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Abstract—Recent years have witnessed many advancements in

the applications of 3D textured meshes. As the demand continues

to rise, evaluating the perceptual quality of this new type of media

content becomes crucial for quality assurance and optimization

purposes. Different from traditional image quality assessment,

crack is an annoying artifact specific to rendered 3D meshes that

severely affects their perceptual quality. In this work, we make

one of the first attempts to propose a novel Perceptual Crack De-

tection (PCD) method for detecting and localizing crack artifacts

in rendered meshes. Specifically, motivated by the characteristics

of the human visual system (HVS), we adopt contrast and

Laplacian measurement modules to characterize crack artifacts

and differentiate them from other undesired artifacts. Extensive

experiments on large-scale public datasets of 3D textured meshes

demonstrate effectiveness and efficiency of the proposed PCD

method in correct localization and detection of crack artifacts.

Moreover, to quantify the performance of the proposed detection

method and validate its effectiveness, we propose a simple yet

effective weighting mechanism to incorporate the resulting crack

map into classical quality assessment (QA) models, which creates

significant performance improvement in predicting the perceptual

image quality when tested on public datasets of static 3D textured

meshes. A software release of the proposed method is publicly

available at: https://github.com/arshafiee/crack-detection-VVM

Keywords—Artifact detection, crack artifact, 3D textured mesh,

quality assessment, human perception

I. INTRODUCTION

With the advancement of 3D acquisition technologies and

3D processing tools and displays, the interest in immersive

media has grown substantially in recent years. 3D mesh

is one of the most promising media forms for 3D content

representation and demonstrates great potential in many real-

world applications such as medical imaging/modeling, creative

storytelling, social virtual reality, and video gaming [1]–[3].

A 3D polygonal mesh is defined by a set of vertices in the

3D space. In addition to the xyz coordinates of the vertices,

connectivity information is needed to form polygons (typically

triangles). To colorize such 3D structures, either (1) color

values are defined for each vertex, in which case the mesh is

called a vertex-color mesh; or (2) a 2D texture map is provided

separately along with the 3D data to form colored textured

meshes. Mapping information between the 3D model space

and the 2D texture space (UV mapping information) is then

Fig. 1. Sample snapshots of a pair of reference (left) and distorted (right)

3D textured meshes. Crack artifacts are present all over the distorted object.

Two local windows are cropped and enlarged for better visualization.

included in the 3D data to help the rendering method unfold

the 2D texture map onto the 3D colorless object [4].

3D textured meshes undergo a variety of processing op-

erations including but not limited to simplification, quantiza-

tion, compression, transmission, post-processing and render-

ing, throughout the multimedia supply chain. These operations

will inevitably cause diverse distortions that degrade the per-

ceived quality of the contents. Among those distortions, crack

creates highly noticeable perceptual artifacts, as exemplified

in Fig. 1. Crack artifacts are fractures or holes that appear on

the surface of objects. They are specific to 3D meshes and

are rarely observed in either distorted natural images/videos

or other forms of 3D content. Different sources of distortions

may cause crack artifacts depending on their strength level and

the characteristics of the 3D content. However, crack artifacts

appear mostly because of vertex position and UV quantization

and drastically degrade the perceived quality of 3D objects.

Consequently, a tool that can detect and localize crack artifacts

is highly desirable and may be employed (1) to boost the

performance of existing 3D quality assessment (QA) methods;

and (2) to help optimize various mesh processing algorithms

to detect, localize, reduce and rectify cracks.

Existing 3D mesh QA methods can be generally catego-

rized as model-based and image-based metrics. While model-

based metrics operate on the 3D object itself, image-based

methods take 2D snapshots of the 3D objects as input [4].

Many model-based [5]–[10] and image-based [11]–[14] meth-

ods have been proposed for 3D mesh QA over the years, but



Fig. 2. PCD framework, where TAD represents the truncated absolute

difference. The sample reference and distorted frames are obtained from

Nehmé et al. dataset [13].

to the best of our knowledge, no image-based or model-based

method has been yet developed to detect and localize crack

artifacts of textured meshes despite their severe impact on the

perceived quality of 3D objects.

To address this issue, we propose an image-based Percep-

tual Crack Detection method (PCD) based on the characteris-

tics of the human visual system (HVS) such as visual masking

[15], [16] and psychometric saturation [9] effects. Given a pair

of snapshots of distorted and reference 3D objects, our pro-

posed algorithm creates a crack likelihood map that indicates

locations of cracks at pixel-level. Furthermore, to quantify the

performance of the proposed PCD method and confirm its

effectiveness, an efficient method is proposed to convert the

crack map into a weight map, which is subsequently combined

with quality maps generated by existing QA models to greatly

enhance their performance in predicting the perceptual quality

of the distorted meshes when tested using two large-scale

subject-rated datasets.

II. PROPOSED METHOD

A. Crack Detection

We propose a novel and effective crack artifact detection

and localization method called PCD, drawing upon various

HVS theories. Fig. 2 summarizes the proposed method. Sup-

pose that xi and yi are the i-th gray-scale pixels of the cor-

responding snapshots (frames) of the reference and distorted

3D objects, respectively. They should be taken from the same

viewpoint, covering the same angle of the 3D objects. First,

the absolute difference between the corresponding pixels of

the two frames is computed, i.e. |di| = |xi − yi|. Observe

that |di| ∈ [0, 1], ∀i. When a pixel i in the distorted frame

corresponds to a crack artifact, |di| tends to be closer to 1. To

avoid magnifying undesired minor artifacts in later stages, we

truncate smaller values of |di|, i.e. if the absolute difference

value |di| is smaller than a threshold, it is set to 0. The

threshold is empirically set to 0.1. As shown in Fig. 2, the

output of this first stage is the truncated absolute difference

(TAD) map denoted by |di|.

We then exploit the visual masking effect of HVS [15],

[16] to modulate the resulting TAD map. We note that crack

artifacts occurring in low-contrast (smooth) local regions are

more visible and annoying compared to those emerging around

the edges and high-contrast (textured) local regions of the 3D

object. In other words, textured local regions can provide a

masking effect for crack artifacts to some extent [8], [9], [21]

following the well-established visual masking effect of HVS.

Therefore, we normalize each pixel i of the TAD map by the

local contrast of its corresponding pixel in the reference frame,

denoted by σi, i.e.

mi =
|di|

σi + C1

, (1)

where m denotes the resulting contrast normalized map, and

the constant C1 = 0.01 is included to avoid instability in

division. To account for local contrast, we adopt the same

setting as in the structural similarity (SSIM) approach [19]

by employing a sliding Gaussian window with a standard

deviation of 1.5, but a smaller window size of 5× 5.

To account for the sensitivity of HVS to high-frequency

changes in the appearance of 3D objects, the resulting map

is enhanced by a second modulation step with the absolute

Laplacian map of the distorted frame denoted by |li|, i.e.

m̃i = mi · |li| =
|di| · |li|

σi + C1

, (2)

where m̃ denotes the initial crack map, and m̃i ≥ 0, ∀i.
This enhancement step is also motivated by the fact that

crack artifacts create strong local edges in the distorted frame.

As such, an unexpected sharp edge in the distorted frame

that corresponds to a low-contrast region in the reference

frame with a highly different intensity results in a large value,

resonating interestingly with our visual definition of the crack

artifact.

Finally, as shown in Fig. 2, a truncated sigmoid non-

linearity is used to create the final crack likelihood map:

mi = f(m̃i) =

{
sigmoid( m̃i−T1

T1

) m̃i > T1

0 otherwise
, (3)

where by definition mi ∈ {0} ∪ (0.5, 1], ∀i. The bigger the

value of mi, the more likely the i-th pixel is contaminated

by the crack artifact. The use of sigmoid is motivated by

(1) the psychometric saturation effect of the visual system,

which states that human observers’ ability to discriminate

between two different distorted stimuli decreases as the stimuli

surpass a threshold of degradation [9]; and (2) its capability

of generating probability-like outputs for QA tasks [22], [23].



Fig. 3. Crack maps of local windows of four different input pairs of reference and distorted frames obtained from the Nehmé et al. [13] (first two rows) and

TSMD [17] (last two rows) datasets. GMSD [18], SSIM [19], and IW-SSIM [20] quality maps are also generated and binarized with optimized thresholds and

added as baselines for comparison with the proposed PCD method.

B. Integration with IQA Models

To demonstrate the effectiveness of the proposed PCD

method and quantify its performance, we adopt an important

feature of HVS and propose a simple yet efficient method to

integrate it with existing QA models that produce pixel-level

quality maps and observe how it impacts the quality prediction

performance of the QA model.

Given the input reference and distorted frames, we first

symmetrically crop both frames around the bounding box of

their 3D objects. This step helps eliminate the background

pixels irrelevant to the perceived quality. The crack likelihood

map m is then incorporated using a weighting scheme, where

the weight wi of the i-th pixel is given by

wi =
1 + C2

1−mi + C2

, (4)

where a small constant C2 = 0.0001 is included to avoid

division instability and to reflect the sensitivity of the weight

values to the crack artifacts. By doing so, a non-crack pixel

(mi = 0) is mapped to a weight value of 1, whereas a definite

crack pixel (mi = 1) results in an extremely larger weight

value. The design of the weighting scheme is inspired by the

non-uniform perceptual behavior of HVS towards high-quality

and low-quality regions of an image. Specifically, low-quality

regions have a stronger influence on perceived quality than

high-quality regions [24].

In the final step, the weight map is integrated with the

quality map of a given QA model, resulting in an overall

quality score:

Q =

∑N

i=1
wiqi∑N

i=1
wi

, (5)



Fig. 4. Ablation study for contrast and Laplacian modulation components of the proposed PCD method for two sets of input pairs of reference and distorted

frames obtained from the TSMD dataset [17].

where qi denotes the i-th pixel of the quality map and N is the

total number of pixels. The proposed method can be integrated

with any given QA model that outputs a perceptual quality

map, aiming to enhance their performance by emphasizing the

impact of crack artifacts on the perceived quality.

III. EXPERIMENTS

A. Experimental Setup

To validate the performance of the proposed PCD method

and quantify its effectiveness, we run experiments on two

large-scale public datasets of 3D textured meshes, which, to

the best of our knowledge, are the only datasets that contain

crack artifacts: (1) the Nehmé et al. dataset [13], and (2) the

TSMD dataset [17].

The Nehmé et al. dataset [13] is the largest public dataset

of 3D textured meshes. It contains 55 3D source models, each

distorted by a mixture of simplification, (vertex position and

UV) quantization, texture sub-sampling, and texture compres-

sion distortions with different strength levels, leading to a total

of 343,750 distorted stimuli [13]. A subset of 3000 stimuli was

selected and judged by 4513 subjects through crowdsourcing

[13]. The method of subjective study was the double stimulus

impairment scale with five scales, and subjects were asked

to watch videos of rotating 3D objects before rating them

[13]. In our experiments, we use the published videos of 3000

distorted stimuli, their corresponding reference videos, and

their reported mean opinion scores (MOSs). The videos are

8 seconds long and in 650× 550 resolution with a frame rate

of 30 fps [13].

The TSMD dataset [17] contains 42 3D source models.

Similar distortion types as in Nehmé et al. dataset [13] are

mixed and applied to each source 3D mesh to generate five

distorted meshes per reference mesh, resulting in a total of

210 distorted stimuli. All distorted stimuli were rendered as

videos and then judged by 74 viewers through crowdsourcing.

The method of subjective study was the double stimulus

impairment scale with five scales. Participants were tasked

with viewing videos of rotating 3D objects and then providing

ratings for them. [17]. In our experiments, we use the 210

distorted videos stimuli, their corresponding reference videos,

and their reported MOSs. The videos are 18 seconds long and

in 1920× 1080 resolution with a frame rate of 30 fps [17].

To compare the performance of various QA metrics with

their enhanced versions, we employ the Spearman rank-order

correlation coefficient (SRCC) and the Pearson linear corre-

lation coefficient (PLCC). The PLCC score is obtained after

applying a logistic non-linear fitting approach to map predicted

quality scores into the MOS space, as recommended by [25]

and used in [26].

B. Qualitative Results

Fig. 2, 3, and 4 show sample crack maps for various input

frames of reference and distorted 3D textured meshes from

both datasets. Since, to the best of our knowledge, no other

image-based or model-based method has been developed for

crack detection of 3D textured meshes, we build our own

baseline methods for comparison purposes and include them

in Fig. 3. Specifically, we adopt quality maps of GMSD [18],

SSIM [19], and IW-SSIM [20] QA methods - which can

essentially be regarded as artifact localization methods - and

select hard thresholds to binarize them into crack and non-

crack pixels. Thresholds are carefully chosen by empirical

optimization over data samples to generate the best possible

results. The proposed PCD method achieves correct detection

and localization of crack artifacts in all samples and outper-

forms all baseline methods that fail to accurately localize and

differentiate crack artifacts. Furthermore, samples in Fig. 3

exhibit other undesired artifacts (e.g. abrupt edges/patterns)

that are detected by baseline methods. However, the resulting

crack maps only highlight crack artifacts, which shows that

the proposed PCD method is capable of differentiating crack



TABLE I. SRCC (rs) AND PLCC (rp) SCORES OF BASE AND ENHANCED VERSIONS OF VARIOUS QA METRICS ON THE NEHMÉ et al. [13] AND TSMD

[17] DATASETS. THE BOLD VALUES INDICATE THE BEST RESULT IN EACH COLUMN FOR EACH DATASET. THE ENHANCED METHODS ARE THE RESULTS OF

OUR PROPOSED INTEGRATION FRAMEWORK FOR EACH BASE QA MODEL.

Dataset Version
lumaPSNR SSIM [19] MS-SSIM [27] IW-SSIM [20] FSIM [28] FSIMC [28] Average

rs rp rs rp rs rp rs rp rs rp rs rp rs rp

Nehmé et al. [13]
Base Method 0.469 0.485 0.333 0.372 0.465 0.480 0.564 0.581 0.559 0.579 0.556 0.577 0.491 0.512

Enhanced Method 0.657 0.655 0.668 0.676 0.680 0.688 0.703 0.711 0.723 0.729 0.722 0.728 0.692 0.698

TSMD [17]
Base Method 0.545 0.528 0.504 0.511 0.654 0.255 0.756 0.768 0.658 0.667 0.657 0.665 0.629 0.564

Enhanced Method 0.663 0.653 0.699 0.705 0.744 0.760 0.757 0.767 0.746 0.749 0.746 0.749 0.726 0.731

from other types of artifacts. Fig. 3 also illustrates the pro-

posed method’s robustness to background and source content

variations, showcasing its generalization on two datasets with

different backgrounds and source collections.

C. Ablation Study

We also conduct an ablation study to confirm the func-

tionality of contrast and Laplacian modulation components

of the proposed PCD method. Specifically, we explore four

versions of the proposed PCD method: (1) the original PCD

method; (2) the PCD method without contrast modulation;

(3) the PCD method without Laplacian modulation; and (4)

the PCD method without contrast and Laplacian modulation.

Fig. 4 showcases the results for two sets of input reference and

distorted frames from the TSMD dataset [17]. As observed,

the version without contrast and Laplacian modulation detects

all types of distortions and fails to distinguish crack artifacts

from other undesired artifacts (e.g. pattern displacement).

However, contrast modulation improves outcomes by modu-

lating artifacts according to the visual masking effect of HVS,

effectively filtering out undesirable and imperceptible artifacts.

Additionally, the application of Laplacian modulation further

enhances the results by magnifying crack artifacts according

to the sensitivity of HVS to high-frequency details. As seen in

Fig. 4, both samples attest to the effectiveness of the proposed

PCD method and confirm necessity of contrast and Laplacian

modulation components.

D. Quantitative Results

To quantitatively demonstrate the effectiveness of the pro-

posed PCD method, we quantify the performance gain by

the proposed integration method over six well-known base

QA models, which include: (1) lumaPSNR, which computes

the peak signal-to-noise ratio (PSNR) on the Y channels of

reference and distorted frames in the YUV color space; (2)

SSIM [19]; (3) MS-SSIM [27]; (4) IW-SSIM [20]; (5) FSIM

[28]; (6) and FSIMC [28]. PIQ implementations of IW-SSIM,

FSIM, and FSIMC were used in our experiments [29]. For

a given QA metric, a single quality score is computed for

each pair of (reference and distorted) videos of the Nehmé

et al. [13] and TSMD [17] datasets by applying the model to

individual frames of the videos and averaging per-frame scores.

For better efficiency, highly overlapped frames are ignored, and

only one out of every ten consecutive frames is included in the

computations, which is sufficient to cover all vertical angles.

Two versions of each QA metric are tested on all videos of

each dataset: (1) the base method; and (2) the enhanced method

which is the result of our proposed integration framework

(Section II-B) for each base QA model. The resulting SRCC

(rs) and PLCC (rp) scores are summarized in TABLE I.

We make the following observations. First, the base methods

generally exhibit poor performance in all evaluation criteria

and both datasets. The QA metrics are developed for natural

scenes and their common distortions, while the snapshots of

3D objects are not statistically similar to natural images and

are contaminated by a different set of distortions. Second,

the proposed integration framework enhances the performance

of all base methods on both datasets, regardless of the base

model, demonstrating the effectiveness and generalizability of

the proposed PCD and integration frameworks. Also, on the

Nehmé et al. dataset, with respect to the base models, the

integration framework provides 40.9% and 36.3% increases,

on average, in terms of SRCC and PLCC scores, respectively.

For the TSMD dataset, these average increases are observed

to be 15.4% for SRCC and 29.6% for PLCC.

Furthermore, we conduct an additional study by testing the

proposed PCD method as a standalone 3D QA model (without

employing any base QA model). Specifically, we assign a

crack artifact score (CAS) to a given pair of (reference and

distorted) frames by averaging the pixel values of the computed

crack map. The larger the CAS, the lower the quality of the

frame. When tested on all videos of the Nehmé et al. dataset,

CAS achieves SRCC and PLCC scores of 0.665 and 0.655,

respectively; while on the TSMD dataset, it attains SRCC and

PLCC scores of 0.675 and 0.651, respectively. Interestingly,

CAS as a standalone QA model outperforms all QA base

models on the Nehmé et al. dataset and most of them on the

TSMD dataset, validating the effectiveness of the proposed

PCD method and highlighting the major influence of crack

artifacts on perceived image quality.

E. Runtime Analysis

Finally, we perform a runtime analysis for the proposed

PCD method. Table II presents the PCD’s crack map compu-

tation time for input video frames of 650 × 550 (Nehmé et

al. dataset [13]) and 1920 × 1080 (from TSMD dataset [17])

resolution and compares it with the processing time needed

for the baseline crack detection methods as introduced in

Section III-B). The analysis was conducted on a computing

platform equipped with an Intel Core i7-12700K CPU. As



TABLE II. RUNTIME ANALYSIS OF THE PROPOSED PCD AND

BASELINE METHODS FOR SAMPLE INPUT FRAMES OF 650× 550 AND

1920× 1080 RESOLUTION. CD STANDS FOR CRACK DETECTION.

Operation
650 × 550 1920 × 1080

Resolution Resolution

PCD (proposed) 0.009s 0.060s

GMSD-based [18] CD 0.004s 0.018s

SSIM-based [19] CD 0.029s 0.238s

IW-SSIM-based [20] CD 0.055s 0.423s

we can see, the proposed PCD method is highly efficient and

provides a real-time computation of the crack maps for all

frames of a video of 650 × 550 resolution with a 100 fps

frame rate. Near real-time performance can also be achieved

in videos of 1920 × 1080 resolution with 25 fps frame rate.

Furthermore, we can observe that the crack map computation

runs much faster than the baseline SSIM-based and IW-

SSIM-based crack detection methods and slightly slower than

the baseline GMSD-based crack detection method. Given its

efficiency, PCD can be applied across various stages of a 3D

mesh supply pipeline to promptly identify crack artifacts in

distorted 3D textured meshes.

IV. CONCLUSION

We propose PCD, a novel Perceptual Crack Detection

method for 3D textured meshes. The proposed method operates

on a pair of input snapshots of distorted and reference 3D

objects and takes advantage of HVS characteristics and visual

characteristics of crack artifacts to generate a crack likeli-

hood map that highlights contaminated pixels. Additionally,

to quantitatively validate the effectiveness of the proposed

PCD method, we propose a simple yet efficient framework

for integration of the crack map with existing QA models

to boost their performance in 3D QA tasks. Experiments on

large-scale public datasets of 3D textured meshes demonstrate

the efficiency and effectiveness of the proposed PCD and

integration frameworks.
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