level, inference pairs influenced by TMR exhibited a higher accuracy 

rate, compared to the control condition for which inference pairs were guessed at the 

chance level. Building on these findings, the last part of the present analysis aimed to 

assess whether the strength of coupling represented by the modulation index could 

predict TI accuracy at short and long term. Because of a high degree of variability, 

the classic linear approach based on the ordinary least squares (OLS) estimator has 

been associated with the Theil-Sen estimator, much robust against outliers (see 

methods). Its standout feature is its ability to handle roughly up to 29.3% of corrupted 

or outlier data points in a simple linear regression scenario. More specifically, Theil- 

sen estimator finds the 'middle ground' among many slopes and intercepts calculated 

from different smaller groups of data points, rather than solely relying on all data 

points equally like OLS. 

 

The preliminary results based on the model accuracy ~ MI + condition + session + 

coupling_type revealed a significant global effect (F(4, 155) = 15.09, adj.R² = 0.26, 

p = 1.94e-10). A deeper analysis revealed that the global model accuracy was mainly 

driven by the condition (p = 1.96e-11) and at lesser extent by the session (p = 0.021). 

Since Theil-sen regression only fits with bivariate models, the global model was split 

by condition and session, resulting in four different models per coupling types 
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(delta/gamma and delta/sigma) (Figure 10, figure 11). The analysis started with 

the relationship between the MI delta/gamma coupling and TI accuracy at session 2 

and session 3. For each model, Theil-sen regression revealed its robustness against 

outliers compared to the classic OLS. Relationship at session 2 for the control condition 

revealed a positive trend with the OLS (F(1, 18) = 1.52, adj.R² = 0.06, p = 0.232) 

(Figure 10a). 

 

 

Figure 10: Representation of the relationship between the MI, representing the strength of 
coupling between delta and gamma frequency, and the transitive inference accuracy per sessions 

and conditions. Plain and red dashed lines respectively represent the linear (OLS) and Theil-sen 
estimators. (a) Relationship after sleep for the control group. Due to its robustness, the Theil-sen 

regression revealed the flat relationship between MI and TI accuracy. (b) Relationship after sleep 
for the TMR. The flat trends revealed by OLS goes against the Theil-sen approach that exhibits a 

negative relationship. (c) Relationship at follow-up for the control group. Surprisingly, a positive 

and significant relationship was found. (d) Relationship at follow-up for the TMR group 

 

However, Theil-sen approach managed to detect the real flat trend between the MI 

and the accuracy (Figure 10a) (Pseudo R² = 0, Theil-sen p = 0.810). Similarly 

diverging findings appeared for the TMR condition (Figure 10b). Indeed, while OLS 

 regression suggested a flat trend between MI and accuracy (F(1, 18) = 0.015, adj.R² 

= 0, p = 0.901), surprisingly, Theil-sen revealed a negative relationship (Pseudo R² = 
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0, Theil-sen p = 0.143). A similar analysis was performed at follow-up session. 

Surprisingly, the regression analysis for the control condition revealed a positive and 

significant relationship for both OLS and Theil-sen regressions (F(1, 18) = 4.539, 

adj.R² = 12, Pseudo R² = 13, p = 0.047, Theil-sen p = 0.045) (Figure 10c). However, 

the relationship at follow-up for TMR condition did not reveal significance (F(1, 18) = 

0.397, adj.R² = 0, Pseudo R² = 0, p = 0.536, Theil-sen p = 0.324) (Figure 10d). 

 

A similar analysis was performed for the coupling strength between delta/sigma 

coupling and TI accuracy, at short and long-term interval. 

 

 

Figure 11: Representation of the relationship between the MI, representing the strength of 
coupling between delta and sigma frequency, and the transitive inference accuracy per sessions 

and conditions. Plain and red dashed lines respectively represent the linear (OLS) and Theil-sen 
estimators. (a) Relationship after sleep for the control group. MI significantly correlates with TI 

accuracy. (b) Relationship after sleep for the TMR. In line with the delta/gamma coupling trend, 

both OLS and Theil-sen approaches exhibit a negative relationship. (c) Relationship at follow-up for 
the control group. Again, a positive and significant relationship was found. (d) Relationship at 

follow-up for the TMR group. 

 

The analysis of the relationship at session 2 for the control group revealed a massive 

difference between OLS and Theil-sen approach. Indeed, while OLS appeared to 
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exhibit a positive but non-significant relationship between the MI and the TI accuracy 

(F(1, 18) = 2.59, adj.R² = 0.08, p = 0.124) (Figure 11a), Theil-sen revealed not only 

a positive but also a significant trend (Figure 11a) (Pseudo R² = 0.1, Theil-sen p = 

0.001). Comparatively, similar findings appeared for both regression models for the 

TMR condition at short-term, revealing an absence of relationship between the MI and 

the TI accuracy (F(1, 18) = 0.295, adj.R² = 0, Pseudo R² = 0, p = 0.593, Theil-sen p 

= 0.211) (Figure 11b). Relationship at follow-up for the control condition revealed 

again a massive difference in terms of degree of relationship and significance (Figure 

11c). Indeed, the absence of relationship and significance from the OLS (F(1, 18) = 

1.30, adj.R² = 0.02, p = 0.269) went against the decent degree of relationship and 

the strong significance raised by Theil-sen (Pseudo R² = 0.13, Theil-sen p = 0.0004). 

Finally, the follow-up session for the TMR condition, in line with the session 2, did not 

reveal any relationship between the MI and the TI accuracy (F(1, 18) = 0.397, adj.R² 

= 0, Pseudo R² = 0, p = 0.536, Theil-sen p = 0.324) (Figure 11d). A summary of 

the results is presented Table 1. 

 

4 - Summary of the main findings 

 

The present section aims to present a brief summary of the behavioural and 

electrophysiological findings from this study (see Table 1). Negative findings, non- 

significant p-values or marginal effect size are represented in red. TS.p represents the 

p-value calculated on the basis of Theil-sen estimator. Ps.R is the pseudo R² calculated 

with the Theil-sen approach. Negative findings, non-significant p-values or marginal 

effect size are represented in red. TS.p represents the p-value calculated on the basis 

of Theil-sen estimator. Ps.R is the pseudo R² calculated with the Theil-sen approach. 

Finally, ctrl and tmr respectively stand for the control and TMR condition. 
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Table 1 | Summary of the behavioural and EEG findings 
Statistical results 

Test procedure P-value Effect size 
Behavioural findings   
Control vs. TMR S2 p = 4.17e-05 Hedge’s g = 1.68 
Control vs. TMR S3 p = 0.072 Hedge’s g = 0.64 
Evolution rate control S2.S3 - +0.02% 
Evolution rate TMR S2.S3 - -13% 
Electrophysiological findings (Modulation index) 
Control vs. TMR ẟ/ɣ p = 0.044 Hedge’s g = 0.63 
Control vs. TMR ẟ/ σ p = 0.235 Hedge’s g = 0.26 
Electrophysiological correlates of transitive inference accuracy 
Accuracy ~ MI ẟ/ɣ (ctrl S2) p = 0.232, TS.p = 0.810 adj.R² = 0.02, Ps.R² = 0 
Accuracy ~ MI ẟ/ɣ (tmr S2) p = 0.901, TS.p = 0.143 adj.R² = 0, Ps.R² = 0 
Accuracy ~ MI ẟ/ɣ (ctrl S3) p = 0.069, TS.p = 0.05 adj.R² = 0.12, Ps.R² = 0.1 
Accuracy ~ MI ẟ/ɣ (tmr S3) p = 0.536, TS.p = 0.324 adj.R² = 0, Ps.R² = 0 
Accuracy ~ MI ẟ/ σ (ctrl S2) p = 0.124, TS.p = 0.001 adj.R² = 0.1, Ps.R² = 0.1 
Accuracy ~ MI ẟ/ σ (tmr S2) p = 0.593, TS.p = 0.211 adj.R² = 0, Ps.R² = 0 
Accuracy ~ MI ẟ/ σ (ctrl S3) p = 0.269, TS.p = 0.0004 adj.R² = 0.02, Ps.R² = 0.1 
Accuracy ~ MI ẟ/ σ (tmr S3) p = 0.741, TS.p = 0.421 adj.R² = 0, Ps.R² = 0 

 

5 - Discussion 

 

Decades of research brought compelling evidence about sleep-related benefits upon 

memory consolidation (Diekelmann and Born, 2010b; Dudai, 2012; Rasch and Born, 

2013; Denis et al., 2021; Zhang et al., 2022) and at greater extent upon relational 

memory represented by transitive inference (TI) (Ellenbogen et al., 2007; Golkashani 

et al., 2021). Building upon replay, considered as a core process of memory integration 

(Wilson and McNaughton, 1994; Maquet et al., 2000; Peigneux et al., 2004), TMR 

experiments that aimed to replicate that spontaneous phenomenon observed during 

sleep rapidly revealed a proven efficiency in the improvement of memory consolidation 

(Fuentemilla et al., 2013; Sterpenich et al., 2014; Cairney et al., 2018; Goldi et al., 

2019), as well as in transitive inference abilities (Santamaria and al., 2023). However, 

the precise mechanisms involved as well as the condition required to promote TMR- 

related benefits upon TI are misunderstood. For that purpose, the present study aimed 

to further knowledge about TMR benefits by focusing on SWS stage and more 

specifically, on delta and gamma activity as well as sigma activity in humans, two 

frequency couplings known to play a crucial role in memory integratino (Jensen and 

al., 2007; Shimizu and al., 2018; Göldi and al., 2019). 
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Concretely, participants have been trained on series of pairs of items for which half of 

them were cued via a song. During SWS, cueing song have been re-presented 

preferentially at the up-phase or the peak of slow oscillations. A subsequent testing 

session was performed immediately after sleep and after a week to test both short 

term and long-term evolutions of transitive inference. In this study, the modulation 

index from delta phase and spindle amplitude but also low gamma one was used to 

predict TI accuracy. 

 

At the behavioural level, short term as well as long term TI accuracy from the control 

condition did not reach a significantly higher level than chance. Comparatively, TMR 

boosting effect resulting in a high accuracy that slightly decrease after a week. The 

trend from the control condition is surprising as sleep itself has been shown to promote 

relational memory (Ellenbogen et al., 2007; Werchan and Gómez, 2013; Behrens et 

al., 2018; Aly et al., 2022) as well as issue-solving skills (Sanders et al., 2019). As 

raised in the general introduction, degree of awareness is known to positively 

modulate TI abilities. However, after more careful considerations, it appeared that 

around 50% of the participants partially or completely guessed the overall objective 

behind the protocol. Deeper comparison analysis did not reveal a significant difference 

between participants aware about the hierarchy at the end of the experiment and 

those who ignored the relationship between items at short term (54.4 versus 54.5% 

of accuracy) as well as at long term (52.7 versus 58% of accuracy). excepted a small 

increase of accuracy between sessions for the group aware about the hierarchy. A 

more convincing explanation might come from the polysomnographic data revealing 

that among the average of 11 participants that performed at chance level at session 

2 and 3, 83% of these were shown to exhibit a small percentage of SWS but also of 

REM sleep compared to the average usually described in the literature, that has been 

replaced by N2 percentage. This last argument can be source of interest. Indeed, 

whether a full night of restorative sleep is crucial for memory integration is not 

surprising. However, these conclusions bring an insightful information about the 

mutual role of SWS and REM sleep together as essential to promote memory 

integration. 
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At the EEG level, TMR application was shown to promote a strong activity in the sigma 

range at the stimulus onset, followed by low-gamma frequencies from stimulus onset 

to 2000 Ms after stimulus. Moreover, a massive peak of delta frequency around 200 

Ms before to 500 Ms after stimulus was shown. Finally, this activity was associated 

with a large band of sigma and low-gamma activity. Though the lack of physiological 

analysis would make the interpretation challenging, such a dynamic is in line with the 

assumption about delta frequencies suggested to drive spindle and thus, promote 

memory consolidation (Fogel and Smith, 2006; Wilhelm and al., 2014). Finally, and as 

expected, significant clusters in the range of delta, sigma and gamma activity emerged 

from the comparison between TMR and control conditions. Moreover, a deeper EEG 

analysis of cross frequency between delta/gamma and delta/sigma activities revealed 

a significant effect of TMR on the strength of coupling for the delta and low gamma 

range (around 35 Hz), but surprisingly, not for the delta/sigma activity. However, a 

much higher strength of coupling between this last coupling was observed. 

 

However, and contrary to the main hypothesis, TMR benefits shown at the behavioural 

level did not appear to predict the correlation between the MI and TI accuracy. Indeed, 

while positive and significant correlations were found between both couplings and 

accuracy for the control condition, at short and long-term, TMR condition exhibited at 

best, flat trends or at worse, negative correlations. A reason proposed to explain the 

deterioration observed for TMR might come from the phase-locking between SOs and 

sigma or gamma frequencies. Indeed, while convincing findings in the literature posit 

the idea of a positive coupling at SO up-phase, the phase-preference analysis in this 

study revealed a gamma frequency range scattered around the delta phase as well as 

for both conditions (see Supplementary - S4 and S5). Comparatively for the 

delta/sigma coupling, and surprisingly, the phase-preference for the control condition 

appeared phase-locked to the down-phase of SO and thus, positively correlated with 

TI accuracy, while TMR condition revealed a coupling phase-locked to the up-phase 

of SOs, associated with a negative or flat correlation with performance. Studies are 

needed to further knowledge about the phase-locking influence upon memory 

integration or cognitive flexibility. 
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All sciences worthy of the name also suffer from limitations and the present study is 

certainly no exception to the rule. A first source of limitation, common in the field of 

sleep research, can be raised about the lack of statistical power due to the small 

sample size. Indeed, a study that aims to detect a medium effect size would expect 

at least 32 participants (around 26 for repeated measure designs). Here, time 

limitations led to a small sample size (N = 20), resulting in a loss of probability to 

detect positive effects when they are real. A second source of limitation is the unique 

type of item chosen. Here, the choice of imaginary object was motivated by the 

decision to limit potential bias. Indeed, memory of pictures of scenes can be more 

important for participants that are used to travel. Moreover, pictures of faces, not to 

mention prosopagnosia, is associated to very specific cognitive treatments and neural 

networks for which the efficiency may vary between people. However, it is reasonable 

to consider that the type of material chosen may have affected transitive inference 

abilities, and at bigger scale, the memory processing, integration and thus, the EEG 

dynamics. Finally, future research should consider the idea that classic EEG correlates 

of performance may not be robust enough to capture sleep benefits. In a field of 

research where the potential benefits of sleep upon memory integration and cognitive 

flexibility are still an open question, it is reasonable to think about innovative approach 

more susceptible to capture those benefits. As an example, recent findings have 

shown the close relationship between fractals and circadian rhythms (Pittman-Polletta 

et al., 2013) or more specifically, the importance of fractal approach to predict issue 

solving (Diaz et al., 2015). Future research should consider the analysis of temporal 

variations of EEG dynamics as an inspiring source of investigations. 

 

In summary, and despite of these limitations, the present study provided insightful 

information by the findings about TMR benefits upon transitive inference as well as by 

the failures to capture convincing neural correlates of TMR-related benefits. By 

providing evidence about TMR benefits but also the physiological dynamics behind 

these benefits, and the conditions needed to optimize them, namely a mutual 

interaction between SWS and REM sleep as well as a careful consideration of the 

phase-preference between delta and gamma frequencies but also of the stimulation 
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phase-locking, this study shines a light upon the fantastic interaction between sleep 

and memory. 

 

6- Supplements 

 

 

S1: Anamnestic scores per participants. (a) 2 participants appeared to reach an anxiety score o 10 

or above. However, as their score of depression remained in the area of acceptance, they were not 

excluded from the study. The dashed blue line represents the threshold of acceptance. 
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S2: Percentage of time spent by sleep stage per participants. The dashed blue line represents the 

theoretical time spent considered as normal for a healthy adult. 

 

 

 

 



161 
 

 

S3: Graphical representation of premise pairs accuracy before sleep. ns = non- significant 

 

 

S4: Averaged ERP from all the participant and all channels representing the TMR phase application 

on SOs. Both conditions appeared phase-locked with the peak of SOs. 
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Chapter 5: GENERAL DISCUSSION 
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1 - Thesis overview 

 

The overall objective of the present thesis was to further knowledge about short and 

long-term application of TMR during SWS or REM sleep and the formation of transitive 

inference, a form of cognitive flexibility applied in daily life situations. The second 

objective was to explore the multiple components of electrophysiological brain activity 

during sleep to detect potential neural correlates susceptible to provide for convincing 

explanations of TMR behavioural benefits. The reasons behind this project came from 

a double conclusion from the fact that while numerous findings from animals or 

humans studies, in the field of cognition or biology, provided for insightful reasons to 

believe that sleep plays a crucial role in the consolidation of memory, or even in the 

integration of recent and old memories, the exact mechanisms involved in the 

formation of memories consolidated sometimes for a lifetime, the evolution of these 

mechanisms over time and finally, the potential interaction between sleep stages’ 

contribution remained open questions. 

 

On that basis, a series of experiments were designed to assess the sleep promoting 

effect in the emergence of TI, the role of TMR upon each main sleep stages, namely 

SWS and REM sleep in TI abilities over time, and finally the electrophysiological neural 

correlates represented by the strength of coupling between frequencies that could 

explain sleep and TMR benefits. 

 

The chapter 2 aimed to investigate the behavioural benefits from a full night of sleep 

compared to a similar period of wake without sleep deprivation, in the consolidation 

of memory and TI emergence. For that purpose, a TI task was designed where 

premise components were used to assess memory consolidation and TI elements were 

used to assess cognitive flexibility. Both cognitive components were examined at short 

(12 hours after learning) and long-term (a week after sleep). The chapter 3 that was 

built upon a remote TI task and a home-based TMR device mainly aimed to investigate 

the role of TMR during REM sleep in the formation of TI and its evolution at short and 

long-term. The second objective consisted in exploring the exploration of EEG 
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correlates of TI formation, mainly represented by theta/gamma coupling. At lesser 

extent, the present study also aimed to further knowledge about the applicability and 

feasibility of lab-experimental designs at home. The chapter 4 constituted the final 

experiment of the thesis and aimed to investigate TMR application during SWS and its 

impact upon TI ability at short and long-term. EEG correlates, namely delta/sigma and 

delta/gamma coupling strength were also investigated as potential sources of 

explanations of TMR behavioural benefits. The final chapter of the present thesis 

aimed not only to point out the contribution of the present findings but also to address 

the remaining open questions and suggest further investigations susceptible to 

improve knowledge about sleep’s contribution in the formation of cognitive flexibility. 

 

2 - Sleep and memory consolidation 

 

Although the transitive inference protocols from the present thesis mostly focused on 

relational memory, the first experiment also aimed to test post-sleep premise pairs 

recall to assess consolidation benefits from sleep. The widely accepted idea whereby 

sleep plays a crucial role in the formation of memory (Diekelmann and Born, 2010b; 

Dudai, 2012; Rasch and Born, 2013) has been supported by recent studies (Denis et 

al., 2021; Zhang et al., 2022). Unsurprisingly, these two studies that used a word-pair 

task revealed a post-sleep benefit 12 hours after learning. However, and interestingly, 

sleep benefits sharply decreased (Denis et al., 2021) or event disappeared (Zhang et 

al., 2022) after 24 hours. Finally, a recent study that used the same paradigm, namely 

a transitive inference task (Foldes et al., 2023), aimed to replicate the findings from 

Ellenbogen’s team (Ellenbogen et al., 2007) about a strong time and sleep benefits in 

memory formation. However, testing after sleep did not reveal any difference between 

sleep and wake group premise pairs’ performance. Moreover, the control group 

appeared to slightly perform better than sleep one. As raised later by Cordi and Rasch 

findings (Cordi and Rasch 2021), time and sleep benefits upon memory formation 

might depend on specificities and conditions that are still unclear. While long-term 

sleep benefits remain unclear, the chapter 2 aimed to shed light upon this open- 

question. Overall, despite a slight decrease, sleep group performance did not 
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significantly differ compared to the learning accuracy, compared to the wake group. 

Moreover, the same trend was observed after a week with a steep fall from the control 

group, close to chance, while sleep group still managed to perform above chance. 

Here, a protective effect of sleep against memory decline was observed even after a 

week. A reason that can be raised to explain this may come from the forgetting curve 

from Ebbinghaus (Ebbinghaus, 1885) that revealed how the strength of encoding 

could influence the forgetting curve over time. Concretely, a stronger initial encoding 

would be associated with a less pronounced memory decline. In the case of the 

chapter 2, the threshold was set to 80% of encoding, which strongly differs from the 

66% from Foldes’ team (Foldes et al., 2023) or the 75% from Ellenbogen’s one 

(Ellenbogen et al., 2007). Moreover, in the chapter 4, a higher strength of encoding 

before sleep was shown to significantly increase the proportion of SWS and decrease 

REM sleep one. Taken together, a reduced forgetting curve completed by a higher 

proportion of SWS, a sleep stage assumed to play a crucial role in the consolidation 

of memory are reasonable arguments susceptible to explain the long-term protective 

effect of sleep observed. More studies are needed to further knowledge about long- 

term sleep benefits upon memory consolidation. 

 

3 - Sleep and relational memory 

 

The overall objective of this thesis aimed to further knowledge about sleep's role in 

relational memory. In the specific case of transitive inference, gist abstraction between 

encoded events would promote the extraction of rules and the detection of 

irregularities. However, sleep importance in the formation of associations between 

events led to mixed results. Indeed, the famous study from Ellenbogen's team tested 

56 participants on a transitive inference task following sleep or wake, after 20 min, 12 

hours or 24 hours (Ellenbogen et al., 2007). Interestingly, only the delayed testing 

after 12 or 24 hours led to a high degree of inference ability, with a boosting sleep 

effect for inference pairs with highest distance degrees. Similarly, transitive inference 

was found to be improved by sleep and reinforcement (Werchan and Gomez, 2013). 

Comparatively, sleep compared to a similar period of incubation did not show 
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significant benefits into a riddle, visual change detection and anagrams the task (Brodt 

et al., 2018). No more benefits were shown into a magic tricks and insight problems 

task (Schönauer et al., 2018). Finally, sleep did not appear to promote murder-case 

solving in a video-game, irrespective of the numerous criteria assessed, namely the 

reasonableness, consistency, story recall, fluency, flexibility, originality and elaboration 

skills (Hołda et al., 2020). In the field of transitive inference, Foldes and al. results did 

not reveal sleep benefits upon inference accuracy (Foldes et al., 2023). Comparatively, 

the results from the chapter 2 revealed a strong sleep positive effect at short as well 

as long-term (after a week). The benefits found on the comparison between sleep and 

wake were confirmed by a logistic regression with an accuracy at 81% (AUC = 0.91; 

OR = 1.32). For now, providing a convincing explanation to explain that discrepancy 

is challenging due to the poor number of studies. These findings are all the more 

surprising in the light of the accuracy found in the chapter 3 and 4 for the control 

group that did not receive TMR and that exhibited a transitive inference accuracy 

below or close to chance. Although preliminary explanations were provided about the 

methodological pitfall assumed to disrupt overlapping representations of premise pairs 

in the chapter 3 and the lack of SWS and REM sleep in the chapter 4, again, the poor 

number of studies in this field makes any possibility of explanation highly speculative, 

excepted potential personal factors such as the feeling of complexity of the task 

susceptible to promote sleep benefits (Sio et al., 2013). 

 

4 - About TMR and transitive inference 

 

Over last decades, Targeted Memory Reactivation (TMR) appeared as a promising 

approach to evaluate sleep’s role in the formation of memory. TMR is derived from 

the key concept of reactivation during sleep. Concretely, it has been shown that 

hippocampal neuron networks involved during encoding of events are spontaneously 

reactivated during sleep in rodents (Wilson and McNaughton, 1994) as well as in 

humans (Peigneux et al., 2004), leading to a strengthening of these events (Deuker 

et al., 2013). A typical TMR protocol, an event is associated with a cue that can be 

olfactory (Rasch et al., 2007) or more often auditory (Rudoy et al., 2009), during 
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wakefulness. Following this, the sleeping brain is exposed to the cue, leading to a 

spontaneous reactivation of the neurons engaged during encoding. 

 

Whether applying TMR during sleep could lead to an additional gain in the ability to 

extract generalities and promote issue solving has been poorly investigated. In a study 

where participants were tested in their ability to solve challenge in a video game 

(Beijamini et al., 2021), sleep versus wake condition comparison revealed a strong 

and significant increase of proportion of successful participants (from 24% to 62%). 

However, TMR application during SWS or REM sleep did not result in an additional 

gain of issue solvers. In the field of transitive inference, findings from Santamaria’s 

team revealed an additional gain of accuracy after TMR during SWS up-phase 

compared to a similar period of sleep without stimulation (Santamaria et al., 2023) 

but that did not reach significance. A follow-up session two weeks after revealed a 

similar trend. Hence, the overall objective from the chapter 3 and 4 was to address 

the challenging question of TMR application during SWS or REM sleep as a tool that 

could promote association between premises in order to promote the emergence of 

abstract rule and guessing of the hierarchy within the premise pairs learnt before 

sleep. 

 

In the chapter 3, TMR cueing sounds were applied during REM sleep on participants 

that used a remote headset device at home. After sleep, participants were tested on 

inference pairs derived from premise items that received TMR or not. Overall, 

behavioural findings led to a significant and positive TMR effect. At short term level, 

TMR application led to accuracy significantly higher than chance and a greater 

accuracy than control condition for which accuracy did not even reach chance. 

Comparison at follow-up session resulted in a similar trend as observed after sleep for 

the control group. However, and surprisingly, TMR condition revealed a greater and 

significant delayed boost of accuracy (+22.4%). In line with these findings, a recent 

paper for which a similar delayed boosting effect occurred after TMR during REM sleep 

(Perreira et al., 2023) proposed a delayed phenomenon of plasticity that might take 

days to occur, and for which behavioural consequences would not be immediately 

visible. Although the present thesis did not provide any biological results susceptible 
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to support this theory, numerous recent findings have raised the importance of 

melanin-concentrating hormone (MCH) neurons that are highly activated during REM 

sleep (Verret and al. 2003), as a good candidate susceptible to explain the crucial role 

of REM sleep in neural plasticity. Indeed, a study in mice have found that altering MCH 

neurons led to a diminution of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA) and N-methyl-d-aspartate (NMDA) receptor-mediated transmissions involved 

in the phenomenon of long-term plasticity (LTP). These findings were confirmed by a 

recent study in which in vitro optogenetic increase of MCH axon activity facilitated 

hippocampal plasticity by lowering the threshold for synaptic potentiation (Harris and 

Burdakov, 2023). 

 

In the chapter 4, TMR was applied in the sleep lab and during SWS. As for the chapter 

3, the participants were tested at short term after sleep (12 hours after learning) and 

a week later on their ability to guess inference pairs relationship. At the behavioural 

level, TMR condition revealed a strong and positive improvement in participants’ 

accuracy both at short and long-term. As for the chapter 3, accuracy from the control 

condition did not reach a significant difference compared to chance (respectively 54% 

and 55% at session 2 and 3). Interestingly, TMR benefits appeared to follow a different 

dynamic with an accuracy from TMR condition that immediately reached a peak at 

74% of correct response after sleep. Subsequent testing at follow-up led to a decrease 

of performance (evolution rate averaged at -13%). These findings are in line with the 

ASC model (Diekelmann and Born 2010; Born and Wilhelm, 2012; Rasch and Born, 

2013) under which slow oscillations during SWS play a key role as main synchronizer. 

Indeed, depolarizing up-phase of SO are assumed to drive thalamocortical spindles 

which in return drive the sharp-wave ripples in the hippocampus, promoting memory 

reactivation and consolidation. While the question of neural correlates and phase 

amplitude will be discussed in the next section, the averaged ERP across participants 

and channels in the chapter 4 revealed a TMR application close to the peak of SOs. In 

line with the results from Santamaria's team for which TMR application during SO up- 

phase was shown to promote TI compared to down-phase (Santamaria et al., 2023), 

it is reasonable to assume that TMR during up-phase of SO would increase the phase 
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coupling between SO, spindles and ripples and thus, promote hippocampal-neocortical 

memory transfer and consolidation. 

 

However, no convincing explanations can be given about the reason why TMR benefits 

timing differed between SWS and REM sleep. It is important to keep in mind that in 

the TMR scope of research, findings about potential benefits are still controversary 

(Simon et al., 2018; Joensen et al., 2022), SWS and REM sleep's roles implication in 

memory formation are still unclear (Yuksel et al., 2023) as well as phase-locking 

preference (Batterink et al., 2016; Santamaria et al., 2023). More studies are needed 

to address these open questions. 

 

5 - About neural correlates of TMR 

 

The present thesis did not only aim to investigate about TMR benefits but also about 

potential neural correlates susceptible to explain these benefits. As mentioned in the 

previous section, while TMR has been mostly shown to promote memory consolidation 

by increasing recall accuracy after sleep, the reasons behind these benefits are still 

unclear. For that purpose, questions about TMR have been addressed in the chapter 

3 during REM sleep and in the chapter 4 during SWS. Concretely, the chapter 3 aimed 

to further knowledge about theta and gamma contribution to memory integration and 

whether the coupling between these frequencies could be improved by TMR. The 

decision was motivated by the state of the art whereby REM sleep theta oscillations 

that mostly take their origins from hippocampal activity (Mukai and Yamanaka, 2023) 

are known to drive slow and fast gamma oscillations (Sirota et al., 2008) that are 

generated in the subiculum (Jackson et al., 2011). In a study performed in mice 

(Brankack et al., 2012), theta gamma coupling was found to increase during tonic 

REM sleep that represents approximately 95% of REM sleep time spent. In human, 

theta gamma coupling was shown to play a crucial role in memory formation (Canolty 

et al., 2006; Staudigl, 2013; Heusser et al., 2016) and long-term potentiation (LTP) in 

hippocampus (Pavlides et al., 1988). The chapter 4 mostly aimed to focus on delta 

gamma coupling as a potential marker of memory formation. Although investigating 
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gamma oscillation in SWS was unusual, gamma frequencies were not only shown to 

be coupled with SO (Steriade et al., 1996; Grenier et al., 2001), mostly during the up- 

phase of SOs but also to modulates synaptic plasticity (Wespatat et al., 2004). Finally, 

in human, gamma-frequency activity during encoding was shown to predict 

recognition and long-term memory (Sederberg et al., 2003; Gruber et al., 2004; 

Osipova et al., 2006). As a second objective, in line with the ASC model mentioned in 

the previous section, the coupling between delta and spindle activity has also been 

investigated as a potential neural correlate of transitive inference. 

 

Overall, physiological findings from chapter 3 started by revealing the presence of 

theta and gamma approximately 500 ms following stimulus onset. As expected, TMR 

condition was associated with an increase of these frequencies of interest, as shown 

by the event-related desynchronization/synchronization (ERD/ERS), a measure of 

power decrease/increase of electroencephalogram (EEG). In line with the 

expectations, further analyses revealed an increase of the strength of coupling 

between theta and gamma frequencies for the TMR condition, measured by the phase 

amplitude coupling (PAC) modulation index (MI) coefficient. However, the behavioural 

findings went against the hypothesis about a positive relationship between the MI and 

TI accuracy. On the one hand, such a positive trend only occurred at follow-up session. 

On the other hand, and more surprising, it only happened for the control condition. In 

line with the behavioural findings about the chapter 3 mentioned earlier, a delayed 

correlations between neural representations of coupling and accuracy are not matter 

of surprise, although the reason of that delay still remains an open-question. However, 

the potential detrimental effect of TMR upon the relationship between MI and TI 

accuracy went completely against the preliminary assumptions. A deeper analysis 

about phase-preference between theta and gamma revealed a shift in the phase- 

locking between gamma that appeared down-phase locked with theta in the TMR 

condition, while gamma was shown to be up-phase locked with theta frequency for 

the control condition. Interestingly, theta low-gamma coupling is mostly known to be 

up-phased with theta band (Schomburg et al., 2014; Lopes Dos Santos et al., 2018; 

Zhang et al., 2018). Hence, it is reasonable to assume that the reason why only the 

endogenous theta gamma coupling from the control condition appeared to be 
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positively associated with behavioural performance would be due to the preferred 

phase-locking between frequencies, compared to the TMR condition that potentially 

altered the theta gamma phase-locking. Finally, a temporal cluster analysis raised the 

significant progressive decrease of phase amplitude coupling that progressively 

derived from low-gamma to beta band for TMR condition. While it might be challenging 

to determine whether phase shifting or coupling amplitude decrease went first, it is 

plausible to suggest that they both influenced the detrimental TMR effect found 

between MI and TI accuracy. 

 

Findings from the chapter 4 revealed the presence of delta 200 ms before stimulus 

onset and sigma frequency range locked with the cueing sound. This interesting 

physiological dynamic is in line with the ASC model and the SOs assume to drive the 

spindles. Moreover, low gamma clusters appeared spread around the stimulus onset. 

However, only spindles from the control frequency were shown to exhibit a higher 

ERDS value compared to TMR. While the reasons of such a discrepancy between the 

time frequency clusters found in delta, spindles and low gamma range and the lack of 

expression of power in the ERDS are unclear, three arguments are proposed here. 

First, frequency-specific effects or the fact that while delta and low gamma power 

might show a consistent increase, spindles within the same time windows might not 

exhibit similar changes, leading to nuanced ERDS outcomes. A second interpretation 

is related to interactions between frequencies. Indeed, an increase in spindle power 

might be accompanied by changes in other frequency bands that mask or modulate 

the ERDS effects specifically for delta and gamma range. Finally, variations in neural 

responses among individuals could contribute to complex patterns, where group-level 

differences in power might not necessarily translate directly into ERDS changes due 

to the variability in how individuals respond within each group. Interestingly, delta 

spindle coupling was shown to exhibit a much higher and significant MI compared to 

the delta low gamma coupling. However, only delta low gamma coupling was shown 

to significantly increase with TMR. The reason why delta spindle coupling did not 

significantly increase with TMR can be explained by the fact that cueing sound was 

phase-locked with the peak of SOs, varying from the ASC model for which spindles 

are locked to the up-phase of delta oscillations. As for the chapter 3, a regression 
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analysis was performed between the MI from delta spindle and delta gamma coupling 

and TI accuracy at short and long term. It is important to raise that only robust Theil- 

Sen regression found significant relationships between couplings and behavioural 

accuracy. Concretely, a positive and significant relationship was found between MI 

and spindle frequency at short and long term but only for the control condition. 

Moreover, a delayed positive relationship was also found for the delta gamma coupling 

and TI accuracy. Again, the phase preference between the delta phase and the spindle 

or gamma amplitude can provide insightful explanations about the detrimental TMR 

effect observed similarly to the chapter 3. Indeed, the results from phase-preference 

analysis revealed that higher PAC values in the delta gamma coupling was more 

associated with a down-state phase-locking for the control condition compared to TMR 

for which the phase-locking tended to be more up-phased. However, it has been 

shown that endogenous gamma amplitude tends to be down-phased with the delta 

phase, in rodent (Andino-Pavlovsky et al., 2017) as well as in human (Gagol et al., 

2018). On that basis, it is again reasonable to suggest that applying TMR would have 

induced a shift in the phase-preference leading to detrimental TMR effect upon PAC 

coupling. In the case of delta spindle coupling, spindles appeared more phase-locked 

with the up-phase of slow oscillations in the control group, compared to the TMR 

group. As mentioned before, ASC model posits the idea whereby spindles are driven 

by slow oscillations at the up-phase. Building on this observation, it is plausible to 

admit that TMR again modified the phase preference between delta and spindles 

resulting in variations of coupling and loss of relationship between MI strength and TI 

accuracy. Although the phase-preference may appear as a convincing argument to 

explain the alteration between MI and TI accuracy by TMR, this argument suffers from 

two major limitations. First, one must admit the noisiness of phase-preference analysis 

presented in the chapter 3 and 4. The reason behind this comes from the fact that the 

overall objective here was to test TMR benefits upon behavioural transitive inference 

without taking the phase-locking into consideration during the building of the 

experiment as a main priority. Retrospectively, it clearly appears that this point should 

have been more carefully considered. The second limitation comes from the absence 

of EEG analysis at long-term (at follow-up session). While phase-preference analysis 
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can provide information about the difference between TMR and control conditions at 

short term, the reasons of such a similar difference at long term is more challenging. 

 

Taken together, findings from the chapter 3 and 4 provided and convincing and 

insightful elements about the EEG dynamics associated with the integration of memory 

in human, raising the importance of gamma coupling with theta oscillations during 

REM sleep and with spindles during SWS as good neural correlates. Moreover, and 

importantly, findings highlighted to what extent TMR should be carefully applied, and 

to what extent careful considerations should be taken about the respect of 

endogenous phase-preference between frequencies. 

 

6 - Home-based application of TMR 

 

It cannot be excluded that the present thesis has been intensively impacted by the 

sanitary restrictions due to COVID-19 pandemic. Due to numerous restrictions, the 

experimental chapter 3 has been designed to be performed remotely. On that basis, 

numerous questions were addressed, namely the question of validity of the measures 

and output from the device, the ability to capture EEG dynamics with a small number 

of channels, the autonomy given to the participants, and the comfort of the device, 

as potential experimental bias. Surprisingly, the Z-max headset was shown to capture 

EEG signal and deliver TMR with a high degree of efficiency as confirmed by a recent 

study (Esfahani et al., 2023). In the last few years, TMR applied in real life conditions 

was shown to promote memory consolidation but only under certain conditions, 

namely no sleep disturbance (Goldi et Rasch, 2019) or noisy stimuli (Whitmore et al., 

2022). In the case of the present thesis, Zmax headset has provided convincing proof 

of elements about benefits from potential future applications in real-life. As raised in 

the chapter 3, in a world where approximately 62% of adults feel they do not get 

enough sleep, it is reasonable to imagine a future where TMR could potentially 

enhance sleep habits, optimize the onset of sleep phases, and provide valuable 

support in managing mood disorders, memory integration or creativity. 
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7 - Limitations and future directions 

 

The present thesis like any scientific research suffers from important limitations that 

need to be raised to the reader. 

 

The first limitation that mostly concerns the chapter 3 and 4 is the lack of power. On 

average, 23 participants per group (N chapter 2 = 21, N chapter 3 = 28, N chapter 4 

= 20) were recruited for each experiment. at the behavioural effect, the sample size 

needed to reach 80% of probability to detect a medium effect when it actually exists 

(true positive) is around N = 32. In the case of the present thesis, the power is reduced 

in a way that the probability to detect true positive is around 50% of chance. On the 

other hand, a small sample size also increases the type II error, namely the probability 

to reject an effect when it actually exists. The reader should carefully integrate the 

present limitation when considering the findings in the present thesis. A second source 

of limited power is the small number of epochs in the chapter 3 that participants had 

in common (N = 40). Only 40 epochs per condition make subtle effects harder to 

detect, decrease the signal-to-noise ratio, thus affecting the reliability of the results. 

Here again, the reader should interpret the findings in accordance with the limitation 

of the dataset's size. A second source of limitation comes from the lack of control 

procedures. Among these, the presence of adaptation nights before wire-up in the lab 

or at home would reduce the potential sleep disturbance and EEG bias, leading to a 

greater accuracy of the results. In the case of TMR, a sham condition comprising of a 

sound not semantically related to the material learnt before sleep would provide for 

insightful elements about how a simple sound can modulate brain signal. Finally, and 

due to the evolution of behavioural accuracy over time raised in the chapter 3, it would 

be essential to propose additional testing sessions to improve knowledge about 

potential delayed sleep benefits. 

 

Beyond the present limitations raised, potential new lines of research are proposed. 

Building on the physiological differences between tonic and phasic REM sleep stages, 

it would be interesting to investigate about their respective implications in the 
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formation of memory, their interactions, and finally, the difference of EEG dynamics 

behind these stages. Secondly, and while the field of sleep research is mainly 

dominated by a dichotomic consideration of sleep stages, further investigations about 

SWS and REM sleep interaction would provide for an important source of knowledge 

about the overall process of memory integration during sleep. Finally, it would be 

interesting to open the field of EEG by deploying innovative signal analysis based on 

the non-stationarity nature of the brain signal. Derived from the fractal theory of chaos 

(Pritchard et al., 1995; Accardo et al., 1997), multifractal non-stationarity of EEG 

signal, namely a signal that exhibits a high degree of complexity and irregularity in its 

structure due to multiple scaling exponent, has been shown in numerous pathological 

conditions like major depression (Linkerkaer-Hansen et al., 2005; Bachmann et al., 

2013), Alzheimer disease (Montez et al., 2009; Zorick et al., 2020), schizophrenia 

(Nikulin et al., 2012) or epilepsy (Monto et al., 2007; Polychronaki et al., 2010). At the 

cognitive level, non-stationarity signal features appeared to be a reliable predictor of 

performance in problem solving tasks (Diaz, 2015) and cognitive flexibility (Lu, 2023). 

Hence, multifractal approach can provide for a mathematical framework for modelling 

and understanding complex systems by capturing the multifaceted and dynamic 

nature of the signal. Indeed, multifractal detrended fluctuation analysis (MFDFA) has 

proven its ability to systematically eliminate trends of various order caused by external 

effects and reduce noise caused by imperfect measurement and catch scale-free 

dynamics of the signal (Chen et al., 2002; Stam, 2004; Jiang, 2005; Linkerkaer-Hansen 

et al., 2007; Malinowska, 2019; Päeske et al., 2023). Used in numerous fields of 

research, MFDFA has a proven and very high power of classification of frequency 

bands (AUC from 0.85 to 0.95) (Finotello and Zanon, 2015) or functional coupling like 

between delta and gamma band (Fell et al., 2003). 

 

8 - Conclusion 

 

The present thesis overall objective was to further knowledge about short and long- 

term evolution of relational memory following TMR application during REM sleep or 

SWS. The investigation of EEG dynamics associated with TMR provided insightful 
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elements of proof about the crucial role of sleep in the extraction of rules and the 

associations of events to shape innovative knowledge. The EEG analysis performed at 

different sleep stages shed light upon the complex EEG dynamics and sleep stage 

specificity as potential markers of memory integration, namely the delta spindle 

coupling but more surprising, the delta low-gamma coupling in SWS, and the theta 

gamma coupling, well documented in animals but poorly investigated in humans. 

Further analysis also raised the importance of carefully consider the endogenous 

phase-preferences between coupling and their impact upon the strength of coupling 

and behavioural benefits. Last but not least, findings confirmed the high potential of 

TMR application in real-life condition in multiple fields like memory integration as well 

as mood regulation or sleep monitoring. Taken together, findings from the present 

thesis, although modest, brought another building block to the edifice. However, many 

more steps are needed to fully understand the exact mechanisms and reasons about 

why we spend a third of a life sleeping. 
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