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We present a principle-based analysis of contribution functions for quantitative bipolar argumenta-
tion graphs that quantify the contribution of one argument to another. The introduced principles 
formalise the intuitions underlying different contribution functions as well as expectations one 
would have regarding the behaviour of contribution functions in general. As none of the covered 
contribution functions satisfies all principles, our analysis can serve as a tool that enables the se-
lection of the most suitable function based on the requirements of a given use case.

1. Introduction

Formal argumentation has emerged as a vibrant research area within the field of artificial intelligence. In particular, the dialectical 
nature of formal argumentation is considered a promising facilitator of joint human-machine reasoning and decision-making, as well as 
a potential bridge between subsymbolic and symbolic AI [1]. In formal argumentation, arguments and their relations are represented 
as directed graphs, in which nodes are arguments and edges are argument relationships (typically: attack or support). From these 
argumentation graphs, inferences about the acceptability statuses or strengths of arguments are drawn. One formal argumentation 
approach that is gaining increased research attention is Quantitative Bipolar Argumentation (QBA). In QBA, (typically numerical) 
weights—so-called initial strengths—are assigned to arguments, and arguments are connected by a support and an attack relation. 
Hence, arguments directly connected to a node through the node’s incoming edges can be referred to as attackers and supporters

(depending on the relation). Given a Quantitative Bipolar Argumentation Graph (QBAG), an argumentation semantics then infers the 
arguments’ final strengths; intuitively, an argument’s attackers tend to decrease its final strength, whereas supporters tend to increase 
it. Nascent applications of formal argumentation in general and QBA in particular are often related to explainability [2,3], e.g., in 
the context of explainable recommender systems [4], review aggregations [5] or machine learning models like random forests [6] or 
neural networks [7]. In order to utilise QBA as a facilitator of explainability, it is crucial to develop a rigorous understanding of the 
influence of one argument on the final strength of another one. This follows the above-mentioned intuition of argument influence 
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Fig. 1. QBAG 𝖦 (Example 1.1). A node labelled 𝗑∶(𝑖)𝐟 represents argument 𝗑 with initial strength 𝜏(𝗑) = 𝑖 and final strength 𝜎(𝗑) = 𝐟 . Edges labelled + and −, 
respectively, represent supports and attacks.

that (direct or indirect) attackers or supporters exercise and reflects the ideas of feature attributions in machine learning (see [8–12]
as examples), as well as of contributions of agents towards a joint objective in cooperative game theory. Initial steps towards this 
objective have been undertaken by nascent/preliminary research [13,14] that introduced so-called contribution functions quantifying 
the influence of one argument in a QBAG on another one.

Yet, a comprehensive theoretical study of contribution functions is missing. Our paper aims to close this gap in the literature by 
introducing a set of principles that a contribution function should satisfy, and by conducting a principle-based analysis for acyclic

QBAGs. We claim that this limitation is well-motivated: in many applications of QBAGs there is a clear hierarchical or temporal 
structure to the arguments [15,5,16,17], which helps avoid cycles or allows for removing them on the meta-level. The introduced 
principles reflect the ideas that underlie the different contribution functions, as well as some intuitive, common-sense assumptions 
(that are, however, not always satisfied).

Let us introduce a simple example that provides an intuitive understanding of the paper’s core contribution.

Example 1.1. Consider the QBAG 𝖦 in Fig. 1.1 (the interpretation of the figure is explained in the caption). The initial strengths of 
𝖦’s arguments are determined by DFQuAD semantics [18], according to the following intuition:

• Final strengths are propagated through the graph following a topological ordering of the nodes.
• Given an argument 𝖺 and its direct attackers 𝐴 and supporters 𝑆 , the final strengths of 𝐴 and 𝑆 are aggregated as follows:

𝑓 (𝐴,𝑆) ∶= Π𝖻∈𝐴(1 − (𝜎(𝖻)) − Π𝖼∈𝑆 (1 − (𝜎(𝖼)),

where 𝜎(𝖻) and 𝜎(𝖼) denote the final strengths of 𝖻 and 𝖼, respectively.
• Given the aggregated score 𝑓 (𝐴, 𝑆), 𝖺 is then updated as follows, given its initial strength 𝜏(𝖺):

𝑔(𝜏(𝑎), 𝑓 (𝐴,𝑆)) ∶= 𝜏(𝑎) − 𝜏(𝑎) ×𝑚𝑎𝑥{0,−𝑓 (𝐴,𝑆)} + (1 − 𝜏(𝑎)) ×𝑚𝑎𝑥{0, 𝑓 (𝐴,𝑆)}.

We are interested in explaining how different arguments (“contributors”) contribute to the final strength of 𝖺. As we are primarily 
interested in 𝖺 and its final strength, we refer to 𝖺 as the topic argument. Obviously, the contribution of supporter 𝖻 should be positive 
(or possibly zero) and the contributions of attackers 𝖼 and 𝖽 should be negative (or zero): in these cases, the direction (with respect 
to 0) of the contribution is clear. In contrast, it is not at all clear how 𝖾 contributes to 𝖺. Considering this more intricate case, we 
may specify our expectation regarding the behaviour of the function that determines the contribution (in this case: of 𝖾 to the final 
strength of 𝖺) as a contribution function principle. For example, one may stipulate that:

1. The contribution should be negative if (and only if) removing 𝖾 from 𝖦 increases the final strength of 𝖺 and positive if (and only 
if) the removal decreases it; we call this desideratum counterfactuality.

2. If the contribution is negative/positive, then marginally increasing the initial strength of 𝖾 should decrease/increase the strength 
of 𝖺; we call this desideratum faithfulness.

The QBAG in Fig. 1.2 illustrates that these two ideas can be in conflict. To explain this, we plotted the final strength of 𝖺 (y-axis) 
against the initial strength of 𝖾 (x-axis) in the function graph on the right. Since 𝖾’s initial strength is 0.5 in the original QBAG, 𝖺’s 
final strength is about 0.37. When removing 𝖾, the final strength of 𝖻, 𝖼 and 𝖽 will just be their initial strength, which is 0. Since 
arguments with strength 0 cannot affect other arguments (given DFQuAD semantics), 𝖺’s final strength will also be its initial strength, 
which is 0.5. Hence, since 𝖺’s strength increases from 0.37 to 0.5 when removing 𝖾, 𝖾 should have a negative contribution according 
2

to counterfactuality. Now, if 𝖾’s contribution is negative, then faithfulness demands that marginally increasing the strength of 𝖾 in the 
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original example must decrease the strength of 𝖺. However, as we can see in the strength plot in Fig. 1.2, increasing the initial strength 
of 𝖾 will actually increase the final strength of 𝖺. Hence, it is impossible to satisfy both counterfactuality and faithfulness simultaneously 
in this example.

The previous example highlights that a principle-based analysis is required to shed light on contribution functions in a rigorous 
manner. After introducing some preliminaries in Section 2, we present four contribution functions for QBA (Section 3)1:

Removal. The contribution of one argument to another is determined by the effect that the removal of the former argument has on 
the final strength of the latter.

Intrinsic removal. The contribution of one argument to another is determined by the effect that the removal of the former argument, 
from a QBAG from which all attack and support relationships that target the contributing argument have already been removed, 
has on the final strength of the latter.

Shapley values. The contribution of one argument to another is determined by the contribution of the former argument to the final 
strength of the latter when interpreting the problem as a coalitional game and applying Shapely values [20] to it.

Gradient. The contribution of one argument to another is determined by the effect that a marginal change to the initial strength of 
the former argument has on the final strength of the latter.

We then introduce a set of principles (Section 4), following intuitions underlying some of the contribution functions, as well as 
common sense-based desiderata:

Directionality. Many quantitative argumentation semantics satisfy a directionality principle [21]: argument 𝖺 can influence argument 
𝖻 only if there is a directed path from 𝖺 to 𝖻. Consequently, under these semantics, if there is no path from 𝖺 to 𝖻, then 𝖺’s 
contribution to 𝖻 should be 0.

(Quantitative) contribution existence. If our topic argument’s initial strength does not equal its final strength then there exists 
another argument whose contribution to the topic argument is not 0. In the quantitative case, the sum of the contributions 
of all other arguments (to the topic argument) should account for the delta between the topic’s final and initial strength 
(where negative contributions give rise to a decrease in the strength of the topic argument).

(Quantitative) local faithfulness. If an argument’s contribution is negative/positive, then marginally increasing the initial strength 
of the contributor should increase/decrease the strength of the topic argument. In the quantitative case, the contributor’s 
contribution to the topic argument should be proportional to the change in strength.

(Quantitative) counterfactuality. The contribution should be negative if (and only if) removing the contributor from the QBAG 
increases the final strength of the topic argument and positive if (and only if) the removal decreases it. In the quantitative 
case, the delta between the topic argument’s final strength in the initial QBAG and the topic’s argument final strength with 
the contributor removed should be equal to the contribution of the contributor to the topic argument.

Subsequently, we analyse principle satisfaction of the four contribution functions with respect to five argumentation semantics (Sec-
tion 5). The results are summarised in Table 1. These results are restricted to acyclic QBAGs (the focus of our study, as pointed out 
earlier). Note that this special case is worth studying because in many nascent applications of QBAGs there is a clear hierarchical or 
temporal structure to the arguments that prevents the existence of cycles [15,5,16,17,6,7]. Note also that many ideas that we consider 
here can be extended to general QBAGs with cycles, but the existence of cycles causes some additional technical difficulties (given 
that strength values may not converge in particular situations) whose discussion would obscure our main points. Hence, we leave the 
exploration of contribution functions for general QBAGs to future work.

We also provide some minor results and conjectures that we produced as a side-effect of our work (Section 6). To highlight 
practical perspectives, we position our results in the context of an application example (Section 7) Finally, we conclude the paper by 
discussing our results in the light of related research (Section 8).

2. Preliminaries

This section introduces the formal preliminaries of our work. Let 𝕀 be a real interval of strength values. Here, we will focus on the unit 
interval 𝕀 = [0, 1]. A quantitative bipolar argumentation graph contains a set of arguments related by binary attack and support relations, 
and assigns an initial strength in 𝕀 to the arguments. The (initial) strength can be thought of as initial credence in, or importance of, 
arguments. Typically, the greater the strength in 𝕀, the more credible or important the argument is.

Definition 2.1 (Quantitative Bipolar Argumentation Graph (QBAG) [22,23]). A Quantitative Bipolar Argumentation Graph (QBAG) is 
a quadruple (Args, 𝜏,Att,Supp) consisting of a set of arguments Args, an attack relation Att ⊆ Args × Args, a support relation Supp ⊆

Args × Args such that Att ∩ Supp = ∅, and a total function 𝜏 ∶ Args → 𝕀 that assigns an initial strength 𝜏(𝗑) to every 𝗑 ∈ Args.

1 We first introduced these contribution functions in a workshop paper [13]; here, we fix some technicalities for the Shapley value-based contribution function. The 
3

first two contribution functions have been introduced first to abstract gradual argumentation in a roughly analogous manner in [19].
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Table 1
Satisfaction and violation of contribution principles (defined in 
Section 5), given a semantics 𝜎 (defined in Section 2) and a con-
tribution function 𝖢𝗍𝗋𝖻 (defined in Section 3).

𝖢𝗍𝗋𝖻 / 𝜎 QE DFQuAD SD-DFQuAD EB EBT

Contribution Existence

𝖢𝗍𝗋𝖻R

𝖢𝗍𝗋𝖻R′

𝖢𝗍𝗋𝖻S

𝖢𝗍𝗋𝖻𝜕

Quantitative Contribution Existence

𝖢𝗍𝗋𝖻R

𝖢𝗍𝗋𝖻R′

𝖢𝗍𝗋𝖻S

𝖢𝗍𝗋𝖻𝜕

Directionality

𝖢𝗍𝗋𝖻R

𝖢𝗍𝗋𝖻R′

𝖢𝗍𝗋𝖻S

𝖢𝗍𝗋𝖻𝜕

(Quantiative) Local Faithfulness

𝖢𝗍𝗋𝖻R

𝖢𝗍𝗋𝖻R′

𝖢𝗍𝗋𝖻S

𝖢𝗍𝗋𝖻𝜕

(Quantitative) Counterfactuality

𝖢𝗍𝗋𝖻R

𝖢𝗍𝗋𝖻R′

𝖢𝗍𝗋𝖻S

𝖢𝗍𝗋𝖻𝜕

Given a QBAG (Args, 𝜏,Att,Supp) and 𝖺, 𝖻 ∈ Args, a path from 𝖺 to 𝖻 is a path from 𝖺 to 𝖻 in the directed graph (Args, Att ∪ Supp). 
We say that a QBAG (Args, 𝜏,Att,Supp) is acyclic iff there exists no 𝖺 ∈ Args for which there exists a path from 𝖺 to 𝖺. Henceforth, we 
assume as given a fixed acyclic QBAG 𝖦 = (Args, 𝜏,Att,Supp) with a finite number of arguments.

Given 𝖺, 𝗑 ∈ Args, the set Att𝖦(𝗑) ∶= {𝗓 ∈ Args ∣ (𝗓, 𝗑) ∈ Att} is the set of attackers of 𝗑 and each 𝗓 ∈ Att𝖦(𝗑) is a (direct) attacker of 𝗑
(𝗓 attacks 𝗑); the set Supp𝖦(𝗑) ∶= {𝗒 ∈ Args ∣ (𝗒, 𝗑) ∈ Supp} is the set of supporters of 𝗑 and each 𝗒 ∈ Supp𝖦(𝗑) is a (direct) supporter of 𝗑
(𝗒 supports 𝗑). We may drop the subscript 𝖦 when the context is clear. 𝗑 is an indirect attacker of 𝖺 iff 𝗑 is a supporter of some direct 
or indirect attacker of 𝖺 or 𝗑 attacks some direct or indirect supporter of 𝖺. 𝗑 is an indirect supporter of 𝖺 iff 𝗑 attacks some direct or 
indirect attacker of 𝖺 or 𝗑 supports some direct or indirect supporter of 𝖺. Given 𝖦 = (Args, 𝜏,Att,Supp) and 𝐴 ⊆ Args, we define the 
QBAG restriction of 𝖦 to 𝐴, denoted by 𝖦 ↓𝐴, as follows: 𝖦 ↓𝐴∶= (𝐴,𝜏 ∩ (𝐴 × 𝕀),Att ∩ (𝐴 ×𝐴),Supp ∩ (𝐴 ×𝐴)).

Reasoning in QBAGs amounts to updating the initial strengths of arguments to their final strengths, taking into account the 
strengths of attackers and supporters. Specifically, given a QBAG, a strength function assigns final strengths to arguments in the 
QBAG. Different ways of defining a strength function are called gradual semantics.

Definition 2.2 (Gradual Semantics and Strength Functions [23,22]). A gradual semantics 𝜎 defines for 𝖦 = (Args, 𝜏,Att,Supp) a (possibly 
partial) strength function 𝜎𝖦 ∶ Args → 𝕀 ∪ {⊥} that assigns the final strength 𝜎𝖦(𝗑) to each 𝗑 ∈ Args, where ⊥ is a reserved symbol 
4

meaning ‘undefined’.
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Table 2
Common aggregation 𝛼 and influence 𝜄 functions [22, pp. 1724 Table 1; with a fixed typo 
for p-Max(𝑘)]. Intuitively, 𝑠 ∈ [0, 1]𝑛 is a strength vector (associating each argument with its 
current strength), 𝑣 ∈ {−1, 0, 1}𝑛 is a relationship vector indicating which arguments attack 
(−1), support (1) or are in no relationship to (0) the argument of interest, and 𝑤 is an initial 
strength.

Aggregation Functions

Sum 𝛼Σ
𝑣
∶ [0,1]𝑛 →ℝ 𝛼Σ

𝑣
(𝑠) =

∑𝑛

𝑖=1 𝑣𝑖 × 𝑠𝑖
Product 𝛼Π

𝑣
∶ [0,1]𝑛 → [−1,1] 𝛼Π

𝑣
(𝑠) =

∏
𝑖∶𝑣𝑖=−1

(1 − 𝑠𝑖) −
∏

𝑖∶𝑣𝑖=1
(1 − 𝑠𝑖)

Top 𝛼𝑚𝑎𝑥
𝑣

∶ [0,1]𝑛 → [−1,1] 𝑎𝑚𝑎𝑥
𝑣

(𝑠) =𝑀𝑣(𝑠) −𝑀−𝑣(𝑠),
where 𝑀𝑣(𝑠) =𝑚𝑎𝑥{0, 𝑣1 × 𝑠1,… , 𝑣𝑛 × 𝑠𝑛}

Influence Functions

Linear(𝑘) 𝜄𝑙
𝑤
∶ [−𝑘,𝑘]→ [0,1] 𝜄𝑙

𝑤
(𝑠) =𝑤− 𝑤

𝑘
×𝑚𝑎𝑥{0,−𝑠} + 1−𝑤

𝑘
×𝑚𝑎𝑥{0, 𝑠}

Euler-based 𝜄𝑒
𝑤
∶ℝ→ [𝑤2,1] 𝜄𝑒

𝑤
(𝑠) = 1 − 1−𝑤2

1+𝑤×𝑒𝑠
p-Max(𝑘) 𝜄

𝑝
𝑤 ∶ℝ→ [0,1] 𝜄

𝑝
𝑤(𝑠) =𝑤−𝑤 × ℎ(− 𝑠

𝑘
) + (1 −𝑤) × ℎ( 𝑠

𝑘
),

for 𝑝 ∈ℕ where ℎ(𝑥) = 𝑚𝑎𝑥{0,𝑥}𝑝

1+𝑚𝑎𝑥{0,𝑥}𝑝

Table 3
Examples of gradual semantics.

Semantics Aggregation Influence

QuadraticEnergyModel (QE) Sum 2-Max(1)
DFQuADModel (DFQuAD) Product Linear(1)
SquaredDFQuADModel (SD-DFQuAD) Product 1-Max(1)
EulerBasedModel (EB) Sum EulerBased
EulerBasedTopModel (EBT) Top EulerBased

If 𝖦 is clear from the context, we will drop the subscript 𝖦 and denote the strength function by 𝜎.
Many QBAG semantics from the literature including [24,18,21,25,26] can be seen as modular semantics [27]. Modular semantics 

define the final strength values of arguments by an iterative procedure that works as follows:

Initialization: Let (𝗑1, … , 𝗑𝑛) be an arbitrary but fixed ordering of the arguments in Args. Define a vector 𝑠(0) ∈ℝ𝑛 of initial strength 
values of the arguments by letting 𝑠(0)

𝑖
= 𝜏(𝗑𝑖).

Update: Given the vector 𝑠(𝑖) from the previous iteration, apply an update function 𝑢𝖦 ∶ℝ𝑛 →ℝ𝑛 to obtain 𝑠(𝑖+1) = 𝑢𝖦(𝑠(𝑖)).

𝑢𝖦(𝑠(𝑖)) will adapt the strength of every argument 𝗑𝑖 in two steps.

Aggregation. First an aggregation function 𝛼 combines the current strength values of 𝗑𝑖 ’s supporters and attackers with respect to 
𝑠(𝑖) to a single value that reflects how 𝗑𝑖 should be adapted. For representing attack, support, and lack of both attack and 
support, we may utilise a vector 𝑣 ∈ {−1, 0, 1}𝑛 in which each attacker of 𝗑𝑖 is represented by −1, each supporter by 1, and 
each argument neither attacking nor supporting 𝗑𝑖 by 0.

Influence. Then an influence function 𝜄 will determine a new strength value for 𝗑𝑖 based on the aggregate and 𝗑𝑖 ’s initial strength 
𝑤 = 𝜏(𝗑𝑖).

Table 2 gives a list of common influence and aggregation functions. Table 3 shows some examples of gradual semantics. With abuse 
of notation, we may denote the evaluation of the aggregation function of an argument 𝖺 given a QBAG 𝖦 = (Args, 𝜏,Att,Supp) (with 
𝖺 ∈ Args) by 𝛼𝖦(𝖺), i.e., 𝛼𝖦(𝖺) ∶= 𝛼(𝖺0, … , 𝖺𝑛), where 𝖺0, … , 𝖺𝑛 are the supporters and attackers of 𝖺 in 𝖦. Analogously, we may denote 
the evaluation of 𝖺’s influence function 𝜄 given 𝖦 by 𝜄𝖦(𝖺).

Formally, the final strength 𝜎𝖦(𝗑𝑖) of the i-th argument is the 𝑖-th component 𝑠𝑖 of the limit vector 𝑠 = lim𝑖→∞ 𝑠(𝑖). As demonstrated 
in [27], the limit may not exist in cyclic graphs. However, as we focus on acyclic graphs here, the limit is guaranteed to exist and can, 
in fact, be computed in linear time by a simple forward propagation procedure [22]. Roughly speaking, it works by first computing a 
topological ordering of the arguments. The strength values are then computed following this order. The final strength of the arguments 
without parents (i.e. either attackers or supporters) is just their initial strength. When the next argument in the topological order is 
selected, all strength values of its parents are already fixed, so its final strength can be computed by a single application of the update 
function.

As we can easily see, the semantics in Table 3 are modular semantics. For example, using the Sum aggregation function and the 2-
Max(1) influence function yields the Quadratic Energy (QE) semantics. For a step-by-step walk-through of final strength computation 
using a modular semantics, we refer to Example 1.1.

To facilitate the analysis and comparison of gradual semantics, formal principles have been defined. In the context of this paper, 
the directionality and stability principles [21] are of particular relevance. Directionality stipulates that removing arguments that cannot 
5

reach an argument of interest from the QBAG must not affect the latter argument’s final strength. When defining the principles we 
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assume an arbitrary (acyclic and finite) QBAG 𝖦 = (Args, 𝜏,Att,Supp) and 𝖺 ∈ Args. Directionality states, intuitively, that an argument 
𝖺 can only be influenced by another argument 𝗑 if there is a directed path from 𝗑 to 𝖺.

Principle 2.1 (Directionality (Gradual Semantics)). A gradual semantics 𝜎 satisfies the directionality principle iff for all 𝖦 =
(Args, 𝜏, Att, Supp) and 𝖦′ = (Args, 𝜏, Att′, Supp′) such that Att ∪ Supp = Att′ ∪ Supp′ ∪ (𝗑, 𝗒) for some 𝗑 ∈ Args, 𝗒 ∈ Args ⧵ {𝖺} such 
that there is no directed path from 𝗒 to 𝖺, we have 𝜎𝖦(𝖺) = 𝜎𝖦′ (𝖺).

Stability stipulates that an argument’s final strength equals its initial strength in the absence of supporters and attackers.

Principle 2.2 (Stability). A QBAG semantics 𝜎 satisfies the stability principle iff Att𝖦(𝖺) = Supp𝖦(𝖺) = ∅ implies that 𝜎(𝖺) = 𝜏(𝖺).

All semantics in Table 3 satisfy directionality and stability [21,27,28].

3. Argument contributions

To determine how much an argument 𝗑 ∈ Args contributes to the final strength 𝜎𝖦(𝖺) of a topic argument 𝖺 ∈ Args in a given QBAG 
𝖦 (given a semantics 𝜎), we make use of contribution functions 𝖢𝗍𝗋𝖻𝜎,𝖦,𝖺 ∶ Args → ℝ ∪ {⊥}. We drop the subscripts 𝜎 and 𝖦 where 
the context is clear. Intuitively, 𝖢𝗍𝗋𝖻𝖺(𝗑) measures the influence of 𝗑 on the topic argument 𝖺. The exact meaning of 𝖢𝗍𝗋𝖻𝖺(𝗑) depends 
on the contribution function. We will investigate the following contribution functions from [13].

Removal-based contribution: Intuitively, we ask: how does the removal of the contributor affect the topic argument’s final 
strength? For this, we determine the difference between the final strength of the topic argument in 𝖦 and its final strength 
in 𝖦 with the contributor removed, i.e. we compute 𝜎𝖦(𝖺) − 𝜎𝖦′ (𝖺), where 𝖦′ is obtained from 𝖦 by removing 𝗑:

𝖢𝗍𝗋𝖻R
𝖺 (𝗑) = 𝜎𝖦(𝖺) − 𝜎𝖦↓Args⧵{𝗑}

(𝖺) (1)

Removal-based contribution without indirection: Continuing with the intuition above, we may require that the contribution of 
one argument to another one should be based on the former’s intrinsic (initial) strength and not on boosts received by 
(direct or indirect) attackers and supporters [19]. To reflect this criticism of the removal-based contribution function, we 
may first remove all attacks and supports that have the contributor as a target before determining the difference (assuming 
that our semantics is directional, i.e. that strength updates are propagated only in the direction represented by the support 
and attack relations); i.e., we compute 𝜎𝖦− (𝖺) − 𝜎𝖦′ (𝖺) where 𝖦− is obtained from 𝖦 by removing direct relations to 𝗑 and 
𝖦′ is obtained from 𝖦 by removing 𝗑 entirely:

𝖢𝗍𝗋𝖻R′
𝖺 (𝗑) = 𝜎(Args,𝜏,Att⧵{(𝗒,𝗑)|(𝗒,𝗑)∈Att}),Supp⧵{(𝗒,𝗑)|(𝗒,𝗑)∈Supp})(𝖺) − 𝜎𝖦↓Args⧵{𝗑}

(𝖺) (2)

Shapley-based contribution: Yet more elaborately, we can see the difference between a topic argument’s final and initial strengths 
as a value achieved by a coalition of all other arguments in our QBAG, which we can then consider players in the game 
theoretical sense. Then, we can use Shapley values [29] as a well-established approach to quantify the argument contribu-
tions.2 Intuitively, we determine a weighted average of the topic argument’s final strength difference that is achieved by 
adding the contributor to all possible subgraphs of our QBAG that already contain the topic argument:

𝖢𝗍𝗋𝖻S
𝖺 (𝗑) =
∑

𝑋⊆Args⧵{𝗑,𝖺}

|𝑋|! ⋅ (|Args ⧵ {𝖺}|− |𝑋|− 1)!
|Args ⧵ {𝖺}|!

(
𝜎𝖦↓Args⧵𝑋

(𝖺) − 𝜎𝖦↓Args⧵(𝑋∪{𝗑})
(𝖺)

)
(3)

Gradient-based contribution: The last contribution function is based on the gradient from real analysis [30]: intuitively, the gra-
dient is a vector (whose components are partial derivatives) that measures how a small change in an input parameter of a 
function affects the output. In our case, the function of interest maps the initial strength values of arguments to the final 
strength of the topic argument. Formally, we consider a function 𝑓𝖺 ∶ℝ𝑛 →ℝ that maps a vector 𝑠(0) ∈ℝ𝑛 of initial strength 
values to the final strength 𝑓𝖺(𝑠(0)) of 𝖺.

Since we assume that 𝖦 is acyclic, we can construct an explicit representation of 𝑓𝖺 recursively. Intuitively, the represen-
tation of 𝑓𝖺 corresponds to a long composition of influence and aggregation functions of the semantics applied to the initial 
strength values in 𝑠(0). Let 𝑖 be the index of the topic argument 𝖺 in the topological ordering {𝗑1, … , 𝗑𝑛} associated with 𝖦. 
If 𝖺 does not have any parents, then its final strength is just 𝑠(0)

𝑖
by stability (Principle 2.2) of the semantics. In this case, 𝑓𝖺

is just the constant function that always returns 𝑠(0)
𝑖

. If, on the other hand, 𝖺 has the set of parents 𝑆 = {𝗑𝑖1 , … , 𝗑𝑖𝑘𝖺 }, we 
create placeholders 𝑇𝑖1 , … , 𝑇𝑖𝑘𝖺 for the explicit representation of the strength value computation of the parents and let
6

2 Note that we fixed some technicalities in the Shapley value-based contribution function initially presented in [13].
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𝖺∶(0.5)
𝟎.𝟏𝟐𝟓

𝖻∶(0.5)
𝟎.𝟕𝟓

𝖼∶(0.5)
𝟎.𝟓

-

+

2.1: 𝖦.

𝖺∶(0.5)
𝟎.𝟓

𝖼∶(0.5)
𝟎.𝟓

2.2: 𝖦′ (𝖦, with 𝖻 removed).

𝖺∶(0.5)
𝟎.𝟐𝟓

𝖻∶(0.5)
𝟎.𝟓

𝖼∶(0.5)
𝟎.𝟓

-

2.3: 𝖦′′ (𝖦, with incoming relation-
ships to 𝖻 removed).

Fig. 2. A QBAG 𝖦 and its updates, with 𝖻 (𝖦′) and incoming relationships to 𝖻 removed (𝖦′′).

𝑓𝖺 = 𝜄𝑤𝖺
(𝛼𝑣𝖺 (𝑇𝑖1 ,… , 𝑇𝑖𝑘𝖺

)), (4)

where 𝑤𝖺 = 𝜏(𝖺) is 𝖺’s initial strength and 𝑣𝖺 is the parent vector that contains −1∕0∕1 at the 𝑖-th component if 𝗑𝑖 attacks/is 
unrelated to/supports 𝖺. We now have to replace 𝑇𝑖1 , … , 𝑇𝑖𝑘𝖺 with explicit function representations of the strength of 
𝗑𝑖1 , … , 𝗑𝑖𝑘𝖺 as well. This can be done exactly as for 𝖺. In the process, we may create new placeholders, but since 𝖦 is acyclic, 
the recursion will stop after a finite number of steps. A naive implementation of the recursive scheme may compute the 
same template multiple times. This can be avoided by storing templates (there can be at most |Args|) or using a dynamic 
programming approach.

Let us note that, in the process of constructing the explicit function representation of 𝑓𝖺 , we can only add strength 
values 𝑠(0)

𝑖
of arguments 𝗑𝑖 such that there is a directed path from 𝗑𝑖 to 𝖺 in 𝖦. This is in line with the directionality 

property (Principle 2.1) of gradual semantics. We emphasise this observation as it will be useful in the following.

Observation 3.1. 𝑓𝖺(𝑠(0)) depends on 𝑠(0)
𝑖

if and only if there is a directed path from 𝗑𝑖 to 𝖺.

The gradient-based contribution function is now defined as

𝖢𝗍𝗋𝖻𝜕𝖺 (𝗑) =
𝜕𝑓𝖺

𝜕𝜏(𝗑)
(
𝜏(𝗑1),… , 𝜏(𝗑𝑛)

)
. (5)

With abuse of notation, we may also denote the partial derivative 𝜕𝑓𝖺

𝜕𝜏(𝗑) as 𝜕𝜎(𝖺)
𝜕𝜏(𝗑) .

Irrespective of the specific method for determining an argument’s contribution to the final strength of some topic argument in a 
given QBAG 𝖦, we use a generic contribution function 𝖢𝗍𝗋𝖻 ∶ Args × Args →ℝ defined by 𝖢𝗍𝗋𝖻(𝗑, 𝖺) = 𝖢𝗍𝗋𝖻𝖺(𝗑). For reference, we use 
𝖢𝗍𝗋𝖻R, 𝖢𝗍𝗋𝖻R′

, 𝖢𝗍𝗋𝖻S , 𝖢𝗍𝗋𝖻𝜕 to denote the contribution functions given, respectively, in Equations (1)–(3) and (5).
Let us illustrate the intuitions behind the contribution functions with an example.

Example 3.1. Consider the QBAF 𝐺 in Fig. 2.1. We use DFQuAD semantics and are interested in quantifying the contribution of 𝖻 to 
𝖺. The removal-based contribution 𝖢𝗍𝗋𝖻R

𝖺 (𝖻) = −0.375 is obtained by subtracting the final strength of 𝖺 in 𝖦′ from the final strength 
of 𝖺 in 𝖦. However, one may argue that 𝖻’s contribution to 𝖺 is not entirely intrinsic to 𝖻, as 𝖻 benefits from its supporter 𝖼, following a 
contribution quantification approach first introduced to abstract gradual argumentation [19]. To determine the intrinsic contribution, 
we may first remove all attack and support relationships to 𝖻 to then determine the difference of 𝖺’s final strengths with and without 
𝖻, as seen in Figs. 2.3 and 2.2, respectively: 𝖢𝗍𝗋𝖻R′

𝖺 (𝖻) = −0.25. Still, one may argue that this comes at the cost of the simpler 
intuition behind 𝖢𝗍𝗋𝖻R: 𝖢𝗍𝗋𝖻R′

is not entirely aligned with the topological reality of 𝖦 and hence neither with the intuition of the 
counterfactuality principle as sketched in the introduction. Yet more nuanced, 𝖢𝗍𝗋𝖻S determines a weighted average contribution 
of 𝖻 to 𝖺 as provided by 𝖢𝗍𝗋𝖻R in each restriction of 𝖦 to some subset of its nodes that contains 𝖺 and 𝖻: 𝖢𝗍𝗋𝖻S

𝖺 (𝖻) = −0.3125. 
Interestingly, we have 𝖢𝗍𝗋𝖻S

𝖺 (𝖻) + 𝖢𝗍𝗋𝖻S
𝖺 (𝖼) = 𝜏(𝖺) − 𝜎(𝖺), i.e. the sum of the contributions of all arguments to 𝖺 (note that the 

contribution of 𝖺 to itself is not defined) exactly accounts for the difference between 𝖺’s initial and final strength. This is aligned with 
the intuition of (quantitative) contribution existence and can formally be traced back to the efficiency principle of Shapley values 
(see Subsection 4.1).

Note that the three contribution functions we have covered so far all use some form of argument removal (and, indeed, always 
remove at least the contributing argument) to determine the contribution. In contrast, the gradient contribution function measures 
the effect of marginally changing the contributing argument’s initial strength on the final strength of the topic argument. With the 
strength function expanded as 𝜎(𝖺) = 𝜏(𝖺) − 𝜏(𝖺)𝜎(𝖻) = 𝜏(𝖺) (1 − (𝜏(𝖻) + (1 − 𝜏(𝖻))𝜎(𝖼))) = 𝜏(𝖺) − 𝜏(𝖺)𝜏(𝖻) + 𝜏(𝖺)𝜏(𝖻)𝜏(𝖼) − 𝜏(𝖺)𝜏(𝖼), we 
for instance find 𝜕

𝜕𝜏(𝖻)𝜎(𝖺) = −𝜏(𝖺) + 𝜏(𝖺)𝜏(𝖼), which at the vector (0.5, 0.5, 0.5) of initial strengths evaluates to 𝖢𝗍𝗋𝖻𝜕𝖺 (𝖻) = −0.25. This 
7

also means that we can quantify the strength of an argument to itself: 𝜕

𝜕𝜏(𝖺)𝜎(𝖺) = 1 − 𝜏(𝖻) + 𝜏(𝖻)𝜏(𝖼) − 𝜏(𝖼) evaluates at the initial 
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Table 4
Argument contributions, given DFQuAD semantics, in 𝖦 (Fig. 2.1), given different contribution functions (contributors are row headers, topic arguments column 
headers; ⊥ denotes undefined contributions).

𝖢𝗍𝗋𝖻R 𝖺 𝖻 𝖼

𝖺 ⊥ 0 0
𝖻 −0.375 ⊥ 0
𝖼 −0.125 0.25 ⊥

𝖢𝗍𝗋𝖻R′
𝖺 𝖻 𝖼

𝖺 ⊥ 0 0
𝖻 −0.25 ⊥ 0
𝖼 −0.125 0.25 ⊥

𝖢𝗍𝗋𝖻S 𝖺 𝖻 𝖼

𝖺 ⊥ 0 0
𝖻 −0.3125 ⊥ 0
𝖼 −0.0625 0.25 ⊥

𝖢𝗍𝗋𝖻𝜕 𝖺 𝖻 𝖼

𝖺 0.25 0 0
𝖻 −0.25 0.5 0
𝖼 −0.25 0.5 1

strengths to 𝖢𝗍𝗋𝖻𝜕𝖺 (𝖺) = 0.25. We may claim that, in contrast to the other contribution functions, the gradient contribution function 
answers a fundamentally different question, which is not about the argument’s existence, but about the local effect of changing 
its initial strength. Table 4 shows all contributions that can be computed given 𝖦. This overview already gives us an intuition of 
some of the principles, such as the quantitative contribution existence principle of 𝖢𝗍𝗋𝖻S ; also, note that contribution functions 
𝖢𝗍𝗋𝖻R, 𝖢𝗍𝗋𝖻R′

, 𝖢𝗍𝗋𝖻S given, respectively, in Equations (1), (2), (3) are partial: they do not define an argument’s contribution to itself 
𝖢𝗍𝗋𝖻𝖺(𝖺), since 𝜎𝖦′ (𝖺) is undefined when 𝖺 is not in (the set of arguments of) 𝖦′ . In contrast, the gradient contribution function 𝖢𝗍𝗋𝖻𝜕
(Equation (5)) is total.3

4. Principles

We expect some intuitive behaviour from a contribution function and can formalise these expectations as contribution function 
principles, similar to principles that have been defined for gradual semantics [23]. In the case of contribution functions, principle 
satisfaction obviously depends on the properties of the semantics used. A few contribution function principles were proposed in [13]. 
We recap those next and propose new ones in the following subsections. In the remainder of this section, as well as of the next one, we 
restrict attention to acyclic QBAGs and fix otherwise arbitrary gradual semantics 𝜎, QBAG 𝖦 = (Args, 𝜏,Att,Supp) and topic argument 
𝖺 ∈ Args, denoting the contributor by 𝗑 (with 𝗑 ∈ Args). A contribution function 𝖢𝗍𝗋𝖻 will be said to satisfy a principle w.r.t. 𝜎 if (and 
only if) a given condition holds for arbitrary (acyclic) 𝖦 and 𝖺, if not stated otherwise.

4.1. Contribution existence

One would expect that whenever an argument’s final strength differs from its initial strength, there is another argument whose 
contribution explains this difference. Accordingly, the contribution existence principle stipulates that some contribution from another 
argument exists whenever the final strength of the topic argument changes.

Principle 4.1 (Contribution Existence [13]4). 𝖢𝗍𝗋𝖻 satisfies the contribution existence principle w.r.t. a gradual semantics 𝜎 iff 𝜎(𝖺) ≠ 𝜏(𝖺)
implies that ∃𝗑 ∈ Args ⧵ {𝖺} with 𝖢𝗍𝗋𝖻𝖺(𝗑) ≠ 0.

Here and henceforth, where the context is clear we may drop “w.r.t. a gradual semantics 𝜎” for any principle. We can further 
strengthen the principle and stipulate that the sum of all contributions must equal the difference between the topic argument’s initial 
strength and its final strength.

Principle 4.2 (Quantitative Contribution Existence). 𝖢𝗍𝗋𝖻 satisfies the quantitative contribution existence principle w.r.t. a gradual seman-
tics 𝜎 iff it holds that 

∑
𝗑∈Args⧵{𝖺}𝖢𝗍𝗋𝖻𝖺(𝗑) = 𝜎(𝖺) − 𝜏(𝖺).

Intuitively, quantitative contribution existence implies contribution existence.

Proposition 4.1. If 𝖢𝗍𝗋𝖻 satisfies quantitative contribution existence w.r.t. a gradual semantics 𝜎 then 𝖢𝗍𝗋𝖻 satisfies contribution existence 
w.r.t. 𝜎.

Proof. Assume 𝖢𝗍𝗋𝖻 satisfies quantitative contribution existence w.r.t. 𝜎. Observe that by definition of quantitative contribution 
existence (Principle 4.2), if 𝜎(𝖺) ≠ 𝜏(𝖺) then 

∑
𝗑∈Args⧵{𝖺}𝖢𝗍𝗋𝖻𝖺(𝗑) ≠ 0 and hence it must hold that ∃𝗑 ∈ Args ⧵ {𝖺} with 𝖢𝗍𝗋𝖻𝖺(𝗑) ≠ 0. 

This means contribution existence (Principle 4.1) must be satisfied, which proves the proposition. □

3 For the sake of conciseness, we abstain from formalising this trivial observation.
8

4 Note that we slightly adjusted the principle: the non-zero contribution needs to be explained by an argument other than the topic argument.
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𝖺∶(1)
𝟏

𝖻∶(1)
𝟎

-

3.1: 𝖦.

𝖻∶(1)
𝟏

3.2: 𝖦′ (𝖦, with 𝖺 removed).

Fig. 3. While our contribution functions can be intuitively expected to satisfy directionality with respect to modular semantics, this may not be the case with respect 
to other semantics: consider 𝖢𝗍𝗋𝖻R and 𝜎(𝗑) = 𝜏(𝗑) −∑

{𝗒|𝗑∈Att(𝗒)} 𝜏(𝗒).

4.2. Directionality

Assuming that the gradual semantics satisfies directionality (Principle 2.1 for gradual semantics), contribution functions should 
respect the direction of influence as represented by the topology of the QBAG. Accordingly, the directionality principle for contribution 
functions stipulates that an argument’s contribution to a topic argument can only be non-zero if there is a directed path from the 
former to the latter.

Principle 4.3 (Directionality (Contribution Function) [13]). 𝖢𝗍𝗋𝖻 satisfies the directionality principle w.r.t. a gradual semantics 𝜎 iff 
whenever there is no directed path in 𝖦 from 𝗑 ∈ Args to 𝖺, then 𝖢𝗍𝗋𝖻𝖺(𝗑) = 0.

Intuitively, we can expect that our contribution functions satisfy directionality with respect to modular semantics that traverse 
a QBAG from leave nodes (without incoming supports or attacks). However, directionality is not necessarily satisfied if we cannot 
make any assumptions about semantics behaviour. In particular, if a gradual semantics makes an argument’s final strength dependent 
on the arguments it attacks or supports (somewhat reflecting the idea of range-based semantics in abstract argumentation [31]), 
then it does not respect directionality. For such a semantics, all of the contribution functions introduced above would violate the 
directionality principle for contribution functions. For instance, consider the strength function 𝜎(𝗑) = 𝜏(𝗑) −

∑
{𝗒|𝗑∈Att(𝗒)} 𝜏(𝗒), the 

QBAG 𝖦 = ({𝖺, 𝖻}, {(𝖺, 1), (𝖻, 1)}, {(𝖻, 𝖺)}, {}) with 𝖻 attacking 𝖺, and 𝖢𝗍𝗋𝖻R defined using Equation (1) (removal-based contribution). 
There is no directed path from 𝖺 to 𝖻, but removing 𝖺 changes the final strength of 𝖻 from 0 to 1, whence the contribution of 𝖺 to 𝖻
is 0 − 1 ≠ 0 (see Fig. 3).

4.3. Faithfulness

One may want to demand that a contribution function faithfully represents the effect of one argument on another one. The effect 
can be measured in different ways. One natural way in QBAGs is to measure it based on the effect of the initial strength of an 
argument. If increasing the initial strength of an argument increases (decreases) the final strength of the topic argument, then the 
contribution score should be positive (negative). We can also imagine that there is no effect at all. To formalise this intuition, we first 
define an initial strength modification of a QBAG.

Definition 4.1 (QBAG Initial Strength Modification). Given a QBAG 𝖦 = (Args, 𝜏,Att,Supp) and an argument 𝑥 ∈ Args, we define the 
initial strength modification of 𝗑 in 𝖦 as the QBAG 𝖦 ↓𝜏(𝗑)←𝜖∶=

(
Args, 𝜏′,Att,Supp

)
, where 𝜖 ∈ 𝕀, 𝜏′(𝗑) = 𝜖 and 𝜏′(𝗒) = 𝜏(𝗒) for all other 

𝗒 ∈ Args ⧵ {𝗑}.

One natural first faithfulness property could then be stated as follows: if an argument’s contribution is positive/zero/negative, 
then increasing the argument’s base score should increase/not affect/decrease the strength of the topic argument.

Principle 4.4 (Strong Faithfulness). 𝖢𝗍𝗋𝖻 satisfies the strong faithfulness principle w.r.t. a gradual semantics 𝜎 iff for every QBAG 𝖦 =
(Args, 𝜏,Att,Supp), for all 𝖺, 𝗑 ∈ Args, 𝜖 ∈ 𝕀 and 𝖦𝜖 =𝖦 ↓𝜏(𝗑)←𝜖 the following statements hold:

• If 𝖢𝗍𝗋𝖻𝖺(𝗑) < 0, then 𝜎𝖦(𝖺) < 𝜎𝖦𝜖
(𝖺) whenever 𝜖 < 𝜏(𝗑) and 𝜎𝖦(𝖺) > 𝜎𝖦𝜖

(𝖺) whenever 𝜖 > 𝜏(𝗑).
• If 𝖢𝗍𝗋𝖻𝖺(𝗑) = 0, then 𝜎𝖦(𝖺) = 𝜎𝖦𝜖

(𝖺) for all 𝜖 ∈ 𝕀.
• If 𝖢𝗍𝗋𝖻𝖺(𝗑) > 0, then 𝜎𝖦(𝖺) > 𝜎𝖦𝜖

(𝖺) whenever 𝜖 < 𝜏(𝗑) and 𝜎𝖦(𝖺) < 𝜎𝖦𝜖
(𝖺) whenever 𝜖 > 𝜏(𝗑).

Intuitively, a negative (positive) score guarantees that increasing the initial strength of the evaluated argument will decrease 
(increase) the final strength of the topic argument. However, this property can only be satisfied if we can guarantee a monotonic 
effect of arguments. This is not necessarily the case as we illustrate in Fig. 1. In the QBAG on the left (Fig. 1.1), argument 𝖾 has a 
non-monotonic influence on the topic argument 𝖺. Fig. 1.2 plots the final strength of 𝖺 (y-axis) as a function of the initial strength 
of 𝖾 under DFQuAD semantics. 𝖾’s initial strength has a negative influence up to 0.5. Then the influence becomes positive. The plot 
illustrates how the initial strength of 𝖾 influences the final strength of 𝖺. As we increase 𝜏(𝖾) from 0 to 0.5, 𝖺 becomes weaker. However, 
9

at this point, the effect reverses, and increasing 𝜏(𝖾) further will make 𝖺 stronger. In particular, if we let 𝜏(𝖾) = 0.2 in the QBAG on the 
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left in Fig. 1, then the effect is negative for 𝜖 ∈ [0, 0.8), neutral for 𝜖 = 0.8 and positive for 𝜖 ∈ (0.8, 1]. We provide analogous examples 
for QE semantics (Fig. 6), as well as for EB semantics (Fig. 9); for SD-DFQuAD and EBT semantics, we provide counterexamples for 
the case 𝖢𝗍𝗋𝖻𝖺(𝗑) = 0 (𝜎𝖦(𝖺) ≠ 𝜎𝖦𝜖

(𝖺) for at least some 𝜖 ∈ 𝕀) in Figs. 8 and 10, respectively. Hence, we assume that strong faithfulness 
cannot be reasonably satisfied. The property may be desirable for explainining “monotonic” QBAGs (see Section 6), but is too strong 
for general acyclic QBAGs.

If an argument has a non-monotonic effect on the topic argument, we may still be able to capture its effect faithfully in a small 
environment of the initial strength, where it behaves monotonically. However, even the local effect cannot always be categorised as 
positive, negative, or neutral. For example, when we let 𝜏(𝖾) = 0.5 in Fig. 1.1, the local effect switches from positive to negative at 
this point and cannot really be classified as any of the three. In our definition of local faithfulness, we therefore only demand that 
positive and negative effects are faithfully captured. 0 may mean that there is no local effect or that the local effect changes at this 
point. These considerations motivate the following definition.

Principle 4.5 (Local Faithfulness). 𝖢𝗍𝗋𝖻 satisfies the local faithfulness principle w.r.t. a gradual semantics 𝜎 iff there exists a 𝛿 > 0 such 
that for all 𝜖 ∈ [𝜏(𝗑) − 𝛿, 𝜏(𝗑) + 𝛿] ∩ 𝕀 and 𝖦𝜖 = 𝖦 ↓𝜏(𝗑)←𝜖 the following statements hold:

• If 𝖢𝗍𝗋𝖻𝖺(𝗑) < 0, then 𝜎𝖦(𝖺) < 𝜎𝖦𝜖
(𝖺) whenever 𝜖 < 𝜏(𝗑) and 𝜎𝖦(𝖺) > 𝜎𝖦𝜖

(𝖺) whenever 𝜖 > 𝜏(𝗑).
• If 𝖢𝗍𝗋𝖻𝖺(𝗑) > 0, then 𝜎𝖦(𝖺) > 𝜎𝖦𝜖

(𝖺) whenever 𝜖 < 𝜏(𝗑) and 𝜎𝖦(𝖺) < 𝜎𝖦𝜖
(𝖺) whenever 𝜖 > 𝜏(𝗑).

As opposed to strong faithfulness, local faithfulness does not consider all strength modifications, but only those in a small 𝛿-
environment of the initial strength of the contributing argument. Furthermore, it only demands that positive (negative) scores 
guarantee a positive (negative) effect of the argument. As discussed before, the score 0 may mean no effect or a changing effect.

We can strengthen the local faithfulness principle by requiring that the change in the topic argument must be approximately equal 
to the contribution of an argument times its change, that is, we want that 𝜎𝖦↓𝜏(𝗑)←𝜖

(𝑎) ≈ 𝜎𝖦(𝑎) + 𝜖 ⋅ 𝖢𝗍𝗋𝖻𝑎(𝑥) if 𝜖 is small (locality). 
To formalize this, we consider the error term 𝑒(𝜖) = 𝜎𝖦↓𝜏(𝗑)←𝜖

(𝑎) − (𝜎𝖦(𝑎) + 𝜖 ⋅ 𝖢𝗍𝗋𝖻𝑎(𝑥)) and demand that it goes to 0 as 𝜖 goes to 0. 
The condition is satisfied trivially for all continuous semantics.5 Therefore, we add a condition on the convergence speed, namely 
lim𝜖→0

𝑒(𝜖)
𝜖

= 0. This means that the error term goes asymptotically significantly faster to 0 than 𝜖 does.

Principle 4.6 (Quantitative Local Faithfulness). 𝖢𝗍𝗋𝖻 satisfies the quantitative local faithfulness principle w.r.t. a gradual semantics 𝜎 iff 
we have

𝜎𝖦↓𝜏(𝗑)←𝜖
(𝑎) = 𝜎𝖦(𝑎) + 𝜖 ⋅𝖢𝗍𝗋𝖻𝑎(𝑥) − 𝑒(𝜖), (6)

where 𝑒(𝜖) is an error term with the property lim𝜖→0
𝑒(𝜖)
𝜖

= 0.

Let us note that both strong and quantitative local faithfulness imply local faithfulness.

Proposition 4.2. Given a contribution function 𝖢𝗍𝗋𝖻 and a gradual semantics 𝜎, if 𝖢𝗍𝗋𝖻 satisfies strong faithfulness w.r.t. 𝜎 then 𝖢𝗍𝗋𝖻 satisfies 
local faithfulness w.r.t. 𝜎 and if 𝖢𝗍𝗋𝖻 satisfies quantitative local faithfulness w.r.t. 𝜎 then 𝖢𝗍𝗋𝖻 satisfies local faithfulness w.r.t. 𝜎.

Proof. Strong faithfulness obviously implies local faithfulness because the first and second condition of local faithfulness are relax-
ations of the first and third condition of strong faithfulness.

To see that quantitative local faithfulness implies local faithfulness, first note that the local change is

𝜎𝖦↓𝜏(𝗑)←𝜖
(𝑎) − 𝜎𝖦(𝑎) = 𝜖 ⋅𝖢𝗍𝗋𝖻𝑎(𝑥) − 𝑒(𝜖).

We can assume 𝖢𝗍𝗋𝖻𝑎(𝑥) ≠ 0 because local faithfulness excludes this case. Since lim𝜖→0
𝑒(𝜖)
𝜖

= 0, we can find a 𝛿 > 0 such that 𝜖 < 𝛿

implies | 𝑒(𝜖)
𝜖
| < |𝖢𝗍𝗋𝖻𝑎(𝑥)|. Hence, for all such 𝜖, we have

𝜎𝖦↓𝜏(𝗑)←𝜖
(𝑎) − 𝜎𝖦(𝑎)

𝜖
= 𝖢𝗍𝗋𝖻𝑎(𝑥) −

𝑒(𝜖)
𝜖

.

If 𝖢𝗍𝗋𝖻𝑎(𝑥) < 0, then the difference must be negative (because | 𝑒(𝜖)
𝜖
| < |𝖢𝗍𝗋𝖻𝑎(𝑥)|) and if 𝖢𝗍𝗋𝖻𝑎(𝑥) > 0, then the difference must 

be positive (again, because | 𝑒(𝜖)
𝜖
| < |𝖢𝗍𝗋𝖻𝑎(𝑥)|). Since 𝜖 > 0, we can conclude that 𝜎𝖦↓𝜏(𝗑)←𝜖

(𝑎) − 𝜎𝖦(𝑎) < 0 if 𝖢𝗍𝗋𝖻𝑎(𝑥) < 0, that is, 
𝜎𝖦↓𝜏(𝗑)←𝜖

(𝑎) < 𝜎𝖦(𝑎) as desired. Symmetrically, 𝖢𝗍𝗋𝖻𝑎(𝑥) > 0 implies 𝜎𝖦↓𝜏(𝗑)←𝜖
(𝑎) > 𝜎𝖦(𝑎), which completes the proof. □

Strong and quantitative local faithfulness are incomparable. The former is stronger than the latter because it is global rather than 
local and the latter is stronger than the former because it makes quantitative rather than just qualitative assumptions (assumptions 
10

5 This is because continuity implies that lim𝜖→0 𝜎𝖦↓𝜏(𝗑)←𝜖
(𝑎) = 𝜎𝖦(𝑎) and lim𝜖→0 𝜖 ⋅𝖢𝗍𝗋𝖻𝑎(𝑥) = 0.
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about the magnitude of contribution values rather than only assumptions about the sign). One could define a strong quantitative 
notion but since even the qualitative version is too strong for our purposes (as discussed above), we refrain from doing so.

4.4. Counterfactuality

The counterfactuality principle formalises the intuition that an argument should have a positive/negative contribution value only 
if its removal from 𝖦 leads to a decrease/increase in the topic argument’s strength.

Principle 4.7 (Counterfactuality). 𝖢𝗍𝗋𝖻 satisfies the counterfactuality principle w.r.t. a gradual semantics 𝜎 iff for any 𝗑 ∈ Args the 
following statements hold:

• If 𝖢𝗍𝗋𝖻𝖺(𝗑) < 0, then 𝜎𝖦(𝖺) < 𝜎𝖦↓Args⧵{𝗑}
(𝖺).

• If 𝖢𝗍𝗋𝖻𝖺(𝗑) = 0, then 𝜎𝖦(𝖺) = 𝜎𝖦↓Args⧵{𝗑}
(𝖺).

• If 𝖢𝗍𝗋𝖻𝖺(𝗑) > 0, then 𝜎𝖦(𝖺) > 𝜎𝖦↓Args⧵{𝗑}
(𝖺).

We can further strengthen this principle by introducing the quantitative counterfactuality principle, requiring that the argument’s 
contribution to the topic argument equals the effect of the former’s removal to the latter’s final strength.

Principle 4.8 (Quantitative Counterfactuality). 𝖢𝗍𝗋𝖻 satisfies the quantitative counterfactuality principle w.r.t. a gradual semantics 𝜎 iff 
for any 𝗑 ∈ Args it holds that 𝖢𝗍𝗋𝖻𝖺(𝗑) = 𝜎𝖦(𝖺) − 𝜎𝖦↓Args⧵{𝗑}

(𝖺).

As one may expect intuitively, quantitative counterfactuality implies counterfactuality.

Proposition 4.3. If 𝖢𝗍𝗋𝖻 satisfies quantitative counterfactuality w.r.t. a gradual semantics 𝜎 then 𝖢𝗍𝗋𝖻 satisfies counterfactuality w.r.t. 𝜎.

Proof. Considering the definition of the counterfactuality (Principle 4.7), we have three cases:

𝖢𝗍𝗋𝖻𝖺(𝗑) < 0. Then, 𝜎𝖦(𝖺) < 𝜎𝖦↓Args⧵{𝗑}
(𝖺) must hold. This is the case, given that 𝖢𝗍𝗋𝖻 satisfies quantitative counterfactuality w.r.t. 𝜎

because this principle stipulates that we have 𝖢𝗍𝗋𝖻𝖺(𝗑) = 𝜎𝖦(𝖺) − 𝜎𝖦↓Args⧵{𝗑}
(𝖺) < 0.

𝖢𝗍𝗋𝖻𝖺(𝗑) = 0. Then, 𝜎𝖦(𝖺) = 𝜎𝖦↓Args⧵{𝗑}
(𝖺) must hold. This is the case, given that 𝖢𝗍𝗋𝖻 satisfies quantitative counterfactuality w.r.t. 𝜎

because this principle stipulates that we have 𝖢𝗍𝗋𝖻𝖺(𝗑) = 𝜎𝖦(𝖺) − 𝜎𝖦↓Args⧵{𝗑}
(𝖺) = 0.

𝖢𝗍𝗋𝖻𝖺(𝗑) > 0. Then, 𝜎𝖦(𝖺) > 𝜎𝖦↓Args⧵{𝗑}
(𝖺) must hold. This is the case, given that 𝖢𝗍𝗋𝖻 satisfies quantitative counterfactuality w.r.t. 𝜎

because this principle stipulates that we have 𝖢𝗍𝗋𝖻𝖺(𝗑) = 𝜎𝖦(𝖺) − 𝜎𝖦↓Args⧵{𝗑}
(𝖺) > 0. □

5. Principle-based analysis

We now provide a theoretical analysis of the principles introduced in the previous section, considering the semantics listed in 
Table 3. The results are summarised in Table 1.

To make our counterexamples more robust against numerical inaccuracies, e.g., when approximating gradients or executing float-
ing point operations, we computed every example with two different implementations: once using QBAF-Py, an extended version of a 
C/Python (C with Python bindings) library first introduced in [32], which is available at https://github .com /TimKam /Quantitative -
Bipolar -Argumentation and once using Uncertainpy, a Python implementation based on ideas from [33], which is available at https://
github .com /nicopotyka /Uncertainpy.

5.1. Contribution existence

We first observe that 𝖢𝗍𝗋𝖻R satisfies contribution existence with respect to QE and EB semantics.

Proposition 5.1. 𝖢𝗍𝗋𝖻R satisfies the contribution existence principle w.r.t. QE and EB semantics 𝜎.

Proof. Consider a modular semantics that uses the aggregation function 𝛼 = 𝛼Σ
𝑣

and any of the influence functions 𝜄𝑒
𝑤

or 𝜄𝑝𝑤 (Table 2). 
We observe that QE and EB semantics are such semantics. From the definition of 𝛼Σ

𝑣
it follows that if 𝜎𝖦(𝖺) ≠ 𝜏𝖦(𝖺) then there must 

exist an argument 𝗑 ∈ Args s.t. 𝜎𝖦(𝗑) ≠ 0 and 𝗑 is a direct attacker or supporter of 𝖺; because our QBAG is acyclic, there must exist 
such 𝗑 that is not also an indirect attacker or supporter of 𝖺. Hence, it holds that 𝛼𝖦(𝖺) ≠ 𝛼𝖦↓Args⧵{𝗑}(𝖺). Consequently, by definition of 
𝜄 ∈ {𝜄𝑒

𝑤
, 𝜄𝑝𝑤} it must hold that 𝜄𝖦(𝖺) ≠ 𝜄𝖦↓Args⧵{𝗑}(𝖺), from which it follows by definition of 𝖢𝗍𝗋𝖻R that 𝖢𝗍𝗋𝖻R

𝖺 (𝗑) ≠ 0, i.e., the contribution 
existence principle is satisfied. □
11

Similarly, 𝖢𝗍𝗋𝖻R′
satisfies contribution existence with respect to QE and EB semantics.

https://github.com/TimKam/Quantitative-Bipolar-Argumentation
https://github.com/TimKam/Quantitative-Bipolar-Argumentation
https://github.com/nicopotyka/Uncertainpy
https://github.com/nicopotyka/Uncertainpy
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𝖺∶(0.5)
< 𝟎.𝟓

𝖻∶(1)
𝟏

𝖼∶(1)
𝟏

- -

Fig. 4. 𝖢𝗍𝗋𝖻R and 𝖢𝗍𝗋𝖻R′
violate the contribution existence and quantitative contribution existence principles w.r.t. DFQuAD, SD-DFQuAD, and EBT semantics.

Proposition 5.2. 𝖢𝗍𝗋𝖻R′
satisfies the contribution existence principle w.r.t. QE and EB semantics 𝜎.

Proof. Consider a modular semantics that uses the aggregation function 𝛼 = 𝛼Σ
𝑣

and any of the influence functions 𝜄𝑒
𝑤

, or 𝜄𝑝𝑤 (Table 2). 
We observe that QE and EB semantics are such semantics. From the definition of 𝛼Σ

𝑣
it follows that if 𝜎𝖦(𝖺) ≠ 𝜏𝖦(𝖺), there must exist 

an argument 𝗑 s.t. 𝜏𝖦(𝗑) ≠ 0 (for this observation, we also rely on the definition of 𝜄 ∈ {𝜄𝑒
𝑤
, 𝜄𝑝𝑤}: if 𝜎𝖦(𝖺) ≠ 0 then 𝜏𝖦(𝖺) ≠ 0 must hold, 

because 𝜏𝖦(𝖺) = 0 implies that 𝜎𝖦(𝖺) = 0), 𝗑 is a direct attacker or supporter of 𝖺; because our QBAG is acyclic, there must exist such 𝗑
that is not also an indirect attacker or supporter of 𝖺. Hence it holds that 𝛼(Args,𝜏,Att⧵{(𝗒,𝗑)|(𝗒,𝗑)∈Att}),Supp⧵{(𝗒,𝗑)|(𝗒,𝗑)∈Supp})(𝖺) −𝛼𝖦↓Args⧵{𝗑}

(𝖺) ≠
0. Consequently, for 𝜄 ∈ {𝜄𝑒

𝑤
, 𝜄𝑝𝑤} it holds that 𝜄(Args,𝜏,Att⧵{(𝗒,𝗑)|(𝗒,𝗑)∈Att},Supp⧵{(𝗒,𝗑)|(𝗒,𝗑)∈Supp})(𝖺) ≠ 𝜄𝖦↓Args⧵{𝗑}

(𝖺), from which it follows by 
definition of 𝖢𝗍𝗋𝖻R′

that 𝖢𝗍𝗋𝖻R′
𝖺 (𝗑) ≠ 0, i.e., the contribution existence principle is satisfied. □

In contrast, both 𝖢𝗍𝗋𝖻R and 𝖢𝗍𝗋𝖻R′
can violate contribution existence—and hence also quantitative contribution existence—with 

respect to DFQuAD, SD-DFQuAD, and EBT semantics.

Proposition 5.3. 𝖢𝗍𝗋𝖻R and 𝖢𝗍𝗋𝖻R′
violate the contribution existence and quantitative contribution existence principles w.r.t. DFQuAD, 

SD-DFQuAD, and EBT semantics.

Proof. Consider the QBAG depicted in Fig. 4, which we denote by 𝖦 = (Args, 𝜏,Att,Supp). Given DFQuAD, SD-DFQuAD, and EBT 
semantics 𝜎, we observe that 𝜎𝖦(𝖺) < 0.5 = 𝜏(𝖺) (0.5 is the initial strength of 𝖺). Also, 𝜎𝖦↓{𝖺,𝖻} (𝖺) = 𝜎𝖦↓{𝖺,𝖼}

(𝖺) = 𝜎𝖦(𝖺). Consequently, by 
definition of 𝖢𝗍𝗋𝖻R it must hold that 𝖢𝗍𝗋𝖻R

𝖺 (𝖻) = 𝖢𝗍𝗋𝖻R
𝖺 (𝖼) = 0, which proves the violation of contribution existence for 𝖢𝗍𝗋𝖻R. Simi-

larly, it holds for 𝖦′ = (Args, 𝜏, Att ⧵ {(𝗒, 𝖻)|(𝗒, 𝖻) ∈ Att}), Supp ⧵ {(𝗒, 𝖻)|(𝗒, 𝖻) ∈ Supp}) and 𝖦′′ = (Args, 𝜏, Att ⧵ {(𝗒, 𝖼)|(𝗒, 𝖼) ∈ Att}), Supp ⧵
{(𝗒, 𝖼)|(𝗒, 𝖼) ∈ Supp}) that 𝜎𝖦′ (𝖺) = 𝜎𝖦′′ (𝖺) = 𝜎𝖦(𝖺). Hence, by definition of 𝖢𝗍𝗋𝖻R′

it must hold that 𝖢𝗍𝗋𝖻R′
𝖺 (𝖻) = 𝖢𝗍𝗋𝖻R′

𝖺 (𝖼) = 0, which 
proves the violation of contribution existence for 𝖢𝗍𝗋𝖻R′

. □

The counterexample in Fig. 4 applies to other semantics that use 𝛼𝑚𝑎𝑥
𝑣

or 𝛼Π
𝑣

as the aggregation and 𝜄𝑙
𝑤

, 𝜄𝑒
𝑤

, or 𝜄𝑝𝑤 as the influence 
function because a single attacker (supporter) with strength 1 under these semantics has the maximum effect, so that removing 
another attacker (supporter) cannot affect the topic argument.

The Shapley value-based contribution function satisfies even the stronger quantitative contribution existence principle w.r.t. all 
of the surveyed argumentation semantics. Intuitively, it does not suffer from the previously observed problem because it does not 
only remove the argument in the existing situation, but looks at the effect of the argument in all possible situations.

Proposition 5.4. 𝖢𝗍𝗋𝖻S satisfies the quantitative contribution existence principle w.r.t. QE, DFQuAD, SD-DFQuAD, EB, and EBT semantics 
𝜎.

Proof. We provide the proof by characterising 𝖢𝗍𝗋𝖻S relative to the contributor’s Shapley value of a coalition game where the 
set of players is Args ⧵ {𝖺} (where 𝖺 is our topic argument) and the utility function 𝑣 ∶ 2Args⧵{𝖺} → ℝ is defined as follows (given 
𝑆 ⊆ Args ⧵ {𝖺}):

𝑣(𝑆) ∶= 𝜎(𝖺) − 𝜎𝐺↓Args⧵𝑆
(𝖺)

Note that by subtracting 𝜎𝐺↓Args⧵𝑆
(𝖺) from 𝜎(𝖺), we ensure that 𝑣(∅) = 0. Then, we obtain the following Shapley value (given player/con-

tributor 𝗑 ∈ Args ⧵ {𝖺}):

𝜙𝗑(𝑣) =∑
𝑋⊆Args⧵{𝗑,𝖺}

|𝑋|! ⋅ (|Args ⧵ {𝖺}|− |𝑋|− 1)!
|Args ⧵ {𝖺}|! ((𝑣(𝑋 ∪ {𝗑}) − 𝑣(𝑋))) =

∑
𝑋⊆Args⧵{𝗑,𝖺}

|𝑋|! ⋅ (|Args ⧵ {𝖺}|− |𝑋|− 1)!
|Args ⧵ {𝖺}|!

(
𝜎(𝖺) − 𝜎𝖦↓Args⧵(𝑋∪{𝗑})

(𝖺) − (𝜎(𝖺) − 𝜎𝖦↓Args⧵𝑋
(𝖺))

)
=

∑
𝑋⊆Args⧵{𝗑,𝖺}

|𝑋|! ⋅ (|Args ⧵ {𝖺}|− |𝑋|− 1)!
|Args ⧵ {𝖺}|!

(
𝜎𝖦↓Args⧵𝑋

(𝖺) − 𝜎𝖦↓Args⧵(𝑋∪{𝗑})
(𝖺)

)
=

S

12

𝖢𝗍𝗋𝖻𝖺 (𝗑).
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Now, from the efficiency principle of Shapley values, it follows that 
∑

𝗑∈Args⧵{𝖺} 𝜙𝗑(𝑣) = 𝑣(Args ⧵ {𝖺}) [20]. Hence, because 𝑣(Args ⧵
{𝖺}) = 𝜎(𝖺) −𝜏(𝖺) and 

∑
𝗑∈Args⧵{𝖺} 𝜙𝗑(𝑣) =

∑
𝗑∈Args⧵{𝖺}𝖢𝗍𝗋𝖻

S
𝖺 (𝗑), it must hold that 

∑
𝗑∈Args⧵{𝖺}𝖢𝗍𝗋𝖻

S
𝖺 (𝗑) = 𝜎(𝖺) −𝜏(𝖺) and consequently, 

quantitative contribution existence must be satisfied. □

Corollary 5.5. 𝖢𝗍𝗋𝖻S satisfies the contribution existence principle w.r.t. QE, DFQuAD, SD-DFQuAD, EB, and EBT semantics 𝜎.

Proof. Because 𝖢𝗍𝗋𝖻S satisfies quantitative contribution existence w.r.t. QE, DFQuAD, SD-DFQuAD, EB, and EBT semantics (Propo-
sition 5.4), the proof follows from Proposition 4.1 (if a semantics satisfies quantitative contribution existence then it satisfies 
contribution existence). □

The gradient-based contribution function 𝖢𝗍𝗋𝖻𝜕 violates contribution existence (and hence quantitative contribution existence) 
with respect to some of the surveyed argumentation semantics, i.e., with respect to DFQuAD, SD-DFQuAD, and EBT semantics.

Proposition 5.6. 𝖢𝗍𝗋𝖻𝜕 violates the contribution existence and quantitative contribution existence principles w.r.t. DFQuAD, SD-DFQuAD, 
and EBT semantics 𝜎.

Proof. Consider again the QBAG depicted in Fig. 4. Our topic argument is 𝖺. Given DFQuAD, SD-DFQuAD, and EBT semantics 𝜎, 
we observe that 𝜎(𝖺) − 𝜏(𝖺) ≠ 0 but 𝖢𝗍𝗋𝖻𝜕𝖺 (𝖻) = 𝖢𝗍𝗋𝖻𝜕𝖺 (𝖼) = 0 and hence contribution existence and quantitative contribution existence 
must be violated. □

In contrast, we can show that 𝖢𝗍𝗋𝖻𝜕 satisfies (non-quantitative) contribution existence with respect to QE and EB semantics. The 
proof is roughly based on the same intuition as the one for 𝖢𝗍𝗋𝖻R and 𝖢𝗍𝗋𝖻R′

with respect to QE and EB semantics: when our topic 
argument’s final strength does not equal its initial strength, then there must exist a direct supporter or attacker of this argument 
whose marginal change in initial strength has an effect on the final strength of the topic argument.

Proposition 5.7. 𝖢𝗍𝗋𝖻𝜕 satisfies contribution existence w.r.t. QE and EB semantics.

Proof. Consider a modular semantics that uses the aggregation function 𝛼 = 𝛼Σ
𝑣

and any of the influence functions 𝜄𝑒
𝑤

or 𝜄𝑝𝑤 (Table 2). 
We observe that QE and EB semantics are such semantics. QE and EB satisfy the stability property [25,21] (Principle 2.2), which states 
that the final strength of an argument without parents is its base score. Since the final strength of the topic argument 𝖺 is unequal to 
its base score by assumption, it must have predecessors. Since 𝖦 is acyclic, we can assume that there exists a topological ordering of 
the arguments. Consider an arbitrary topological ordering and let 𝗑 be the predecessor of 𝖺 with highest index in the ordering. Then 
𝗑 must be a parent of 𝖺 and there can be no other paths from 𝖺 to 𝗑 (for otherwise, 𝗑 could not have the highest index among 𝖺’s 
predecessors). By definition of the aggregation and influence functions, if (𝗑, 𝖺) ∈ Att, then (marginally) increasing 𝜏(𝗑) will decrease 
𝜎𝖦(𝖺) and (marginally) decreasing 𝜏(𝗑) will increase 𝜎𝖦(𝖺). Hence, the partial derivative w.r.t. 𝗑 must be strictly negative (non-zero). 
If (𝖺, 𝗑) ∈ Supp, it follows symmetrically that the partial derivative w.r.t. 𝗑 must be strictly positive (non-zero). □

However, only 𝖢𝗍𝗋𝖻S satisfies quantitative contribution existence; the other contribution functions cannot guarantee that the 
contributions of a topic argument’s contributor “add up” to difference between the topic argument’s final and initial strength. We 
provide counterexamples for 𝖢𝗍𝗋𝖻R, 𝖢𝗍𝗋𝖻R′

, and 𝖢𝗍𝗋𝖻𝜕 and QE and EB semantics in the proof of the following proposition.

Proposition 5.8. 𝖢𝗍𝗋𝖻R, 𝖢𝗍𝗋𝖻R′
, and 𝖢𝗍𝗋𝖻𝜕 violate the quantitative contribution existence principle w.r.t. QE and EB semantics 𝜎.

Proof. Consider yet again the QBAG depicted in Fig. 4, which we denote by 𝖦 = (Args, 𝜏,Att,Supp). Our topic argument is 𝖺. For QE 
semantics, we have 𝜎(𝖺) − 𝜏(𝖺) = −0.4, but 𝖢𝗍𝗋𝖻R

𝖺 (𝖻) +𝖢𝗍𝗋𝖻R
𝖺 (𝖼) = 𝖢𝗍𝗋𝖻R′

𝖺 (𝖻) +𝖢𝗍𝗋𝖻R′
𝖺 (𝖼) = −0.3 and 𝖢𝗍𝗋𝖻𝜕𝖺 (𝖻) +𝖢𝗍𝗋𝖻𝜕𝖺 (𝖼) ≈ −0.16. For 

EB semantics, we have 𝜎(𝖺) − 𝜏(𝖺) ≈ −0.2025, but 𝖢𝗍𝗋𝖻R
𝖺 (𝖻) + 𝖢𝗍𝗋𝖻R

𝖺 (𝖼) = 𝖢𝗍𝗋𝖻R′
𝖺 (𝖻) + 𝖢𝗍𝗋𝖻R′

𝖺 (𝖼) ≈ −0.138 and 𝖢𝗍𝗋𝖻𝜕𝖺 (𝖻) + 𝖢𝗍𝗋𝖻𝜕𝖺 (𝖼) ≈
−0.089. In these cases, we can easily see that 

∑
𝗑∈Args⧵{𝖺}𝖢𝗍𝗋𝖻𝖺(𝗑) = 𝜎(𝖺) − 𝜏(𝖺) does not hold and hence, quantitative contribution 

existence must be violated. □

Finally, let us introduce a simple example that highlights the advantage of the Shapley value-based contribution functions, fol-
lowing the intuition of quantitative contribution existence.

Example 5.1. Consider a set of simple QBAGs, where each QBAG consists of a topic argument 𝖺 and a number of supporters 𝖻1, … , 𝖻𝑛, 
where 𝑛 = 1 for the smallest QBAG and 𝑛 = 20 for the largest (Fig. 5.1). The arguments are not related otherwise. The initial strength 
of 𝖺 is 0.5, whereas each argument of 𝖻1, … , 𝖻𝑛 has an initial strength of 1. We apply QE semantics, which satisfies contribution 
existence with respect to 𝖢𝗍𝗋𝖻R, 𝖢𝗍𝗋𝖻R′

, and 𝖢𝗍𝗋𝖻𝜕 . Obviously, in a given QBAG, the contribution of every contributor 𝖻𝑖 , 1 ≤ 𝑖 ≤ 𝑛

is the same, given a specific contribution function. We plot this contribution for 𝖢𝗍𝗋𝖻R (which equals the one of 𝖢𝗍𝗋𝖻R′
in this case), 
13

𝖢𝗍𝗋𝖻S , and 𝖢𝗍𝗋𝖻𝜕 ; i.e., we plot 𝖢𝗍𝗋𝖻R
𝖻𝑖
(𝖺), 𝖢𝗍𝗋𝖻S

𝖻𝑖
(𝖺), and 𝖢𝗍𝗋𝖻𝜕𝖻𝑖 (𝖺) for our set of QBAGs. What we can see is that the contributions 
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Fig. 5. The contributions of 𝖢𝗍𝗋𝖻R and 𝖢𝗍𝗋𝖻𝜕 converge to zero faster than the contributions of 𝖢𝗍𝗋𝖻S . Here, the contribution of 𝖻𝑖 , 1 ≤ 𝑖 ≤ 𝑛 to 𝖺 depends on the 
number of 𝖺’s supporters and we apply QE semantics.

of 𝖢𝗍𝗋𝖻R and 𝖢𝗍𝗋𝖻𝜕 converge to zero faster with increasing 𝑛 than the contributions of 𝖢𝗍𝗋𝖻S . For 𝑛 = 10, the Shapley value-based 
contribution is still at around 0.05, whereas the removal- and gradient-based contributions are, visually, already indistinguishable 
from 0. The example highlights that contribution existence alone may not always be a strong enough principle: for larger 𝑛 we see in 
the plot (approx. for 6 ≤ 𝑛 ≤ 20), 𝖢𝗍𝗋𝖻R

𝖻𝑖
(𝖺) and 𝖢𝗍𝗋𝖻𝜕𝖻𝑖 (𝖺) are negligibly small, although the proportional effect of a single supporter 

is still substantial, which can be considered misleading.

5.2. Directionality

Since modular semantics generally satisfy the directionality principle for gradual semantics [21], we should expect that a faithful 
contribution function satisfies the corresponding principle for contribution functions. As we show next, this is indeed the case for all 
contribution functions considered here.

Proposition 5.9. 𝖢𝗍𝗋𝖻R, 𝖢𝗍𝗋𝖻R′
, 𝖢𝗍𝗋𝖻S , and 𝖢𝗍𝗋𝖻𝜕 satisfy directionality w.r.t. all modular argumentation semantics 𝜎.

Proof. Let 𝖦 = (Args, 𝜏,Att,Supp) be a QBAG.

The proof for 𝖢𝗍𝗋𝖻R. If there is no directed path from 𝗑 to 𝖺, then 𝜎𝖦(𝖺) = 𝜎𝖦↓Args⧵{𝗑}
(𝖺) by definition of a modular semantics. 

Consequently, it holds that 𝖢𝗍𝗋𝖻R
𝖺 (𝗑) = 0, as required.

The proof for 𝖢𝗍𝗋𝖻R′
. If there is no directed path from 𝗑 to 𝖺, then for 𝖦′ = (Args, 𝜏, Att ⧵ {(𝗒, 𝗑)|(𝗒, 𝗑) ∈ Att}), Supp ⧵ {(𝗒, 𝗑)|(𝗒, 𝗑) ∈

Supp}) it holds that 𝜎𝖦′ (𝖺) = 𝜎𝖦↓Args⧵{𝗑}
(𝖺) by definition of a modular semantics. Consequently, 𝖢𝗍𝗋𝖻R′

𝖺 (𝗑) = 0, as required.

The proof for 𝖢𝗍𝗋𝖻S . If there is no directed path from 𝗑 to 𝖺, then for 𝑋 ⊆ Args it holds that 𝜎𝖦↓Args⧵(𝑋∪{𝗑})
(𝖺) = 𝜎𝖦↓Args⧵𝑋

(𝖺) by 
definition of a modular semantics. Consequently, 𝖢𝗍𝗋𝖻S

𝖺 (𝗑) = 0, as required.
The proof for 𝖢𝗍𝗋𝖻𝜕 . If there is no directed path from 𝗑 to 𝖺, then 𝜎(𝖺) = 𝑓𝖺(… , 𝜏(𝖺), 𝜏(𝗑), …) is independent of 𝜏(𝗑), by definition of a 

modular semantics. In that case, trivially, the partial derivative of 𝑓𝖺 w.r.t. 𝜏(𝗑) is null, so that 𝖢𝗍𝗋𝖻𝜕𝖺 (𝗑) = 0, as required. □

5.3. (Quantitative) local faithfulness

Intuitively, (quantitative) local faithfulness is best aligned with the gradient-based contribution function, which indeed satisfies 
the principle with respect to every differentiable modular argumentation semantics. Of course, we require differentiability of the 
semantics for the gradient to be defined. For acyclic graphs, the condition is satisfied for all commonly considered semantics. In 
general, a modular semantics is differentiable whenever both the aggregation and influence functions are differentiable. Note that 
all aggregation functions and the linear and Euler-based influence functions in Table 2 are differentiable. The 𝑝-Max aggregation 
function is differentiable for 𝑝 = 2 [25, Proposition 1] but can be pointwise non-differentiable for some other choices of 𝑝. As we 
explain next, 𝖢𝗍𝗋𝖻𝜕 satisfies quantitative local faithfulness for every differentiable modular argumentation semantics and, thus, also 
the weaker principle of local faithfulness.

Proposition 5.10. 𝖢𝗍𝗋𝖻𝜕 satisfies quantitative local faithfulness w.r.t. every differentiable modular argumentation semantics.

Proof. Note that (6) is trivially satisfied when letting
14

𝑒(𝜖) = 𝜎𝖦↓𝜏(𝗑)←𝜖
(𝑎) − (𝜎𝖦(𝑎) + 𝜖 ⋅𝖢𝗍𝗋𝖻𝜕𝖺 (𝗑). (7)
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Fig. 6. 𝖢𝗍𝗋𝖻R and 𝖢𝗍𝗋𝖻R′
violate local faithfulness w.r.t. QE semantics.

Fig. 7. 𝖢𝗍𝗋𝖻R and 𝖢𝗍𝗋𝖻R′
violate local faithfulness w.r.t. DFQuAD semantics.

It remains to show that lim𝜖→0
𝑒(𝜖)
𝜖

= 0. We have

lim
𝜖→0

𝑒(𝜖)
𝜖

= lim
𝜖→0

𝜎𝖦↓𝜏(𝗑)←𝜖
(𝑎) − (𝜎𝖦(𝑎) + 𝜖 ⋅𝖢𝗍𝗋𝖻𝜕𝖺 (𝗑)

𝜖

= lim
𝜖→0

𝜎𝖦↓𝜏(𝗑)←𝜖
(𝑎) − 𝜎𝖦(𝑎)

𝜖
−𝖢𝗍𝗋𝖻𝜕𝖺 (𝗑)

= 𝖢𝗍𝗋𝖻𝜕𝖺 (𝗑) −𝖢𝗍𝗋𝖻𝜕𝖺 (𝗑) = 0.

For the third equality, note that the first term in the second equality is just the partial derivative of the strength of 𝖺 with respect to 
the initial strength of 𝗑, which is 𝖢𝗍𝗋𝖻𝜕𝖺 (𝗑) by definition. □

Proposition 5.11. 𝖢𝗍𝗋𝖻𝜕 satisfies local faithfulness w.r.t. every differentiable modular argumentation semantics.

Proof. The proof follows immediately from Proposition 4.2 (quantitative local faithfulness implies local faithfulness). □

As we show next by a sequence of counterexamples, the other introduced contribution functions do not satisfy local faithfulness 
and, thus, by Proposition 4.2, they also do not satisfy quantitative local faithfulness.6 For each counter-example, we provide a plot of 
the topic argument’s final strength dependent on the contributor’s initial strength in order to facilitate a more intuitive grasp of the 
underlying issues (saddle points or plateaus). Since 𝖢𝗍𝗋𝖻𝜕 satisfies local faithfulness, we can demonstrate violation of the principle by 
showing that the sign under a given contribution function differs from the sign under 𝖢𝗍𝗋𝖻𝜕 .

6 According to Proposition 4.2, quantitative local faithfulness implies local faithfulness. Hence, by contraposition, not local faithfulness implies not quantitative 
15

local faithfulness.
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Fig. 8. 𝖢𝗍𝗋𝖻R and 𝖢𝗍𝗋𝖻R′
violate local faithfulness w.r.t. SD-DFQuAD semantics.

Proposition 5.12. 𝖢𝗍𝗋𝖻R and 𝖢𝗍𝗋𝖻R′
violate local faithfulness w.r.t. QE semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 6.1, with the topic argument 𝖺 and the contributor 𝖽. Given 
QE semantics 𝜎, we have 𝖢𝗍𝗋𝖻R

𝖺 (𝖽) = 𝖢𝗍𝗋𝖻R′
𝖺 (𝖽) ≈ −0.01122 and 𝖢𝗍𝗋𝖻𝜕𝖺 (𝖽) ≈ 0.02987; local faithfulness must be violated because 

𝖢𝗍𝗋𝖻R
𝖺 (𝖽) = 𝖢𝗍𝗋𝖻R′

𝖺 (𝖽) < 0 but 𝖢𝗍𝗋𝖻𝜕𝖺 (𝖽) > 0. □

Proposition 5.13. 𝖢𝗍𝗋𝖻R and 𝖢𝗍𝗋𝖻R′
violate local faithfulness w.r.t. DFQuAD semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 7.1, with the topic argument 𝖺 and the contributor 𝖽. Given DFQuAD 
semantics 𝜎, we have 𝖢𝗍𝗋𝖻R

𝖺 (𝖽) = 𝖢𝗍𝗋𝖻R′
𝖺 (𝖽) ≈ 0.32 > 0, but as can be seen in Fig. 7.2, increasing 𝖽’s initial strength does not increase 

the topic argument’s strength. □

Proposition 5.14. 𝖢𝗍𝗋𝖻R and 𝖢𝗍𝗋𝖻R′
violate local faithfulness w.r.t. SD-DFQuAD semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 8.1, with the topic argument 𝖺 and the contributor 𝖽. Given SD-
DFQuAD semantics 𝜎, we have 𝖢𝗍𝗋𝖻R

𝖺 (𝖽) = 𝖢𝗍𝗋𝖻R′
𝖺 (𝖽) ≈ 0.1398 > 0. However, as can be seen in Fig. 8.2, marginally increasing 𝖽’s 

initial strength (0.6) does not increase the topic argument’s strength. □

Proposition 5.15. 𝖢𝗍𝗋𝖻R and 𝖢𝗍𝗋𝖻R′
violate local faithfulness w.r.t. EB semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 9.1, with the topic argument 𝖺 and the contributor 𝖽. Given EB 
semantics 𝜎, we have 𝖢𝗍𝗋𝖻R

𝖺 (𝖽) = 𝖢𝗍𝗋𝖻R′
𝖺 (𝖽) ≈ 0.0016 and 𝖢𝗍𝗋𝖻𝜕𝖺 (𝖽) ≈ −0.002; local faithfulness must be violated because 𝖢𝗍𝗋𝖻R

𝖺 (𝖽) =
𝖢𝗍𝗋𝖻R′

𝖺 (𝖽) > 0 but 𝖢𝗍𝗋𝖻𝜕𝖺 (𝖽) < 0. □

Proposition 5.16. 𝖢𝗍𝗋𝖻R and 𝖢𝗍𝗋𝖻R′
violate local faithfulness w.r.t. EBT semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 10.1, with the topic argument 𝖺 and the contributor 𝖽. Given EBT 
semantics 𝜎, we have 𝖢𝗍𝗋𝖻R

𝖺 (𝖽) = 𝖢𝗍𝗋𝖻R′
𝖺 (𝖽) ≈ 0.013 > 0, but as can be seen in Fig. 10.2, increasing 𝖽’s initial strength does not 

increase the topic argument’s strength. □

Proposition 5.17. 𝖢𝗍𝗋𝖻S violates local faithfulness w.r.t. QE semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 11.1, with the topic argument 𝖺 and the contributor 𝖽. Given QE 
semantics 𝜎, we have 𝖢𝗍𝗋𝖻S

𝖺 (𝖽) =≈ −0.0016 and 𝖢𝗍𝗋𝖻𝜕𝖺 (𝖽) ≈ 0.0302; local faithfulness must be violated because 𝖢𝗍𝗋𝖻S
𝖺 (𝖽) < 0 but 

𝖢𝗍𝗋𝖻𝜕𝖺 (𝖽) > 0. □

Proposition 5.18. 𝖢𝗍𝗋𝖻S violates local faithfulness w.r.t. DFQuAD semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 1.1, with the topic argument 𝖺 and the contributor 𝖾. Given DFQuAD 
semantics 𝜎, we have 𝖢𝗍𝗋𝖻S

𝖺 (𝖾) ≈ −0.0833 < 0, but as can be seen in Fig. 1.2, increasing 𝖾’s initial strength does actually increase the 
16

topic argument’s strength. □
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Fig. 9. 𝖢𝗍𝗋𝖻R and 𝖢𝗍𝗋𝖻R′
violate local faithfulness w.r.t. EB semantics.

Fig. 10. 𝖢𝗍𝗋𝖻R and 𝖢𝗍𝗋𝖻R′
violate local faithfulness w.r.t. EBT semantics.

Fig. 11. 𝖢𝗍𝗋𝖻S violates local faithfulness w.r.t. QE semantics.

Proposition 5.19. 𝖢𝗍𝗋𝖻S violates local faithfulness w.r.t. SD-DFQuAD semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 8.1, with the topic argument 𝖺 and the contributor 𝖽. Given SD-
DFQuAD semantics 𝜎, we have 𝖢𝗍𝗋𝖻S

𝖺 (𝖽) ≈ 0.0636 > 0, but as can be seen in Fig. 8.2, increasing 𝖽’s initial strength does not increase 
the topic argument’s strength. □
17

Proposition 5.20. 𝖢𝗍𝗋𝖻S violates local faithfulness w.r.t. EB semantics.



International Journal of Approximate Reasoning 173 (2024) 109255T. Kampik, N. Potyka, X. Yin et al.

Fig. 12. 𝖢𝗍𝗋𝖻S violates local faithfulness w.r.t. EB semantics.

Fig. 13. 𝖢𝗍𝗋𝖻S violates local faithfulness w.r.t. EBT semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 12.1, with the topic argument 𝖺 and the contributor 𝖽. Given 
EB semantics 𝜎, we have 𝖢𝗍𝗋𝖻S

𝖺 (𝖽) ≈ 0.0007 and 𝖢𝗍𝗋𝖻𝜕𝖺 (𝖽) ≈ −0.0037; local faithfulness must be violated because 𝖢𝗍𝗋𝖻S
𝖺 (𝖽) > 0 but 

𝖢𝗍𝗋𝖻𝜕𝖺 (𝖽) < 0. □

Proposition 5.21. 𝖢𝗍𝗋𝖻S violates local faithfulness w.r.t. EBT semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 13.1, with the topic argument 𝖺 and the contributor 𝖻. Given EBT 
semantics 𝜎, we have 𝖢𝗍𝗋𝖻S

𝖺 (𝖻) ≈ −0.0377 < 0, but changing 𝖻’s initial strength actually does not affect the strength of the topic 
argument. □

5.4. (Quantitative) counterfactuality

Let us first show that the contribution function 𝖢𝗍𝗋𝖻R satisfies quantitative counterfactuality w.r.t. all argumentation semantics.

Proposition 5.22. 𝖢𝗍𝗋𝖻R satisfies quantitative counterfactuality w.r.t. all argumentation semantics 𝜎.

Proof. By definition of 𝖢𝗍𝗋𝖻R, it holds for every 𝖦 = (Args, 𝜏,Att,Supp), for every arguments 𝖺, 𝗑 ∈ Args that 𝖢𝗍𝗋𝖻R
𝖺 (𝗑) = 𝜎𝖦(𝖺) −

𝜎𝖦↓Args⧵{𝗑}
(𝖺). Hence, quantitative counterfactuality (Definition 4.8) is trivially satisfied. □

Corollary 5.23. 𝖢𝗍𝗋𝖻R satisfies counterfactuality w.r.t. all argumentation semantics 𝜎.

Proof. Counterfactuality is satisfied because quantitative counterfactuality is satisfied (Proposition 5.22) and the latter implies the 
18

former (Proposition 4.3). □
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𝖺∶(0.8)
< 𝟎.𝟖

𝖻∶(0)
> 𝟎

𝖼∶(1)
𝟏

-+

Fig. 14. 𝖢𝗍𝗋𝖻R′
violates the counterfactuality and quantitative counterfactuality principles w.r.t. QE, SD-DFQuAD, and DFQuAD semantics.

𝖺∶(0.5)
𝟎.𝟓𝟎𝟔𝟕

𝖻∶(0.1)
𝟎.𝟏𝟎𝟒𝟑

𝖼∶(0.1)
𝟎.𝟏𝟎𝟒𝟑

𝖽∶(0.51)
𝟎.𝟓𝟏𝟖𝟕

𝗀∶(0.27)
𝟎.𝟐𝟕

𝖾∶(0.02)
𝟎.𝟎𝟓𝟏𝟗

𝖿 ∶(1)
𝟏

- - +

+
+

+

+

-

Fig. 15. 𝖢𝗍𝗋𝖻R′
violates the counterfactuality and quantitative counterfactuality principles w.r.t. EB semantics.

𝖺∶(0.7)
𝟎.𝟔𝟕𝟑𝟑

𝖻∶(0.1)
𝟎.𝟐𝟐𝟏𝟔

𝖼∶(1)
𝟏

𝖽∶(0.1)
𝟎.𝟏

-

+

-

Fig. 16. 𝖢𝗍𝗋𝖻R′
violates the counterfactuality and quantitative counterfactuality principles w.r.t. EBT semantics.

All other contribution functions can violate counterfactuality and quantitative counterfactuality w.r.t. all of the surveyed seman-
tics.

Proposition 5.24. 𝖢𝗍𝗋𝖻R′
violates counterfactuality and quantitative counterfactuality w.r.t. QE, DFQuAD, SD-DFQuAD and semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 14, with the topic argument 𝖺 and the contributor 𝖻. Given QE, 
DFQuAD, or SD-DFQuAD semantics 𝜎, it trivially holds that 𝜎𝖦(𝖻) > 0 and hence, 𝜎𝖦(𝖺) < 𝜏𝖦(𝖺) = 0.8. Intuitively reflecting the in-

fluence of 𝖻 on 𝖺, 𝜎𝖦↓Args⧵{𝖻}
(𝖺) = 0.8, i.e., we have 𝜎𝖦(𝖺) < 𝜎𝖦↓Args⧵{𝖻}

(𝖺). However, we have 𝖢𝗍𝗋𝖻R′
𝖺 (𝖻) = 0 and hence, according to 

counterfactuality and quantitative counterfactuality, we must have 𝜎𝖦(𝖺) = 𝜎𝖦↓Args⧵{𝖻}
(𝖺), which proves the violation of the princi-

ples. □

Proposition 5.25. 𝖢𝗍𝗋𝖻R′
violates counterfactuality and quantitative counterfactuality w.r.t. EB semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 15, with the topic argument 𝖺 and the contributor 𝖾. Given EB 
semantics 𝜎, it holds that 𝜎𝖦(𝖺) < 𝜎𝖦↓Args⧵{𝖾}

(𝖺) (observe that 𝜎𝖦(𝖺) − 𝜎𝖦↓Args⧵{𝖾}
(𝖺) ≈ −2.5 × 10−6). However, we have 𝖢𝗍𝗋𝖻R′

𝖺 (𝖾) ≈
3.5431 ×10−6 and hence, according to counterfactuality and quantitative counterfactuality, we must have 𝜎𝖦(𝖺) > 𝜎𝖦↓Args⧵{𝖾}

(𝖺), which 
proves the violation of the principles. □

Proposition 5.26. 𝖢𝗍𝗋𝖻R′
violates counterfactuality and quantitative counterfactuality w.r.t. EBT semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 16, with the topic argument 𝖺 and the contributor 𝖻. Given EBT 
semantics 𝜎, it holds that 𝜎𝖦(𝖺) < 𝜎𝖦↓Args⧵{𝖻}

(𝖺) (observe that 𝜎𝖦(𝖺) − 𝜎𝖦↓Args⧵{𝖻}
(𝖺) ≈ −0.0145). However, we have 𝖢𝗍𝗋𝖻R′

𝖺 (𝖻) = 0 and 
hence, according to counterfactuality and quantitative counterfactuality, we must have 𝜎𝖦(𝖺) = 𝜎𝖦↓Args⧵{𝖻}

(𝖺), which proves the viola-

tion of the principles. □

Proposition 5.27. 𝖢𝗍𝗋𝖻S violates counterfactuality and quantitative counterfactuality w.r.t. QE semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 17, with the topic argument 𝖺 and the contributor 𝖾. Given QE 
19

semantics 𝜎, it holds that 𝜎𝖦(𝖺) < 𝜎𝖦↓Args⧵{𝖾}
(𝖺) (observe that 𝜎𝖦(𝖺) − 𝜎𝖦↓Args⧵{𝖾}

(𝖺) ≈ −0.0149). However, we have 𝖢𝗍𝗋𝖻S
𝖺 (𝖾) ≈ 4.9326 ×
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𝖺∶(0.1)
𝟎.𝟎𝟖𝟐𝟗

𝖻∶(0.15)
𝟎.𝟒𝟓𝟒𝟕

𝖼∶(0.15)
𝟎.𝟒𝟓𝟒𝟕

𝖽∶(0.15)
𝟎.𝟒𝟓𝟒𝟕

𝖾∶(0.495)
𝟎.𝟕𝟒𝟕𝟓

𝖿 ∶(1)
𝟏

-

-

+

+

+

+

+

Fig. 17. 𝖢𝗍𝗋𝖻S violates the counterfactuality and quantitative counterfactuality principles w.r.t. QE semantics.

𝖺∶(0.1)
𝟎.𝟏

𝖻∶(0.15)
𝟏

𝖼∶(0.17)
𝟏

𝖽∶(0.3)
𝟏

𝖾∶(0.495)
𝟏

𝖿 ∶(1)
𝟏

-

-

+

+

+

+

+

Fig. 18. 𝖢𝗍𝗋𝖻S violates the counterfactuality and quantitative counterfactuality principles w.r.t. DFQuAD semantics.

𝖺∶(0.1)
𝟎.𝟎𝟖𝟏𝟗

𝖻∶(0.15)
𝟎.𝟓𝟏𝟑𝟔

𝖼∶(0.15)
𝟎.𝟓𝟏𝟑𝟔

𝖽∶(0.2)
𝟎.𝟓𝟒𝟐𝟐

𝖾∶(0.495)
𝟎.𝟕𝟒𝟕𝟓

𝖿 ∶(1)
𝟏

-

-

+

+

+

+

+

Fig. 19. 𝖢𝗍𝗋𝖻S violates the counterfactuality and quantitative counterfactuality principles w.r.t. SD-DFQuAD semantics.

10−5 and hence, according to counterfactuality and quantitative counterfactuality, we must have 𝜎𝖦(𝖺) > 𝜎𝖦↓Args⧵{𝖾}
(𝖺), which proves 

the violation of the principles. □

Proposition 5.28. 𝖢𝗍𝗋𝖻S violates counterfactuality and quantitative counterfactuality w.r.t. DFQuAD semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 18, with the topic argument 𝖺 and the contributor 𝖾. Given DFQuAD 
semantics 𝜎, it holds that 𝜎𝖦(𝖺) < 𝜎𝖦↓Args⧵{𝖾}

(𝖺) (observe that 𝜎𝖦(𝖺) − 𝜎𝖦↓Args⧵{𝖾}
(𝖺) ≈ −0.0109). However, we have 𝖢𝗍𝗋𝖻S

𝖺 (𝖾) ≈ 0.0021
and hence, according to counterfactuality and quantitative counterfactuality, we must have 𝜎𝖦(𝖺) > 𝜎𝖦↓Args⧵{𝖾}

(𝖺), which proves the 
violation of the principles. □

Proposition 5.29. 𝖢𝗍𝗋𝖻S violates counterfactuality and quantitative counterfactuality w.r.t. SD-DFQuAD semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 19, with the topic argument 𝖺 and the contributor 𝖾. Given SD-
DFQuAD semantics 𝜎, it holds that 𝜎𝖦(𝖺) < 𝜎𝖦↓Args⧵{𝖾}

(𝖺) (observe that 𝜎𝖦(𝖺) −𝜎𝖦↓Args⧵{𝖾}
(𝖺) ≈ −0.0049). However, we have 𝖢𝗍𝗋𝖻S

𝖺 (𝖾) ≈
0.0027 and hence, according to counterfactuality and quantitative counterfactuality, we must have 𝜎𝖦(𝖺) > 𝜎𝖦↓Args⧵{𝖾}

(𝖺), which proves 
the violation of the principles. □
20

Proposition 5.30. 𝖢𝗍𝗋𝖻S violates counterfactuality and quantitative counterfactuality w.r.t. EB semantics.
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𝖺∶(0.3)
𝟎.𝟐𝟖𝟖𝟖

𝖻∶(0.11)
𝟎.𝟏𝟏𝟓𝟖

𝖼∶(0.1)
𝟎.𝟏𝟎𝟓𝟒

𝖽∶(0.54)
𝟎.𝟓𝟓𝟎𝟓

𝗀∶(0.4)
𝟎.𝟒

𝖾∶(0.025)
𝟎.𝟎𝟔𝟒𝟐

𝖿 ∶(1)
𝟏

- - +

+
+

+

+

-

Fig. 20. 𝖢𝗍𝗋𝖻S violates the counterfactuality and quantitative counterfactuality principles w.r.t. EB semantics.

𝖺∶(0.3)
𝟎.𝟑𝟎𝟑𝟎

𝖻∶(0.4)
𝟎.𝟒𝟐𝟓𝟎

𝖼∶(0.55)
𝟎.𝟓𝟓

𝖽∶(0.51)
𝟎.𝟒𝟒𝟕𝟒

𝗀∶(0.429)
𝟎.𝟒𝟐𝟗

𝖾∶(0.25)
𝟎.𝟎𝟏𝟒𝟏

𝖿 ∶(1)
𝟏

-

-

+

+
+

-

-

-

Fig. 21. 𝖢𝗍𝗋𝖻S violates the counterfactuality and quantitative counterfactuality principles w.r.t. EBT semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 20, with the topic argument 𝖺 and the contributor 𝖿 . Given EB 
semantics 𝜎, it holds that 𝜎𝖦(𝖺) < 𝜎𝖦↓Args⧵{𝖿}

(𝖺) (observe that 𝜎𝖦(𝖺) − 𝜎𝖦↓Args⧵{𝖿}
(𝖺) ≈ −7.8369 × 10−5). However, we have 𝖢𝗍𝗋𝖻S

𝖺 (𝖿 ) ≈
3.438 ×10−6 and hence, according to counterfactuality and quantitative counterfactuality, we must have 𝜎𝖦(𝖺) > 𝜎𝖦↓Args⧵{𝖿}

(𝖺), which 
proves the violation of the principles. □

Proposition 5.31. 𝖢𝗍𝗋𝖻S violates counterfactuality and quantitative counterfactuality w.r.t. EBT semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 21, with the topic argument 𝖺 and the contributor 𝖿 . Given EBT 
semantics 𝜎, it holds that 𝜎𝖦(𝖺) > 𝜎𝖦↓Args⧵{𝖿}

(𝖺) (observe that 𝜎𝖦(𝖺) − 𝜎𝖦↓Args⧵{𝖿}
(𝖺) ≈ 7.3331 × 10−5). However, we have 𝖢𝗍𝗋𝖻S

𝖺 (𝖿 ) ≈
−2.7043 × 10−5 and hence, according to counterfactuality and quantitative counterfactuality, we must have 𝜎𝖦(𝖺) < 𝜎𝖦↓Args⧵{𝖿}

(𝖺), 
which proves the violation of the principles. □

Proposition 5.32. 𝖢𝗍𝗋𝖻𝜕 violates counterfactuality and quantitative counterfactuality w.r.t. QE semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 22, with the topic argument 𝖺 and the contributor 𝖽. Given QE se-
mantics 𝜎, it holds that 𝜎𝖦(𝖺) < 𝜎𝖦↓Args⧵{𝖽}

(𝖺) (observe that 𝜎𝖦(𝖺) −𝜎𝖦↓Args⧵{𝖽}
(𝖺) ≈ −0.0038). However, we have 𝖢𝗍𝗋𝖻𝜕𝖺 (𝖿 ) = 0 and hence, 

according to counterfactuality and quantitative counterfactuality, we must have 𝜎𝖦(𝖺) = 𝜎𝖦↓Args⧵{𝖽}
(𝖺), which proves the violation of 

the principles. □

Proposition 5.33. 𝖢𝗍𝗋𝖻𝜕 violates counterfactuality and quantitative counterfactuality w.r.t. DFQuAD semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 1, with the topic argument 𝖺 and the contributor 𝖾. Given DFQuAD 
semantics 𝜎, it holds that 𝜎𝖦(𝖺) < 𝜎𝖦↓Args⧵{𝖾}

(𝖺) (observe that 𝜎𝖦(𝖺) −𝜎𝖦↓Args⧵{𝖾}
(𝖺) = −0.125). However, we have 𝖢𝗍𝗋𝖻𝜕𝖺 (𝖾) = 0 and hence, 

according to counterfactuality and quantitative counterfactuality, we must have 𝜎𝖦(𝖺) = 𝜎𝖦↓Args⧵{𝖾}
(𝖺), which proves the violation of 

the principles. □

Proposition 5.34. 𝖢𝗍𝗋𝖻𝜕 violates counterfactuality and quantitative counterfactuality w.r.t. SD-DFQuAD semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 23, with the topic argument 𝖺 and the contributor 𝖻. Given SD-
21

DFQuAD semantics 𝜎, it trivially holds that 𝜎𝖦(𝖻) = 0; and hence, 𝜎𝖦(𝖺) = 𝜏𝖦(𝖺) = 0.5. Intuitively reflecting the influence of 𝖻 on 𝖺, 
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𝖺∶(0.5)
𝟎.𝟓

𝖻∶(0.2)
𝟎.𝟐

𝖼0 ∶(0.35)
𝟎.𝟒𝟎𝟐𝟒

𝖼1 ∶(0.35)
𝟎.𝟒𝟎𝟐𝟒

𝖼2 ∶(0.35)
𝟎.𝟒𝟎𝟐𝟒

𝖼3 ∶(0.35)
𝟎.𝟒𝟎𝟐𝟒

𝖼9 ∶(0.35)
𝟎.𝟒𝟎𝟐𝟒

…

𝖽∶(0.296)
𝟎.𝟐𝟗𝟔

𝖾∶(0.2)
𝟎.𝟐 +

+

+

+

+

+

+

-

+

-

+

-

+

-

Fig. 22. 𝖢𝗍𝗋𝖻𝜕 violates the counterfactuality and quantitative counterfactuality principles w.r.t. QE semantics. Note that “… ” (with incoming support and outgoing 
attack) represents arguments 𝖼4 - 𝖼8 with same initial strength and incoming support and outgoing attack as 𝖼3 and 𝖼9 .

𝖺∶(0.5)
𝟎.𝟓

𝖻∶(0)
𝟎

𝖼∶(1)
𝟏

--

Fig. 23. 𝖢𝗍𝗋𝖻𝜕 violates the counterfactuality and quantitative counterfactuality principles w.r.t. SD-DFQuAD semantics.

𝖺∶(0.5)
𝟎.𝟓

𝖻∶(0)
𝟎

𝖼∶(1)
𝟏

-+

Fig. 24. 𝖢𝗍𝗋𝖻𝜕 violates the counterfactuality and quantitative counterfactuality principles w.r.t. EB and EBT semantics.

𝜎𝖦↓Args⧵{𝖻}
(𝖺) = 0.5, i.e., we have 𝜎𝖦(𝖺) = 𝜎𝖦↓Args⧵{𝖻}

(𝖺). However, we have 𝖢𝗍𝗋𝖻𝜕𝖺 (𝖻) = −0.25 and hence, according to counterfactuality 
and quantitative counterfactuality, we must have 𝜎𝖦(𝖺) < 𝜎𝖦↓Args⧵{𝖻}

(𝖺), which proves the violation of the principles. □

Proposition 5.35. 𝖢𝗍𝗋𝖻𝜕 violates counterfactuality and quantitative counterfactuality w.r.t. EB and EBT semantics.

Proof. Consider the QBAG 𝖦 = (Args, 𝜏,Att,Supp) depicted in Fig. 24, with the topic argument 𝖺 and the contributor 𝖻. Given EB 
or EBT semantics 𝜎, it trivially holds that 𝜎𝖦(𝖻) = 0; and hence, 𝜎𝖦(𝖺) = 𝜏𝖦(𝖺) = 0.5. Intuitively reflecting the influence of 𝖻 on 𝖺, 
𝜎𝖦↓Args⧵{𝖻}

(𝖺) = 0.5, i.e., we have 𝜎𝖦(𝖺) = 𝜎𝖦↓Args⧵{𝖻}
(𝖺). However, we have 𝖢𝗍𝗋𝖻R′

𝖺 (𝖻) ≈ −0.4530 and hence, according to counterfactu-

ality and quantitative counterfactuality, we must have 𝜎𝖦(𝖺) < 𝜎𝖦↓Args⧵{𝖻}
(𝖺), which proves the violation of the principles. □

6. Minor results and conjectures

In this section, we describe minor results obtained as a by-product of our search for and analysis of contribution function principles. 
We also speculate about additional results that future research may obtain.

6.1. Proximity

Intuitively, one may expect that arguments that are strictly closer to a topic argument, considering the direction of the attack/sup-
port relations, contribute more. In order to turn this intuition into a principle, let us first define what we mean by strictly closer.

Definition 6.1 (Strictly Closer). Given 𝖦 = (Args, 𝜏,Att,Supp) and 𝖺, 𝗑, 𝗒 ∈ Args, we say that 𝗒 is strictly closer to 𝖺 than 𝗑 is iff 𝗒 is on 
every directed path (in 𝖦) from 𝗑 ∈ Args to 𝖺.

Consider the QBAG in Fig. 17 and the topic argument 𝖺. Here, 𝖾 is strictly closer to 𝖺 than 𝖿 is: we can reach 𝖺 from 𝖿 only through 
𝖾. In contrast, 𝖻 is not strictly closer to 𝖺 than 𝖾 is, because we can reach 𝖺 from 𝖾 through 𝖼 (and 𝖻 is not on the corresponding path). 
Now, we can formalise the intuition above by defining the proximity principle.

Principle 6.1 (Proximity). 𝖢𝗍𝗋𝖻 satisfies the proximity principle w.r.t. a gradual semantics 𝜎 iff whenever 𝗒 ∈ Args is strictly closer to 
22

𝖺 than 𝗑 is then |𝖢𝗍𝗋𝖻𝖺(𝗒)| ≥ |𝖢𝗍𝗋𝖻𝖺(𝗑)|.
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𝖺∶(0.5)
𝟎.𝟒𝟗𝟖𝟖

𝖻∶(0.1)
𝟎.𝟎𝟓

𝖼∶(1)
𝟏

--

Fig. 25. 𝖢𝗍𝗋𝖻R violates the proximity principle w.r.t. QE semantics.

Interestingly, proximity is violated for very simple cases. For example, consider 𝖢𝗍𝗋𝖻R , QE semantics, and the QBAG in Fig. 25, 
with topic argument 𝖺 and contributors 𝖻 and 𝖼. Although 𝖻 is obviously strictly closer to 𝖺 than 𝖼 is, we have |𝖢𝗍𝗋𝖻R

𝖺 (𝖻)| ≈ 0.0012 <
|𝖢𝗍𝗋𝖻R

𝖺 (𝖼)| ≈ 0.0037. Intuitively, 𝖻 is so substantially weakened by 𝖼 that the removal of 𝖻 only marginally affects the final strength of 
𝖺, whereas the removal of 𝖼 substantially strengthens 𝖻 and thus substantially weakens 𝖺. Indeed, we could not find any contribution 
function that satisfies proximity with respect to any semantics (leaving the case for 𝖢𝗍𝗋𝖻𝜕 and EBT open). Hence, we opted to exclude 
proximity from our main list of principles.

Proposition 6.1. 𝖢𝗍𝗋𝖻R, 𝖢𝗍𝗋𝖻R′
, and 𝖢𝗍𝗋𝖻S violate proximity w.r.t. QE, DFQuAD, SD-DFQuAD, EB and EBT semantics; 𝖢𝗍𝗋𝖻𝜕 violates 

proximity w.r.t. QE, DFQuAD, SD-DFQuAD, and EB semantics.

The proofs are provided in the appendix. We leave questions whether 𝖢𝗍𝗋𝖻𝜕 satisfies or violates proximity with respect to EBT 
semantics for future work.

We speculate that proximity may be satisfied by the Shapley values-based contribution function 𝖢𝗍𝗋𝖻S with respect to some 
semantics in special cases. By the assumptions of proximity, an argument 𝖼 that is closer to the topic argument 𝖺 is on every path 
from 𝖻 to 𝖼. This means that if we have a “coalition” of arguments that does not contain 𝖼, then adding 𝖻 will not result in a marginal 
contribution. For the special case of an argumentation framework in which 𝖺, 𝖻, and 𝖼 are connected only via the support relation of 
the QBAG one would expect that if the coalition of arguments does contain 𝖼 and adding 𝖻 results in a marginal contribution, then 
adding 𝖼 to the coalition where we replace 𝖼 with 𝖻 will result in an absolute marginal contribution that is at least as large. As a 
prerequisite for our conjecture, let us define the notion of a pure support path.

Definition 6.2 (Pure Support Paths). Given a QBAG (Args, 𝜏,Att,Supp) and 𝖺, 𝖻 ∈ Args, a path 𝖺 to 𝖻 is a pure support path iff it is a 
path in the directed graph (Args, Supp).

Note that by definition of a QBAG support and attack relations are disjoint, so no edge occurring in a pure support path 𝖺 to 𝖻 is 
in Att.

Let us now provide the conjecture, assuming that we can define principle satisfaction with respect to arguments with specific 
graph-topological properties.

Conjecture 1. 𝖢𝗍𝗋𝖻S satisfies proximity w.r.t. QE, DFQuAD, SD-DFQuAD, EB, and EBT semantics, for contributors 𝗑 ∈ Args and topic 
arguments 𝖺 ∈ Args for which it holds that all paths from 𝗑 to 𝖺 are pure support paths.

6.2. Violation of strong faithfulness

In Subsection 4.3, we argued that strong faithfulness is too strong as a property because it is incompatible with the fact that the 
effect of arguments can be non-monotonic (they may be positive in one region and negative in another) or locally but not globally 
neutral. Here, we elaborate on this idea and give concrete counterexamples for various semantics.

Proposition 6.2. 𝖢𝗍𝗋𝖻R, 𝖢𝗍𝗋𝖻R′
, 𝖢𝗍𝗋𝖻S , and 𝖢𝗍𝗋𝖻𝜕 violate strong faithfulness w.r.t. QE, DFQuAD, SD-DFQuAD, EB, and EBT semantics.

Proof. Observe that if strong faithfulness is satisfied then one of the following statements must be true for all QBAGs (Args, 𝜏,Att,Supp), 
all 𝖺, 𝗑 ∈ Args and all 𝜖, 𝜖′ ∈ 𝕀 s.t. 𝜖 > 𝜏(𝗑) > 𝜖′, and 𝖦𝜖 =𝖦 ↓𝜏(𝗑)←𝜖 and 𝖦′

𝜖
=𝖦 ↓𝜏(𝗑)←𝜖′ :

1. 𝜎𝖦𝜖
(𝖺) < 𝜎𝖦(𝖺) < 𝜎𝖦′

𝜖
(𝖺);

2. 𝜎𝖦𝜖
(𝖺) > 𝜎𝖦(𝖺) > 𝜎𝖦′

𝜖
(𝖺);

3. 𝜎𝖦𝜖
(𝖺) = 𝜎𝖦(𝖺) = 𝜎𝖦′

𝜖
(𝖺).

This is not the case for any of QE, DFQuAD, SD-DFQuAD, EB, and EBT semantics:

QE semantics. Consider the QBAG in Fig. 6.1, contributor 𝖽 and topic argument 𝖺, and the plot in Fig. 6.2 for values of 𝜖 and 𝜖′
that provide a counter-example.

DFQuAD semantics. Consider the QBAG in Fig. 1.1, contributor 𝖾 and topic argument 𝖺, and the plot in Fig. 1.2 for values of 𝜖 and 
𝜖′ that provide a counter-example.

SD-DFQuAD semantics. Consider the QBAG in Fig. 8.1, contributor 𝖽 and topic argument 𝖺, and the plot in Fig. 8.2 for values of 𝜖
23

and 𝜖′ that provide a counter-example.
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EB semantics. Consider the QBAG in Fig. 9.1, contributor 𝖽 and topic argument 𝖺, and the plot in Fig. 9.2 for values of 𝜖 and 𝜖′
that provide a counter-example.

EBT semantics. Consider the QBAG in Fig. 10.1, contributor 𝖽 and topic argument 𝖺, and the plot in Fig. 10.2 for values of 𝜖 and 𝜖′
that provide a counter-example.

Let us provide a step-by-step walk-through for the case of DFQuAD semantics (and the QBAG/plot in Fig. 1); the other cases follow 
analogously from the examples referenced above. In the QBAG on the left (Fig. 1.1), argument 𝖾 has a non-monotonic influence on 
the topic argument 𝖺. Fig. 1.2 plots the final strength of 𝖺 (y-axis) as a function of the initial strength of 𝖾 under DFQuAD semantics. 
𝖾’s initial strength has a negative influence up to 0.5. Then the influence becomes positive. The plot illustrates how the initial strength 
of 𝖾 influences the final strength of 𝖺. As we increase 𝜏(𝖾) from 0 to 0.5, 𝖺 becomes weaker. However, at this point, the effect reverses, 
and increasing 𝜏(𝖾) further will make 𝖾 stronger. In particular, if we let 𝜏(𝖾) = 0.2 in the QBAG on the left in Fig. 1.1, then the 
effect is negative for 𝜖 ∈ [0, 0.8), neutral for 𝜖 = 0.8 and positive for 𝜖 ∈ (0.8, 1]. We provide analogous examples for QE semantics 
(Fig. 6), as well as for EB semantics (Fig. 9); for SD-DFQuAD and EBT semantics, we provide counterexamples for the case 𝖢𝗍𝗋𝖻𝖺(𝗑) = 0
(𝜎𝖦(𝖺) ≠ 𝜎𝖦𝜖

(𝖺) for at least some 𝜖 ∈ 𝕀) in Figs. 8 and 10, respectively. □

6.3. Strong faithfulness given monotonic effects

In Subsection 6.2, we show that strong faithfulness is violated by the gradient-based contribution function with respect to all 
of the surveyed argumentation semantics. In the counter-examples we provide, we can see that intuitively, the contributor we are 
interested in does not have a monotonic effect on the topic argument: the effect that marginally changing the initial strength of the 
contributor has on the topic argument may be positive, zero, or negative, depending on the contributor’s initial strength (see Fig. 1.2). 
This means that strong faithfulness must be violated; indeed, from a common sense perspective, the principle should not be satisfied

in such situations. However, we may consider the satisfaction of strong faithfulness desirable in situations in which the effect of the 
contributor on the topic argument is monotonic, an intuition which we formalise below.

Definition 6.3 (Monotonic Effect). Given a semantics 𝜎, a QBAG 𝖦 = (Args, 𝜏,Att,Supp), and arguments 𝗑, 𝖺 ∈ Args, we say that “𝗑 has 
a monotonic effect on 𝖺” w.r.t. 𝜎 iff for every QBAG 𝖦 ↓𝜏(𝗑)←𝜖 , for every 𝜖, 𝜖′ ∈ 𝕀 the following holds:

• either, for every QBAG 𝖦 ↓𝜏(𝗑)←𝜖′ , if 𝜖 < 𝜖′ then 𝜎𝖦↓𝜏(𝗑)←𝜖
(𝖺) ≤ 𝜎𝖦↓𝜏(𝗑)←𝜖′

(𝖺);
• or, for every QBAG 𝖦 ↓𝜏(𝗑)←𝜖′ , if 𝜖 < 𝜖′ then 𝜎𝖦↓𝜏(𝗑)←𝜖

(𝖺) ≥ 𝜎𝖦↓𝜏(𝗑)←𝜖′
(𝖺).

Now, we can conjecture that 𝖢𝗍𝗋𝖻𝜕 satisfies strong faithfulness given contributors that have a monotonic effect on our topic 
argument, i.e., given the class of QBAGs with respect to a semantics 𝜎 in which the effect of any argument on another one in any 
QBAG is monotonic. As a prerequisite for this conjecture, let us formalise the notion of monotonic effect QBAGs.

Definition 6.4 (Monotonic Effect QBAGs). Given a semantics 𝜎, a QBAG 𝖦 = (Args, 𝜏,Att,Supp) is a monotonic effect QBAG w.r.t. 𝜎
iff for all 𝗑, 𝖺 ∈ Args it holds that 𝗑 has a monotonic effect on 𝖺 w.r.t. 𝜎. We denote the class of monotonic effect QBAGs w.r.t. 𝜎 by 
Q𝜎

𝑀𝐸
.

Now, we can speculate that the gradient-based contribution function satisfies strong faithfulness with respect to all of the surveyed 
argumentation semantics when assuming monotonic effect QBAGs.

Conjecture 2. Let 𝜎 be QE, DFQuAD, SD-DFQuAD, EB, or EBT semantics and assume the class of QBAGs is 𝑄𝜎
𝑀𝐸

. 𝖢𝗍𝗋𝖻𝜕 satisfies strong 
faithfulness w.r.t. 𝜎.

We can further speculate about topological properties that can guarantee a monotonic effect. For example, in some cases, the role 
that a contributor has in terms of (potentially indirect) attack or support of a topic argument may be clear:

• a contributor may either directly attack or support the topic argument (and hence is a direct attacker or supporter);
• a contributor may attack direct or indirect supporters of the topic argument or support its direct or indirect attackers and hence 

is an indirect attacker;
• a contributor may attack direct or indirect attackers of the topic argument or support its direct or indirect supporters and hence 

is an indirect supporter;
• finally, a contributor is a clear attacker of a topic argument if it is a direct or indirect attacker but not a direct or indirect supporter 

and it is a clear supporter if it is a direct or indirect supporter but not a direct or indirect attacker.

Now, we may speculate that contributors that are clear supporters of a topic argument must have an effect on the topic argument 
24

that is always ≥ 0, no matter the contributor’s initial strength; in the case of clear attackers the effect should be always ≤ 0.
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𝖿 ′
𝖠𝟤
∶(0.07)
𝟎.𝟎𝟕

𝖿𝖠∶(0.16)
𝟎.𝟐𝟔

𝗆∶(0.79)
𝟎.𝟖𝟓

𝖿 ′
𝖠𝟣
∶(0.05)
𝟎.𝟎𝟓

𝖿𝖣∶(0.05)
𝟎.𝟎𝟓

𝖿𝖶∶(0.02)
𝟎.𝟎𝟐

+ +

+ + -

Fig. 26. QBAG for movie rating with initial strengths in normal font and DFQuAD final strength in bold font (taken from [5]).

Table 5
The results of four contribution functions for the QBAG in Fig. 26.

Argument 𝖢𝗍𝗋𝖻R 𝖢𝗍𝗋𝖻R′
𝖢𝗍𝗋𝖻S 𝖢𝗍𝗋𝖻𝜕

𝑓𝐴 0.051443 (1) 0.03192 (1) 0.044726 (1) 0.176258 (1)
𝑓 ′
𝐴1 0.007792 (3,4) 0.007792 (3,4) 0.004065 (4) 0.15585 (3)

𝑓 ′
𝐴2 0.011144 (2) 0.011144 (2) 0.00577 (3) 0.1592 (2)

𝑓𝐷 0.007792 (3,4) 0.007792 (3,4) 0.011248 (2) 0.15584 (4)
𝑓𝑊 -0.0042 (5) -0.0042 (5) -0.00807 (5) -0.21 (5)

7. Case study

To give a basic intuition of practical applications, we apply our four contribution functions to an application of QBAGs to explaining 
the aggregated score of movie ratings on the website Rotten Tomatoes [5]. The QBAGs in this application are based on a hierarchical 
structure with the overall evaluation at the top. The evaluation can be attacked and supported by evaluation criteria like the quality 
of acting, directing and writing. The criteria can be further attacked and supported by subcriteria like the performance of individual 
actors or the writing for particular parts of the movie. The initial strength of the criteria is determined by a natural language processing 
pipeline, which extracts argumentative phrases from reviews, evaluates their sentiment using sentiment analysis tools, assigns them to 
criteria using topic classification tools and merges the sentiment of the individual phrases such that the final strength of the evaluation 
aligns with the Rotten Tomatoe score [5].

Fig. 26 shows a small example QBAG for this scenario. Here, 𝗆 is the topic argument representing a movie to be rated. The 
attacker 𝖿𝖶 of 𝗆 stands for the script quality of the movie (writing), while the supporters 𝖿𝖣 and 𝖿𝖠 represent the quality of directors 
and actors of the movie, respectively. 𝖿𝖠 is further supported by two specific actors 𝖿 ′

𝖠𝟣
and 𝖿 ′

𝖠𝟤
. The QBAG is evaluated by DFQuAD 

semantics and the movie 𝗆 obtains a final strength of 0.85.
Our four contribution functions can explain in different ways how the criteria affect the final strength of the movie (𝗆’s final 

strength). In Table 5, we provide the contributions of all non-topic arguments determined by 𝖢𝗍𝗋𝖻R , 𝖢𝗍𝗋𝖻R′
, 𝖢𝗍𝗋𝖻S and 𝖢𝗍𝗋𝖻𝜕 , 

with the ranking established by the contribution function in parentheses. Note that all contribution functions agree qualitatively: 
𝖿𝖶 always has a negative contribution, whereas all other arguments have positive contributions. We can also see that 𝖿𝖠 always has 
the largest positive contribution. However, the contribution ranking for the remaining arguments varies across different contribution 
functions because they measure different things. The removal-based contribution functions 𝖢𝗍𝗋𝖻R and 𝖢𝗍𝗋𝖻R′

measure the difference 
between the movie’s strength when arguments are removed in a particular way. The Shapley values determined by 𝖢𝗍𝗋𝖻S have a 
similar meaning but average over all possible subgraphs and are normalized such that the contribution values sum up to the difference 
between the movie’s final and initial strengths. Finally, 𝖢𝗍𝗋𝖻𝜕 measures the local sensitivity of the movie’s strength with respect to 
changes in the other arguments’ initial strength. More precisely, a small change in the arguments’ initial strength will change the 
strength of the movie by a value that is proportional to the argument’s contribution value.

Let us use the example to discuss the intuition of some principles. Since 𝖢𝗍𝗋𝖻S satisfies (quantitative) contribution existence, 
Proposition 5.4 guarantees that at least one argument must have a non-zero Shapley-based contribution because the initial strength 
of 𝗆 is different from its final strength. Let us note that, in our example, this is also true for all other functions even though they 
do not satisfy this principle in general (it is possible that all contribution values are 0 even though there was a change). Another 
interesting property to note for the Shapley values is that their sum equals the difference between the initial and final strengths of 𝗆. 
In this way, it nicely distributes the contributions among the arguments. 𝖢𝗍𝗋𝖻𝜕 satisfies quantitative local faithfulness, as shown in 
Propositions 5.10, which guarantees that the scores accurately reflect the sensitivity of the final evaluation with respect to their initial 
strength. Since 𝖿𝖠𝟣, 𝖿𝖠𝟤 and 𝖿𝖣 all have very similar scores under 𝖢𝗍𝗋𝖻𝜕 , we learn that the final evaluation is approximately equally 
sensitive with respect to their initial strengths. More specifically, changing their initial strengths by some small value 𝛿 will change the 
final strength of the movie by approximately 0.15 ⋅ 𝛿. Similarly, changing 𝖿𝖠 and 𝖿𝖶 would result in a change of approximately 0.17 ⋅ 𝛿
and −0.21 ⋅ 𝛿, respectively. Since 𝖢𝗍𝗋𝖻R satisfies (quantitative) counterfactuality, Proposition 5.22 allows us to infer that removing 
the criterion 𝖿𝖠 would decrease the movie’s final strength of 𝗆 by approximately 0.05. All contribution functions satisfy directionality 
according to Proposition 5.9. This allows us to derive some contributions without making any computations. For example, if we 
consider 𝖿𝖠 as the topic argument, the contribution from 𝖿𝖣 to 𝖿𝖠 must be 0 under all four contribution functions due to the absence 
25

of a path from 𝖿𝖣 to 𝖿𝖠.
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8. Discussion and related work

The study presented in this paper can be considered a contribution to argumentative explainability, with a focus on quan-
titative bipolar argumentation. The former has emerged as a research trend in recent years [2,3,14,34,35]; in applied research 
where argumentation is utilized, quantitative (bipolar) argumentation is often employed as the formal argumentation approach of 
choice [4,36,18,15,5,16,17]. However, only a few works focus on the formal study of explaining inference in quantitative bipolar 
argumentation. Notable exceptions are [32], which introduces several explanation notions for sets of argument explaining changes 
in inference in QBAGs after updates have been applied to the argumentation graph, and [13], which is the first paper introducing 
contribution functions to quantitative bipolar argumentation. Let us note that some related contribution functions have been intro-
duced for gradual semantics over non-bipolar abstract argumentation before [34,19]). We refer to [37] for an overview of semantics 
in this area. [14] studies gradient-based contribution functions under Df-QuAD semantics in more detail. [38] introduces a function 
that intuitively corresponds to the counterfactual contribution function; however, the study presented in [38] does not focus on 
single-argument contributions but on the aggregation of contributions of arguments uttered by a specific agent.

Our work can be seen as a consolidation and extension of some of the theoretical contributions provided in [13] and [14], providing 
a rigorous analysis of previously introduced and new principles that highlights the differences between contribution functions, thus 
facilitating the well-informed selection of contribution functions in application scenarios. From our analysis, we can see that for 
each of the three contribution functions 𝖢𝗍𝗋𝖻R , 𝖢𝗍𝗋𝖻S , and 𝖢𝗍𝗋𝖻𝜕 , there is a contribution function principle that is satisfied by only 
this function and with respect to all of the surveyed semantics: (quantitative) counterfactuality for 𝖢𝗍𝗋𝖻R , quantitative contribution 
existence for 𝖢𝗍𝗋𝖻S , and (quantitative) local faithfulness for 𝖢𝗍𝗋𝖻𝜕 . In the case of quantitative contribution existence, a relaxation 
of the principle—contribution existence—is satisfied by other contribution functions as well, albeit merely with respect to some, and 
not all, of the surveyed semantics. For 𝖢𝗍𝗋𝖻R′

, we did not define a corresponding contribution function principle: let us claim that 
adjusting the counterfactuality principle to fit the behaviour of 𝖢𝗍𝗋𝖻R′

is trivially possible but arguably pointless, as the principle 
would be deliberately designed to be satisfied by 𝖢𝗍𝗋𝖻R′

(and only by 𝖢𝗍𝗋𝖻R′
). What remains to be studied are the conjectures posed 

in Section 6, as well as the satisfaction of contribution function principles in the case of cyclic QBAGs.
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Appendix A. Counter-examples proving the violation of proximity

The appendix contains counterexamples showing that many contribution functions violate the proximity principle with respect to 
many of the surveyed contribution functions. The only exception is 𝖢𝗍𝗋𝖻𝜕 and EBT semantics, for which we do not provide a proof of 
violation (or satisfaction).

Proposition A.1. 𝖢𝗍𝗋𝖻R violates proximity w.r.t. QE, DFQuAD, SD-DFQuAD, EB, and EBT semantics.

Proof. For the counterexample for QE semantics, consider Fig. 25, topic argument 𝖺 and contributors 𝖻 and 𝖼. Although 𝖻 is strictly 
closer to 𝖺 than 𝖼 is, we have |𝖢𝗍𝗋𝖻R

𝖺 (𝖻)| ≈ 0.0012 < |𝖢𝗍𝗋𝖻R
𝖺 (𝖼)| ≈ 0.0037. For DFQuAD semantics, consider Fig. 27, topic argument 
26

𝖺 and contributors 𝖻 and 𝖼. Although 𝖻 is strictly closer to 𝖺 than 𝖼 is, we have |𝖢𝗍𝗋𝖻R
𝖺 (𝖻)| = 0 < |𝖢𝗍𝗋𝖻R

𝖺 (𝖼)| ≈ 0.05. For SD-DFQuAD 
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𝖺∶(0.5)
𝟎.𝟓

𝖻∶(0.1)
𝟎.𝟎

𝖼∶(1)
𝟏

--

Fig. 27. 𝖢𝗍𝗋𝖻R violates the proximity principle w.r.t. DFQuAD semantics.

𝖺∶(0.5)
𝟎.𝟓𝟐𝟑𝟖

𝖻∶(0.05)
𝟎.𝟎𝟓

𝖼∶(1)
𝟏

𝖽∶(1)
𝟏

+

- +

Fig. 28. 𝖢𝗍𝗋𝖻R violates the proximity principle w.r.t. SD-DFQuAD semantics.

𝖺∶(0.5)
𝟎.𝟒𝟗𝟐𝟓

𝖻∶(0.1)
𝟎.𝟎𝟒𝟓𝟏

𝖼∶(1)
𝟏

--

Fig. 29. 𝖢𝗍𝗋𝖻R violates the proximity principle w.r.t. EB and EBT semantics.

𝖺∶(0.5)
𝟎.𝟔𝟎𝟎𝟗

𝖻∶(0.1)
𝟎.𝟓𝟎𝟐𝟖

𝖼∶(0.9)
𝟎.𝟗

++

Fig. 30. 𝖢𝗍𝗋𝖻R′
violates the proximity principle w.r.t. QE semantics.

𝖺∶(0.5)
𝟎.𝟗𝟓𝟓

𝖻∶(0.1)
𝟎.𝟗𝟏

𝖼∶(0.9)
𝟎.𝟗

++

Fig. 31. 𝖢𝗍𝗋𝖻R′
and 𝖢𝗍𝗋𝖻𝜕 violate the proximity principle w.r.t. DFQuAD semantics.

semantics, consider Fig. 28, topic argument 𝖺 and contributors 𝖻 and 𝖼. Although 𝖻 is strictly closer to 𝖺 than 𝖼 is, we have |𝖢𝗍𝗋𝖻R
𝖺 (𝖻)| ≈

0.0238 < |𝖢𝗍𝗋𝖻R
𝖺 (𝖼)| ≈ 0.1483. For EB and EBT semantics, consider Fig. 29, topic argument 𝖺 and contributors 𝖻 and 𝖼. Although 𝖻 is 

strictly closer to 𝖺 than 𝖼 is, we have |𝖢𝗍𝗋𝖻R
𝖺 (𝖻)| ≈ 0.0075 < |𝖢𝗍𝗋𝖻R

𝖺 (𝖼)| ≈ 0.0089. □

Proposition A.2. 𝖢𝗍𝗋𝖻R′
violates proximity w.r.t. QE, DFQuAD, SD-DFQuAD, EB, and EBT semantics.

Proof. For the counterexample for QE semantics, consider Fig. 30, topic argument 𝖺 and contributors 𝖻 and 𝖼. Although 𝖻 is strictly 
closer to 𝖺 than 𝖼 is, we have |𝖢𝗍𝗋𝖻R′

𝖺 (𝖻)| ≈ 0.005 < |𝖢𝗍𝗋𝖻R′
𝖺 (𝖼)| ≈ 0.0959. For DFQuAD semantics, consider Fig. 31, topic argument 

𝖺 and contributors 𝖻 and 𝖼. Although 𝖻 is strictly closer to 𝖺 than 𝖼 is, we have |𝖢𝗍𝗋𝖻R′
𝖺 (𝖻)| ≈ 0.05 < |𝖢𝗍𝗋𝖻R′

𝖺 (𝖼)| = 0.405. For SD-
DFQuAD semantics, consider Fig. 32, topic argument 𝖺 and contributors 𝖻 and 𝖼. Although 𝖻 is strictly closer to 𝖺 than 𝖼 is, we have 
|𝖢𝗍𝗋𝖻R′

𝖺 (𝖻)| ≈ 0.0454 < |𝖢𝗍𝗋𝖻R′
𝖺 (𝖼)| ≈ 0.127. For EB and EBT semantics, consider Fig. 33, topic argument 𝖺 and contributors 𝖻 and 𝖼. 

Although 𝖻 is strictly closer to 𝖺 than 𝖼 is, we have |𝖢𝗍𝗋𝖻R′
𝖺 (𝖻)| ≈ 0.0169 < |𝖢𝗍𝗋𝖻R′

𝖺 (𝖼)| ≈ 0.0184. □

Proposition A.3. 𝖢𝗍𝗋𝖻S violates proximity w.r.t. QE, DFQuAD, SD-DFQuAD, EB, and EBT semantics.

Proof. For the counterexample for QE semantics, consider Fig. 34, topic argument 𝖺 and contributors 𝖾 and 𝖿 . Although 𝖾 is strictly 
closer to 𝖺 than 𝖿 is, we have |𝖢𝗍𝗋𝖻S

𝖺 (𝖾)| ≈ 0.00005 < |𝖢𝗍𝗋𝖻S
𝖺 (𝖿 )| ≈ 0.00056. For DFQuAD semantics, consider Fig. 35, topic argument 

𝖺 and contributors 𝖾 and 𝖿 . Although 𝖾 is strictly closer to 𝖺 than 𝖿 is, we have |𝖢𝗍𝗋𝖻S
𝖺 (𝖾)| ≈ 0.0037 < |𝖢𝗍𝗋𝖻S

𝖺 (𝖿 )| ≈ 0.0057. For 
SD-DFQuAD semantics, consider Fig. 36, topic argument 𝖺 and contributors 𝖾 and 𝖿 . Although 𝖾 is strictly closer to 𝖺 than 𝖿 is, we 
have |𝖢𝗍𝗋𝖻S

𝖺 (𝖾)| ≈ 0.00065 < |𝖢𝗍𝗋𝖻S
𝖺 (𝖿 )| ≈ 0.00075. For EB semantics, consider Fig. 37, topic argument 𝖺 and contributors 𝖾 and 𝖿 . 

Although 𝖾 is strictly closer to 𝖺 than 𝖿 is, we have |𝖢𝗍𝗋𝖻S
𝖺 (𝖾)| ≈ 0.00022 < |𝖢𝗍𝗋𝖻S

𝖺 (𝖿 )| ≈ 0.00026. For EB semantics, consider Fig. 38, 
topic argument 𝖺 and contributors 𝖾 and 𝖿 . Although 𝖾 is strictly closer to 𝖺 than 𝖿 is, we have |𝖢𝗍𝗋𝖻S

𝖺 (𝖾)| ≈ 0.000098 < |𝖢𝗍𝗋𝖻S
𝖺 (𝖿 )| ≈

0.000108. □
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Proposition A.4. 𝖢𝗍𝗋𝖻𝜕 violates proximity w.r.t. QE, DFQuAD, SD-DFQuAD, and EB semantics.
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𝖺∶(0.5)
𝟎.𝟔𝟕𝟐𝟒

𝖻∶(0.1)
𝟎.𝟓𝟐𝟔𝟑

𝖼∶(0.9)
𝟎.𝟗

++

Fig. 32. 𝖢𝗍𝗋𝖻R′
violates the proximity principle w.r.t. SD-DFQuAD semantics.

𝖺∶(0.5)
𝟎.𝟓𝟑𝟓𝟑

𝖻∶(0.1)
𝟎.𝟐𝟎𝟓𝟒

𝖼∶(0.9)
𝟎.𝟗

++

Fig. 33. 𝖢𝗍𝗋𝖻R′
violates the proximity principle w.r.t. EB and EBT semantics.

𝖺∶(0.1)
𝟎.𝟎𝟖𝟐𝟗

𝖻∶(0.15)
𝟒𝟓𝟒𝟕

𝖼∶(0.15)
𝟒𝟓𝟒𝟕

𝖽∶(0.15)
𝟎.𝟒𝟓𝟒𝟕

𝖾∶(0.495)
𝟎.𝟕𝟒𝟕𝟓

𝖿 ∶(1)
𝟏

-

-

+

+

+

+

+

Fig. 34. 𝖢𝗍𝗋𝖻S violates the proximity principle w.r.t. QE semantics.

𝖺∶(0.125)
𝟎.𝟏𝟐𝟓

𝖻∶(0)
𝟏

𝖼∶(0.2)
𝟏

𝖽∶(0.2)
𝟎.𝟏

𝖾∶(0.2)
𝟏

𝖿 ∶(1)
𝟏

-

-

+

+

+

+

+

Fig. 35. 𝖢𝗍𝗋𝖻S violates the proximity principle w.r.t. DFQuAD semantics.

𝖺∶(0.3)
𝟎.𝟏𝟕𝟑𝟐

𝖻∶(0.5)
𝟎.𝟕𝟓

𝖼∶(0.01)
𝟎.𝟓𝟎𝟓

𝖽∶(0.4)
𝟎.𝟐𝟔𝟕𝟔

𝖾∶(0.01)
𝟎.𝟓𝟎𝟓

𝖿 ∶(1)
𝟏

𝗀∶(1)
𝟏

𝗁∶(1)
𝟏

𝗂∶(1)
𝟏

-

-

+

+

+

+

+

-

-

+

+

+

Fig. 36. 𝖢𝗍𝗋𝖻S violates the proximity principle w.r.t. SD-DFQuAD semantics.

Proof. For the counterexample for QE semantics, consider Fig. 39, topic argument 𝖺 and contributors 𝖻 and 𝖽. Although 𝖻 is strictly 
closer to 𝖺 than 𝖽 is, we have |𝖢𝗍𝗋𝖻𝜕𝖺 (𝖻)| ≈ 0.1081 < |𝖢𝗍𝗋𝖻𝜕𝖺 (𝖽)| ≈ 0.2945. For DFQuAD semantics, consider Fig. 31, topic argument 𝖺
and contributors 𝖻 and 𝖼. Although 𝖻 is strictly closer to 𝖺 than 𝖼 is, we have |𝖢𝗍𝗋𝖻𝜕𝖺 (𝖻)| ≈ 0.05 < |𝖢𝗍𝗋𝖻𝜕𝖺 (𝖼)| = 0.45. For SD-DFQuAD 
semantics, consider Fig. 40, topic argument 𝖺 and contributors 𝖻 and 𝖽. Although 𝖻 is strictly closer to 𝖺 than 𝖽 is, we have |𝖢𝗍𝗋𝖻𝜕𝖺 (𝖻)| ≈
0.121 < |𝖢𝗍𝗋𝖻𝜕𝖺 (𝖽)| ≈ 0.234. For EB semantics, consider Fig. 41, topic argument 𝖺 and contributors 𝖻 and 𝖽. Although 𝖻 is strictly closer 
28

to 𝖺 than 𝖽 is, we have |𝖢𝗍𝗋𝖻𝜕𝖺 (𝖻)| ≈ 0.0083 < |𝖢𝗍𝗋𝖻𝜕𝖺 (𝖽)| ≈ 0.0101. □
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𝖺∶(0.5)
𝟎.𝟓𝟎𝟓𝟐

𝖻∶(0.1)
𝟎.𝟏𝟒𝟑𝟑

𝖼∶(0.1)
𝟎.𝟏𝟒𝟑𝟑

𝖽∶(0.51)
𝟎.𝟓𝟖𝟕𝟒

𝖾∶(0.25)
𝟎.𝟒𝟒𝟏𝟖

𝖿 ∶(1)
𝟏

𝗀∶(0.27)
𝟎.𝟐𝟕

-

-

+

+

+

+

+

-

Fig. 37. 𝖢𝗍𝗋𝖻S violates the proximity principle w.r.t. EB semantics.

𝖺∶(0.3)
𝟎.𝟑𝟎𝟑𝟔

𝖻∶(0.4)
𝟎.𝟒𝟐𝟓

𝖼∶(0.55)
𝟎.𝟓𝟓

𝖽∶(0.51)
𝟎.𝟒𝟒𝟕𝟒

𝖾∶(0.25)
𝟎.𝟏𝟒𝟏𝟓

𝖿 ∶(1)
𝟏

𝗀∶(0.25)
𝟎.𝟐𝟓

-

- +

+

+

-

--

Fig. 38. 𝖢𝗍𝗋𝖻S violates the proximity principle w.r.t. EBT semantics.

𝖺∶(0.5)
𝟎.𝟔𝟓𝟐𝟒

𝖻∶(0)
𝟎.𝟔𝟔𝟐𝟐

𝖼0 ∶(0.1)
𝟎.𝟐𝟖

𝖼1 ∶(0.1)
𝟎.𝟐𝟖

𝖼2 ∶(0.1)
𝟎.𝟐𝟖

𝖼3 ∶(0.1)
𝟎.𝟐𝟖

𝖼3 ∶(0.1)
𝟎.𝟐𝟖

𝖽∶(0.5)
𝟎.𝟓

+

+

+

+

+

+

+

+

+ +

+

Fig. 39. 𝖢𝗍𝗋𝖻𝜕 violates the proximity principle w.r.t. QE semantics.

𝖺∶(0.5)
𝟎.𝟕𝟎𝟓𝟏

𝖻∶(1)
𝟎.𝟔𝟗𝟓𝟐

𝖼0 ∶(0.1)
𝟎.𝟏𝟎𝟖𝟗

𝖼1 ∶(0.1)
𝟎.𝟏𝟎𝟖𝟗

𝖼2 ∶(0.1)
𝟎.𝟏𝟎𝟖𝟗

𝖼3 ∶(0.1)
𝟎.𝟏𝟎𝟖𝟗

𝖼3 ∶(0.1)
𝟎.𝟏𝟎𝟖𝟗

𝖽∶(0.01)
𝟎.𝟎𝟏

+

-

+

-

+

-

+

-

+ +

-
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Fig. 40. 𝖢𝗍𝗋𝖻𝜕 violates the proximity principle w.r.t. SD-DFQuAD semantics.
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𝖺∶(0.25)
𝟎.𝟒𝟑𝟗𝟒

𝖻∶(0.4)
𝟎.𝟗𝟖𝟗𝟐

𝖼0 ∶(0.1)
𝟎.𝟏𝟓𝟎𝟏

𝖼1 ∶(0.1)
𝟎.𝟏𝟓𝟎𝟏

… 𝖼33 ∶(0.1)
𝟎.𝟏𝟓𝟎𝟏

𝖼34 ∶(0.1)
𝟎.𝟏𝟓𝟎𝟏

𝖽∶(0.5)
𝟎.𝟓

+

+

+

+

+

+

+

+

+ +

+

Fig. 41. 𝖢𝗍𝗋𝖻𝜕 violates the proximity principle w.r.t. EB semantics.
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