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Abstract

Synthesis of surface roughness is a longstanding problem that has many
practical applications. Here novel algorithms for synthesis of rough sur-
faces at nano/micro-scales are proposed. The algorithms are based on
introduction and development of two new concepts, namely the repre-
sentative elementary pattern of roughness (REPR) and the statistically
representative pattern of surface roughness (SRPSR). From the statistical
point of view, the REPR is the smallest interval (or area) over which a
measurement can be made that represents statistically the whole surface.
However, synthesis of surfaces by the direct use of the REPR may cause
some artificial singularities. To avoid this drawback and to incorporate
the synthetic surface in a numerical scheme of the contact solver, one
needs to extend the REPR to a non-singular SRPSR that satisfies addi-
tional conditions of the scheme used. Our findings indicate that specific
time series analysis techniques, such as the moving window approach, can
be effectively utilized to extract the REPR from experimental data. The
representativeness may be justified by the use of the Kolmogorov-Smirnov
statistic. Extraction of REPRs of surfaces and constructions of appropri-
ate SRPSRs are demonstrated on experimental data obtained by stylus
and Atomic-Force Microscopy at micro and atomic/nano scales respec-
tively.

1 Introduction

Measurements of the surface topography and analysis of roughness have been in-
tensively studied for decades (see, e.g. Whitehouse 2010). Indeed, friction, wear
and energy dissipation during interacting of engineering surfaces are strongly
influenced by asperity deformations and these are controlled by the surface to-
pography. Across various preparation methods, a defining characteristic of most
engineering surfaces is the inherent presence of finite-scale roughness (see, e.g.
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Khusu et al. 1975, Greenwood 1992, Grigoriev 2016). Surface roughness is a crit-
ical parameter influencing component performance across numerous industries,
particularly in precision engineering applications. Surface roughness becomes
particularly essential for understanding dry friction mechanisms in the absence
of liquid lubricants, such as in nano/microscale devices and those operating in
vacuum environments.

Nowadays there exist various solvers for numerical simulations of contact
between rough solids, e.g. the Polonsky-Keer method (Polonsky and Keer 1999,
2000). Formally, one could use directly the real experimental roughness data
in a contact solver. Advanced experimental techniques, exemplified by Atomic
Force Microscopy (AFM), enable researchers to characterize surface topography
with atomic-scale resolution (Bora et al. 2013). However, this would not allow
the researchers to simulate many tribological phenomena. The difficulty may
be described by the Lubrecht–Venner statement: though calculating a tribolog-
ical problem for a single, real rough surface might be theoretically possible, its
limited generalizability to other rough surfaces or even slight variations in the
same surface renders it impractical (Lubrecht and Venner, 1999). Indeed, for
such a prediction, one needs to have a warranty that the rough surface used in
the contact solver is entirely typical of the whole surface on average at scales
that are governing for the tribological process under consideration.

Surface synthesis statistically replicates the topographical characteristics of
a real surface by creating a synthetic counterpart that mimics its statistical
properties. Thus, synthesis of roughness is the crucial process for numerical and
analytical simulations of contact between rough surfaces and other problems of
tribology including friction and wear because the synthetic surfaces may be
incorporated into numerical solvers of contact between rough surfaces.

Evaluation of statistical characteristics of surface roughness and synthesis of
rough surfaces are longstanding research topics (see, e.g. Glover et al. 1998,
Borodich and Bianchi 2013). Although synthesis of rough surfaces is widely
used in various industries, the current statistical approaches to description of
surface roughness are rather primitive. Indeed, despite the plethora of over 30
statistical roughness parameters in use, a clear understanding of how roughness
influences dry contact and friction remains elusive (Nowicki 1985). Note that
synthetic surfaces that model only some surface characteristics do not give a
warranty that the rough surface used in the contact solver is entirely typical of
the whole surface on average for the tribological process under consideration.

Consider a 2D/3D roughness profile with a large number of points, which is
obtained by some technical device, e.g. by a profilometer or AFM. Let us study
a problem of synthesis of another shorter 2D/3D profile that has the same height
distribution as the large profile. Doing this, we may think that the large profile
is obtained by a replication of some pattern given by the shorter profile. Two
new concepts are introduced here: (i) the representative elementary pattern of
roughness (REPR) and (ii) the statistically representative pattern of surface
roughness (SRPSR). From the statistical point of view, the REPR is the small-
est interval (or area) over which a measurement can be made that will yield
a value representative of the whole surface, while the SRPSR not only ensures

2



statistical representativeness of the entire surface but also adheres to additional
criteria based on the specific contact problem and numerical approach. It is
proposed in the paper to modify some techniques of time series analysis (see,
e.g. Golyandina and Zhigljavsky (2020)) and apply them to roughness of engi-
neering surfaces. It is known that the Kolmogorov-Smirnov statistic may test
whether the empirical distribution of data is different than a reference distribu-
tion. It is shown that the combination of the moving window technique and the
Kolmogorov-Smirnov statistic effectively extracted the REPR of the surfaces.
Hence, simpler surfaces with equivalent roughness in terms of the height distri-
bution, may be synthesized. Contrary to the most current statistical approaches
to surface roughness description, there is no need to assume the Gaussian distri-
bution of heights or fractal character of roughness at the micro or atomic/nano
scales.

2 Preliminaries. Synthesis of Tribological Sur-

faces.

2.1 The Fourier and wavelet approaches to synthesis of

surfaces

Surface analysis often utilizes Fourier decomposition, breaking down the mea-
surement data into a series of sine and cosine functions. In Fourier analysis
of surfaces, the first harmonic reveals deviations of the measured profile from
the nominal shape at a specific scale. If so, then this is attributed to surface
waviness, while roughness may be considered as the noise of the surface shape.
Thus, in surface topography, long wavelength features are termed ”waviness”,
while short wavelength irregularities are classified as ”roughness”. It is often
argued (Whitehouse 2010) that surface waviness should be measured apart from
its roughness.

We will consider further only nominally flat surfaces. The intersection be-
tween a plane perpendicular to a surface and the surface itself is called the
surface profile. The rough profile may be presented as graph of a function z(x),

x ∈ [−L,L]. Let z̄ denote the mean profile line, i.e. z̄ = 1
2L

∫ L

−L
z(x)dx is

the average value of the profile function z(x). If the origin level of the height
measurements is taken at z̄ then

1

2L

∫ L

−L

[z(x)− z̄]dx = 0.

The measurement data may be decomposed by the use of other orthogo-
nal non-trigonometric functions. Usually such functions having compact sup-
ports are called wavelets and a decomposition of measurement data using such
functions is called wavelet transform. Although there are several distinctions
between the Fourier and wavelet approaches, the main idea of the wavelet trans-
form is the same. One can use Fourier or wavelet synthesis, when the synthetic
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surface is represented as the sum of the measurement decomposition using the
bounded number of the basis functions (see, e.g. Greenwood 1992, Borodich and
Bianchi 2013). Both kinds of surface synthesis do not provide a warranty that
the surface obtained represents the original one and the Lubrecht–Venner state-
ment (formulated in Section 1) is applicable to synthesized surfaces (Lubrecht
and Venner, 1999).

2.2 Characterization of nominally flat surfaces.

Characterization of nominally flat surfaces may be roughly split into two par-
tially overlapping approaches: (i) selection of several roughness parameters; and
(ii) modelling of surface topography as a realization of a random process.

2.2.1 Surface description based on selected parameters of roughness.

Apparently, Abbott and Firestone (1933) pioneered the application of statistical
tools to analyze surface roughness. They suggested to calculate the right-tailed
cumulative distribution function of the surface heights Φ(z). If one considers
the probability density function φ(z) that shows the probability that the height
z(x) at a surface point x is between z and z + dz, then Φ(z) is defined as

Φ(z) =

∫

∞

z

φ(t) dt. (1)

Tribology utilizes the Abbott-Firestone curve, also known as the bearing area
curve, to potentially correlate it with the contact properties of rough surfaces.
Its value at a level z = h is equal to the normalized length (the area in the 2D
problem) of the slice of the profile above the level h.

In some cases, this curve can be leveraged to estimate the force exerted
during the penetration of a rough solid into an elastic foundation. Indeed,
for a thin elastic layer contacting a punch with a large contact area compared
to the layer’s thickness, the leading term of the asymptotic solution can be
approximated by the Fuss-Winkler foundation model (see, e.g. a review by
Borodich et al. (2019a) and references therein).

Zhuravlev (1940) used the probability density function φ(z) and represented
rough surfaces as collection of spherical protuberances having identical radii,
but located at different heights. Then he developed his statistical model of
contact between rough solids. A similar model was developed by Greenwood
and Williamson (1966). Zhuravlev-Greenwood-Williamson type models require
knowledge of the summit radii of surface asperities. If the roughness is isotropic
then the surface roughness z(x, y) is characterized by just a profile z(x). If the
profile heights zk = z(xk) are measured with a regular stylus or AFM step τ ,
i.e. one has xk = x0 + kτ , then the curvature (κ) of a protuberance zk can be
defined as

κ = −(zk−1 + zk+1 − 2zk)/τ
2
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where zk−1 < zk and zk+1 < zk, see (Greenwood 1992). Whitehouse and
Archard (1970) demonstrated that the mean curvature of a rough surface is
scale-dependent, varying with the chosen sampling interval.

The introduction of the Abbott-Firestone curve provoked a period of intense
research, characterized by the generation of numerous statistical roughness pa-
rameters, called the ”parameter rash” (Whitehouse 1982). The characterization
encompassed both the vertical height distribution and the horizontal profile dis-
tribution of the roughness. Apparently the most popular height parameter is
the maximum height Rmax of the profile z(x) defined on an interval [−L,L]
such that z̄ = 0, that is defined as

Rmax = max
x∈[−L,L]

z(x).

The arithmetical mean deviation of the surface Ra, and the root mean square
(rms) height Rq or σ2 are also very popular parameters of surface roughness

Ra =
1

2L

∫ L

−L

|z(x)| dx ≈

∑n
i=1 |z(xi)|

n
, Rq = σ =

[

1

2L

∫ L

−L

[z(x)]2 dx

]1/2

,

(2)
where n is the number of points of measurements on the interval and z(xi) is
the measured height at the point xi. Note that Rq is the square root of the
mean square deviation with respect to the mean profile line z̄ = 0.

While certain statistical roughness parameters hold value in specific engi-
neering applications, many lack general applicability (Whitehouse 1982). In
fact, engineers have to describe the rough surfaces using just few roughness
parameters. It is not clear what parameters they have to use for a particu-
lar tribological process under consideration because the European and British
standard (BS-EN-ISO-4287:2000, (2009)) contains over 20 surface and profile
parameters, while the American Standard (ASME B46.1-2002, 2002) is also a
very long document, that includes all parameters of the European Standard and
many additional parameters. In particular, it contains “Section 10 – Terminol-
ogy and Procedures for Evaluation of Surface Textures Using Fractal Geome-
try”. Despite claims of fractal dimension being a scale-independent roughness
parameter, its fractal behavior typically holds only over a limited range of about
1.5 orders of magnitude (Borodich 2013). As it has been mentioned, there are
many other parameters of surface roughness and it is practically impossible to
include of them in synthetic surfaces. In general, the complex contact mechanics
of rough surfaces defy description using a finite set of parameters.

2.2.2 Surface topography as a realization of a stochastic process.

Linnik and Khusu (1954, 1954a) suggested to model rough surfaces as realiza-
tions of Gaussian (normal) processes. Whitehouse and Archard (1970) intro-
duced independently a similar approach and they noted correctly that a Gaus-
sian surface is completely defined by two parameters, a height mean z̄ and an
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auto-covariance function R(δ)

R(δ) = lim
T→∞

1

2T

∫ T

−T

[z(x+ δ)− z̄][z(x)− z̄] dx = ⟨[z(x+ δ)− z̄][z(x)− z̄]⟩.

The function R(δ) characterizes the horizontal distribution of asperities of a
rough surface profile. Indeed, Maugis (2000) emphasized the need to consider
both vertical and horizontal roughness distributions, as surfaces can share height
and peak height characteristics yet differ in horizontal extension. Instead of R(δ)
one can use its Fourier transform, the power spectral density (PSD) G(ω) of the
signal frequency ω

G(ω) =
2

π

∫

∞

0

R(δ) cos ωδ dδ and z̄ = lim
T→∞

1

2T

∫ T

−T

z(x) dx.

Gaussian surfaces were later intensively studied (see, e.g. Nayak (1971, 1973),
Khusu et al. 1975, Greenwood 1992, Maugis 2000). Stochastic processes with
non-Gaussian height distributions can be constructed using an approach de-
scribed in (Bibby et al. 2005).

There exist various tests of normality of experimental data (Thode 2002).
These include the Kolmogorov-Smirnov (KS), Lilliefors (LF), Shapiro-Wilk (SW),
Anderson-Darling (AD), Cramer-von Mises (CVM), Pearson, and Shapiro-Francia
(SF) normality tests. Applications of these tests to typical experimental data
showed that (i) the height distribution is not normal either at nanometre or
microscale for rough metallic surfaces prepared by grinding (Borodich et al.
2016); (ii) the height distribution is normal for polishing papers of different
nominal asperity sizes (Pepelyshev et al. 2018); and (iii) AFM measurements
at 117 nm steps revealed normality of microscale and nanoscale roughness for
carbon coatings deposited by DC pulsed magnetron sputtering, while 10 nm
steps identified a departure from normality in the roughness of the non-biased
sample (Borodich et al. 2019b). Thus, the prevalence of non-Gaussian charac-
teristics in real-world surfaces necessitates the exploration of alternative models
beyond those designed for Gaussian landscapes.

2.2.3 Fractal and PSD approaches to surface roughness.

Many different surface topographies were studied by Sayles and Thomas (1978).
They obtained an experimental relation between normalized PSD and wave-
length. Logarithmic plotting yielded a remarkably consistent trend across a
vast range, spanning micrometers to meters. Berry and Hannay (1978) argued
that these results are a particular case of fractal surfaces. However, the PSD
approach has not a lot of sense if it is applied to the measurement data without
checking normality of the height distribution. Nevertheless the fractal approach
was quite popular for characterization of rough surfaces and their synthesis.

There is a very popular claim that the surface topography shows self-affine
fractal-like scaling, that is manifested as a power-law G(ω) ∝ 1/ω(1+2H). Here
H is the so-called Hurst exponent. The papers that develop the fractal approach
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to surface topography are often claimed that the statistical properties of the to-
pography are invariant under quasi-homogeneous transformation of coordinates
(self-affinity in the fractal terminology), i.e. if x → λx, then z(x) → λHz(x),
where z(x) is the surface topography height at point x, λ is any positive scaling
factor, and H is the so-called self-affine exponent or the Hurst parameter that
describes the trend of the topography heights. The arguments that the Hurst
parameter (exponent) that follows from the latter definition is the same as the
above mentioned former one (it connects H with the power-law behaviour of
the PSD) are rather vague.

Jetti and Ostoja-Starzewski (2022) wrote that the property of self-affinity
relates to two key statistical parameters: the D (which represents the ‘rough-
ness’) and H (which represents the ‘spatial memory’). They repeated also the
common statement about self-affine fractals that the exponent H is directly re-
lated to D and the Euclidean dimension E: H = E − D, where E = 2 for a
profile and E = 3 for a surface.

The above claims and similar statements about universality of fractal na-
ture of roughness caused development of various fractal approaches to surface
roughness description. In fact (see, e.g. Borodich et al. 2020, 2024), a very
rough surface and a polished surface can have the same D. Borodich (1998a,b)
showed that for the parametric-homogeneous (PH) fractal functions (it is a
special class of functions obeying the law of discrete self-similarity), the trend
of a function (usually attributed to H) and its fractal dimension are not con-
nected to each other. In fact, he showed that PH-functions may have arbitrary
prescribed trends keeping the same D. Using the terminology by Jetti and
Ostoja-Starzewski (2022), one can say that H and D are decoupled. The frac-
tal approaches to surface topography are discussed in detail by Borodich et al.
(2020). In particular, they argued that the both ’self-affine fractal’ and ’Hurst
exponent’ terms are ill-defined.

Often the Weierstrass-Mandelbrot (W-M) fractal function is used as syn-
thetic fractal surface for application in tribology. Majumdar and Bhushan
(1990) suggested to use the following truncated W-M function

W̃ (x; p) = Λ(D−1)
∞
∑

n=n1

p(D−2)n cos 2πpnx, 1 < D < 2, p > 1, (3)

for representation of surface roughness. Here n1 is an integer number, which
corresponds to the low cut-off frequency of the profile, and Λ is the so-called
characteristic length scale of the profile. The number n1 depends on the length
L of the sample and is given by pn1 = 1/L and the parameter Λ determines
the position of the spectral density along the power axis. The graph of W̃ was
suggested as a synthetic roughness profile with a power-law fractal behavior
mimicking the fractal dimension of a real surface.

It was often argued that both parameters Λ and D of the function W or
W̃ (x; p) are scale-invariant characteristics of the roughness. The W-M function
was even considered as a general fractal distribution function for rough surface
profiles (Blackmore and Zhou, 1996). However, the non-truncated Weierstrass-
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Mandelbrot function is a particular case of parametric-homogeneous (PH) func-
tions, and it is possible to construct a PH-function having prescribed fractal
dimension and arbitrary trend (Borodich, 1998a,b). Hence, the W-M function
cannot be considered as a general example of fractal roughness. Through il-
lustrative examples, Borodich (1993, 1998a,b), and Borodich and Onishchenko
(1993, 1999) demonstrated the insufficiency of fractal dimension alone in captur-
ing the contact behavior of rough surfaces. In addition, Bhushan (1995) pointed
out that experimental studies revealed non-uniqueness of the parameters Λ and
D in the fractal model, highlighting their dependence on measurement instru-
mentation and resolution.

Although nowadays the fractal approach is less popular than it was about 20
years ago, the PSD approach is still actively used. However, the fractal and PSD
approaches have the common drawback. If in addition to the profile z(x) one
considers an inverted profile y(x) defined as y(x) = −z(x), then the both profiles
z(x) and y(x) have the same auto-correlation function and the power spectrum
in both (x, z) and (x, y) coordinate systems. If z(x) has a fractal graph, then,
evidently, y(x) has the same fractal dimension. Thus, neither fractal dimension
nor PSD alone can give a full description of surface roughness.

3 Representative elementary pattern of rough-

ness

Accurately representing rough surfaces typically necessitates the use of very
large datasets capturing surface height information. This creates difficulties in
application of conventional numerical methods, e.g. Polonsky-Keer method, to
rough contact studies impractical. To achieve a requested numerical accuracy,
the grid, on which fast Fourier transform (FFT) is performed, needs to be
extended far beyond the contact area, leading to a substantial bottleneck in
terms of computational time. However, the computations may be performed
using smaller amount of measurement data, namely FFT can be applied on a
smaller interval of the SRPSR or a close pattern. Let us introduce the notion of
the representative elementary pattern of roughness mirroring the notion of the
representative elementary volume used in mechanics of random inhomogeneous
materials. As it has been mentioned, the REPR is the smallest interval (or area)
over which a measurement can be made that will yield a value representative
of the whole from the statistical point of view. It is impossible to possess a
representative property for patterns smaller than the REPR.

3.1 The Kolmogorov-Smirnov statistic and moving win-

dow techniques

The Kolmogorov-Smirnov statistic (also known as the Kolmogorov-Smirnov
Goodness of Fit test or the KS-test) compares the data of a sample and a
given distribution or two samples and allows us to understand if they have the
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same distribution (Conover 1999). If the Kolmogorov-Smirnov statistic is used
to test if the distribution observed on a sample came from a specified theoretical
distribution, e.g. the Gaussian distribution, then it is referred to as a one-sample
KS-test. Examples of applications of the one-sample KS-test to check whether
the surface roughness is normal, were given by Borodich et al. (2016) and Pe-
pelyshev et al. (2018). If the Kolmogorov-Smirnov statistic is used to test
whether two samples came from the same distribution, then it is referred to as
a two-sample KS-test. The details of applications of the two-sample KS-test to
subsamples extracted by moving windows are discussed in this section.

Consider a profile that is a sample of surface roughness measurements and
another sample that is a subset of the whole profile. The hypotheses H0 and H1

of the KS-test are the following, H0: the subset sample has the same population
distribution as the whole profile; and H1: the subset sample does not represent
the full population distribution.

Moving window (or rolling window) techniques slide a selection window
through the whole sample of measurements for analysis of the roughness data in
the window. In such manner, moving window is used to select a subset sample.
Because the total number of measurement points in the sample is fixed the mov-
ing window techniques are designed for retrospective application (Bower 2022,
Golyandina and Zhigljavsky 2020, Schelter et al. 2006). Note that during move-
ment of the window from left to right, a new point is added to the subset sample
at the right and the left point is removed. In general, the moving window allows
us to calculate various local statistical properties of the whole sample within the
window. Due to the assumption that the profile is homogeneous and it contains
a sufficient number of asperities for the apparent properties to be independent
of the scale of consideration, it is expected that asperities for the REPR-based
synthesized profile will be similar to asperities for the whole profile.

3.2 Extraction of the REPR

To resolve the problem formulated by Lubrecht and Venner (1999), we need to
collect experimental measurements of the surface roughness (5-10 profiles) that
may be considered as representative samples of the surface roughness. Let each
of the samples have the same length N , that is, the total number of measure-
ments on each profile is N . Applying the Kolmogorov-Smirnov statistic to each
pair of these profiles, we can check if all these profiles have the same height
distribution. If profiles are not similar to each other, this indicates that the
surface is not homogeneous and should be studied by segments. If they are,
then the procedure of extraction of the REPR for a surface can be formulated
as follows. Create a joint profile by merging these several profiles. If we took
m profiles then the length of the joint profile is equal to K = mN . To find the
pattern, we slide a window of length Ns along each of m profiles and compute
a similarity between the subset sample within the window and the joint profile
using the Kolmogorov-Smirnov statistic. Then a REPR is constructed as a sub-
set sample such that the statistical characteristics of the REPR are the same as
the characteristics of the surface.
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The algorithm of extraction of the REPR formally is as follows. First, we
take the joint roughness profile if m > 1 or the single whole profile, which is
a series of heights z1, z2, . . . , zK , where K = mN . Second, we take the length
of the moving window as Ns, where Ns < N , and slide this window along each
of the profiles. Specifically, for the starting point i, 0 ≤ i ≤ N −Ns, we select
the subset sample (zj,i+1; zi+2; . . . zj,i+Ns

), which is a series of heights extracted
by the sliding window from the j-th profile. Third, we compute a similarity
between the long series z1, z2, . . . , zK of the joint profile and the subset sample
(zj,i+1; zi+2; . . . zj,i+Ns

) within the moving window with the shift i using the
Kolmogorov-Smirnov statistic

DK,Ns:j:i = sup
x

∣

∣

∣
Fjoint,K(x)− Fj,Ns

(x)
∣

∣

∣
,

where Fjoint,K(x) and Fj,Ns
(x) are the cumulative distribution functions for

two samples, respectively. Fourth, for the fixed window length Ns, we define a
subset sample which minimizes the Kolmogorov-Smirnov statistic with respect
to the shift i. Also, we consider the KS-based distance measure defined by

DK(Ns) = min
j=1,...,m

i=1,...,N−Ns

DK,Ns:j:i (4)

as a function Ns. Finally, choose Ns such that the measure DK(Ns) is close to
zero and Ns is not big.

The chosen value Ns is the length of the REPR and the corresponding subset
sample which yields DK(Ns) is the REPR of the surface.

0 50 100 150 200

0

0.05

0.1

0.15

Figure 1: The KS-based distance measure DK(Ns) as a function of Ns for a
roughness profile of a steel sample obtained by a profilometer, K = N = 668.

In Figure 1 we show a typical behaviour of the KS-based distance measure
DK(Ns). We can see that DK(Ns) has the decreasing tendency on Ns. For very
small Ns, the measure DK(Ns) is large because a very short segment cannot
sufficiently well represent the whole profile. In addition, we have DK(Ns) ≈ 0
for large Ns because the large segment is similar to the whole profile. We
recommend to choose Ns as the smallest integer such that DK(Ns) < 0.05. For
example, in Figure 1 candidates for Ns would be just over 50 or around 80. If
Ns also satisfies the constraint Ns = 2b for some integer b, then the REPR with
2b points will be called the FFT-REPR.
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4 Construction of the SRPSR

Formally, one could use the REPR obtained in a numerical solver for simulation
of contact between rough surfaces. However, as one can see in the following
figures, usually the height for the last point is not equal to the height for the
first point of the REPR. Consequently, the formal employment of the REPR will
cause artificial jumps in the synthetic profile and, in turn, the singularities of
the stress fields. Hence, the SRPSR must not only be statistically representative
of the entire surface but also adhere to additional criteria specific to the chosen
contact problem formulation and numerical approach.

Note that any pattern that includes the REPR is also a representative pat-
tern of surface roughness. If the numerical solver does not have any restriction
on the number of the points in the SRPSR, then a pattern of the length 2Ns

obtained from the REPR by its mirror symmetry can be taken as the SRPSR.
Indeed, the heights at the first point and at the last point are the same and,
therefore, there are no artificial singularities in the profile.

In fact, the solvers can have restrictions on the number of the points in the
profile. Let consider as an example the Polonsky-Keer numerical scheme. The
Polonsky-Keer algorithm combines the use of the FFT and the multi-level multi-
summation techniques. This allows to reduce greatly the number of arithmetic
operations required by the algorithm (Polonsky and Keer 2000). However, the
employment of FFT requires that the profile contains 2b points where b is some
integer. Hence, we will need to extend the length of the pattern and include
several additional points that the total length of the pattern will satisfy this
condition. For example, if Ns = 52, then we need to add 12 additional points to
extend the profile to a FFT-REPR having 26 points and then to use the mirror
symmetry of the pattern. Hence, the final length of the SRPSR is 27.

4.1 Metallic surfaces

Tribological characterization of grinding-induced roughness on engineering sur-
faces has been performed across nano and micro scales to understand surface
features. The heights of the micro-asperities were determined by the stylus
profilometer (Taylor Hobson Form Talysurf 2 profilometer), while the data for
nano/atomic scale was obtained by the AFM instrument (XE-100 from Park
Systems). The resolution scales of the AFM device is 2 nm vertically and 5
nm laterally. The profilometer is fitted with a 250 nm in the x (measurement)
direction, 1 micron in the y direction and 19 nm vertically. Let us study several
datasets obtained by these instruments.

In Figure 2, one can see a roughness profile of a bronze sample obtained
by AFM, where measurements zk are taken at points xk = 0.1758k µm, k =
1, . . . ,K, K = 256. The REPR of length 104 was extracted. Then it have been
extended to the FFT-REPR having 128-points.

In Figure 3 we show the roughness profile of a copper sample obtained by
AFM, where measurements zk are taken at points xk = 0.15625k µm, k =
1, . . . ,K, K = 256, the REPR of length 55 that have been extended to the
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FFT-REPR having 64 points.
Figure 4 presents the roughness profile obtained by profilometre on a steel

gear surface, where measurements zk are taken at points xk = 1.5k µm, k =
0, 1, 2, . . . ,K, K = 667; the REPR of length 53 that have been extended to the
FFT-REPR having 64 points.

Comparing profiles in Figures 2–4 we see that the REPR for the bronze
sample is longer than the REPR for the copper sample and a steel gear surface
because shorts segments of the bronze roughness profile are very different from
each other.

0 5 10 15 20 25 30 35 40

-0.2

0

0.2

Figure 2: The REPR (red color) of length 104 and the FFT-REPR having 128
points (black dots) for a roughness profile of the bronze sample measured by
AFM, scale units are µm.
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Figure 3: The REPR (red color) of length 55 and the FFT-REPR having 64
points (black dots) for a roughness profile of the copper sample measured by
AFM, scale units are µm.

4.2 Carbon coating and PDMS

We consider the roughness of two amorphous carbon (a-C) films which were
deposited on silicon substrates by DC-pulsed magnetron sputtering in Ar atmo-
sphere (5 × 10−3 mbar) using a graphite target at 300 W. The pulse conditions
were set at 250 kHz of frequency, 496 ns of duration (87.6% of duty cycle). A
negative bias of approximately 150 V was applied to the substrate in one of the
cases. Both processes were carried out at room temperature and the measured
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Figure 4: The REPR (red color) of length 53 and the FFT-REPR having 64
points (black dots) for a roughness profile of the steel sample measured by
profilometer, scale units are µm.

thicknesses were 700 and 1300 nm for biased and non-biased samples, respec-
tively. Carbon-based coatings prepared by plasma-assisted deposition methods
at room temperature are generally amorphous as they are synthetized in condi-
tions out of thermodynamic equilibrium. There are many papers based on DLC
and a-C coatings where these structural characteristics are proven (see, e.g. Lin
et al., 2010).

Hardness measurements carried out with a MTS Nanoindenter II XP us-
ing the continuous stiffness measurement (CSM) technique and a diamond
Berkovich (three-sided pyramid) indenter tip gave 43 (biased) and 14 (non-
biased) GPa, respectively. Scanning electron microscopy (SEM) data were
recorded in a FEG Hitachi S4800 microscope operating at 5 kV.

The AFM system used to measure the nanoscale topography of the sample
was the XE-100 model from Park Systems. The probes employed were the
CSG model from NT-NDT. These probes are utilised for contact mode AFM
operations and are designed with a rectangular-type cantilever, which is Au-
coated on its reflective side. These probes are made of single crystal silicon and
have a nominal force constant of 0.11 N/m, as stated by the manufacturer. The
typical curvature radius of the tip mounted at the free of the cantilever is stated
to be 6 nm. In particular, the dimension of a scanned area was set at 30 µm x
30 µm for the a-C sample. However, the scanned area was 40 µm x 40 µm for
the bias a-C sample. In all cases 256 x 256 grid was used. This means that the
AFM step was 117 nm for the area 30 µm x 30 µm and 156 nm nm for the area
40 µm x 40 µm respectively.

In Figure 5 we show a roughness profile of the a-C sample, the REPR of
length 53 and the FFT-REPR having 64 points.

In Figure 6 we show a roughness profile of the a-C (bias) sample, the REPR
of length 48 and the FFT-REPR having 64 points.

Finally, we consider the roughness of polydimethylsiloxane (PDMS) poly-
mer. This material was used earlier by Purtov et al. (2013) to prepare epoxy
resin replicas of surfaces having different topography and conduct depth-sensing
indentation of the samples using a micro-force tester with a spherical smooth
probe made of the compliant polydimethylsiloxane polymer in order to compare
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Figure 5: The REPR (red color) of length 53 and the FFT-REPR having 64
points (black dots) for a roughness profile of the a-C sample measured by AFM,
scale units are µm.
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Figure 6: The REPR (red color) of length 48 and the FFT-REPR having 64
points (black dots) for a roughness profile of the a-C (bias) sample measured by
AFM, scale units are µm.

values of the force of adhesion to the surfaces. In particular, a clean smooth
glass surface and polishing papers of nominal asperity size 0.3 µm were used
as templates for preparation of the epoxy resin replicas. The roughness of test
surfaces was measured using a white light interferometer (Zygo NewView 6000;
Zygo Corporation, Middlefield, CT, USA) at a magnification of 50. As it has
been mentioned above, the roughness of the samples were tested by Pepelyshev
et al. (2018).

In Figure 7 we show the roughness profile of the PDMS polymer, the REPR
of length 84 and and the FFT-REPR having 128 points.

As it can be seen, the SRPSRs obtained for all samples are shorter than
the original profiles. If the algorithms for solving the contact problems between
rough surfaces do not require their extensions to 2b points, then the appropriate
SRPSRs may be extended in other ways.

5 Conclusion

It is known that the vast amount of data required for realistic descriptions of
rough surfaces renders conventional numerical methods in contact mechanics
computationally prohibitive. There were developed various effective numerical
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Figure 7: The REPR (red color) of length 84 and the FFT-REPR having 128
points (black dots) for a roughness profile of the PDMS polymer sample with
nominal roughness 0.3 measured by white light interferometry, scale units are
µm.

solvers for simulations of contact between rough surfaces, e.g. the Polonsky-
Keer solver based on employement of FFT (Polonsky and Keer 2000). However,
to achieve a requested numerical accuracy, the grid, on which FFT is performed,
needs to be extended far beyond the contact area, leading to an essential growth
of the computation time. It has been presented a fundamentally new approach
to problems related to synthesis of rough surfaces of solids. The approach is
based on introduction of a new concept, the representative elementary pattern
of roughness that is the smallest interval (or area) over which a measurement
can be made that represents statistically the whole surface. The idea of the
REPR term is similar to the idea of the representative elementary volume used
in mechanics of random inhomogeneous materials (Willis 1981).

It has been shown that statistical time series analysis methods, such as the
moving window technique, have proven effective in extracting the REPR from
experimental data. The two-sample Kolmogorov-Smirnov test (the KS statistic)
have been used to compare the distribution of the sample within the moving
window and the distribution of the whole sample. Hence, statistically, the REPR
replicates the original rough surface, capturing its essential characteristics for
analysis.

Usually, the synthesized surface cannot be viewed as a union of several copies
of the REPR. Indeed, a series of REPRs will produce jumps at the joints of two
REPRs, that in turn, cause singularities in stress fields of contacting solids.
Hence, there is a need to find such size of moving window and its location that
the appropriate pattern satisfies not only the condition that it is entirely typical
of the whole surface but also satisfies some additional conditions depending on
the contact problem formulation and the numerical scheme used. This reason
caused the need in introduction of another new concept which is the statistically
representative pattern of surface roughness (SRPSR).

Extraction of REPRs of surfaces and constructions of appropriate SRPSRs
are demonstrated on experimental data obtained at micro and atomic/nano
scales for several metallic surfaces, amorphous carbon and polymer samples.
We argue that surfaces synthesized using our approach cannot be distinguished
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from the original rough surface and they are convenient for the use of numerical
algorithms based on employment of FFT techniques.
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