

Supplementary Fig 1. Gating strategies for sorting HLA-DR4^{Vim-64cit59-71}- and HLA-DR4^{α -eno-15cit10-22}-specific CD4 T cells. a Representative gating strategy for the detection of HLA-DR4^{Vim-64cit59-71}- and HLA-DR4^{α -eno-15cit10-22}-specific CD4⁺ T cells from the draining lymph nodes of immunized HLA-DR4 mice, which includes gating on CD62L^{lo}CD3⁺ cells prior to gating on CD4⁺ cells. Numbers in black type indicate percentage of cells within a gate. **b** Representative gating strategy for the detection of HLA-DR4^{Vim-64cit59-71}, HLA-DR4^{α -eno-15cit10-22} and HLA-DR4^{α -eno-15cit10-22V20G}- specific CD4⁺ T cells in PBMC isolated from HLA-DR4⁺ RA donors or healthy controls. Numbers in black type indicate percentage of cells within a gate. Shown is sample from RA donor 2.

Supplementary Fig. 2. Antigen reactivity of A03 and A07 TCRs toward HLA-DR4^{Vim-64cit59-71}. Expression of CD69 on the surface of **a** A03 TCR transduced SKW-3 cell lines or **b** A07 TCR transduced SKW-3 cell lines stimulated overnight with serial dilution of vim64-cit 59-71 peptide-pulsed BLCL 9031. All samples were performed in duplicates and the black dots are presented as the mean fluorescence intensity (MFI) of average of duplicated values from five independent experiments (n=5). Anti-HLA-DR4 antibody used as control. P values were determined by one way ANOVA with Dunnett's multiple comparison testing, *P < 0.05, **P < 0.01, ***P < 0.002, ****P < 0.0001 and error bars represent \pm s.e.m.. Source data are provided as a Source Data file.

A03 TCR_HLA-DR4^{Vim-64cit59-71}

Supplementary Fig. 3. Affinity analysis of point mutations on A03 TCR toward HLA-DR4^{Vim-64cit59-71}. The equilibrium affinity constants (K_D) of A03 TCR toward HLA-DR4^{Vim-64cit59-71} for point mutations was determined by SPR. All data derived from three independent experiments (n=3) and a single ligand binding model was used for curve fitting. The maximal TCRs concentration used is 100 μ M equal to wild type TCR concentration. HLA-DR4^{CLIP} was used as reference flow cell to control nonspecific binding. Equilibrium response curves were normalised against the calculated maximum response and the measurements then combined. Data are mean \pm standard error, s.e.m.. Source data are provided as a Source Data file.

A03 TCR_HLA-DR4^{Vim-64cit59-71} mutants

Supplementary Fig. 4. Affinity analysis of A03 TCR toward point mutation of HLA-DR4^{Vim-64cit59-71}. Binding analysis of A03 TCR toward each point mutation of HLA-DR4^{Vim-64cit59-71} was determined by SPR. All data derived from two independent experiments (n=2) and K_D determination using a single ligand binding model. To control nonspecific binding, HLA-DR4^{CLIP} was used as reference flow cell. Equilibrium response curves were normalised against the calculated maximum response and the measurements then combined. Data are mean \pm standard error, s.e.m.. Source data are provided as a Source Data file.

RA2.7 TCR_ HLA-DR4^{α-eno-15cit10-22V20G}

Supplementary Fig. 5. Binding affinity measurement of RA2.7 TCR point mutations towards HLA-DR4^{α -eno-15cit10-22V20G}. All SPR data were derived from three independent experiments (n=3) for K_D determination and curve fitting with a single ligand binding model. Maximal TCRs concentration used is 100 μ M and HLA-DR4^{CLIP} was used as reference flow cell to control nonspecific binding. Equilibrium response curves were normalised against the calculated maximum response and the measurements then combined. Data are mean ± standard error, s.e.m.. Source data are provided as a Source Data file.

Electro density map of peptides in ternary complex

Supplementary Fig. 6. Adaptive Poisson Boltzmann Solver-generated electrostatic surface of peptide or pHLA in ternary complexes (red, negative; blue, positive; white, neutral). The view from the side, looking straight at the peptide binding groove of peptide a HLA-DR4^{Vim-64cit59-71}-A03 TCR complex, b HLA-DR4^{Vim-64cit59-71}-A07 TCR complex, c HLA-DR4^{α -eno-15cit10-22V20G}-RA2.7 TCR complex, d HLA-DR4-^{Fibβ-74cit}-M134 TCR complex. The view from the top, looking straight into the peptide binding groove from e HLA-DR4^{Vim-64cit59-71}-A03 TCR complex, f HLA-DR4^{Vim-64cit59-71}-A07 TCR complex, g HLA-DR4^{α -eno-15cit10-22V20G}-RA2.7 TCR complex, h HLA-DR4-^{Fibβ-74cit}-M134 TCR complex, g HLA-DR4^{α -eno-15cit10-22V20G}-RA2.7 TCR complex, h HLA-DR4-^{Fibβ-74cit}-M134 TCR complex. Black circle is the position where P2 residue is located, grey circle is the position where the SE Gln⁷⁰ β is located on the HLA-DR4 β -chain.

a A03 TCR-HLA-DR4^{Vim-64cit59-71}

b A07 TCR-HLA-DR4^{Vim-64cit59-71}

Supplementary Fig. 7. Peptide antigen electron density map. Electron density map of the peptide antigen for a A03 TCR-HLA-DR4^{Vim-64cit59-71}, b A07 TCR-HLA-DR4^{Vim-64cit59-71}, and c RA2.7 TCR-HLA-DR4^{α -enol-15cit10-22V20G} complexes are presented in refined 2mFo-DFc map (left; blue mesh) and SA Omit map (right; green mesh), respectively, contoured at 1 σ . The HLA-DR4 α and β chains are coloured in white and brown, respectively. Vim-64cit₅₉₋₇₁ and α -enol5cit₁₀₋₂₂ peptides are coloured in pink and orange, respectively.

Supplementary Table 1. Paired TCR $\alpha\beta$ sequences of confirmed HLA-DR4^{α -eno-15cit10-22V20G}-specific CD4⁺ cells isolated from peripheral blood of ACPA⁺ RA donor and HLA-DR4⁺ healthy control donors. Epitope specificity was verified by tetramer staining of TCR transfectants.

Subject	TRAV	TRAJ	CDR1a	CDR2a	CDR3a	TRBV	TBRD	TRBJ	CDR1β	CDR2β	CDR3β
RA donor 2	26-1	49	TISGNEY	GLKNN	CIVRASNTGNQFYF	20-1	2	2-7	DFQATT	SNEGSKA	CSAATGTSGYEQYF
RA donor 2	27	26	SVFSS	VVTGGEV	CAGKAGNYGQNFVF	19	1	2-2	LNHDA	SQIVND	CASSTGGQNTGELFF
HC 10195	26-1	53	TISGNEY	GLKNN	CIVRTSGGSNYKLTF	2	1	2-1	SNHLY	FYNNEI	CAGTYWNEQFF
HC 4737	26-1*	56	TISGNEY	GLKNN	CIVRVAGANSKLTF	5-4	1	2-7	SGHNT	YYREEE	CASSYDLAGPYEQYF
HC 4737	35	39	SIFNT	LYKAGEL	CAGRNNAGNMLTF	2	2	1-2	SNHLY	FYNNEI	CASNVGIINYGYTF

RA = rheumatoid arthritis, HC = healthy control.

* Two cells isolated for this clone

CDR3 nucleotide sequences are listed in Supplementary Table 10.

	A03 TCR-HLA- DR4 ^{Vim-64cit59-71}	A07 TCR-HLA- DR4 ^{Vim-64cit59-71}	RA2.7 TCR-HLA- DR4 ^{α-enolase-15cit10-22V20G}
Data collection			
Space group	I121	P 2 21 21	C121
Cell dimensions			
a, b, c (Å)	98.93, 59.97, 379.16	58.60, 76.62, 224.18	185.86, 58.55, 216.48
a, b, g (°)	90, 90.16, 90	90, 90, 90	90, 113.60, 90
Resolution (Å)	49.52-2.65 (2.72-2.65)	46.55-2.75 (2.90-2.75)	45.87-2.40 (2.44-2.40)
R _{sym} or R _{merge}	0.102 (1.135)	0.161 (1.825)	0.07 (0.88)
I / sI	11.9 (1.9)	12.4 (1.7)	12.5 (2.1)
Completeness (%)	100 (100)	100 (100)	100.0 (100.0)
Redundancy	7.0 (7.2)	13.4 (13.8)	6.2 (6.1)
Refinement			
Resolution (Å)	49.486-2.65	46.548-2.75	45.87-2.40
No. reflections	65333	27098	84262
Rwork / Rfree	0.2086/0.2441	0.2160/0.2635	0.2053/0.2322
No. atoms	13047	6638	12917
Protein	12704	6513	12325
Ligand/ion	252	88	249
Water	91	37	343
B-factors	79.48	71.21	62.89
Protein	79.47	71.17	63.34
Ligand/ion	103.80	89.38	70.82
Water	67.79	66.51	52.44
R.m.s. deviations			
Bond lengths (Å)	0.002	0.003	0.003
Bond angles (°)	0.539	0.521	0.606
Rama allowed (%)	99.81	99.88	99.94
Rama favoured (%)	96.89	95.22	96.5
Rama Outlier (%)	0.19	0.12	0.06

Supplementary Table 2. Data collection and refinement statistics

Supplementary Table 3. TCR-pHLA complex statistics.

TCR-pHLA	BSA	Vα	Vβ	Peptide	1α	2α	3α	Fα	1β	2β	3β	Fβ	K _D (μM)	Angle
	(Ų)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)		(°)
A03-HLA-DR4 ^{Vim6-4cit59-71}	2010	54.5	45.5	27.1	20.7	9.6	20.8	3.4	6.3	10.7	27.5	1	$6.2 \pm 0.3 \mu M$	67
A07-HLA-DR4 ^{Vim-64cit59-71}	1665	63.7	36.3	28.7	23.1	8.7	29.6	2.3	0	0	36.3	0	$31.9\pm1.5\mu M$	61
RA2.7-HLA-DR4 ^{Vim-64cit59-71v20G}	1940	38	62	20.95	17	3	17	1	7	17	33	5	$7.1\pm0.5\mu\mathrm{M}$	60

TCR segment	TCR residues	HLA-DR4	Type of bond
CDR1a	A35	Η81β	HB, VDW
	Y36	D76β, T77β	VDW
	N38	Q70β	HB, VDW
FWα	K55	D66β	SB
CDR2a	I57	Q70β	VDW
	T58	Α73β, Τ77β	VDW
CDR3a	T109	Q70β	HB, VDW
	G110	G58a	VDW
	N111	Q57α, G58α	VDW
	Y112	Q57α	HB, VDW
	K113	Ε55α	HB, VDW
CDR1β	Y31	Q57α, A61α	HB, VDW
FWβ	Y55	Q57α	VDW
CDR2β	Y57	Q57α, L60α	VDW
CDR3β	N110	Υ60β, Q64β, L67β	HB, VDW
	S111	D66β	VDW
TCR segment	TCR residues	Vim-64cit59-71 peptide	Type of bond
CDR1a	T28	P-1-V	VDW
	S29	P-1-V	VDW
	I30	P-1-V	VDW
	A31	P-1-V, P1-Y, P2-A	VDW
CDR3a	T109	P4-Cit, P5-S	VDW, HB
	G110	P3-T, P5-S	VDW
CDR1β	D30	P8-V	VDW
CDR3β	V109	P5-S, P6-S	VDW
	N110	P8-V	HB, VDW

Supplementary Table 4. Contact table of A03 TCR- HLA-DR4^{Vim-64cit59-71}

VDW: Van der Waals interaction (cut-off at 4Å) HB: hydrogen bond (cut-off at 3.5 Å) SB: salt bridge (cut-off at 4.5 Å)

TCR segment	TCR residues	HLA-DR4	Type of bond
CDR1a	S29	Ε55α	VDW
	A35	Η81β	VDW
	Y36	Τ77β, Η81β	VDW
FWα	K55	D66β	SB
CDR2a	157	Ε69β, Τ77β	VDW
	T58	Α73β	VDW
CDR3a	H109	Q70β, A73β, T77β	HB, VDW
	S110	Q70β	HB, VDW
	S112	A61α	VDW
	W113	Ε55α	VDW
CDR3β	R109	V65α	VDW
-	T110	Q64β, L67β	VDW
	G111	Q70β	HB, VDW
	A112	D66β, L67β, Q70β	VDW
	D115	D66β	VDW
TCR segment	TCR residues	Vim-64cit ₅₉₋₇₁ peptide	Type of bond
CDR1a	A31	P-1V, P1-Y, P2-A	VDW
CDR3a	H109	P4-Cit	HB, VDW
	S110	P3-T, P4-Cit, P5-S	VDW
CDR3β	R109	P8-V	VDW
	T110	P7-A, P8-V	VDW
	G111	P5-S, P8-V	HB, VDW

Supplementary Table 5. Contact table of A07 TCR- HLA-DR4^{Vim-64cit59-71}

VDW: Van der Waals interaction (cut-off at 4Å) HB: hydrogen bond (cut-off at 3.5 Å) SB: salt bridge (cut-off at 4.5 Å)

TCR segment	TCR residues	HLA-DR4	Type of bond
CDR1a	G30	Τ77β, Η81β	VDW
	N36	Τ77β, Η81β	VDW, HB
	Y38	Q70β, A73β	VDW
CDR2a	L57	Τ77β	VDW
CDR3a	A109	Q70β	VDW
	N110	G58a, N62a	VDW, HB
CDR1β	Y38	V65a	VDW
CDR2β	Y57	A64a, V65a, A68a	VDW
	N58	A68a	VDW
	E64	K67a	SB
FWβ	S66	Q57a	HB, VDW
	E67	Q57a	VDW
CDR3β	R108	Υ60β, Q64β	HB
	Y110	Q70β, K71β	HB, VDW
	F111	Q64β, L67β, Q70β	VDW
	Y113	D66β	VDW, HB
TCR segment	TCR residues	α-enolase-15cit _{10-22V20G} peptide	Type of bond
CDR1a	N36	P2-D	HB, VDW
CDR3a	P108	P2-D	VDW
	N110	P3-S, P4-Cit, P5-G	HB, VDW
CDR1β	L37	P8-T	VDW
CDR2β	Y57	Р8-Т	HB, VDW
CDR3β	D109	Р7-Р, Р8-Т	HB, VDW
	Y110	P4-cit, P5-G, P6-N, P7-P	HB, VDW
	F111	P7-P	VDW

Supplementary Table 6. Contact table of RA2.7 TCR- HLA-DR4^{α-enolase-15cit10-22V20G}

VDW: Van der Waals interaction (cut-off at 4 Å) HB: hydrogen bond (cut-off at 3.5 Å) SB: salt bridge (cut-off at 4.5 Å)

Supplementary Table 7. Antibody list

Antibody name	Clone	Company	Dilution	Catalog number
			used	
BUV395 mouse anti-human CD3	UCHT1	BD Biosciences	1:100	563546
APC Mouse Anti-Human CD69	FN50	BD Biosciences	1:100	555533
anti-HLA-DR4	LB3.1			
APC-Cy [™] 7 Hamster Anti-Mouse TCR β Chain	H57-597	BD Biosciences	1:200	560656
FITC Rat Anti-Mouse CD45R/B220	RA3-6B2	BD Biosciences	1:400	553088
FITC Mouse Anti-Mouse NK-1.1	PK136	BD Biosciences	1:400	553164
FITC Rat anti-Mouse F4/80	BM8	eBioscience, ThermoFisher	1:400	11-4801-82
		Scientific		
BV711 Hamster Anti-Mouse CD3e	145-2C11	BD Biosciences	1:200	563123
BV605 Rat Anti-Mouse CD62L	MEL-14	BD Biosciences	1:400	563252
BUV395 Rat Anti-Mouse CD4	GK1.5	BD Biosciences	1:200	563790
Pacific Blue™ Rat Anti-Mouse CD8a	53-6.7	BD Biosciences	1:200	558106
Alexa Fluor 700 Mouse anti-human CD14	M5E2	BD Biosciences	1:100	557923
Alexa Fluor 700 Mouse anti-human CD19	HIB19	BD Biosciences	1:200	557921
BV480 Mouse anti-human CD3	UCHT1	BD Biosciences	1:200	566105
BUV395 mouse anti-human CD4	SK3	BD Biosciences	1:400	563550
APC hamster anti-mouse TCR β chain	H57-597	Biolegend	1:400	109212
APC mouse anti-human CD3	UCHT1	Biolegend	1:200	300412
LIVE/DEAD [™] Fixable Aqua Dead Cell Stain Kit,		ThermoFisher Scientific	1:800	L34966
for 405 nm excitation				
LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit,		ThermoFisher Scientific	1:1000	L10119
for 633 or 635 nm excitation				
Zombie NIR [™] Fixable Viability Kit		Biolegend	1:1000	423106
BD Horizon [™] Fixable Viability Stain 700 (FVS700)		BD Biosciences	1:1000	564997

TRA gene(s)			
targeted by	External primer sequence	Internal primer sequence	Reference
TRAV1	5' GCACATACAGCACCTCAG 3'	5' AACGTGAAGGCCAAGC 3'	
TRAV2	5' CCACCAGGGACCACAG 3'	5' ACTCTGAGCCTGCCCT 3'	50 (Internal only)
TRAV3	5' GGCGAGCAGGTGGAG 3'	5' GCCCTCCTCACCTGAG 3'	50
TRAV4	5' TCTGSTCTGAGATGCAATTTT 3'	5' GGITIMAGGAACAAAGGAGAAT 3'	50
TRAV5-1/5-4(D)	5' CTTCCYTTGGTATAAGCAAGA 3'	5' ATYCGTTCAAATATGGAAAGAAA 3'	50 (Internal only)
TRAV6-1/6-2	5' CAGATGCAAGGTCAAGTGAC 3'	5' GGAGAAGGTCCACAGCTC 3'	50
TRAV6-3/6-4(D)	5' AAGGTCCACAGCTCCTTC 3'	5' CAACTGCCAACAACAAGG 3'	50
TRAV6(D)-5	5' CTTCTCTGACTGTGAACTGTTC 3'	5' CAGTACCCAACCCTGTTCTG 3'	
TRAV6-6	5' AGATTCCGTGACTCAAACAG 3'	5' ACGGCTGGCCAGAAG 3'	50
TRAV6(D/N)-7	5' GCCTCAAGGGACAAAGAG 3'	5' AAAGGAAGCAGCAGAGG 3'	
TRAV7	5' AGAAGGTRCAGCAGAGCCCAGAATC 3'	5' CAKGRCYTCYYTCAACTGCAC 3'	50
TRAV8	5' TGAAYTGYAGTTACAAGAC 3'	5' TAATCTTAATACGTTCAAATGAG 3'	
TRAV9	5' CTCKSTGSAGCTGAGATGCAA 3'	5' CAGYTKCTCCTCAAGTACTAT 3'	
TRAV10	5' GGAGAGAAGGTCGAGCAAC 3'	5' GAGGGAGACAGCGCTG 3'	
TRAV11	5' AAGACCCAAGTGGAGCAG 3'	5' AACAGGACACAGGCAAAG 3'	50
TRAV12	5' GACCCAGAMRGAAGGCCTG 3'	5' GCTGAACWGCACCTATCAG 3'	
TRAV12-4	5' GGGAGGAGCAATGGAGATGG 3'	5' CAGTGACCCAGAAGGAAGG 3'	
TRAV13	5' TCCTTGGTTCTGCAGG 3'	5' TGCAGTGGTTTTACCAA 3'	50 (External only)
TRAV14	5' GCAGCAGGTGAGACAAAG 3'	5' CTCTGACAGTCTGGGAAGG 3'	50
TRAV15	5' CTGSAYTGTTCATATRAGACAAGT 3'	5' TTAGTGGAGAGATGGTTTT 3'	
TRAV16	5' GTACAAGCAAACAGCAAGTG 3'	5' ATTATTCTCTGAACTTTCAGAAGC 3'	50
TRAV17	5' CAGTCCGTGGACCAGC 3'	5' TATGAAGGAGCCTCCCTG 3'	50
TRAV18	5' CAAGATTTCACTGCACG 3'	5' TACTGGTACCGACAGGTC 3'	
TRAV19	5' CAAGTTAAACAAAGCTCTCCATC 3'	5' GCTGACTGTTCAAGAGGGA 3'	50 (Internal only)
TRAV21	5' GTGCACTTGCCTTGTAGC 3'	5' AATAGTATGGCTTTCCTGGC 3'	50
TRAC	5' GGCATCACAGGGAACG 3'	5' GCACATTGATTTGGGAGTC 3'	50

Supplementary Table 8. Primers targeting mouse T cell receptor α (TRA) and β (TRB) genes

TRB gene(s)			
targeted by			
primer	External primer sequence	Internal primer sequence	Reference
TRBV1	5' TACCACGTGGTCAAGCTG 3'	5' GTATCCCTGGATGAGCTG 3'	50
TRBV2	5' CAGTATCTAGGCCACAATGC 3'	5' GGACAATCAGACTGCCTC 3'	50
TRBV3	5' CCCAAAGTCTTACAGATCCC 3'	5' GATATGGGGCAGATGGTG 3'	50
TRBV4	5' GACGGCTGTTTTCCAGAC 3'	5' CAGGTGGGAAATGAAGTG 3'	50
TRBV5	5' GGTATAAACAGAGCGCTGAG 3'	5' GCCAGAGCTCATGTTTCTC 3'	50
TRBV12	5' GGGGTTGTCCAGTCTCC 3'	5' CCAGCAGATTCTCAGTCC 3'	50
TRBV13	5' GCTGCAGTCACCCAAAG 3'	5' GTACTGGTATCGGCAGGAC 3'	50
TRBV14	5' GCAGTCCTACAGGAAGGG 3'	5' GGTATCAGCAGCCCAGAG 3'	50
TRBV15	5' GAGTTACCCAGACACCCAG 3'	5' GTGTGAGCCAGTTTCAGG 3'	50
TRBV16	5' CCTAGGCACAAGGTGACAG 3'	5' GAAGCAACTCTGTGGTGTG 3'	50
TRBV17	5' GAAGCCAAACCAAGCAC 3'	5' GAACAGGGAAGCTGACAC 3'	50
TRBV19	5' GATTGGTCAGGAAGGGC 3'	5' GGTACCGACAGGATTCAG 3'	50
TRBV20	5' GGATGGAGTGTCAAGCTG 3'	5' GCTTGGTATCGTCAATCG 3'	50
TRBV23	5' CTGCAGTTACACAGAAGCC 3'	5' GCCAGGAAGCAGAGATG 3'	50
TRBV24	5' CAGACTCCACGATACCTGG 3'	5' GCACACTGCCTTTTACTGG 3'	50
TRBV26	5' GGTGAAAGGGCAAGGAC 3'	5' GAGGTGTATCCCTGAAAAGG 3'	50
TRBV29	5' GCTGGAATGTGGACAGG 3'	5' GTACTGGTATCGACAAGACCC 3'	50
TRBV30	5' CCTCCTCTACCAAAAGCC 3'	5' GGACATCTGTCAAAGTGGC 3'	50
TRBV31	5' CTAACCTCTACTGGTACTGGCAG 3'	5' CTGTTGGCCAGGTAGAGTC 3'	50
TRBC	5' CCAGAAGGTAGCAGAGACCC 3'	5' CCTCCTTGCCATTCACCCAC 3'	50 (External only)

Primers targeting TRAV and TRBV genes are sense. Primers targeting TRAC and TRBC genes are antisense. TRAV, T cell receptor V α , TRAC, T cell receptor C α ; TRBV, T cell receptor V β , TRBC, T cell receptor C β .

TRA gene(s) targeted by			
primer	External primer sequence	Internal primer sequence	Reference
TRAV1	5' AACTGCACGTACCAGACATC 3'	5' GCACCCACATTTCTKTCTTAC 3'	51
TRAV2	5' GATGTGCACCAAGACTCC 3'	5' CACTCTGTGTCCAATGCTTAC 3'	51
TRAV3	5' AAGATCAGGTCAACGTTGC 3'	5' ATGCACCTATTCAGTCTCTGG 3'	51
TRAV4	5' CTCCATGGACTCATATGAAGG 3'	5' ATTATATCACGTGGTACCAACAG 3'	51
TRAV5	5' CTTTTCCTGAGTGTCCGAG 3'	5' TACACAGACAGCTCCTCCAC 3'	51
TRAV6	5' CACCCTGACCTGCAACTATAC 3'	5' TGGTACCGACAAGATCCAG 3'	51
TRAV7	5' GCAAAATACAGGGATGGG 3'	5' TATGAGAAGCAGAAAGGAAGAC 3'	
TRAV8-1	5' CTCACTGGAGTTGGGATG 3'	5' GTCAACACCTTCAGCTTCTC 3'	51
TRAV8-2, 8-4	5' GCCACCCTGGTTAAAGG 3'	5' AGAGTGAAACCTCCTTCCAC 3'	51
TRAV8-3	5' CACTGTCTCTGAAGGAGCC 3'	5' TTTGAGGCTGAATTTAAGAGG 3'	51
TRAV8-6	5' GAGCTGAGGTGCAACTACTC 3'	5' AACCAAGGACTCCAGCTTC 3'	51
TRAV8-7	5' CTAACAGAGGCCACCCAG 3'	5' ATCAGAGGTTTTGAGGCTG 3'	51
TRAV9-1, 9-2	5' TGGTATGTCCAATATCCTGG 3'	5' GAAACCACTTCTTTCCACTTG 3'	51
TRAV10	5' CAAGTGGAGCAGAGTCCTC 3'	5' GAAAGAACTGCACTCTTCAATG 3'	51
TRAV12-1, 12-2, 12-3	5' CARTGTTCCAGAGGGAGC 3'	5' AAGATGGAAGGTTTACAGCAC 3'	51
TRAV13-1	5' CATCCTTCAACCCTGAGTG 3'	5' TCAGACAGTGCCTCAAACTAC 3'	51
TRAV13-2	5' CAGCGCCTCAGACTACTTC 3'	5' CAGTGAAACATCTCTCTCTGC 3'	51
TRAV14	5' AAGATAACTCAAACCCAACCAG 3'	5' AGGCTGTGACTCTGGACTG 3'	51
TRAV16	5' AGTGGAGCTGAAGTGCAAC 3'	5' GTCCAGTACTCCAGACAACG 3'	51
TRAV17	5' GGAGAAGAGGATCCTCAGG 3'	5' CCACCATGAACTGCAGTTAC 3'	51
TRAV18	5' TCCAGTATCTAAACAAAGAGCC 3'	5' TGACAGTTCCTTCCACCTG 3'	51
TRAV19	5' AGGTAACTCAAGCGCAGAC 3'	5' TGTGACCTTGGACTGTGTG 3'	51
TRAV20	5' CACAGTCAGCGGTTTAAGAG 3'	5' TCTGGTATAGGCAAGATCCTG 3'	51
TRAV21	5' TTCCTGCAGCTCTGAGTG 3'	5' AACTTGGTTCTCAACTGCAG 3'	51
TRAV22	5' GTCCTCCAGACCTGATTCTC 3'	5' CTGACTCTGTGAACAATTTGC 3'	51
TRAV23	5' TGCTTATGAGAACACTGCG 3'	5' TGCATTATTGATAGCCATACG 3'	51
TRAV24	5' CTCAGTCACTGCATGTTCAG 3'	5' TGCCTTACACTGGTACAGATG 3'	51

Supplementary Table 9. Primers targeting human T cell receptor α (TRA) and β (TRB) genes

TRAV25	5' GGACTTCACCACGTACTGC 3'	5' TATAAGCAAAGGCCTGGTG 3'	51
TRAV26-1	5' GCAAACCTGCCTTGTAATC 3'	5' CGACAGATTCACTCCCAG 3'	51
TRAV26-2	5' AGCCAAATTCAATGGAGAG 3'	5' TTCACTTGCCTTGTAACCAC 3'	51
TRAV27	5' TCAGTTTCTAAGCATCCAAGAG 3'	5' CTCACTGTGTACTGCAACTCC 3'	51
TRAV29	5' GCAAGTTAAGCAAAATTCACC 3'	5' CTGCTGAAGGTCCTACATTC 3'	51
TRAV30	5' CAACAACCAGTGCAGAGTC 3'	5' AGAAGCATGGTGAAGCAC 3'	51
TRAV34	5' AGAACTGGAGCAGAGTCCTC 3'	5' ATCTCACCATAAACTGCACG 3'	51
TRAV35	5' GGTCAACAGCTGAATCAGAG 3'	5' ACCTGGCTATGGTACAAGC 3'	51
TRAV36	5' GAAGACAAGGTGGTACAAAGC 3'	5' ATCTCTGGTTGTCCACGAG 3'	51
TRAV38-1, 38-2	5' GCACATATGACACCAGTGAG 3'	5' CAGCAGGCAGATGATTCTC 3'	51
TRAV39	5' CTGTTCCTGAGCATGCAG 3'	5' TCAACCACTTCAGACAGACTG 3'	51
TRAV40	5' GCATCTGTGACTATGAACTGC 3'	5' GGAGGCGGAAATATTAAAGAC 3'	51
TRAV41	5' AATGAAGTGGAGCAGAGTCC 3'	5' TTGTTTATGCTGAGCTCAGG 3'	51
TRAC	5' GACCAGCTTGACATCACAG 3'	5' TGTTGCTCTTGAAGTCCATAG 3'	51

TRB gene(s) targeted by			
primer	External primer sequence	Internal primer sequence	Reference
TRBV2	5' TCGATGATCAATTCTCAGTTG 3'	5' TTCACTCTGAAGATCCGGTC 3'	51
TRBV3-1	5' CAAAATACCTGGTCACACAG 3'	5' AATCTTCACATCAATTCCCTG 3'	51
TRBV4-1, 4-2, 4-3	5' TCGCTTCTCACCTGAATG 3'	5' CCTGCAGCCAGAAGACTC 3'	51
TRBV5-1, 5-3, 5-4	5' GATTCTCAGGKCKCCAGTTC 3'	5' CTTGGAGCTGGRSGACTC 3'	51
TRBV5-5, 5-6, 5-7, 5-8	5' GTACCAACAGGYCCTGGGT 3'	5' TCTGAGCTGAATGTGAACG 3'	51
TRBV6-1, 6-2, 6-3, 6-5, 6-	5' ACTCAGACCCCAAAATTCC 3'	5' GTGTRCCCAGGATATGAACC 3'	51
6, 6-7, 6-8, 6-9			
TRBV6-4	5' ACTGGCAAAGGAGAAGTCC 3'	5' TGGTTATAGTGTCTCCAGAGC 3'	51
TRBV7-1, 7-2, 7-3	5' TRTGATCCAATTTCAGGTCA 3'	5' TCYACTCTGAMGWTCCAGCG 3'	51
TRBV7-4, 7-6, 7-7, 7-8, 7-9	5' CGSWTCTYTGCAGARAGGC 3'	5' TGRMGATYCAGCGCACA 3'	51
TRBV9	5' GATCACAGCAACTGGACAG 3'	5' GTACCAACAGAGCCTGGAC 3'	51
TRBV10-1	5' CAGAGCCCAAGACACAAG 3'	5' TGGTATCGACAAGACCTGG 3'	
TRBV10-2	5' ACCTTGATGTGTCACCAGAC 3'	5' GGAACACCAGTGACTCTGAG 3'	

TRBV11-1, 11-2, 11-3	5' CGATTTTCTGCAGAGACGC 3'	5' GACTCCACTCTCAAGATCCA 3'	51
TRBV12-3, 12-4, 12-5	5' ARGTGACAGARATGGGACAA 3'	5' CYACTCTGARGATCCAGCC 3'	51
TRBV13	5' AGCGATAAAGGAAGCATCC 3'	5' CATTCTGAACTGAACATGAGC 3'	51
TRBV14	5' CCAACAATCGATTCTTAGCTG 3'	5' ATTCTACTCTGAAGGTGCAGC 3'	51
TRBV15	5' AGTGACCCTGAGTTGTTCTC 3'	5' ATAACTTCCAATCCAGGAGG 3'	51
TRBV16	5' GTCTTTGATGAAACAGGTATGC 3'	5' CTGTAGCCTTGAGATCCAGG 3'	51 (External
			only)
TRBV17	5' CAGACCCCCAGACACAAG 3'	5' TGTTCACTGGTACCGACAG 3'	51
TRBV18	5' CATAGATGAGTCAGGAATGCC 3'	5' CGATTTTCTGCTGAATTTCC 3'	51
TRBV19	5' AGTTGTGAACAGAATTTGAACC 3'	5' TTCCTCTCACTGTGACATCG 3'	51
TRBV20-1	5' AAGTTTCTCATCAACCATGC 3'	5' ACTCTGACAGTGACCAGTGC 3'	51
TRBV23-1	5' GCGATTCTCATCTCAATGC 3'	5' GCAATCCTGTCCTCAGAAC 3'	51
TRBV24-1	5' CCTACGGTTGATCTATTACTCC 3'	5' GATGGATACAGTGTCTCTCGA 3'	51
TRBV25-1	5' ACTACACCTCATCCACTATTCC 3'	5' CAGAGAAGGGAGATCTTTCC 3'	51
TRBV27, 28	5' TGGTATCGACAAGACCCAG 3'	5' TTCYCCCTGATYCTGGAGTC 3'	51
TRBV29-1	5' TTCTGGTACCGTCAGCAAC 3'	5' TCTGACTGTGAGCAACATGAG 3'	51
TRBV30	5' TCCAGCTGCTCTTCTACTCC 3'	5' AGAATCTCTCAGCCTCCAGAC 3'	51
TRBC	5' TAGAACTGGACTTGACAGCG 3'	5' TTCTGATGGCTCAAACACAG 3'	51

Primers targeting TRAV and TRBV genes are sense. Primers targeting TRAC and TRBC genes are antisense. TRAV, T cell receptor V α , TRAC, T cell receptor C α ; TRBV, T cell receptor V β , TRBC, T cell receptor C β .

Figure	CDR3a amino	CDR3β amino acid	CDR3a nucleotide sequence	CDR3ß nucleotide sequence
_	acid sequence	sequence	*	, ,
Fig. 1c	CALGDSNYQLIW	CAACGAGGAGQNTLYF	tgtgctctgggtgatagcaactatcagttgatctgg	tgtgccgcgtgcgggggtgggggggggtggtcaaaacaccttgtacttt
	CALGDHSGSWQLIF	CASSLRTGANSDYTF	tgtgctctgggtgatcattctggcagctggcaactcatcttt	tgtgccagcagtctacggacaggggcaaactccgactacaccttc
	CALGDTGNYKYVF	CASSGHNSGNTLYF	tgtgctctgggtgatacaggaaactacaaatacgtcttt	tgtgccagcagtggacataattctggaaatacgctctatttt
	CALGDTGNYKYVF	CASSAVNSGNTLYF	tgtgctctgggtgatacaggaaactacaaatacgtcttt	tgtgccagcagtgcagtgaattctggaaatacgctctatttt
	CAAGITGNTGKLIF	CASSQFRDRGAEQFF	tgtgctgctggtataacaggcaataccggaaaactcatcttt	tgtgccagcagccaattccgggacaggggtgctgagcagttcttc
	CALGPSGGNYKPTF	CASSPTSSNERLFF	tgcgctctgggcccctcaggaggaaactacaaacctacgttt	tgtgccagcagcccgacatcttccaacgaaagattattttc
	CALNQGGSAKLIF	CASSQDPSNTGQLYF	tgcgctcttaatcaaggagggtctgcgaagctcatcttt	tgtgccagcagccaagacccatcaaacaccgggcagctctacttt
	CALSGANTGKLTF	CASSQDRSNTEVFF	tgcgctctgagtggagctaacactggaaagctcacgttt	tgtgccagcagccaagacaggtcaaacacagaagtcttcttt
	CALRTGGYKVVF	CASSQDSANTEVFF	tgcgctctgcggactggaggctataaagtggtcttt	tgtgccagcagccaagattcagcaaacacagaagtcttcttt
	CALGTGGYKVVF	CASSRDNSNSDYTF	tgcgctctgggggactggaggctataaagtggtcttt	tgtgccagcagccgcgacaactcaaactccgactacaccttc
	CASGTGGYKVVF	CASSLEQSNSDYTF	tgcgcttccgggactggaggctataaagtggtcttt	tgtgccagcagcttagaacagtcaaactccgactacaccttc
	CALRNTNTGKLTF	CASSPRHSGNTLYF	tgcgctctgagaaacaccaatacaggcaaattaaccttt	tgtgccagcagcccccgacattctggaaatacgctctatttt
	CALNGGSNAKLTF	CASSPQTGGYEQYF	tgcgctctgaatggaggaagcaatgcaaagctaaccttc	tgtgccagcagcccccagactgggggttatgaacagtacttc
	CALTGGSNAKLTF	CASSQGHERLFF	tgcgctctgactggaggaagcaatgcaaagctaaccttc	tgtgccagcagccaagggcacgaaagattatttttc
	CALGSGGNYKPTF	CASSSQNSGNTLYF	tgcgctctgggctcaggaggaaactacaaacctacgttt	tgtgccagcagccaaaattctggaaatacgctctatttt
	CALGTGGYKVVF	CASSDFSVEQYF	tgcgctctgggggactggaggctataaagtggtcttt	tgtgccagcagtgatttttccgttgaacagtacttc
	CAYYGSSGNKLIF	CASSFRGDNSPLYF	tgcgcttattatgggagcagtggcaacaagctcatcttt	tgtgccagcagtttcaggggtgataattcgcccctctacttt
	CALSDGGQKLVF	CASGDFRAEQFF	tgcgctctgagtgatggtggccagaagctggttttt	tgtgccagcggtgattttcgggctgagcagttcttc
	CALGGGSALGRLHF	CASSRGGTANTGQLYF	tgtgctctgggtggaggttcagccttagggaggctgcatttt	tgtgctagcagtagaggcggaacagcaaacaccgggcagctctacttt
	CALSVPNNAGAKLTF	CASSLGQGSSYEQYF	tgtgctctgagtgtcccgaataatgcaggtgccaagctcacattc	tgtgccagcagtctcgggcagggggggctcctatgaacagtacttc
	CALRGSGGNYKPTF	CAWSLGTGQDTQYF	tgcgctctgaggggctcaggaggaaactacaaacctacgttt	tgtgcctggagtctagggacagggcaagacacccagtacttt
	CALSGGNYKPTF	CAWSLGQGGNERLFF	tgcgctctgtcaggaggaaactacaaacctacgttt	tgtgcctggagtctaggtcaggggggggaacgaaagattattttc
Fig. 2c	CIVRVNYGQNFVF	CASSQAGPLHF	tgcatcgtcagagttaactatggtcagaattttgtcttt	tgtgccagcagccaagcgggacccctccacttt
	CIVNPANTGNQFYF	CASRRDYFSYEQYF	tgcatcgtcaatcctgcgaacaccggtaaccagttctatttt	tgtgccagcagaagggactatttctcctacgagcagtacttc
Supp	CIVRASNTGNQFYF	CSAATGTSGYEQYF	tgcatcgtcagagcttcgaacaccggtaaccagttctatttt	tgcagtgctgctaccgggactagcggctacgagcagtacttc
Table 1	CAGKAGNYGQNFVF	CASSTGGQNTGELFF	tgtgcagggaaagctgggaactatggtcagaattttgtcttt	tgtgccagtagtaccggggggacagaacaccgggggggctgttttt
	CIVRTSGGSNYKLTF	CAGTYWNEQFF	tgcatcgtcagaacaagtggaggtagcaactataaactgacattt	tgtgccgggacctactggaatgagcagttcttc
	CIVRVAGANSKLTF	CASSYDLAGPYEQYF	tgcatcgtcagagtcgctggagccaatagtaagctgacattt	tgtgccagcagttatgatctagcggggccctacgagcagtacttc
	CAGRNNAGNMLTF	CASNVGIINYGYTF	tgtgctggccgaaataatgcaggcaacatgctcaccttt	tgtgccagcaatgtcgggattattaactatggctacaccttc

Supplementary Table 10. CDR3α and CDR3β nucleotide sequences for TCRs listed in Figure 1c, Figure 2c and Supp Table 1.