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Abstract. Drone-based visual inspection has emerged as a crucial manner for infrastructure 
inspection, owing to its mobility and potential for automated perception. However, from the 
perspective of human-agent interaction, the predominant modes in this field currently involve either 
full-process human intervention or end-to-end execution based on deep learning. The former 
constrains the level of automation, while the latter overlooks considerations of interactivity and 
controllability. To improve the level of automation and interactivity of the inspection process, this 
research explores the integration of Large Language Models (LLMs) into the visual inspection of 
infrastructure to utilize the capabilities of LLMs to understand human intentions and generate 
control commands. Specifically, high-level function libraries for drone and sensor control, as well 
as comprehensive and standardized prompts, are developed to fulfill the objective. The effectiveness 
of the method is demonstrated in both simulated and laboratory environments. 

1. Introduction 
The increasing pressure on infrastructures due to higher demands for recycling and resource 
efficiency (Parliament, E.U., 2011), alongside the deterioration of thousands of in-service 
infrastructures from issues like corrosion and cracks, highlights the growing necessity for long-
term maintenance with higher efficiency and automation. Visual inspection is essential for 
evaluating infrastructure conditions and drone-based visual inspection has shown promising 
automation and standardization in practice (Nooralishahi et al., 2021) compared with traditional 
manual inspection. 
Specifically, drone-based visual inspection for infrastructure has shown promising effects on 
leveraging the mobility of drones (Nooralishahi et al., 2021), the perception ability of onboard 
sensors, and the analytical ability of artificial intelligence methods. Many studies tend to 
concentrate on specific technologies in the drone-based visual inspection process, overlooking 
the working patterns involved. While considering human-agent interaction, the majority of 
research on drone-based visual inspection either leans heavily on human control with minimal 
automation or entirely relies on end-to-end deep learning methods to perform tasks without 
human intervention, which poses a risk of low data quality leading to recapture in the aftermath. 
In this paper, to further improve the automation and interactiveness of drone-based visual 
inspection for infrastructure and ensures a thorough and systematic inspection process, large 
language model (LLM) was introduced in the loop of process. Recent advancements in LLM 
and its exceptional performance in text generation, machine translation, and code synthesis 
have make it possible for this development. 
Several steps are taken to demonstrate the potential of LLM for drone-based visual inspection 
in infrastructure. Firstly, we introduce LLM into the process of drone-based visual inspection 
and design the scheme for LLM-informed drone-based visual inspection for infrastructure. 
Secondly, high-level function libraries about drone control, sensor control and algorithm API, 
which act as a bridge from human intent and control command to restrict the output of LLM, 
are created to empower the LLM model to generate code for drone navigation, data acquisition 
and data post-processing. Thirdly, information about high-level function libraries and the 
proposed inspection scheme was translated into several prompts to provide essential 
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information for LLM. The interacting pattern between LLM and engineers is also defined to 
make the process more understandable, more explicit, and more controllable. Finally, to 
validate the effectiveness and adaptability of our method, we conducted visual inspection 
experiments in a simulated environment containing a bridge and some other buildings. Then, 
we transform our system into a physical drone to conduct experiments in a lab environment. 
The main contributions of this paper are listed below: 
1. Introduce LLM into drone-based visual inspections for infrastructure to enhance the level of 
automation of information collection by providing a comprehensive and interactive approach. 
As an embodied agent, LLM can assist in task planning by understanding human intentions and 
adapting the plans based on human interactions. Moreover, LLM can collaborate with tools like 
drone control algorithms, sensor control algorithms, and other AI models for data interpretation, 
ensuring the successful completion of the inspection objectives. 
2. Develop a set of high-level function libraries to empower LLM to generate standardized 
control commands for drone control, data collection and data post-processing. 
3. Develop the systematic prompts introducing the proposed inspection scheme, high-level 
function libraries and engineer-LLM interacting pattern to fulfil the LLM-informed drone 
visual inspection system. 
4. Validate the effectiveness of the proposed method in both the simulated environment and the 
lab environment. 

2. Related work 
In this section, the discussion about the related literature on drone-based visual inspection for 
infrastructure and large language models in robotics will be proposed. 

2.1 Drone-based visual inspection for infrastructure 
Drone-based visual inspection has proven to offer several advantages over traditional inspection 
methods, including cost, time, reduced risk for inspectors, and inspection quality (Chan et al., 
2015). Additionally, drones with high mobility and suitable sensing systems can capture various 
types of data, such as RGB images, cloud points, and thermal images, for different objectives 
(Zhang et al., 2022). Due to these advantages, drones have been widely used for the non-
destructive inspection of infrastructure (Cheng et al., 2020). Besada et al. (2018) proposed the 
mission definition system of drone-based visual inspection for specific infrastructure and split 
the whole task into flight plan calculation, trajectory calculation, flight generation and 
measurement translation. Jung et al. (2018) introduced a practical 3D coverage path planning 
method for drone-based inspection of high-rise structures by dividing the predefined volumetric 
map of structures into several layers to improve the resolution of the data collection.  
However, to fully fulfil the automatic visual inspection, it is crucial to incorporate human 
intervention into the inspection process to adapt the inspection strategy promptly. When 
exploring human-agent interaction, the prevailing research on drone-based visual inspection 
tends to either heavily rely on human control with minimal automation or solely rely on end-
to-end deep learning methods to execute tasks without human intervention posing a significant 
risk of compromised data quality, ultimately necessitating additional capture efforts afterwards. 
The blooming development of LLM, especially ChatGPT has make it possible to enable 
engineers to participate in the dynamic decision-making process of visual inspection and further 
enhance interactivity and automation of the process. 
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2.2  LLM-based agent: applying LLM in industrial scenario 
A large language model is a neural network with hundreds of billions of parameters trained on 
unsupervised learning objectives such as next-token prediction or masked-language modelling. 
It exhibits remarkable multi-task generalization, promising capability of language generation 
(including programming) and interactivity, which enable it to interact with users and to leverage 
various objects, including robotics, sensors, algorithms, and even other AI models. The 
versatility and scalability have sparked growing research interest in developing LLM-based 
agents for industrial applications.  
Some researchers aim to harness LLM's reasoning capability to generate feasible plans for 
complex scenarios and fulfil automatic and interactive robotic control objectives. Ahn et al. 
(2022) proposed a method called SayCan which enables the leveraging of the rich knowledge 
in pre-trained large language models to complete embodied tasks. They also demonstrated that 
the robot’s performance can be improved simply by enhancing the underlying language model. 
On the basis of SayCan framework, Chen et al. (2022) further introduced a flexible and 
quarriable spatial semantic representation called NLMap based on visual-language models, 
including ViLD and CLIP, and significantly improved long-horizon planning via natural 
language instructions in the open-world domain, 

Apart from interacting with sensors and robots, LLM is also used to interact with other AI 
models to form a systematic AI agent in complex scenarios. Shah et al. (2022) presented LM-
Nav, a system combined with LLM, Visual Language Navigation (VLN) and Visual Navigation 
Model (VNM), which can navigate robot from textual instructions without requiring any user 
annotations for navigational data. In the system, the LLM is responsible for parsing user 
instructions into a list of landmarks, the VLN is responsible for estimating the probability that 
each observation in a “mental map” constructed from prior exploration of the environment 
matches these landmarks and the VNM is responsible for estimating navigational affordances 
(distances between landmarks) and robot actions. 

Research has also been done on the application of LLM for drone control recently. Lamine et 
al. (2023) introduced LLM in the natural language-based drone control systems and proved its 
usability and reliability. But their research only focusses on the drone control without 
concerning context information of the actual task. Our research will make the first step for 
applying the LLM-informed system in the application of visual inspection for infrastructure. 

3. Methodology 
To enhance the level of automation and interactivity of current drone-based visual inspection 
methods and elevate the level of automation and interactiveness in the inspection process, a 
holistic framework for LLM-informed visual inspection of infrastructure is put forth. This 
framework incorporates LLM to streamline and optimize the inspection procedures adaptively 
based on human intention. 

3.1 LLM-informed visual inspection framework for infrastructure 
In the paradigm shown in Figure 1, we introduce LLM as an agent into the task of visual 
inspection for infrastructure. LLM as agents are capable of observing, acting, and receiving 
feedback iteratively from external entities including drones, sensors algorithms and other AI 
models (Wang et al., 2023).  
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The proposed framework for LLM-informed visual inspection for infrastructure, which 
contains three major stages including interactive task planning, command generation and 
command execution. 
In the first stage, the engineer will explain the purpose of the inspection to LLM. LLM will then 
confirm the information and describe the overall objective and task plan. Through 
communication and collaboration between LLM and the engineer, a task plan will be 
established for the next stage. The second stage is command generation, in which LLM will 
leverage the tools, including sensors, drones and data post-processing models, to fulfil the 
functions needed in the visual inspection. In this stage the generated command and its 
explanation will also be the feedback to the engineer to check. After confirmation, the generated 
command will be executed in the third stage.  

 

Figure 1:   Framework of LLM-informed Drone Visual Inspection for Infrastructure 

Specifically, to establish the system, two crucial components are built: 
1. High-level function libraries for controlling drones, sensors and post-processing algorithms 

are built for the efficiency and accuracy of the translating process from human intent to a 
logical chain of commands. 

2. Systematic prompts, including prompt about interacting pattern, navigation and pose 
planning, prompt about drone control and sensor control, prompt about data post-processing, 
are designed to facilitate the integration of other task-related AI models or algorithms into 
a network which is overseen and regulated by the LLM.  

In the upcoming section, the two crucial components will be introduced in detail. 

3.2 High-level function libraries 
High-level function libraries are of great importance for LLM-informed robotics for several 
reasons: 
1. The raw function on the robot platform could not be descriptively enough for LLM to follow, 
which could influence the efficiency and accuracy of the translating process from human intent 
to a logical chain of commands. 
2. The available functions for LLM should be restricted into some specific region in case for 
the stability, maintainability, and comprehensibility of the generated code. 
High-level function libraries for drone and sensor control should be built specifically to the 
format or scenario of interest and should map to actual implementations on the robot platform 
while being named descriptively enough for ChatGPT to follow. The functions of the library 
are listed in Table 1: 
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Table 1:   Structure of Constructed High-level Function Library 

Category Function Modules 

ControlWrapper 
Drone control Motion control, Attitude control 

Camera control 
Recording video, Taking photo,  
Attitude control, Record position 

PostprocessingWrapper 

PathPlanner Path planning, Path restriction 

Data interpretation 
 (image) 

3d reconstruction, Image 
segmentation, Object detection, 

Save 

Data interpretation 
 (point cloud) 

Instance segmentation, Get 
bounding cuboid, Save 

3.3 Systematic prompting construction 
In the field of interacting methods between users and LLM (Wang et al., 2023), there are three 
different ways, including pre-trained language models, prompting and fine-tuning. According 
to Khot et al. (2023), prompting refers to the interaction methods that focus on calling a model 
via prompts without involving any parameter updating.  
Prompting plays a crucial role in the proposed methodology to define the grounding for LLM 
in the specific task. There are four major prompting documents in the context of this paper: 
prompt about the user interface, prompt about rule extraction, prompt about control command 
of a drone equipped with sensors, and prompt about the working mode of LLM. The 
relationship between different prompt documents and the corresponding actions of LLM in the 
validating stage are shown in Figure 2. 
Prompt about interacting pattern aims to outline the interaction pattern between the user and 
LLM, encompassing the Q&A mode and confirmation mechanism. In the Q&A mode, users 
have the ability to pose questions and receive responses derived from the knowledge stored 
within the system. Additionally, a confirmation mechanism is in place to validate that the 
actions carried out by the LLM are in line with the user's intentions.  
On the other hand, prompts about navigation and pose planning, prompts about drone control 
and sensor control, and prompts about data post-processing are created to facilitate LLM's 
access to the established high-level function libraries, which enables seamless interaction with 
sensors, drones, various algorithms, and other AI models. 

Prompt about 
Interacting pattern

Prompt about drone 
control and sensor 

control

Prompt about 
navigation and pose 

planning

Interacting with user 

Path planning and 
pose planning

Data post-processing

Pose control and 
sensor control

Prompt about data 
post-processing

interacting 

interacting 

interacting 

interacting 

Prompting 
system

Command 
generation

 
Figure 2:   Relationship among Prompts in the Proposed Framework 
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4. Experiments and discussion 

4.1 Simulated experiment 

a. Experiment description 
A simulated experiment is held to demonstrate the feasibility of the proposed methodology. In 
this research, we choose Airsim as the platform to build up the simulating environment. Airsim 
(Shah et al., 2017) is a simulator built on Unreal Engine and includes a physics engine that can 
operate at a high frequency for real-time hardware-in-the-loop (HITL) simulations with support 
for popular protocols (e.g., MavLink). It can offer physically and visually realistic simulation, 
is widely used in the simulation of drone control, and is capable of collecting simulated data 
such as point clouds and images. In this paper, we first design the simulation field by using 
maps in the open-source community of Unreal Engine.  
As shown in Figure 3, the simulating environment contains one rusty bridge and several 
buildings to build up a stage for drone-based visual inspection. To simulate defects with 
different types and degrees, artificial patterns of corrosion and crack are attached on the surface 
of the components in each simulated structure. It is worth mentioning that the LLM model used 
in this research is ChatGPT-3.5 for its comprehensively outstanding performance, which has 
been proven in related research (You et al., 2023). 

 
Figure 3:   Detail of the Overall Simulating Environment 

The high-level function libraries, including drones, sensors, and other data processing models, 
were built according to the simulating environment to empower the LLM to control the objects. 
The details of the two libraries are listed in Table 1. On the other hand, the systematic prompts 
were designed to leverage the LLM's in-context learning capability.  
The simulated experiment is designed according to the proposed LLM-informed visual 
inspection framework. Its detailed description follows. 

Table 2:   Configuration of the Simulated Sensors 

Sensor Description 

GPS  Get position of drone. 

RGB-D camera top 
Installed on the top of drone: 

Resolution: 256*192;  
FOV Degree: 90 

RGB-D camera bottom 

Installed on the bottom of drone: 
Resolution: 256*192;  

FOV Degree: 90 
Linked with camera gimbal 

Camera gimbal Set and record pose of RGB-D camera 1. 
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b. Experiment process and result 

In this experiment, we specified two separate tasks: 

1. Please inspect component 1 and specify the corrosion region. 

2. Please do a 3D reconstruction for component 2 and save the reconstructed point cloud. 

Figure 4 shows the interaction process between the user and the LLM agent on task 1. During 
the interactive task planning stage, the LLM agent firstly specify the target and the objective of 
the visual inspection, and then separate the objective into a task chain for confirmation.  

Based on the task chain, the LLM agent will generate commands and ask engineers to confirm 
several important issues, including distance from the target and number of control points on the 
path. This process is shown in Figure 5. 

 

Figure 4:   Example of Interacting 
Dialogue  

 

Figure 5:   Example of Code Generation 

After code generation, code will be executed in the simulated environment to fulfill the task 
and the result are shown below. Figure 6, Figure 8 and Figure 10 show the key result during the 
inspection of component 1 on the task of corrosion region specification,  while Figure 7, Figure 
9 and Figure 11 show the key result during the inspection of component 2 on the task of 3d 
reconstruction. 

 

Figure 6:   Sample of Collected Data 
(Component 1) 

 

Figure 7:   Sample of Collected Data 
(Component 2) 
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Figure 8:   Drone Trajectory (Component 1) 

 

Figure 9:   Drone Trajectory (Component 2) 

 

 

Figure 10:   Damage Segmentation Result 
(Component 1) 

 

Figure 11:   Segmented 3D Point Cloud 
(Component 2) 

4.2 Lab experiment 

To prove the effectiveness of the proposed method in the real scenerio, a lab experiment is 
carried out. Considering the size of the space in the lab and the programming environment that 
can support the SDK, we chose the Tello EDU, a micro drone developed by DJI, as the lab 
flight device. It weighs about 80 g and has dimensions of 98 mm * 92.5 mm * 41 mm, 
respectively. It also comes with a 5MP camera and 2.4 GHz 802.11n Wi-Fi. In this case, a 
communication connection can be established with the ground equipment through the IP and 
UDP ports of the drone. This communication link is responsible for passing all relevant 
commands and information flows, including take-off, landing, forward, backward, left, right, 
up, down, clockwise rotation, anti-clockwise rotation, taking pictures, etc. In this study, 
laboratory experiments were conducted on a 160 cm * 160 cm table with four concrete columns. 
Aruco markers were also placed at the table's four corners and the centre to enhance the 3D 
reconstruction in the data post-processing session. The detailed lab experimental environment 
is shown in Figure 12. 



9 
 

 

Figure 12:   The Lab Experimental Environment 

The lab experiment also used the same LLM-driven strategy, and the Tello SDK guide was 
provided to ChatGPT using previous prompted engineering approach for prior learning of the 
UAV's flight control commands. However, due to the limitations of the realistic drone hardware 
equipment, i.e., the lack of GPS and distance sensors, we chose to pre-confirm the world 
coordinate system position of each object on the table. In this way, the drone can execute tasks 
along known flight path with the assistance of the LLM. A total of 100 images containing 
column components were captured during the flight around the table. For these collected data, 
we performed 3D reconstruction using Agisoft Metashape software providing structure from 
motion (SFM) algorithm and crack identification using the fine-tuned DeepLabV3+ algorithm. 
The visual results are shown in Figure 13 and Figure 14. 

 

Figure 13:   3D Reconstruction Result 

 

Figure 14:   Result of Crack Identification 

5. Conclusion 
The paper proposes an integrated framework of LLM-informed drone visual inspection for 
infrastructure to improve the level of automation and interactivity of the inspection process. 
Additionally, to empower the LLM model to generate code for drone navigation, data 
acquisition and data post-processing, high-level function libraries about drone control and 
sensor control are created in this paper. Furthermore, systematic prompts are introduced to 
explain the proposed inspection scheme, high-level function libraries and engineer-LLM 
interacting pattern for LLM. The effectiveness of the proposed method is validated in both 
simulated and laboratory environments. 
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