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BACKGROUND: Neuroendocrine tumours (NETs) are increasing in incidence, often diagnosed at advanced stages, and individuals
may experience years of diagnostic delay, particularly when arising from the small intestine (SI). Clinical prediction models could
present novel opportunities for case finding in primary care.
METHODS: An open cohort of adults (18+ years) contributing data to the Optimum Patient Care Research Database between 1st
Jan 2000 and 30th March 2023 was identified. This database collects de-identified data from general practices in the UK. Model
development approaches comprised logistic regression, penalised regression, and XGBoost. Performance (discrimination and
calibration) was assessed using internal-external cross-validation. Decision analysis curves compared clinical utility.
RESULTS: Of 11.7 million individuals, 382 had recorded SI NET diagnoses (0.003%). The XGBoost model had the highest AUC (0.869,
95% confidence interval [CI]: 0.841–0.898) but was mildly miscalibrated (slope 1.165, 95% CI: 1.088–1.243; calibration-in-the-large
0.010, 95% CI: −0.164 to 0.185). Clinical utility was similar across all models.
DISCUSSION: Multivariable prediction models may have clinical utility in identifying individuals with undiagnosed SI NETs using
information in their primary care records. Further evaluation including external validation and health economics modelling may
identify cost-effective strategies for case finding for this uncommon tumour.
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INTRODUCTION
Neuroendocrine neoplasms (NENs) are relatively uncommon,
encompassing neuroendocrine tumours (NETs) and more aggres-
sive neuroendocrine carcinomas (NECs). They present several
clinical challenges: both their symptomatology and clinical
behaviour can be highly heterogeneous, and their incidence is
increasing [1, 2]. With an incidence of 8.6 per 100,000 per year,
NETs can be difficult to diagnose, with NETs arising within the
‘midgut’ (i.e. small intestine) often diagnosed at advanced stages
impacting survival [3–5]. In the absence of screening programmes,
using clinical prediction tools embedded within electronic health-
care record software could support ‘case finding’, and identify
enriched populations that could be suitable for specialist referral
and testing.
Observational evidence reinforces clinical experience that

patients with small intestinal NETs (SI-NETs) can experience
diagnostic delay and misdiagnosis prior to the ultimate diagnosis
of their condition [6]. In one retrospective survey-based study of
303 individuals with NET, the median time from first symptoms to
eventual diagnosis was 36 months for SI-NET; 29% of these

individuals received an initial diagnosis of irritable bowel
syndrome [6]. Another survey-based study reported a mean
duration of 60.1 months (range 0 to 300 months) from symptom
initiation to SI-NET diagnosis, a mean of 10 appointments in
primary care for their symptoms, and a mean time of being under
investigation in primary care of 40 months [7].
The broad symptomatology of SI-NETs parallels the hetero-

geneity in tumour behaviour—florid manifestations such as the
carcinoid syndrome (a harbinger of advanced disease with
functional NETs) may co-exist with less archetypal manifestations
within temporally dynamic symptom profiles of non-functional
NETs [6, 7].
Whilst some tumours present ‘incidentally’, there is evidence

that there may be a protracted time period during which vague,
non-specific symptoms may be present and recorded in clinical
records [6, 7]. This known, but incompletely characterised
‘symptomatic window’ may present opportunities for the devel-
opment of novel case-finding techniques. Given the protracted
duration of time that these symptoms may be present prior to
eventual diagnosis [6, 7], there is the possibility that case finding
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for this rare tumour type could aid earlier detection. Other salient
considerations include potential misattribution of symptoms to
other, non-NET causes (e.g. bloating ascribed to irritable bowel
syndrome), and ‘counterintuitive informative presence’ of some
clinical events (e.g. the fact of a negative coeliac screen
suggesting symptomatology due to an as-yet unknown cause).
Such ‘negative findings’ may actually hold predictive utility in
case-finding, as they reflect aspects of the diagnostic odyssey.
Statistical or machine learning methods could be suitable for
novel case-finding approaches. Whilst there is increasing interest
in the potential for machine learning approaches to clinical
prediction modelling, some have raised concerns about model
transparency [8, 9], methodological limitations [8], and fairness of
comparisons with classical techniques [10, 11], and there is no a
priori way to understand which approach may be most appro-
priate for a given prediction task.
This study sought to develop and evaluate the performance and

clinical utility of novel clinical prediction models, derived using
statistical and machine learning techniques using large-scale,
anonymised, primary care electronic healthcare record (EHR) data,
that could identify patients at high risk of harbouring an as-yet
undiagnosed SI-NET. The envisioned use cases (or points of use) of
these tools is a clinical practitioner estimating the risk of a patient
harbouring an as-yet undiagnosed SI-NET, using information
currently available in their EHR, or a model running ‘passively’ in
the EHR back-end.

METHODS
Overall modelling strategy
This study evaluated four different model-building approaches—logistic
regression, two penalised regression methods (LASSO logistic model, and
ridge logistic model), and XGBoost. Within a diagnostic modelling
framework, models were developed to provide a probabilistic estimate
that a given individual had a SI-NET. Model evaluation was then performed
using internal-external cross-validation [12].

Minimum sample size calculation
The approach of Riley et al. for prediction models with a binary outcome
was used to estimate the minimum sample size required [13]. Prior to the
study commencing, a SQL query in the target database identified 709
recorded SI-NET cases. Using this number, and the size of the entire
potential cohort at that time (n ~ 15,000,000), an outcome prevalence of
0.0047% was estimated. Assuming this, targeting an R-squared of 0.00015
(conservative 15% of the maximum permitted in this setting, 0.001),
shrinkage of 0.9, and 50 predictor parameters, we required a dataset
comprising 2,999,750 adults (141 cases, events per predictor parameter =
2.82). No clear guidance exists for estimating the minimum sample size for
machine learning models.

Study population and data sources
This study used the Optimum Patient Care Research Database (OPCRD)
database (https://www.opcrd.optimumpatientcare.org), which had at the
time, collected de-identified electronic routine primary care data from over
17 million patients registered at over 1000 general practices in the United
Kingdom (UK). OPCRD collects data from practices using all UK clinical
software systems. The data fields available in OPCRD include demo-
graphics, clinical encounters such as measurements and diagnoses
(defined as the presence of recorded SNOMED and Read/CTV3 codes),
prescriptions and referrals to secondary care.
An open cohort of adults registered with general practices contributing

data to OPCRD between 1st Jan 2000 and 30th March 2023 was identified.
Follow-up started from the latest of: cohort start date, date of registration
with the practice plus 1 year (to exclude ‘temporary patients’), or the
patient’s 18th birthday. Follow-up was until the earliest of NET diagnosis
(for cases), date of leaving the practice/death, date of 90th birthday, or the
cohort end date. Individuals that had a diagnosis of SI-NET recorded prior
to the cohort start date (prevalent cases) were excluded.
As there is no precedent or consensus on an appropriate prediction

horizon for a case-finding tool for SI-NET, and that SI-NET are rare, we
sought to maximise the number of cases available for model development

and evaluation. In preliminary analyses, using a time-to-event modelling
framework with a prediction horizon of 2 years from cohort entry would
lead to over 50% attrition of NET cases included for analysis (i.e. most
individuals were diagnosed over 2 years after cohort entry). In order to
maximise case numbers, and for the purposes of computational efficiency
when developing multiple case-finding (diagnostic) models with hyper-
parameter tuning repeated within a cross-validation framework, the
extracted cohort dataset was converted to a matched, weighted case-
control dataset for model fitting. Cases were assigned an index date of the
recorded date of NET diagnosis. Each case was matched with 100 non-
cases from the same geographical region (n= 10). To account for time-
varying contributions of follow-up from individuals during the cohort
period, and possible trends in diagnostic modalities, non-cases were
assigned an index date randomly drawn from a uniform distribution
between their cohort entry date and their follow-up end date. For all
individuals, predictor values were assigned at this index date—the most
recently recorded values of BMI and smoking prior to/on the index date
were used. To permit accurate estimation of model intercepts when fitting
to case-control data (and therefore reliably predict probabilistic risks on
unmatched data), participants were also assigned weights. Cases were
assigned a weight of 1 and controls were assigned a weight equal to the
inverse of the sampling fraction—these were used when fitting models
(see below).

Outcome and candidate predictor definitions
The outcome was defined as the presence of a recorded SNOMED/Read
code for SI-NET (see link to code below). Predictors were defined by
SNOMED clinical codes, with code lists developed and cross-checked by
two clinicians with experience in EHR research (AKC & OB). Three
categories of candidate predictors were based on clinical understanding
and epidemiological evidence [14] and are summarised in Table 1. These
were: factors associated generally with the risk of developing a
gastrointestinal cancer (e.g. age, family history), symptoms or signs that
could be attributable to an underlying SI-NET (e.g. abdominal pain), and
features that reflect the diagnostic journey towards diagnosis or potential
misdiagnoses (e.g. imaging or coeliac testing, and functional gastrointest-
inal disorder, respectively). Comorbidities were defined as being recorded
in the primary care record at any point prior to the index date. For
symptoms and investigations, these were defined as a recorded clinical
code in the primary care record at any point in the 5 years prior to the
index date—this was based on recent studies suggesting that NET patients
may start consulting with their general practitioner up to 5 years prior to
ultimate diagnosis [6, 7].
Fractional polynomials with up to two powers were used to model

potential non-linearities between age and body mass index (BMI) and the
outcome for the regression and penalised regression models. A closed-test
procedure was used to identify polynomial terms that minimised the
deviance [15]. Pre-specified interaction terms were between weight loss
and BMI, age and diabetes, and age and functional gastrointestinal
disorder.

Missing data
There was incomplete recording of BMI and smoking status due to non-
recording by the index date. This was handled using single imputation
with chained equations due to computational considerations – the
imputation model included all candidate predictors (including fractional
polynomial terms), pre-specified interactions and the outcome, and
imputation was performed separately for each region. This singly imputed
dataset was used throughout all model development and evaluation steps.

Model development and evaluation
All models were fit to the whole nested and weighted case-control dataset.
Tenfold cross-validation was used to identify lambda values for the LASSO
and ridge models that minimised the cross-validated deviance. These
models were then refitted to the dataset with these lambda values.
Continuous variables were left unscaled for the XGBoost model, and

categorical predictors were handled as dummy variables. Hyperparameter
tuning with Bayesian Optimisation and 10-fold cross-validation was used
to identify the configurations of the XGBoost parameters that maximised
the cross-validated area under the curve (AUC). The final XGBoost model
was then fit to the dataset with these hyperparameters.
The performance of each model was then assessed with internal-

external cross-validation (IECV) using non-random dataset splitting by
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geographical region [12]. Our approach sought to support computational
tractability by using the weighted, matched case-control data for model
fitting (and repeated fitting during IECV), but using the entire
unmatched dataset for model evaluation. By non-randomly splitting the
whole dataset into geographically distinct units, this provides a stronger
assessment of transportability to new settings than using a single random
split, which would yield two sub-datasets with similar distributions of
predictors [12, 16]. In the IECV process, one region was held out, the model
refit to the matched, case-control data from all other regions—the case
weights were applied at this stage. Then, the performance of that model
was evaluated on full (unmatched) data for the held-out region. This was
iterated so that all regions were used once as test sets. Region-level
performance metrics (AUC, calibration slope, and calibration-in-the-large)
were pooled with a random effects meta-analysis model (Hartug-Knapp-
Sidik-Jonkmann approach [17]) to provide a pooled overall estimate, 95%
confidence intervals and a 95% prediction interval. The latter provides an
indication of the range of model performance if applied in a new, similar
setting [16]. Cross-validation of lambda values of the penalised models and
hyperparameter tuning for XGBoost was recapitulated in every iteration of
IECV to provide a form of ‘nested’ cross-validation that avoided evaluating
models on the same data used for tuning [18]. As the dataset was split by
geographically distinct regions, there was no dependence across the ‘outer
folds’, thus permitting meta-analytical pooling of region-level performance
metrics.
Decision curve analysis [19] was used to explore the clinical utility (net

benefit) associated with each model across a range of threshold
probabilities. These analyses used the individual-level predictions gener-
ated for each participant obtained during IECV (i.e. when they were in the
‘held out’ region). The sensitivity and PPV of each model were assessed at
different cut-offs of the predicted risk score distribution.

Software and code
Data extraction used SQL. Analyses were conducted using Stata v17 and R,
with analysis code available in the following repository: https://
github.com/Mendelian/NETs_prediction_modelling.

Study approval and conduct
Ethical approval for the OPCRD database for clinical research has been
obtained from the NHS Health Research Authority (REC reference 20/EM/
0148). This study was approved by the ADEPT committee (reference:
PROTOCOL2318). The study is reported in accordance with TRIPOD
guidance [20].

RESULTS
The final cohort comprised 11,719,942 individuals, of which 382
had a recorded diagnosis of SI-NET (0.003%). The cohort is
summarised in terms of predictor distributions in Table 1.
Non-linearities were selected for age and BMI for the regression,

LASSO and ridge regression models, with powers of [2, 3] and (0.5,
2), respectively. Supplementary Table 1 summarises the hyper-
parameter tuning space and final configurations of the
XGBoost model.

Table 1. Characteristics and predictor distributions in individuals with
a recorded diagnosis of midgut NET and those that did not.

Parameter NET cases n
(column %)

Non-cases n
(column %)

Total 382 11,719,560

Sex

Male 198 (51.83%) 6,049,632
(51.62%)

Female 184 (48.17%) 5,668,705
(48.37%)

Other* 0 (0%) 1442 (0.01%)

Mean age at index
date (SD)

62.71 (15.27) 45.22 (19.54)

Median age at index
date (IQR)

64.84
(53.30–73.72)

41.84
(28.40–59.80)

Body mass index (kg/m2)

Mean (SD) 27.13 (5.09) 26.16 (5.74)

Median (IQR) 26.8 (23.46–30.1) 25.3 (22.6–29.1)

Not recorded 133 (34.82%) 5,830,557
(49.75%)

Smoking status

Never smoker 180 (47.12%) 5,690,551
(48.56%)

Ex-smoker 125 (32.72%) 2,158,669
(18.42%)

Light smoker (<10/d) 13 (3.40%) 321,213 (2.74%)

Moderate smoker
(10–19/d)

<10 221,974 (1.89%)

Heavy smoker
(20+/d)

<10 99,152 (0.85%)

Not recorded 53 (13.87%) 3,228,220
(27.55%)

Anaemia 32 (8.38%) 363,753 (3.10%)

Prior cholecystectomy 32 (8.38%) 217,700 (1.86%)

Recorded family history
of gastrointestinal
cancer

<10 54,398 (0.46%)

Functional
gastrointestinal disorder

62 (16.23%) 573,481 (4.89%)

Inflammatory bowel
disease

16 (4.19%) 108,674 (0.93%)

Peptic ulcer disease 13 (3.40%) 62,886 (0.54%)

Diabetes mellitus 41 (10.73%) 562,070 (4.80%)

Diverticular disease 51 (13.35%) 255,495 (2.18%)

Recent flushing <10 59,401 (0.51%)

Recent abdominal pain 92 (24.08%) 767,719 (6.55%)

Recent bloating <10 77,527 (0.66%)

Recent bowel change 20 (5.24%) 73,254 (0.63%)

Recent coeliac screen <10 56,586 (0.48%)

Recent diarrhoea 80 (20.94%) 561,663 (4.79%)

Recent dyspepsia 35 (9.16%) 297,199 (2.54%)

Recent indigestion 27 (7.07%) 190,265 (1.62%)

Recent nausea/vomiting 12 (3.14%) 115,311 (0.98%)

Recent palpitations 14 (3.66%) 185,231 (1.58%)

Recent back pain 68 (17.80%) 1,202,407
(10.26%)

Recent weight loss <10 80,287 (0.69%)

Recent endoscopy 69 (18.06%) 261,315 (2.23%)

Table 1. continued

Parameter NET cases n
(column %)

Non-cases n
(column %)

Recent abdominal
ultrasound

60 (15.71%) 595,750 (5.08%)

Recent abdominal
CT/MRI

36 (9.42%) 211,813 (1.81%)

Status/measurements were the most recently recorded prior to the index
date. Age corresponds to age at the diagnosis date (for cases) or index date
(for non-cases).
Recent refers to a recorded clinical code within the 5 years prior to the
index date.
CT computed tomography, MRI magnetic resonance imaging.
* = reflects the coding in the source database.

A.K. Clift et al.

307

British Journal of Cancer (2024) 131:305 – 311

https://github.com/Mendelian/NETs_prediction_modelling
https://github.com/Mendelian/NETs_prediction_modelling


Model performance—summary performance metrics
Summary performance metrics for each model estimated after
IECV are summarised in Table 2. The XGBoost model has the
highest discrimination, with an AUC of 0.869 (95% CI: 0.841–0.898,
95% PI: 0.795–0.944], but confidence and prediction intervals
around this metric overlapped between models. Calibration varied
slightly with each approach, with the logistic and XGBoost models
having slope values < 1 and > 1, respectively, but the magnitude
of miscalibration on these summary measures was relatively slight.
Region-level performance estimates for each model and their

pooled meta-estimates are demonstrated in Figs. 1, 2, and
Supplementary Fig. 1, for the AUC, calibration slope, and calibra-
tion-in-the-large, respectively. On analysing the performance metric
results from IECV, we noted that the I2 for the XGBoost model was
generally higher than for the regression/penalised regression-based
approaches, and also visual inspection of the forest plots
demonstrates more inter-regional variation. This could reflect lower
model stability of more flexible algorithmic approaches to clinical
prediction modelling in a rare disease setting.

Model performance—sensitivity and PPV
Table 3 summarises the sensitivity of each model to capture SI-NET
cases at different cut-offs of their predicted risk distributions. The
general trend was that the XGBoost model had the highest
percentage sensitivity at the thresholds examined. For example, the
XGBoost model captured 18.84% of all NET cases in the highest 1%
of predicted risks, and 45.55% of all NET cases within the highest
5%, suggesting potential for population-level risk stratification.
In order to estimate the effect of model deployment, i.e. passive

scanning of electronic health records and ‘flagging’ individuals at
highest risk, we estimated the PPV across different definitions of
‘highest risk’ groups. As there needs to be cognisance of high clinician
workload and pressure on referral systems in the context of a rare
disease, we simulated this scenario by evaluating model PPV in the
highest risk 0.001% to 0.005% groups; the latter represents 5 of every
10,000 patient records being flagged by an algorithm for clinical
review. The XGBoost model typically outperformed other models,
such as the PPV of 0.34% in the highest 1 in 10,000 individuals, but
the results for PPV were modest (Supplementary Table 2).

Table 2. Comparison of performance metrics for each model, estimated using internal-external cross-validation.

Model AUC (95% CI) [95% PI] Calibration slope (95% CI) [95% PI] Calibration-in-the-large (95% CI) [95% PI]

Logistic regression 0.833 (0.810–0.856)
[0.783–0.883]

0.900 (0.845–0.955)
[0.783–1.016]

−0.010 (−0.186–0.166)
[−0.490–0.470]

LASSO regression 0.850 (0.827–0.873)
[0.798–0.902]

0.976 (0.929–1.024)
[0.880–1.073]

−0.010 (−0.186–0.166)
[−0.495–0.167]

Ridge regression 0.842 (0.815–0.869)
[0.772–0.912]

0.983 (0.934–1.031)
[0.884–1.081]

−0.012 (−0.195–0.172)
[−0.514–0.491]

XGBoost 0.869 (0.841–0.898)
[0.795–0.944]

1.165 (1.088–1.243)
[0.988–1.343]

0.010 (−0.164–0.185)
[−0.462–0.483]

AUC area under the curve, 95% CI 95% confidence interval, 95% PI 95% prediction interval.

Region (cases / total) Logistic regression
AUC

with 95% CI

0.88 [ 0.84, 0.92] 18.27

19.31

4.39

6.79

10.66

4.49

16.66

12.81

1.76

4.86

14.16

15.69

9.14

8.64

10.70

5.91

17.46

10.97

2.24

5.10

14.66

15.83

9.55

8.33

9.81

6.02

16.68

11.00

2.62

5.50

16.34

18.62

6.43

7.45

10.15

4.34

18.99

11.39

1.73

4.55

0.83 [ 0.80, 0.87]

0.80 [ 0.96, 0.90]

0.80 [ 0.71, 0.88]

0.83 [ 0.76, 0.89]

0.83 [ 0.73, 0.94]

0.85 [ 0.80, 0.89]

0.79 [ 0.74, 0.84]

0.82 [ 0.64, 0.99]

0.81 [ 0.71, 0.91]

0.83 [ 0.81, 0.86]

0.88 [ 0.83, 0.92]

0.84 [ 0.81, 0.88]

0.85 [ 0.79, 0.92]

0.82 [ 0.75, 0.90]

0.83 [ 0.77, 0.89]

0.84 [ 0.75, 0.93]

0.89 [ 0.86, 0.92]

0.77 [ 0.72, 0.83]

0.78 [ 0.61, 0.94]

0.80 [ 0.69, 0.90]

0.84 [ 0.82, 0.87]

0.89 [ 0.85, 0.93]

0.85 [ 0.82, 0.89]

0.84 [ 0.76, 0.92]

0.83 [ 0.75, 0.90]

0.84 [ 0.78, 0.90]

0.84 [ 0.74, 0.95]

0.88 [ 0.84, 0.91]

0.80 [ 0.74, 0.85]

0.82 [ 0.65, 0.99]

0.81 [ 0.71, 0.91]

0.85 [ 0.83, 0.87]

0.91 [ 0.88, 0.95]

0.88 [ 0.85, 0.92]

0.86 [ 0.80, 0.92]

0.83 [ 0.76, 0.90]

0.84 [ 0.78, 0.90]

0.87 [ 0.78, 0.96]

0.92 [ 0.89, 0.94]

0.81 [ 0.75, 0.86]

0.84 [ 0.68, 0.99]

0.82 [ 0.73, 0.92]

0.87 [ 0.84, 0.90]

.6 .7 .8 .9 1

Weight
(%)

Region (cases / total) Ridge
AUC

with 95% CI
Weight

(%) Region (cases / total) XGBoost
AUC

with 95% CI
Weight

(%)

Region (cases / total) LASSO
AUC

with 95% CI
Weight

(%)

East Midlands (37 / 988,333)

East of England (83 / 2,073,641)

Greater London (27 / 1,284,907)

North East (31 / 896,970)

North West (46 / 2,010,847)

Scotland (17 / 469,517)

South East (41 / 1,459,182)

South West (65 / 1,285,324)

Wales (10 / 383,324)

West Midlands (25 / 867,897)

Heterogeneity: T
2
 = 0.00, I

2
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2
 = 1.39

Test of θi = θj: Q(9) = 10.12, p = 0.34

Test of θ = 0: t(9) = 82.99, p = 0.00

Heterogeneity: T
2
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2
 = 49.76%, H

2
 = 1.99

Test of θi = θj: Q(9) = 16.82, p = 0.05

Test of θ = 0: t(9) = 70.29, p = 0.00

Heterogeneity: T
2
 = 0.00, I

2
 = 58.93%, H

2
 = 2.43

Test of θi = θj: Q(9) = 22.69, p = 0.01

Test of θ = 0: t(9) = 68.73, p = 0.00

Heterogeneity: T
2
 = 0.00, I

2
 = 33.93%, H

2
 = 1.51

Test of θi = θj: Q(9) = 11.21, p = 0.26

Test of θ = 0: t(9) = 85.05, p = 0.00

Overall

East Midlands (37 / 988,333)

East of England (83 / 2,073,641)

Greater London (27 / 1,284,907)

North East (31 / 896,970)

North West (46 / 2,010,847)

Scotland (17 / 469,517)

South East (41 / 1,459,182)

South West (65 / 1,285,324)

Wales (10 / 383,324)

West Midlands (25 / 867,897)

Overall

East Midlands (37 / 988,333)

East of England (83 / 2,073,641)

Greater London (27 / 1,284,907)

North East (31 / 896,970)

North West (46 / 2,010,847)

Scotland (17 / 469,517)

South East (41 / 1,459,182)

South West (65 / 1,285,324)
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Overall

East Midlands (37 / 988,333)

East of England (83 / 2,073,641)

Greater London (27 / 1,284,907)

North East (31 / 896,970)

North West (46 / 2,010,847)

Scotland (17 / 469,517)

South East (41 / 1,459,182)

South West (65 / 1,285,324)

Wales (10 / 383,324)

West Midlands (25 / 867,897)

Overall

.6 .7 .8 .9 1

.6 .7 .8 .9 1 .7 .8 .9 1

Fig. 1 Forest plots summarising the region-level, pooled meta-estimates, confidence intervals and prediction intervals for the area under
the curve for each model. Top left = logistic regression, top right = LASSO, bottom left = ridge regression, bottom right = XGBoost.
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Net benefit–decision analysis curves
The clinical utility of all 4 models was superior to the ‘test all’ and
‘test none’ strategies on decision curve analysis (Fig. 3).

CONCLUSIONS
This study comparatively explored four different algorithmic
approaches to developing a clinically useful model to predict
the risk that an adult may have an underlying SI-NET, which could
be used for case-finding to identify enriched sub-populations for
referral to specialist/secondary care. The XGBoost model had the
highest discrimination, the best sensitivity, and despite some mild
miscalibration observed on summary metrics (slope, but not
calibration-in-the-large), was associated with the highest clinical
utility on decision curve analysis, albeit the net benefit curves did
appear very similar across all 4 models.
Several studies have explored symptoms and diagnostic delays in

NETs but these have mainly been based on patient-reported surveys
[7, 21, 22]. Published hospital and primary care diagnostic pathway
data in NETs is limited, with few studies assessing interventions to
improve diagnosis [23]. Most clinical prediction modelling studies in
NETs have focussed on predicting outcomes after diagnosis. However,
one recent study used decision tree methodology on claims data to
better understand clinical pathways to NET diagnosis, and also predict
risks that a patient may have a NET [24]. However, that report has
significant limitations in terms of its possible deployment in the target
setting for the present study. First, there was no accounting for the
over-representation of NET cases in the case-control sample, which
means that the probabilistic estimates will be poorly calibrated.
Second, that study only performed an apparent ‘validation’, and did
not assess clinical utility or other key metrics [24]. Therefore, the
present study is the first to develop a prediction tool to provide
clinical decision support to target identification of SI-NETs in
primary care.

Strengths of the present study include the size of the dataset
used, which permitted ascertainment of sufficient case numbers
to develop and evaluate the models, the use of an internal-
external cross-validation framework to robustly assess and
compare the performance of models developed using different
techniques, and that the derivation data aligns with the target
implementation of the models for their intended use case,
representing a form of targeted validation [25]. The clinical
coding, data availability and structured data fields within OPCRD
represents data that are available at the point of care for general
practitioners, and therefore the data that a model would
theoretically utilise to make predictions would be available on
deployment. Limitations of this study include the reliance of
clinical practitioner coding for the predictors and outcome, and
the inability to link the primary care to other secondary care
datasets such as Hospital Episode Statistics or the national cancer
registry (which will mean some under-ascertainment of cases), or
additional linkages that integrated care services aim to compile
(relevant to potential later model deployment). Further model
evaluation in independent datasets that have such linkages
should seek to quantify the yield in NET case ascertainment
attainable. It is also worth noting that some ‘non-cases’ may have
as-yet undiagnosed SI-NET, given the nature of the data.
Misclassification bias may arise due to incorrect ascertainment of
case status due to the reliance on clinical coding but also manifest
as misclassification in terms of predictor value status (e.g. a patient
actually underwent cholecystectomy but this was not coded in
primary care notes). Due to the nature of the data used in this
study - i.e. de-identified, coded primary care data, full manual
record review using free text was not possible.
The study could have also considered EHR information in terms of

not only a binary recorded/not recorded status for most predictors,
but also the sequencing, frequency and timing of individual codes –
this would be computationally intensive but could be of interest for
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future study either in this modelling scenario or for other case-finding
tasks. Future projects may be able to model clinical free text with
approaches such as unstructured data analysis, or leverage techni-
ques from natural language processing, which could further boost
model performance.
Whilst on summary metrics all models showed good discrimina-

tion and were associated with better net benefit than the logistically
unfeasible ‘test all’ strategy on decision curve analysis, the
performance of these tools as case-finding algorithms was far less
optimistic when considering the PPV in the enriched sub-populations
they could flag if deployed into EHR systems. This is a key
consideration when developing prediction tools for rare conditions.
Whilst this study sought to consider a broad range of potential
predictors spanning risk factors, potential misdiagnoses, and other
components of the ‘diagnostic odyssey’ in primary care reported by
some individuals with NETs, ultimately the majority of features are
non-specific. Features such as older age, multiple ‘gastrointestinal’
symptoms, and a positive family history of gastrointestinal cancer
could lead to an individual being ‘flagged’ for a SI-NET, but may also
be redolent of several other, far commoner conditions, such as a
non-neuroendocrine neoplasm. Building on further research to
explore the possibility of increasing specificity by more robustly
modelling the temporality of EHR data, other work should also
consider the overlap between the prediction model inputs and the
risk of other, difficult-to-diagnose conditions. For example, a
prediction tool with multinomial outputs for a collection of rarer,
difficult-to-diagnose conditions with similar clinical features as NETs
could serve to broaden the differential for a patient with unexplained
symptoms that has had a colorectal carcinoma excluded, or be used
to signpost such individuals to the most appropriate tests and
services. Whichever approach is considered for clinical implementa-
tion would also need follow-on studies to estimate the clinical

impacts and cost-effectiveness of algorithm-informed models of care
– this should quantify the costs, utilities and pathway effects, and be
contextualised with qualitative research regarding its acceptability to
end users (e.g. general practitioners, secondary/tertiary care clinical
teams, and patients). Such work is underway by this group.
In conclusion, by exploring four different prediction modelling

approaches within an internal-external cross-validation framework,
we identified that prediction models could have clinical usefulness in
identifying undiagnosed people with SI-NETs in primary care. Whilst
the XGBoost approach had the highest discrimination and highest
net benefit, net benefit curves were rather similar, and the regression/
penalised regression approaches could have benefits in terms of their
transparency. As with other rare, long-term conditions, accurate case-
finding approaches could open the possibility of promoting earlier
diagnosis. In SI-NET, symptoms may be present for years prior to
eventual diagnosis and cause multiple consultations in primary care.
In order to robustly establish the proclivity of the case-finding tools
reported in the present study to expedite diagnosis, ideally an
external validation study would be performed that is: 1) aligned to the
target population, and 2) explores model performance at different
time points prior to NET diagnosis dates. This would provide useful
information on the ‘lead time’ that could be offered by the model,
and how risk model predictions evolve in the run-in to diagnosis. If
attainable, being able to identify individuals with a NET earlier in the
course of the disease and direct them towards appropriate
investigation may improve the stage distribution at diagnosis and
therefore improve clinical and patient outcomes. Given the low PPV,
the optimal way to deploy this type of model in a healthcare system
needs judicious consideration. For example, one could configure the
target deployment population to be those within a specific age range
(considering the higher age of NET cases vs non-NET cases), and/or
excluding those with an existing diagnosis of cancer. It is possible that
the best results could be obtained by integrating this model within a
broader suite of clinical decision support tools to identify individuals
engaging with primary care services that have undiagnosed
conditions that include but are not limited to NET.
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