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Abstract—There has emerged a growing interest in exploring
efficient quality assessment algorithms for image super-resolution
(SR). However, employing deep learning techniques, especially
dual-branch algorithms, to automatically evaluate the visual
quality of SR images remains challenging. Existing SR image
quality assessment (IQA) metrics based on two-stream networks
lack interactions between branches. To address this, we propose
a novel full-reference IQA (FR-IQA) method for SR images.
Specifically, producing SR images and evaluating how close the
SR images are to the corresponding HR references are separate
processes. Based on this consideration, we construct a deep Bi-
directional Attention Network (BiAtten-Net) that dynamically
deepens visual attention to distortions in both processes, which
aligns well with the human visual system (HVS). Experiments
on public SR quality databases demonstrate the superiority of
our proposed BiAtten-Net over state-of-the-art quality assessment
methods. In addition, the visualization results and ablation study
show the effectiveness of bi-directional attention.

Index Terms—Image super-resolution, quality assessment, bi-
directional attention, human visual system

I. INTRODUCTION

Image super-resolution (SR) aims to reconstruct SR images
from the input low-resolution (LR) images. Early image SR
methods were based on interpolation, such as bicubic, cubic
spline interpolation [1], and adaptive structure kernels [2].
Later, compressed sensing was applied to image SR, leading
to many SR algorithms on the basis of sparse coding [3]. Re-
cently, with the rapid development of deep learning, there has
been a shift towards designing deep learning based image SR
frameworks, including convolutional neural network (CNN)
based methods [4], generative adversarial neural network
(GAN) based methods [5], and attention based models [6].
However, image SR is highly ill-posed, as the input LR image
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can be zoomed into SR results with various quality scores by
different SR algorithms and upsampling factors. Therefore,
the accurate quality evaluation of SR images is a vital but
challenging problem.

In general, image quality assessment (IQA) methods can be
categorized into full-reference (FR), reduced-reference (RR),
and no-reference (NR) IQA methods according to the presence
or full/partial absence of reference information. The simplest
FR-IQA method is peak signal-to-noise ratio (PSNR) or mean
square error (MSE). However, they only compute pixel dif-
ferences by signal fidelity. Based on the characteristics of
the human visual system (HVS), Wang et al. proposed the
structural similarity (SSIM) [7], which serves as the basis for
many other metrics. These include the multi-scale SSIM (MS-
SSIM) [8], the complex wavelet SSIM (CW-SSIM) [9], the
gradient magnitude similarity deviation (GMSD) [10], IQA
using Kernel Sparse Coding (KSCM) [11], etc. However, these
classical IQA methods are all designed for natural images
instead of the SR scenario.

Since SR images meet unique distortions that are different
from conventional natural images, some hand-crafted FR-IQA
methods developed for SR images have been proposed. To be
specific, these methods consist of the structure-texture decom-
position based algorithm, namely SIS [12], and the structural
fidelity versus statistical naturalness (SFSN) method [13],
as well as the deterministic and statistical fidelity method
called SRIF [14]. Basically, they analyze the statistical
characteristics of various SR images from a separate two-
dimensional perspective. Although the predicted results of
both dimensions are finally combined by weighting strategies,
they generally lack the information interactions between the
quality dimensions. Besides, deep learning based IQA models
for SR images are mostly designed as NR-IQA methods.
DeepSRQ [15] built a two-stream CNN to obtain the structural
and texture features separately. HLSRIQA [16] developed a
deep learning based NR-IQA method by the high-frequency



Fig. 1. The overall framework of the proposed BiAtten-Net. Encoder indicates the stacking of a convolution layer, a batch normalization layer, and the
activation function (ReLU). Conv refers to convolution layer, and the kernel size of all Convs is 3 × 3. Pool represents the adaptive average pooling layer,
and Atten map is the attention map. + refers to Shortcut, which directly adds the inputs of BAB to the end of the block.

and low-frequency maps of SR images. EK-SR-IQA [17]
predicted SR image quality by leveraging a semi-supervised
knowledge distillation strategy.

On the contrary, existing deep learning based FR-IQA
methods are designed for general image distortions on tra-
ditional IQA databases (e.g., LIVE [18] and TID2013 [19])
rather than specific SR artifacts. For example, MGCN [20]
proposed the mask gated convolutional network for evaluating
the image quality and identifying distortions simultaneously.
WaDIQaM [21] proposed joint learning of local quality and
local weights. LPIPS [22] calculated the distance of features
extracted from the pre-trained networks between the reference
and distorted images. AHIQ [23] utilized a two-stream net-
work to extract the feature from both vision transformer [24]
and CNN branches. However, to the best of our knowledge,
there are no deep learning based FR-IQA methods focusing
on SR images.

Given that paying visual attention to artifacts of SR images
aligns with the HVS, many works enhanced IQA’s ability
to capture quality degradations of local artifacts or dominant
distorted regions by weighting attention maps. For example,
JCSAN [25] proposed a dual-branch based network to capture
perceptual distortions based on joint channel-spatial attention.
TADSRNet [26] constructed a triple attention mechanism to
acquire more significant portions of SR images. However,
these attention-based methods lack interactions between indi-
vidual branches (i.e., channel and spatial). Additionally, these
methods only consider visual attention towards SR images and
lack interactions with HR references.

To address the above-mentioned problems, we propose a
deep Bi-directional Attention Network (BiAtten-Net). The
main contributions of this work are summarized as follows:

1) Motivated by the properties of the HVS, we introduce the
first deep learning based FR-IQA method (i.e., BiAtten-Net),
which is specifically designed for SR images.

2) We propose a bi-directional attention mechanism that
can dynamically simulate the processes of SR images approx-
imating HR references and vice versa. This approach directly
provides visual attention to distortions, thereby predicting
quality scores that are more in line with the HVS.

3) Our method outperforms state-of-the-arts, especially
achieving significant improvements over other FR-IQA meth-
ods regarding both natural and SR scenarios. Additionally,
the visualization results and ablation study demonstrate the
importance of bi-directional attention.

II. PROPOSED METHOD

Current dual-branch based IQA methods for SR images
lack interactions between sub-branches (e.g., structure and
texture). Considering that the distortion arises from generating
SR images from downsampled HR references, we dynamically
simulate this process by approximating HR references to
SR images in the branch with the HR reference as input.
Furthermore, human subjects evaluate the perceptual quality
of SR images by assessing the level to which the SR images
approximate HR references. Therefore, we use the branch with
the SR image as input for approaching SR images to HR
references, which simulates the process of subjective quality
assessment and thus is more consistent with the HVS. In
this way, we effectively enhance visual attention to distortions
by dynamically imitating the interactions of transforming HR
references into SR images and vice versa.

Recently, the attention mechanism has been widely adopted
in Transformer models [24] as follows:

Q = XWQ,

K = XWK ,

V = XWV ,

D = V ar(QKT ).

(1)



Fig. 2. Visualization comparisons of feature maps regarding the proposed bi-directional attention block. Brick HR image and Flower HR image are HR
references. Brick SR image and Flower SR image are SR images. The remaining images are feature maps before and after BAB in two branches.

Due to the attention mechanism being obtained by calculating
the dot product between Q, K, and V , all three matrices
need to be square matrices. Given an input image X of shape
M × M , we can obtain Q(Query) ∈ RM×M , K(Key) ∈
RM×M , and V (V alue) ∈ RM×M matrices through linear
transformations WQ, WK , and WV . The linear transformations
are typically fully connected linear layers. D is the variance
of the dot product of Q and K. Afterward, the attention score
is computed by taking the dot product of Q and K, followed
by normalization using standard deviation and the Softmax
function:

Attention(Q,K, V ) = Softmax

(
QK⊤
√
D

)
V. (2)

Here, the attention score reflects the similarity between each
pixel and the other pixels in the image X , thereby achieving
effective visual attention for the image. Inspired by the at-
tention mechanism, we develop our BiAtten-Net, as shown in
Fig. 1. A two-stream network is exploited to extract features
from HR reference and SR image, while gradually enhancing
information interactions and directing visual attention to dis-
tortions through the proposed Bi-directional Attention Block
(BAB). These features are then combined from both branches
to predict the final visual quality score.

Specifically, given a pair of input images (i.e., SR image and
the corresponding HR reference), we first crop the images into
overlapping patches. Following the settings of [15], the patch
size is set to 32 × 32 in our experiments. We then employ a
stacking of single convolution layer with batch normalization
layer (BN) and activation function (ReLU) to preliminarily
extract the features of image patches. After that, the feature
maps of these image patches are fed into the proposed BAB.
We calculate the Q, K, and V matrices for both branches

separately:

QHR,KHR, V HR = Conv(XHR),

QSR,KSR, V SR = Conv(XSR),

DHR = V ar(QHR(KSR)
T
),

DSR = V ar(QSR(KHR)
T
),

(3)

where XSR ∈ RM×M and XHR ∈ RM×M represent the
input feature maps to BAB. DHR and DSR are the variance
of the dot product of QHR,KSR and QSR,KHR, respectively.
Considering that the learning capacity of linear layers is
limited, we employ convolutional layers rather than linear
layers to obtain the Q, K, and V matrices. The KHR and
KSR matrices of the two branches are exchanged to calculate
the attention maps as:

AttentionHR(QHR,KSR, V HR)

= Softmax

(
QHRKSR⊤

√
DHR

)
V HR,

AttentionSR(QSR,KHR, V SR)

= Softmax

(
QSRKHR⊤

√
DSR

)
V SR.

(4)

By swapping KSR with KHR, the resulting attention maps
calculate the pixel-level similarity between the current branch
features and the features from the other branch. In this way,
the attention maps directly deepen the visual attention on
subtle differing pixels (i.e., distortions). Taking into account
that the Identity Shortcut [27] has been proven to effectively
alleviate model overfitting issues, we use the Shortcut as the
main architecture. After passing through two BABs, the feature
maps of both branches are flattened and concatenated through
fully connected layers to enhance information interactions,
ultimately obtaining perceptual quality predictions.



Fig. 3. Similarity of “X1&X2”, where X1 is initial HR reference or SR
image, X2 is the feature map before or after BAB. (B) and (F ) denote
“Brick” and “Flower”, respectively. The higher the SSIM, the more similar
the two images are.

To intuitively demonstrate that the proposed method effec-
tively enhances the visual attention to distortions, we visualize
the intermediate feature maps of the two branches separately,
as illustrated in Fig. 2. It can be observed that the distortions
between HR references and SR images are concentrated in
the appearances of bricks in “Brick SR image” and flowers
in “Flower SR image”. Compared to the representations of
distortions in feature maps before BAB, the distorted pat-
terns after BAB are noticeably clearer. Moreover, the details
of distortions are significantly increased, indicating that our
proposed bi-directional attention can effectively enhance the
visual attention to distortions.

It is interesting to further illustrate the effectiveness of
BAB. As mentioned earlier, the two branches simulate the pro-
cesses of generating and evaluating distortions in SR images
respectively. Therefore, in an ideal scenario, by continuous
information interactions between branches, the feature maps
of HR references can gradually approximate SR images, and
vice versa. During the iterative learning, if the feature maps of
SR images and HR references show significant improvement
regarding similarity computation, the network can effectively
simulate the processes of distortion generation and quality
assessment, enabling a more comprehensive assessment of
distortion level. Here, we calculate the similarity (e.g., SSIM)
between the feature maps of the two branches before and
after BAB, as shown in Fig. 3. The SSIM is used to reflect
the level of approximation. It can be seen that the feature
maps of the SR image are significantly improved in SSIM
with the HR reference after getting visual attention from the
BAB. Additionally, the feature maps of the HR reference also
exhibit a significant SSIM improvement with the SR image
after the BAB. This indicates our method dynamically pays
visual attention to distortions as the “HR” and “SR” transform
into each other.

III. VALIDATION

A. Experimental Protocols

We conduct experiments on QADS [12] and CVIU [28]
databases. The QADS database contains 20 original HR ref-
erences and 980 SR images created by 21 SR algorithms,
including 4 interpolation-based, 11 dictionary-based, and 6
DNN-based SR models, with upsampling factors equaling 2,
3, and 4. Each SR image is associated with the mean opinion
score (MOS) of 100 subjects. In the CVIU database, 1620
SR images are produced by 9 SR approaches from 30 HR
references. Six pairs of scaling factors and kernel widths are
adopted, where a larger subsampling factor corresponds to a
larger blur kernel width. Each image is rated by 50 subjects,
and the mean of the median 40 scores is calculated for each
image as the MOS.

The QADS and CVIU databases are randomly divided into
non-overlapping 80% and 20% sets, with 80% of the data used
for training and the remaining 20% for testing. We train on
QADS and CVIU training sets for 500 epochs and 300 epochs,
respectively. These epochs were chosen based on experimental
experience to ensure sufficient convergence of the network
while avoiding overfitting caused by excessive training. We
use L1-loss to measure the difference between predicted scores
and MOSs. The optimizer used is stochastic gradient descent
(SGD), with an initial learning rate of 0.01, momentum of 0.9,
and weight decay setting to 10−6.

We adopt four commonly used evaluation criteria to com-
pare performance, including Spearman rank-order correlation
coefficient (SRCC), Kendall rank-order correlation coefficient
(KRCC), Pearson linear correlation coefficient (PLCC), and
root mean square error (RMSE). SRCC and PLCC/RMSE
are employed to assess the monotonicity and accuracy of
predictions, respectively. KRCC is used to measure the ordinal
association between two measured quantities. An ideal quality
metric would have SRCC, KRCC, and PLCC values close
to one, and RMSE close to zero. It should be noted that a
five-parameter nonlinear fitting process [14] is applied to map
the predicted qualities into a standardized scale of subjective
quality labels before calculating PLCC and RMSE.

B. Performance Comparisons

To validate the proposed method, we compare it with
state-of-the-art FR-IQA, NR-IQA, and SR IQA methods. FR-
IQA methods include PSNR, SSIM [7], MS-SSIM [8], CW-
SSIM [9], GMSD [10], WaDIQaM [21], and LPIPS [22].
NR-IQA methods consist of the NIQE [29], LPSI [30],
MetaIQA [31], and HyperIQA [32]. Among them, WaDIQaM,
LPIPS, MetaIQA, and HyperIQA are deep learning based
models. SR IQA methods contain SIS [12], SFSN [13],
SRIF [14], DeepSRQ [15], HLSRIQA [16], EK-SR-IQA [17],
JCSAN [25], and TADSRNet [26]. Besides, DeepSRQ,
HLSRIQA, EK-SR-IQA, JCSAN and TADSRNet are deep
learning based methods.

The comparison results are shown in Table I. In general,
deep learning based methods have better performance, and



TABLE I
PERFORMANCE COMPARISONS ON QADS [12] AND CVIU [28] QUALITY DATABASES, WHERE THE BEST PERFORMANCE VALUES OF FR AND NR ARE

IN RED AND BLUE, RESPECTIVELY.

QADS CVIU
Types Methods SRCC KRCC PLCC RMSE SRCC KRCC PLCC RMSE

FR-IQA

PSNR 0.354 0.244 0.390 0.253 0.566 0.394 0.578 1.962
SSIM [7] 0.529 0.369 0.533 0.233 0.629 0.443 0.650 1.828

MS-SSIM [8] 0.717 0.530 0.724 0.190 0.805 0.601 0.811 1.405
CW-SSIM [9] 0.326 0.228 0.379 0.254 0.759 0.541 0.754 1.579
GMSD [10] 0.765 0.569 0.775 0.174 0.847 0.650 0.850 1.267

WaDIQaM [21] 0.871 0.887 0.128 0.872 0.886 1.304
LPIPS [22] 0.881 0.873 0.129 0.849 0.852 1.313

NR-IQA
NIQE [29] 0.398 0.279 0.404 0.251 0.653 0.478 0.666 1.794
LPSI [30] 0.408 0.289 0.422 0.249 0.488 0.350 0.537 2.027

MetaIQA [31] 0.826 0.790 0.178 0.720 0.746 1.718
HyperIQA [32] 0.954 0.815 0.957 0.099 0.933 0.772 0.928 1.017

SR NR-IQA

DeepSRQ [15] 0.953 0.956 0.077 0.921 0.927 0.904
HLSRIQA [16] 0.961 0.829 0.950 0.741 0.948 0.810 0.948 0.775

EK-SR-IQA [17] 0.963 0.966 0.953 0.951
JCSAN [25] 0.971 0.858 0.973 0.065 0.949 0.808 0.957 0.777

TADSRNet [26] 0.972 0.862 0.974 0.067 0.952 0.812 0.959 0.797

SR FR-IQA
SIS [12] 0.913 0.740 0.914 0.112 0.869 0.686 0.897 1.061

SFSN [13] 0.841 0.655 0.845 0.147 0.871 0.680 0.885 1.120
SRIF [14] 0.916 0.746 0.917 0.109 0.886 0.704 0.902 1.039

Proposed BiAtten-Net 0.981 0.895 0.982 0.055 0.972 0.862 0.976 0.515

the performance of FR-IQA and NR-IQA methods is basically
inferior to SR IQA methods, indicating that traditional IQA
methods cannot cover diverse artifacts of SR images. Among
SR IQA methods, FR methods (i.e., SIS, SFSN, SRIF) are
limited to shallow features and cannot fully utilize the hid-
den information in reference images, causing significant gaps
compared to those deep learning based methods. In addition,
our proposed BiAtten-Net achieves greater information inter-
actions between branches and directly pays visual attention to
distortions, which effectively exploits the deep features of the
reference image. Therefore, the proposed method achieves the
best performance on both QADS and CVIU databases.

C. Ablation Study

To verify the effectiveness of bidirectional information
interactions in BAB, we conduct an ablation study on the
interactive modes of visual attention. Specifically, we validate
the following scenarios: without using BAB (i.e., separately
applying the attention in Eq. 1 to SR image and HR reference
branches); adding the attention information from the SR image
branch to the HR reference branch while applying the attention
in Eq. 1 to the SR image branch (i.e., SR to HR); and adding
the attention information from the HR reference branch to the
SR image branch while applying the attention in Eq. 1 to the
HR reference branch (i.e., HR to SR). The experimental results
find out that the model without BAB has the worst perfor-
mance on both databases, and even adding one-way attention
information interaction can significantly improve performance.
In addition, the performance improvement brought by BAB is
particularly significant in KRCC and RMSE on both databases.
Ultimately, the model using BAB achieves the best perfor-
mance, indicating that our proposed BAB effectively enhances
the network’s learning ability.

TABLE II
ABLATION STUDY OF BI-DIRECTIONAL ATTENTION. HR TO SR AND SR

TO HR REPRESENT ONE-WAY ATTENTIONAL INFORMATION INTERACTION,
WHERE THE ATTENTION MAPS FOR BOTH BRANCHES ARE CALCULATED

USING K MATRIX FROM THE OTHER BRANCH.

QADS CVIU

Models SRCC KRCC PLCC RMSE SRCC KRCC PLCC RMSE

w/o BAB 0.936 0.795 0.937 0.103 0.942 0.808 0.954 0.815
HR to SR 0.957 0.840 0.958 0.079 0.970 0.853 0.971 0.706
SR to HR 0.955 0.834 0.957 0.082 0.960 0.829 0.960 0.763
with BAB 0.981 0.895 0.982 0.055 0.972 0.862 0.976 0.515

IV. CONCLUSION

In this paper, we are the first to propose a deep learning
based FR-IQA method specifically designed for SR images.
Inspired by the characteristics of the HVS, we introduce bi-
directional attention tailored for SR images. This pioneers
a new model for learning distortions in SR images through
the interactions of bi-directional information between SR
images and the corresponding HR references. Experimental
results demonstrate that our proposed BiAtten-Net effectively
provides visual attention to SR distortions and surpasses
existing state-of-the-art quality assessment methods. The
codes are publicly available at https://github.com/Lighting-
YXLI/BiAtten-Net.
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